1(*  Title:      ZF/Univ.thy
2    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
3    Copyright   1992  University of Cambridge
4
5Standard notation for Vset(i) is V(i), but users might want V for a
6variable.
7
8NOTE: univ(A) could be a translation; would simplify many proofs!
9  But Ind_Syntax.univ refers to the constant "Univ.univ"
10*)
11
12section\<open>The Cumulative Hierarchy and a Small Universe for Recursive Types\<close>
13
14theory Univ imports Epsilon Cardinal begin
15
16definition
17  Vfrom       :: "[i,i]=>i"  where
18    "Vfrom(A,i) == transrec(i, %x f. A \<union> (\<Union>y\<in>x. Pow(f`y)))"
19
20abbreviation
21  Vset :: "i=>i" where
22  "Vset(x) == Vfrom(0,x)"
23
24
25definition
26  Vrec        :: "[i, [i,i]=>i] =>i"  where
27    "Vrec(a,H) == transrec(rank(a), %x g. \<lambda>z\<in>Vset(succ(x)).
28                           H(z, \<lambda>w\<in>Vset(x). g`rank(w)`w)) ` a"
29
30definition
31  Vrecursor   :: "[[i,i]=>i, i] =>i"  where
32    "Vrecursor(H,a) == transrec(rank(a), %x g. \<lambda>z\<in>Vset(succ(x)).
33                                H(\<lambda>w\<in>Vset(x). g`rank(w)`w, z)) ` a"
34
35definition
36  univ        :: "i=>i"  where
37    "univ(A) == Vfrom(A,nat)"
38
39
40subsection\<open>Immediate Consequences of the Definition of \<^term>\<open>Vfrom(A,i)\<close>\<close>
41
42text\<open>NOT SUITABLE FOR REWRITING -- RECURSIVE!\<close>
43lemma Vfrom: "Vfrom(A,i) = A \<union> (\<Union>j\<in>i. Pow(Vfrom(A,j)))"
44by (subst Vfrom_def [THEN def_transrec], simp)
45
46subsubsection\<open>Monotonicity\<close>
47
48lemma Vfrom_mono [rule_format]:
49     "A<=B ==> \<forall>j. i<=j \<longrightarrow> Vfrom(A,i) \<subseteq> Vfrom(B,j)"
50apply (rule_tac a=i in eps_induct)
51apply (rule impI [THEN allI])
52apply (subst Vfrom [of A])
53apply (subst Vfrom [of B])
54apply (erule Un_mono)
55apply (erule UN_mono, blast)
56done
57
58lemma VfromI: "[| a \<in> Vfrom(A,j);  j<i |] ==> a \<in> Vfrom(A,i)"
59by (blast dest: Vfrom_mono [OF subset_refl le_imp_subset [OF leI]])
60
61
62subsubsection\<open>A fundamental equality: Vfrom does not require ordinals!\<close>
63
64
65
66lemma Vfrom_rank_subset1: "Vfrom(A,x) \<subseteq> Vfrom(A,rank(x))"
67proof (induct x rule: eps_induct)
68  fix x
69  assume "\<forall>y\<in>x. Vfrom(A,y) \<subseteq> Vfrom(A,rank(y))"
70  thus "Vfrom(A, x) \<subseteq> Vfrom(A, rank(x))"
71    by (simp add: Vfrom [of _ x] Vfrom [of _ "rank(x)"],
72        blast intro!: rank_lt [THEN ltD])
73qed
74
75lemma Vfrom_rank_subset2: "Vfrom(A,rank(x)) \<subseteq> Vfrom(A,x)"
76apply (rule_tac a=x in eps_induct)
77apply (subst Vfrom)
78apply (subst Vfrom, rule subset_refl [THEN Un_mono])
79apply (rule UN_least)
80txt\<open>expand \<open>rank(x1) = (\<Union>y\<in>x1. succ(rank(y)))\<close> in assumptions\<close>
81apply (erule rank [THEN equalityD1, THEN subsetD, THEN UN_E])
82apply (rule subset_trans)
83apply (erule_tac [2] UN_upper)
84apply (rule subset_refl [THEN Vfrom_mono, THEN subset_trans, THEN Pow_mono])
85apply (erule ltI [THEN le_imp_subset])
86apply (rule Ord_rank [THEN Ord_succ])
87apply (erule bspec, assumption)
88done
89
90lemma Vfrom_rank_eq: "Vfrom(A,rank(x)) = Vfrom(A,x)"
91apply (rule equalityI)
92apply (rule Vfrom_rank_subset2)
93apply (rule Vfrom_rank_subset1)
94done
95
96
97subsection\<open>Basic Closure Properties\<close>
98
99lemma zero_in_Vfrom: "y:x ==> 0 \<in> Vfrom(A,x)"
100by (subst Vfrom, blast)
101
102lemma i_subset_Vfrom: "i \<subseteq> Vfrom(A,i)"
103apply (rule_tac a=i in eps_induct)
104apply (subst Vfrom, blast)
105done
106
107lemma A_subset_Vfrom: "A \<subseteq> Vfrom(A,i)"
108apply (subst Vfrom)
109apply (rule Un_upper1)
110done
111
112lemmas A_into_Vfrom = A_subset_Vfrom [THEN subsetD]
113
114lemma subset_mem_Vfrom: "a \<subseteq> Vfrom(A,i) ==> a \<in> Vfrom(A,succ(i))"
115by (subst Vfrom, blast)
116
117subsubsection\<open>Finite sets and ordered pairs\<close>
118
119lemma singleton_in_Vfrom: "a \<in> Vfrom(A,i) ==> {a} \<in> Vfrom(A,succ(i))"
120by (rule subset_mem_Vfrom, safe)
121
122lemma doubleton_in_Vfrom:
123     "[| a \<in> Vfrom(A,i);  b \<in> Vfrom(A,i) |] ==> {a,b} \<in> Vfrom(A,succ(i))"
124by (rule subset_mem_Vfrom, safe)
125
126lemma Pair_in_Vfrom:
127    "[| a \<in> Vfrom(A,i);  b \<in> Vfrom(A,i) |] ==> <a,b> \<in> Vfrom(A,succ(succ(i)))"
128apply (unfold Pair_def)
129apply (blast intro: doubleton_in_Vfrom)
130done
131
132lemma succ_in_Vfrom: "a \<subseteq> Vfrom(A,i) ==> succ(a) \<in> Vfrom(A,succ(succ(i)))"
133apply (intro subset_mem_Vfrom succ_subsetI, assumption)
134apply (erule subset_trans)
135apply (rule Vfrom_mono [OF subset_refl subset_succI])
136done
137
138subsection\<open>0, Successor and Limit Equations for \<^term>\<open>Vfrom\<close>\<close>
139
140lemma Vfrom_0: "Vfrom(A,0) = A"
141by (subst Vfrom, blast)
142
143lemma Vfrom_succ_lemma: "Ord(i) ==> Vfrom(A,succ(i)) = A \<union> Pow(Vfrom(A,i))"
144apply (rule Vfrom [THEN trans])
145apply (rule equalityI [THEN subst_context,
146                       OF _ succI1 [THEN RepFunI, THEN Union_upper]])
147apply (rule UN_least)
148apply (rule subset_refl [THEN Vfrom_mono, THEN Pow_mono])
149apply (erule ltI [THEN le_imp_subset])
150apply (erule Ord_succ)
151done
152
153lemma Vfrom_succ: "Vfrom(A,succ(i)) = A \<union> Pow(Vfrom(A,i))"
154apply (rule_tac x1 = "succ (i)" in Vfrom_rank_eq [THEN subst])
155apply (rule_tac x1 = i in Vfrom_rank_eq [THEN subst])
156apply (subst rank_succ)
157apply (rule Ord_rank [THEN Vfrom_succ_lemma])
158done
159
160(*The premise distinguishes this from Vfrom(A,0);  allowing X=0 forces
161  the conclusion to be Vfrom(A,\<Union>(X)) = A \<union> (\<Union>y\<in>X. Vfrom(A,y)) *)
162lemma Vfrom_Union: "y:X ==> Vfrom(A,\<Union>(X)) = (\<Union>y\<in>X. Vfrom(A,y))"
163apply (subst Vfrom)
164apply (rule equalityI)
165txt\<open>first inclusion\<close>
166apply (rule Un_least)
167apply (rule A_subset_Vfrom [THEN subset_trans])
168apply (rule UN_upper, assumption)
169apply (rule UN_least)
170apply (erule UnionE)
171apply (rule subset_trans)
172apply (erule_tac [2] UN_upper,
173       subst Vfrom, erule subset_trans [OF UN_upper Un_upper2])
174txt\<open>opposite inclusion\<close>
175apply (rule UN_least)
176apply (subst Vfrom, blast)
177done
178
179subsection\<open>\<^term>\<open>Vfrom\<close> applied to Limit Ordinals\<close>
180
181(*NB. limit ordinals are non-empty:
182      Vfrom(A,0) = A = A \<union> (\<Union>y\<in>0. Vfrom(A,y)) *)
183lemma Limit_Vfrom_eq:
184    "Limit(i) ==> Vfrom(A,i) = (\<Union>y\<in>i. Vfrom(A,y))"
185apply (rule Limit_has_0 [THEN ltD, THEN Vfrom_Union, THEN subst], assumption)
186apply (simp add: Limit_Union_eq)
187done
188
189lemma Limit_VfromE:
190    "[| a \<in> Vfrom(A,i);  ~R ==> Limit(i);
191        !!x. [| x<i;  a \<in> Vfrom(A,x) |] ==> R
192     |] ==> R"
193apply (rule classical)
194apply (rule Limit_Vfrom_eq [THEN equalityD1, THEN subsetD, THEN UN_E])
195  prefer 2 apply assumption
196 apply blast
197apply (blast intro: ltI Limit_is_Ord)
198done
199
200lemma singleton_in_VLimit:
201    "[| a \<in> Vfrom(A,i);  Limit(i) |] ==> {a} \<in> Vfrom(A,i)"
202apply (erule Limit_VfromE, assumption)
203apply (erule singleton_in_Vfrom [THEN VfromI])
204apply (blast intro: Limit_has_succ)
205done
206
207lemmas Vfrom_UnI1 =
208    Un_upper1 [THEN subset_refl [THEN Vfrom_mono, THEN subsetD]]
209lemmas Vfrom_UnI2 =
210    Un_upper2 [THEN subset_refl [THEN Vfrom_mono, THEN subsetD]]
211
212text\<open>Hard work is finding a single j:i such that {a,b}<=Vfrom(A,j)\<close>
213lemma doubleton_in_VLimit:
214    "[| a \<in> Vfrom(A,i);  b \<in> Vfrom(A,i);  Limit(i) |] ==> {a,b} \<in> Vfrom(A,i)"
215apply (erule Limit_VfromE, assumption)
216apply (erule Limit_VfromE, assumption)
217apply (blast intro:  VfromI [OF doubleton_in_Vfrom]
218                     Vfrom_UnI1 Vfrom_UnI2 Limit_has_succ Un_least_lt)
219done
220
221lemma Pair_in_VLimit:
222    "[| a \<in> Vfrom(A,i);  b \<in> Vfrom(A,i);  Limit(i) |] ==> <a,b> \<in> Vfrom(A,i)"
223txt\<open>Infer that a, b occur at ordinals x,xa < i.\<close>
224apply (erule Limit_VfromE, assumption)
225apply (erule Limit_VfromE, assumption)
226txt\<open>Infer that \<^term>\<open>succ(succ(x \<union> xa)) < i\<close>\<close>
227apply (blast intro: VfromI [OF Pair_in_Vfrom]
228                    Vfrom_UnI1 Vfrom_UnI2 Limit_has_succ Un_least_lt)
229done
230
231lemma product_VLimit: "Limit(i) ==> Vfrom(A,i) * Vfrom(A,i) \<subseteq> Vfrom(A,i)"
232by (blast intro: Pair_in_VLimit)
233
234lemmas Sigma_subset_VLimit =
235     subset_trans [OF Sigma_mono product_VLimit]
236
237lemmas nat_subset_VLimit =
238     subset_trans [OF nat_le_Limit [THEN le_imp_subset] i_subset_Vfrom]
239
240lemma nat_into_VLimit: "[| n: nat;  Limit(i) |] ==> n \<in> Vfrom(A,i)"
241by (blast intro: nat_subset_VLimit [THEN subsetD])
242
243subsubsection\<open>Closure under Disjoint Union\<close>
244
245lemmas zero_in_VLimit = Limit_has_0 [THEN ltD, THEN zero_in_Vfrom]
246
247lemma one_in_VLimit: "Limit(i) ==> 1 \<in> Vfrom(A,i)"
248by (blast intro: nat_into_VLimit)
249
250lemma Inl_in_VLimit:
251    "[| a \<in> Vfrom(A,i); Limit(i) |] ==> Inl(a) \<in> Vfrom(A,i)"
252apply (unfold Inl_def)
253apply (blast intro: zero_in_VLimit Pair_in_VLimit)
254done
255
256lemma Inr_in_VLimit:
257    "[| b \<in> Vfrom(A,i); Limit(i) |] ==> Inr(b) \<in> Vfrom(A,i)"
258apply (unfold Inr_def)
259apply (blast intro: one_in_VLimit Pair_in_VLimit)
260done
261
262lemma sum_VLimit: "Limit(i) ==> Vfrom(C,i)+Vfrom(C,i) \<subseteq> Vfrom(C,i)"
263by (blast intro!: Inl_in_VLimit Inr_in_VLimit)
264
265lemmas sum_subset_VLimit = subset_trans [OF sum_mono sum_VLimit]
266
267
268
269subsection\<open>Properties assuming \<^term>\<open>Transset(A)\<close>\<close>
270
271lemma Transset_Vfrom: "Transset(A) ==> Transset(Vfrom(A,i))"
272apply (rule_tac a=i in eps_induct)
273apply (subst Vfrom)
274apply (blast intro!: Transset_Union_family Transset_Un Transset_Pow)
275done
276
277lemma Transset_Vfrom_succ:
278     "Transset(A) ==> Vfrom(A, succ(i)) = Pow(Vfrom(A,i))"
279apply (rule Vfrom_succ [THEN trans])
280apply (rule equalityI [OF _ Un_upper2])
281apply (rule Un_least [OF _ subset_refl])
282apply (rule A_subset_Vfrom [THEN subset_trans])
283apply (erule Transset_Vfrom [THEN Transset_iff_Pow [THEN iffD1]])
284done
285
286lemma Transset_Pair_subset: "[| <a,b> \<subseteq> C; Transset(C) |] ==> a: C & b: C"
287by (unfold Pair_def Transset_def, blast)
288
289lemma Transset_Pair_subset_VLimit:
290     "[| <a,b> \<subseteq> Vfrom(A,i);  Transset(A);  Limit(i) |]
291      ==> <a,b> \<in> Vfrom(A,i)"
292apply (erule Transset_Pair_subset [THEN conjE])
293apply (erule Transset_Vfrom)
294apply (blast intro: Pair_in_VLimit)
295done
296
297lemma Union_in_Vfrom:
298     "[| X \<in> Vfrom(A,j);  Transset(A) |] ==> \<Union>(X) \<in> Vfrom(A, succ(j))"
299apply (drule Transset_Vfrom)
300apply (rule subset_mem_Vfrom)
301apply (unfold Transset_def, blast)
302done
303
304lemma Union_in_VLimit:
305     "[| X \<in> Vfrom(A,i);  Limit(i);  Transset(A) |] ==> \<Union>(X) \<in> Vfrom(A,i)"
306apply (rule Limit_VfromE, assumption+)
307apply (blast intro: Limit_has_succ VfromI Union_in_Vfrom)
308done
309
310
311(*** Closure under product/sum applied to elements -- thus Vfrom(A,i)
312     is a model of simple type theory provided A is a transitive set
313     and i is a limit ordinal
314***)
315
316text\<open>General theorem for membership in Vfrom(A,i) when i is a limit ordinal\<close>
317lemma in_VLimit:
318  "[| a \<in> Vfrom(A,i);  b \<in> Vfrom(A,i);  Limit(i);
319      !!x y j. [| j<i; 1:j; x \<in> Vfrom(A,j); y \<in> Vfrom(A,j) |]
320               ==> \<exists>k. h(x,y) \<in> Vfrom(A,k) & k<i |]
321   ==> h(a,b) \<in> Vfrom(A,i)"
322txt\<open>Infer that a, b occur at ordinals x,xa < i.\<close>
323apply (erule Limit_VfromE, assumption)
324apply (erule Limit_VfromE, assumption, atomize)
325apply (drule_tac x=a in spec)
326apply (drule_tac x=b in spec)
327apply (drule_tac x="x \<union> xa \<union> 2" in spec)
328apply (simp add: Un_least_lt_iff lt_Ord Vfrom_UnI1 Vfrom_UnI2)
329apply (blast intro: Limit_has_0 Limit_has_succ VfromI)
330done
331
332subsubsection\<open>Products\<close>
333
334lemma prod_in_Vfrom:
335    "[| a \<in> Vfrom(A,j);  b \<in> Vfrom(A,j);  Transset(A) |]
336     ==> a*b \<in> Vfrom(A, succ(succ(succ(j))))"
337apply (drule Transset_Vfrom)
338apply (rule subset_mem_Vfrom)
339apply (unfold Transset_def)
340apply (blast intro: Pair_in_Vfrom)
341done
342
343lemma prod_in_VLimit:
344  "[| a \<in> Vfrom(A,i);  b \<in> Vfrom(A,i);  Limit(i);  Transset(A) |]
345   ==> a*b \<in> Vfrom(A,i)"
346apply (erule in_VLimit, assumption+)
347apply (blast intro: prod_in_Vfrom Limit_has_succ)
348done
349
350subsubsection\<open>Disjoint Sums, or Quine Ordered Pairs\<close>
351
352lemma sum_in_Vfrom:
353    "[| a \<in> Vfrom(A,j);  b \<in> Vfrom(A,j);  Transset(A);  1:j |]
354     ==> a+b \<in> Vfrom(A, succ(succ(succ(j))))"
355apply (unfold sum_def)
356apply (drule Transset_Vfrom)
357apply (rule subset_mem_Vfrom)
358apply (unfold Transset_def)
359apply (blast intro: zero_in_Vfrom Pair_in_Vfrom i_subset_Vfrom [THEN subsetD])
360done
361
362lemma sum_in_VLimit:
363  "[| a \<in> Vfrom(A,i);  b \<in> Vfrom(A,i);  Limit(i);  Transset(A) |]
364   ==> a+b \<in> Vfrom(A,i)"
365apply (erule in_VLimit, assumption+)
366apply (blast intro: sum_in_Vfrom Limit_has_succ)
367done
368
369subsubsection\<open>Function Space!\<close>
370
371lemma fun_in_Vfrom:
372    "[| a \<in> Vfrom(A,j);  b \<in> Vfrom(A,j);  Transset(A) |] ==>
373          a->b \<in> Vfrom(A, succ(succ(succ(succ(j)))))"
374apply (unfold Pi_def)
375apply (drule Transset_Vfrom)
376apply (rule subset_mem_Vfrom)
377apply (rule Collect_subset [THEN subset_trans])
378apply (subst Vfrom)
379apply (rule subset_trans [THEN subset_trans])
380apply (rule_tac [3] Un_upper2)
381apply (rule_tac [2] succI1 [THEN UN_upper])
382apply (rule Pow_mono)
383apply (unfold Transset_def)
384apply (blast intro: Pair_in_Vfrom)
385done
386
387lemma fun_in_VLimit:
388  "[| a \<in> Vfrom(A,i);  b \<in> Vfrom(A,i);  Limit(i);  Transset(A) |]
389   ==> a->b \<in> Vfrom(A,i)"
390apply (erule in_VLimit, assumption+)
391apply (blast intro: fun_in_Vfrom Limit_has_succ)
392done
393
394lemma Pow_in_Vfrom:
395    "[| a \<in> Vfrom(A,j);  Transset(A) |] ==> Pow(a) \<in> Vfrom(A, succ(succ(j)))"
396apply (drule Transset_Vfrom)
397apply (rule subset_mem_Vfrom)
398apply (unfold Transset_def)
399apply (subst Vfrom, blast)
400done
401
402lemma Pow_in_VLimit:
403     "[| a \<in> Vfrom(A,i);  Limit(i);  Transset(A) |] ==> Pow(a) \<in> Vfrom(A,i)"
404by (blast elim: Limit_VfromE intro: Limit_has_succ Pow_in_Vfrom VfromI)
405
406
407subsection\<open>The Set \<^term>\<open>Vset(i)\<close>\<close>
408
409lemma Vset: "Vset(i) = (\<Union>j\<in>i. Pow(Vset(j)))"
410by (subst Vfrom, blast)
411
412lemmas Vset_succ = Transset_0 [THEN Transset_Vfrom_succ]
413lemmas Transset_Vset = Transset_0 [THEN Transset_Vfrom]
414
415subsubsection\<open>Characterisation of the elements of \<^term>\<open>Vset(i)\<close>\<close>
416
417lemma VsetD [rule_format]: "Ord(i) ==> \<forall>b. b \<in> Vset(i) \<longrightarrow> rank(b) < i"
418apply (erule trans_induct)
419apply (subst Vset, safe)
420apply (subst rank)
421apply (blast intro: ltI UN_succ_least_lt)
422done
423
424lemma VsetI_lemma [rule_format]:
425     "Ord(i) ==> \<forall>b. rank(b) \<in> i \<longrightarrow> b \<in> Vset(i)"
426apply (erule trans_induct)
427apply (rule allI)
428apply (subst Vset)
429apply (blast intro!: rank_lt [THEN ltD])
430done
431
432lemma VsetI: "rank(x)<i ==> x \<in> Vset(i)"
433by (blast intro: VsetI_lemma elim: ltE)
434
435text\<open>Merely a lemma for the next result\<close>
436lemma Vset_Ord_rank_iff: "Ord(i) ==> b \<in> Vset(i) \<longleftrightarrow> rank(b) < i"
437by (blast intro: VsetD VsetI)
438
439lemma Vset_rank_iff [simp]: "b \<in> Vset(a) \<longleftrightarrow> rank(b) < rank(a)"
440apply (rule Vfrom_rank_eq [THEN subst])
441apply (rule Ord_rank [THEN Vset_Ord_rank_iff])
442done
443
444text\<open>This is rank(rank(a)) = rank(a)\<close>
445declare Ord_rank [THEN rank_of_Ord, simp]
446
447lemma rank_Vset: "Ord(i) ==> rank(Vset(i)) = i"
448apply (subst rank)
449apply (rule equalityI, safe)
450apply (blast intro: VsetD [THEN ltD])
451apply (blast intro: VsetD [THEN ltD] Ord_trans)
452apply (blast intro: i_subset_Vfrom [THEN subsetD]
453                    Ord_in_Ord [THEN rank_of_Ord, THEN ssubst])
454done
455
456lemma Finite_Vset: "i \<in> nat ==> Finite(Vset(i))"
457apply (erule nat_induct)
458 apply (simp add: Vfrom_0)
459apply (simp add: Vset_succ)
460done
461
462subsubsection\<open>Reasoning about Sets in Terms of Their Elements' Ranks\<close>
463
464lemma arg_subset_Vset_rank: "a \<subseteq> Vset(rank(a))"
465apply (rule subsetI)
466apply (erule rank_lt [THEN VsetI])
467done
468
469lemma Int_Vset_subset:
470    "[| !!i. Ord(i) ==> a \<inter> Vset(i) \<subseteq> b |] ==> a \<subseteq> b"
471apply (rule subset_trans)
472apply (rule Int_greatest [OF subset_refl arg_subset_Vset_rank])
473apply (blast intro: Ord_rank)
474done
475
476subsubsection\<open>Set Up an Environment for Simplification\<close>
477
478lemma rank_Inl: "rank(a) < rank(Inl(a))"
479apply (unfold Inl_def)
480apply (rule rank_pair2)
481done
482
483lemma rank_Inr: "rank(a) < rank(Inr(a))"
484apply (unfold Inr_def)
485apply (rule rank_pair2)
486done
487
488lemmas rank_rls = rank_Inl rank_Inr rank_pair1 rank_pair2
489
490subsubsection\<open>Recursion over Vset Levels!\<close>
491
492text\<open>NOT SUITABLE FOR REWRITING: recursive!\<close>
493lemma Vrec: "Vrec(a,H) = H(a, \<lambda>x\<in>Vset(rank(a)). Vrec(x,H))"
494apply (unfold Vrec_def)
495apply (subst transrec, simp)
496apply (rule refl [THEN lam_cong, THEN subst_context], simp add: lt_def)
497done
498
499text\<open>This form avoids giant explosions in proofs.  NOTE USE OF ==\<close>
500lemma def_Vrec:
501    "[| !!x. h(x)==Vrec(x,H) |] ==>
502     h(a) = H(a, \<lambda>x\<in>Vset(rank(a)). h(x))"
503apply simp
504apply (rule Vrec)
505done
506
507text\<open>NOT SUITABLE FOR REWRITING: recursive!\<close>
508lemma Vrecursor:
509     "Vrecursor(H,a) = H(\<lambda>x\<in>Vset(rank(a)). Vrecursor(H,x),  a)"
510apply (unfold Vrecursor_def)
511apply (subst transrec, simp)
512apply (rule refl [THEN lam_cong, THEN subst_context], simp add: lt_def)
513done
514
515text\<open>This form avoids giant explosions in proofs.  NOTE USE OF ==\<close>
516lemma def_Vrecursor:
517     "h == Vrecursor(H) ==> h(a) = H(\<lambda>x\<in>Vset(rank(a)). h(x),  a)"
518apply simp
519apply (rule Vrecursor)
520done
521
522
523subsection\<open>The Datatype Universe: \<^term>\<open>univ(A)\<close>\<close>
524
525lemma univ_mono: "A<=B ==> univ(A) \<subseteq> univ(B)"
526apply (unfold univ_def)
527apply (erule Vfrom_mono)
528apply (rule subset_refl)
529done
530
531lemma Transset_univ: "Transset(A) ==> Transset(univ(A))"
532apply (unfold univ_def)
533apply (erule Transset_Vfrom)
534done
535
536subsubsection\<open>The Set \<^term>\<open>univ(A)\<close> as a Limit\<close>
537
538lemma univ_eq_UN: "univ(A) = (\<Union>i\<in>nat. Vfrom(A,i))"
539apply (unfold univ_def)
540apply (rule Limit_nat [THEN Limit_Vfrom_eq])
541done
542
543lemma subset_univ_eq_Int: "c \<subseteq> univ(A) ==> c = (\<Union>i\<in>nat. c \<inter> Vfrom(A,i))"
544apply (rule subset_UN_iff_eq [THEN iffD1])
545apply (erule univ_eq_UN [THEN subst])
546done
547
548lemma univ_Int_Vfrom_subset:
549    "[| a \<subseteq> univ(X);
550        !!i. i:nat ==> a \<inter> Vfrom(X,i) \<subseteq> b |]
551     ==> a \<subseteq> b"
552apply (subst subset_univ_eq_Int, assumption)
553apply (rule UN_least, simp)
554done
555
556lemma univ_Int_Vfrom_eq:
557    "[| a \<subseteq> univ(X);   b \<subseteq> univ(X);
558        !!i. i:nat ==> a \<inter> Vfrom(X,i) = b \<inter> Vfrom(X,i)
559     |] ==> a = b"
560apply (rule equalityI)
561apply (rule univ_Int_Vfrom_subset, assumption)
562apply (blast elim: equalityCE)
563apply (rule univ_Int_Vfrom_subset, assumption)
564apply (blast elim: equalityCE)
565done
566
567subsection\<open>Closure Properties for \<^term>\<open>univ(A)\<close>\<close>
568
569lemma zero_in_univ: "0 \<in> univ(A)"
570apply (unfold univ_def)
571apply (rule nat_0I [THEN zero_in_Vfrom])
572done
573
574lemma zero_subset_univ: "{0} \<subseteq> univ(A)"
575by (blast intro: zero_in_univ)
576
577lemma A_subset_univ: "A \<subseteq> univ(A)"
578apply (unfold univ_def)
579apply (rule A_subset_Vfrom)
580done
581
582lemmas A_into_univ = A_subset_univ [THEN subsetD]
583
584subsubsection\<open>Closure under Unordered and Ordered Pairs\<close>
585
586lemma singleton_in_univ: "a: univ(A) ==> {a} \<in> univ(A)"
587apply (unfold univ_def)
588apply (blast intro: singleton_in_VLimit Limit_nat)
589done
590
591lemma doubleton_in_univ:
592    "[| a: univ(A);  b: univ(A) |] ==> {a,b} \<in> univ(A)"
593apply (unfold univ_def)
594apply (blast intro: doubleton_in_VLimit Limit_nat)
595done
596
597lemma Pair_in_univ:
598    "[| a: univ(A);  b: univ(A) |] ==> <a,b> \<in> univ(A)"
599apply (unfold univ_def)
600apply (blast intro: Pair_in_VLimit Limit_nat)
601done
602
603lemma Union_in_univ:
604     "[| X: univ(A);  Transset(A) |] ==> \<Union>(X) \<in> univ(A)"
605apply (unfold univ_def)
606apply (blast intro: Union_in_VLimit Limit_nat)
607done
608
609lemma product_univ: "univ(A)*univ(A) \<subseteq> univ(A)"
610apply (unfold univ_def)
611apply (rule Limit_nat [THEN product_VLimit])
612done
613
614
615subsubsection\<open>The Natural Numbers\<close>
616
617lemma nat_subset_univ: "nat \<subseteq> univ(A)"
618apply (unfold univ_def)
619apply (rule i_subset_Vfrom)
620done
621
622text\<open>n:nat ==> n:univ(A)\<close>
623lemmas nat_into_univ = nat_subset_univ [THEN subsetD]
624
625subsubsection\<open>Instances for 1 and 2\<close>
626
627lemma one_in_univ: "1 \<in> univ(A)"
628apply (unfold univ_def)
629apply (rule Limit_nat [THEN one_in_VLimit])
630done
631
632text\<open>unused!\<close>
633lemma two_in_univ: "2 \<in> univ(A)"
634by (blast intro: nat_into_univ)
635
636lemma bool_subset_univ: "bool \<subseteq> univ(A)"
637apply (unfold bool_def)
638apply (blast intro!: zero_in_univ one_in_univ)
639done
640
641lemmas bool_into_univ = bool_subset_univ [THEN subsetD]
642
643
644subsubsection\<open>Closure under Disjoint Union\<close>
645
646lemma Inl_in_univ: "a: univ(A) ==> Inl(a) \<in> univ(A)"
647apply (unfold univ_def)
648apply (erule Inl_in_VLimit [OF _ Limit_nat])
649done
650
651lemma Inr_in_univ: "b: univ(A) ==> Inr(b) \<in> univ(A)"
652apply (unfold univ_def)
653apply (erule Inr_in_VLimit [OF _ Limit_nat])
654done
655
656lemma sum_univ: "univ(C)+univ(C) \<subseteq> univ(C)"
657apply (unfold univ_def)
658apply (rule Limit_nat [THEN sum_VLimit])
659done
660
661lemmas sum_subset_univ = subset_trans [OF sum_mono sum_univ]
662
663lemma Sigma_subset_univ:
664  "[|A \<subseteq> univ(D); \<And>x. x \<in> A \<Longrightarrow> B(x) \<subseteq> univ(D)|] ==> Sigma(A,B) \<subseteq> univ(D)"
665apply (simp add: univ_def)
666apply (blast intro: Sigma_subset_VLimit del: subsetI)
667done
668
669
670(*Closure under binary union -- use Un_least
671  Closure under Collect -- use  Collect_subset [THEN subset_trans]
672  Closure under RepFun -- use   RepFun_subset *)
673
674
675subsection\<open>Finite Branching Closure Properties\<close>
676
677subsubsection\<open>Closure under Finite Powerset\<close>
678
679lemma Fin_Vfrom_lemma:
680     "[| b: Fin(Vfrom(A,i));  Limit(i) |] ==> \<exists>j. b \<subseteq> Vfrom(A,j) & j<i"
681apply (erule Fin_induct)
682apply (blast dest!: Limit_has_0, safe)
683apply (erule Limit_VfromE, assumption)
684apply (blast intro!: Un_least_lt intro: Vfrom_UnI1 Vfrom_UnI2)
685done
686
687lemma Fin_VLimit: "Limit(i) ==> Fin(Vfrom(A,i)) \<subseteq> Vfrom(A,i)"
688apply (rule subsetI)
689apply (drule Fin_Vfrom_lemma, safe)
690apply (rule Vfrom [THEN ssubst])
691apply (blast dest!: ltD)
692done
693
694lemmas Fin_subset_VLimit = subset_trans [OF Fin_mono Fin_VLimit]
695
696lemma Fin_univ: "Fin(univ(A)) \<subseteq> univ(A)"
697apply (unfold univ_def)
698apply (rule Limit_nat [THEN Fin_VLimit])
699done
700
701subsubsection\<open>Closure under Finite Powers: Functions from a Natural Number\<close>
702
703lemma nat_fun_VLimit:
704     "[| n: nat;  Limit(i) |] ==> n -> Vfrom(A,i) \<subseteq> Vfrom(A,i)"
705apply (erule nat_fun_subset_Fin [THEN subset_trans])
706apply (blast del: subsetI
707    intro: subset_refl Fin_subset_VLimit Sigma_subset_VLimit nat_subset_VLimit)
708done
709
710lemmas nat_fun_subset_VLimit = subset_trans [OF Pi_mono nat_fun_VLimit]
711
712lemma nat_fun_univ: "n: nat ==> n -> univ(A) \<subseteq> univ(A)"
713apply (unfold univ_def)
714apply (erule nat_fun_VLimit [OF _ Limit_nat])
715done
716
717
718subsubsection\<open>Closure under Finite Function Space\<close>
719
720text\<open>General but seldom-used version; normally the domain is fixed\<close>
721lemma FiniteFun_VLimit1:
722     "Limit(i) ==> Vfrom(A,i) -||> Vfrom(A,i) \<subseteq> Vfrom(A,i)"
723apply (rule FiniteFun.dom_subset [THEN subset_trans])
724apply (blast del: subsetI
725             intro: Fin_subset_VLimit Sigma_subset_VLimit subset_refl)
726done
727
728lemma FiniteFun_univ1: "univ(A) -||> univ(A) \<subseteq> univ(A)"
729apply (unfold univ_def)
730apply (rule Limit_nat [THEN FiniteFun_VLimit1])
731done
732
733text\<open>Version for a fixed domain\<close>
734lemma FiniteFun_VLimit:
735     "[| W \<subseteq> Vfrom(A,i); Limit(i) |] ==> W -||> Vfrom(A,i) \<subseteq> Vfrom(A,i)"
736apply (rule subset_trans)
737apply (erule FiniteFun_mono [OF _ subset_refl])
738apply (erule FiniteFun_VLimit1)
739done
740
741lemma FiniteFun_univ:
742    "W \<subseteq> univ(A) ==> W -||> univ(A) \<subseteq> univ(A)"
743apply (unfold univ_def)
744apply (erule FiniteFun_VLimit [OF _ Limit_nat])
745done
746
747lemma FiniteFun_in_univ:
748     "[| f: W -||> univ(A);  W \<subseteq> univ(A) |] ==> f \<in> univ(A)"
749by (erule FiniteFun_univ [THEN subsetD], assumption)
750
751text\<open>Remove \<open>\<subseteq>\<close> from the rule above\<close>
752lemmas FiniteFun_in_univ' = FiniteFun_in_univ [OF _ subsetI]
753
754
755subsection\<open>* For QUniv.  Properties of Vfrom analogous to the "take-lemma" *\<close>
756
757text\<open>Intersecting a*b with Vfrom...\<close>
758
759text\<open>This version says a, b exist one level down, in the smaller set Vfrom(X,i)\<close>
760lemma doubleton_in_Vfrom_D:
761     "[| {a,b} \<in> Vfrom(X,succ(i));  Transset(X) |]
762      ==> a \<in> Vfrom(X,i)  &  b \<in> Vfrom(X,i)"
763by (drule Transset_Vfrom_succ [THEN equalityD1, THEN subsetD, THEN PowD],
764    assumption, fast)
765
766text\<open>This weaker version says a, b exist at the same level\<close>
767lemmas Vfrom_doubleton_D = Transset_Vfrom [THEN Transset_doubleton_D]
768
769(** Using only the weaker theorem would prove <a,b> \<in> Vfrom(X,i)
770      implies a, b \<in> Vfrom(X,i), which is useless for induction.
771    Using only the stronger theorem would prove <a,b> \<in> Vfrom(X,succ(succ(i)))
772      implies a, b \<in> Vfrom(X,i), leaving the succ(i) case untreated.
773    The combination gives a reduction by precisely one level, which is
774      most convenient for proofs.
775**)
776
777lemma Pair_in_Vfrom_D:
778    "[| <a,b> \<in> Vfrom(X,succ(i));  Transset(X) |]
779     ==> a \<in> Vfrom(X,i)  &  b \<in> Vfrom(X,i)"
780apply (unfold Pair_def)
781apply (blast dest!: doubleton_in_Vfrom_D Vfrom_doubleton_D)
782done
783
784lemma product_Int_Vfrom_subset:
785     "Transset(X) ==>
786      (a*b) \<inter> Vfrom(X, succ(i)) \<subseteq> (a \<inter> Vfrom(X,i)) * (b \<inter> Vfrom(X,i))"
787by (blast dest!: Pair_in_Vfrom_D)
788
789
790ML
791\<open>
792val rank_ss =
793  simpset_of (\<^context> addsimps [@{thm VsetI}]
794    addsimps @{thms rank_rls} @ (@{thms rank_rls} RLN (2, [@{thm lt_trans}])));
795\<close>
796
797end
798