1(*  Title:      ZF/ArithSimp.thy
2    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
3    Copyright   2000  University of Cambridge
4*)
5
6section\<open>Arithmetic with simplification\<close>
7
8theory ArithSimp
9imports Arith
10begin
11
12ML_file \<open>~~/src/Provers/Arith/cancel_numerals.ML\<close>
13ML_file \<open>~~/src/Provers/Arith/combine_numerals.ML\<close>
14ML_file \<open>arith_data.ML\<close>
15
16
17subsection\<open>Difference\<close>
18
19lemma diff_self_eq_0 [simp]: "m #- m = 0"
20apply (subgoal_tac "natify (m) #- natify (m) = 0")
21apply (rule_tac [2] natify_in_nat [THEN nat_induct], auto)
22done
23
24(**Addition is the inverse of subtraction**)
25
26(*We need m:nat even if we replace the RHS by natify(m), for consider e.g.
27  n=2, m=omega; then n + (m-n) = 2 + (0-2) = 2 \<noteq> 0 = natify(m).*)
28lemma add_diff_inverse: "[| n \<le> m;  m:nat |] ==> n #+ (m#-n) = m"
29apply (frule lt_nat_in_nat, erule nat_succI)
30apply (erule rev_mp)
31apply (rule_tac m = m and n = n in diff_induct, auto)
32done
33
34lemma add_diff_inverse2: "[| n \<le> m;  m:nat |] ==> (m#-n) #+ n = m"
35apply (frule lt_nat_in_nat, erule nat_succI)
36apply (simp (no_asm_simp) add: add_commute add_diff_inverse)
37done
38
39(*Proof is IDENTICAL to that of add_diff_inverse*)
40lemma diff_succ: "[| n \<le> m;  m:nat |] ==> succ(m) #- n = succ(m#-n)"
41apply (frule lt_nat_in_nat, erule nat_succI)
42apply (erule rev_mp)
43apply (rule_tac m = m and n = n in diff_induct)
44apply (simp_all (no_asm_simp))
45done
46
47lemma zero_less_diff [simp]:
48     "[| m: nat; n: nat |] ==> 0 < (n #- m)   \<longleftrightarrow>   m<n"
49apply (rule_tac m = m and n = n in diff_induct)
50apply (simp_all (no_asm_simp))
51done
52
53
54(** Difference distributes over multiplication **)
55
56lemma diff_mult_distrib: "(m #- n) #* k = (m #* k) #- (n #* k)"
57apply (subgoal_tac " (natify (m) #- natify (n)) #* natify (k) = (natify (m) #* natify (k)) #- (natify (n) #* natify (k))")
58apply (rule_tac [2] m = "natify (m) " and n = "natify (n) " in diff_induct)
59apply (simp_all add: diff_cancel)
60done
61
62lemma diff_mult_distrib2: "k #* (m #- n) = (k #* m) #- (k #* n)"
63apply (simp (no_asm) add: mult_commute [of k] diff_mult_distrib)
64done
65
66
67subsection\<open>Remainder\<close>
68
69(*We need m:nat even with natify*)
70lemma div_termination: "[| 0<n;  n \<le> m;  m:nat |] ==> m #- n < m"
71apply (frule lt_nat_in_nat, erule nat_succI)
72apply (erule rev_mp)
73apply (erule rev_mp)
74apply (rule_tac m = m and n = n in diff_induct)
75apply (simp_all (no_asm_simp) add: diff_le_self)
76done
77
78(*for mod and div*)
79lemmas div_rls =
80    nat_typechecks Ord_transrec_type apply_funtype
81    div_termination [THEN ltD]
82    nat_into_Ord not_lt_iff_le [THEN iffD1]
83
84lemma raw_mod_type: "[| m:nat;  n:nat |] ==> raw_mod (m, n) \<in> nat"
85apply (unfold raw_mod_def)
86apply (rule Ord_transrec_type)
87apply (auto simp add: nat_into_Ord [THEN Ord_0_lt_iff])
88apply (blast intro: div_rls)
89done
90
91lemma mod_type [TC,iff]: "m mod n \<in> nat"
92apply (unfold mod_def)
93apply (simp (no_asm) add: mod_def raw_mod_type)
94done
95
96
97(** Aribtrary definitions for division by zero.  Useful to simplify
98    certain equations **)
99
100lemma DIVISION_BY_ZERO_DIV: "a div 0 = 0"
101apply (unfold div_def)
102apply (rule raw_div_def [THEN def_transrec, THEN trans])
103apply (simp (no_asm_simp))
104done  (*NOT for adding to default simpset*)
105
106lemma DIVISION_BY_ZERO_MOD: "a mod 0 = natify(a)"
107apply (unfold mod_def)
108apply (rule raw_mod_def [THEN def_transrec, THEN trans])
109apply (simp (no_asm_simp))
110done  (*NOT for adding to default simpset*)
111
112lemma raw_mod_less: "m<n ==> raw_mod (m,n) = m"
113apply (rule raw_mod_def [THEN def_transrec, THEN trans])
114apply (simp (no_asm_simp) add: div_termination [THEN ltD])
115done
116
117lemma mod_less [simp]: "[| m<n; n \<in> nat |] ==> m mod n = m"
118apply (frule lt_nat_in_nat, assumption)
119apply (simp (no_asm_simp) add: mod_def raw_mod_less)
120done
121
122lemma raw_mod_geq:
123     "[| 0<n; n \<le> m;  m:nat |] ==> raw_mod (m, n) = raw_mod (m#-n, n)"
124apply (frule lt_nat_in_nat, erule nat_succI)
125apply (rule raw_mod_def [THEN def_transrec, THEN trans])
126apply (simp (no_asm_simp) add: div_termination [THEN ltD] not_lt_iff_le [THEN iffD2], blast)
127done
128
129
130lemma mod_geq: "[| n \<le> m;  m:nat |] ==> m mod n = (m#-n) mod n"
131apply (frule lt_nat_in_nat, erule nat_succI)
132apply (case_tac "n=0")
133 apply (simp add: DIVISION_BY_ZERO_MOD)
134apply (simp add: mod_def raw_mod_geq nat_into_Ord [THEN Ord_0_lt_iff])
135done
136
137
138subsection\<open>Division\<close>
139
140lemma raw_div_type: "[| m:nat;  n:nat |] ==> raw_div (m, n) \<in> nat"
141apply (unfold raw_div_def)
142apply (rule Ord_transrec_type)
143apply (auto simp add: nat_into_Ord [THEN Ord_0_lt_iff])
144apply (blast intro: div_rls)
145done
146
147lemma div_type [TC,iff]: "m div n \<in> nat"
148apply (unfold div_def)
149apply (simp (no_asm) add: div_def raw_div_type)
150done
151
152lemma raw_div_less: "m<n ==> raw_div (m,n) = 0"
153apply (rule raw_div_def [THEN def_transrec, THEN trans])
154apply (simp (no_asm_simp) add: div_termination [THEN ltD])
155done
156
157lemma div_less [simp]: "[| m<n; n \<in> nat |] ==> m div n = 0"
158apply (frule lt_nat_in_nat, assumption)
159apply (simp (no_asm_simp) add: div_def raw_div_less)
160done
161
162lemma raw_div_geq: "[| 0<n;  n \<le> m;  m:nat |] ==> raw_div(m,n) = succ(raw_div(m#-n, n))"
163apply (subgoal_tac "n \<noteq> 0")
164prefer 2 apply blast
165apply (frule lt_nat_in_nat, erule nat_succI)
166apply (rule raw_div_def [THEN def_transrec, THEN trans])
167apply (simp (no_asm_simp) add: div_termination [THEN ltD] not_lt_iff_le [THEN iffD2] )
168done
169
170lemma div_geq [simp]:
171     "[| 0<n;  n \<le> m;  m:nat |] ==> m div n = succ ((m#-n) div n)"
172apply (frule lt_nat_in_nat, erule nat_succI)
173apply (simp (no_asm_simp) add: div_def raw_div_geq)
174done
175
176declare div_less [simp] div_geq [simp]
177
178
179(*A key result*)
180lemma mod_div_lemma: "[| m: nat;  n: nat |] ==> (m div n)#*n #+ m mod n = m"
181apply (case_tac "n=0")
182 apply (simp add: DIVISION_BY_ZERO_MOD)
183apply (simp add: nat_into_Ord [THEN Ord_0_lt_iff])
184apply (erule complete_induct)
185apply (case_tac "x<n")
186txt\<open>case x<n\<close>
187apply (simp (no_asm_simp))
188txt\<open>case \<^term>\<open>n \<le> x\<close>\<close>
189apply (simp add: not_lt_iff_le add_assoc mod_geq div_termination [THEN ltD] add_diff_inverse)
190done
191
192lemma mod_div_equality_natify: "(m div n)#*n #+ m mod n = natify(m)"
193apply (subgoal_tac " (natify (m) div natify (n))#*natify (n) #+ natify (m) mod natify (n) = natify (m) ")
194apply force
195apply (subst mod_div_lemma, auto)
196done
197
198lemma mod_div_equality: "m: nat ==> (m div n)#*n #+ m mod n = m"
199apply (simp (no_asm_simp) add: mod_div_equality_natify)
200done
201
202
203subsection\<open>Further Facts about Remainder\<close>
204
205text\<open>(mainly for mutilated chess board)\<close>
206
207lemma mod_succ_lemma:
208     "[| 0<n;  m:nat;  n:nat |]
209      ==> succ(m) mod n = (if succ(m mod n) = n then 0 else succ(m mod n))"
210apply (erule complete_induct)
211apply (case_tac "succ (x) <n")
212txt\<open>case succ(x) < n\<close>
213 apply (simp (no_asm_simp) add: nat_le_refl [THEN lt_trans] succ_neq_self)
214 apply (simp add: ltD [THEN mem_imp_not_eq])
215txt\<open>case \<^term>\<open>n \<le> succ(x)\<close>\<close>
216apply (simp add: mod_geq not_lt_iff_le)
217apply (erule leE)
218 apply (simp (no_asm_simp) add: mod_geq div_termination [THEN ltD] diff_succ)
219txt\<open>equality case\<close>
220apply (simp add: diff_self_eq_0)
221done
222
223lemma mod_succ:
224  "n:nat ==> succ(m) mod n = (if succ(m mod n) = n then 0 else succ(m mod n))"
225apply (case_tac "n=0")
226 apply (simp (no_asm_simp) add: natify_succ DIVISION_BY_ZERO_MOD)
227apply (subgoal_tac "natify (succ (m)) mod n = (if succ (natify (m) mod n) = n then 0 else succ (natify (m) mod n))")
228 prefer 2
229 apply (subst natify_succ)
230 apply (rule mod_succ_lemma)
231  apply (auto simp del: natify_succ simp add: nat_into_Ord [THEN Ord_0_lt_iff])
232done
233
234lemma mod_less_divisor: "[| 0<n;  n:nat |] ==> m mod n < n"
235apply (subgoal_tac "natify (m) mod n < n")
236apply (rule_tac [2] i = "natify (m) " in complete_induct)
237apply (case_tac [3] "x<n", auto)
238txt\<open>case \<^term>\<open>n \<le> x\<close>\<close>
239apply (simp add: mod_geq not_lt_iff_le div_termination [THEN ltD])
240done
241
242lemma mod_1_eq [simp]: "m mod 1 = 0"
243by (cut_tac n = 1 in mod_less_divisor, auto)
244
245lemma mod2_cases: "b<2 ==> k mod 2 = b | k mod 2 = (if b=1 then 0 else 1)"
246apply (subgoal_tac "k mod 2: 2")
247 prefer 2 apply (simp add: mod_less_divisor [THEN ltD])
248apply (drule ltD, auto)
249done
250
251lemma mod2_succ_succ [simp]: "succ(succ(m)) mod 2 = m mod 2"
252apply (subgoal_tac "m mod 2: 2")
253 prefer 2 apply (simp add: mod_less_divisor [THEN ltD])
254apply (auto simp add: mod_succ)
255done
256
257lemma mod2_add_more [simp]: "(m#+m#+n) mod 2 = n mod 2"
258apply (subgoal_tac " (natify (m) #+natify (m) #+n) mod 2 = n mod 2")
259apply (rule_tac [2] n = "natify (m) " in nat_induct)
260apply auto
261done
262
263lemma mod2_add_self [simp]: "(m#+m) mod 2 = 0"
264by (cut_tac n = 0 in mod2_add_more, auto)
265
266
267subsection\<open>Additional theorems about \<open>\<le>\<close>\<close>
268
269lemma add_le_self: "m:nat ==> m \<le> (m #+ n)"
270apply (simp (no_asm_simp))
271done
272
273lemma add_le_self2: "m:nat ==> m \<le> (n #+ m)"
274apply (simp (no_asm_simp))
275done
276
277(*** Monotonicity of Multiplication ***)
278
279lemma mult_le_mono1: "[| i \<le> j; j:nat |] ==> (i#*k) \<le> (j#*k)"
280apply (subgoal_tac "natify (i) #*natify (k) \<le> j#*natify (k) ")
281apply (frule_tac [2] lt_nat_in_nat)
282apply (rule_tac [3] n = "natify (k) " in nat_induct)
283apply (simp_all add: add_le_mono)
284done
285
286(* @{text"\<le>"} monotonicity, BOTH arguments*)
287lemma mult_le_mono: "[| i \<le> j; k \<le> l; j:nat; l:nat |] ==> i#*k \<le> j#*l"
288apply (rule mult_le_mono1 [THEN le_trans], assumption+)
289apply (subst mult_commute, subst mult_commute, rule mult_le_mono1, assumption+)
290done
291
292(*strict, in 1st argument; proof is by induction on k>0.
293  I can't see how to relax the typing conditions.*)
294lemma mult_lt_mono2: "[| i<j; 0<k; j:nat; k:nat |] ==> k#*i < k#*j"
295apply (erule zero_lt_natE)
296apply (frule_tac [2] lt_nat_in_nat)
297apply (simp_all (no_asm_simp))
298apply (induct_tac "x")
299apply (simp_all (no_asm_simp) add: add_lt_mono)
300done
301
302lemma mult_lt_mono1: "[| i<j; 0<k; j:nat; k:nat |] ==> i#*k < j#*k"
303apply (simp (no_asm_simp) add: mult_lt_mono2 mult_commute [of _ k])
304done
305
306lemma add_eq_0_iff [iff]: "m#+n = 0 \<longleftrightarrow> natify(m)=0 & natify(n)=0"
307apply (subgoal_tac "natify (m) #+ natify (n) = 0 \<longleftrightarrow> natify (m) =0 & natify (n) =0")
308apply (rule_tac [2] n = "natify (m) " in natE)
309 apply (rule_tac [4] n = "natify (n) " in natE)
310apply auto
311done
312
313lemma zero_lt_mult_iff [iff]: "0 < m#*n \<longleftrightarrow> 0 < natify(m) & 0 < natify(n)"
314apply (subgoal_tac "0 < natify (m) #*natify (n) \<longleftrightarrow> 0 < natify (m) & 0 < natify (n) ")
315apply (rule_tac [2] n = "natify (m) " in natE)
316 apply (rule_tac [4] n = "natify (n) " in natE)
317  apply (rule_tac [3] n = "natify (n) " in natE)
318apply auto
319done
320
321lemma mult_eq_1_iff [iff]: "m#*n = 1 \<longleftrightarrow> natify(m)=1 & natify(n)=1"
322apply (subgoal_tac "natify (m) #* natify (n) = 1 \<longleftrightarrow> natify (m) =1 & natify (n) =1")
323apply (rule_tac [2] n = "natify (m) " in natE)
324 apply (rule_tac [4] n = "natify (n) " in natE)
325apply auto
326done
327
328
329lemma mult_is_zero: "[|m: nat; n: nat|] ==> (m #* n = 0) \<longleftrightarrow> (m = 0 | n = 0)"
330apply auto
331apply (erule natE)
332apply (erule_tac [2] natE, auto)
333done
334
335lemma mult_is_zero_natify [iff]:
336     "(m #* n = 0) \<longleftrightarrow> (natify(m) = 0 | natify(n) = 0)"
337apply (cut_tac m = "natify (m) " and n = "natify (n) " in mult_is_zero)
338apply auto
339done
340
341
342subsection\<open>Cancellation Laws for Common Factors in Comparisons\<close>
343
344lemma mult_less_cancel_lemma:
345     "[| k: nat; m: nat; n: nat |] ==> (m#*k < n#*k) \<longleftrightarrow> (0<k & m<n)"
346apply (safe intro!: mult_lt_mono1)
347apply (erule natE, auto)
348apply (rule not_le_iff_lt [THEN iffD1])
349apply (drule_tac [3] not_le_iff_lt [THEN [2] rev_iffD2])
350prefer 5 apply (blast intro: mult_le_mono1, auto)
351done
352
353lemma mult_less_cancel2 [simp]:
354     "(m#*k < n#*k) \<longleftrightarrow> (0 < natify(k) & natify(m) < natify(n))"
355apply (rule iff_trans)
356apply (rule_tac [2] mult_less_cancel_lemma, auto)
357done
358
359lemma mult_less_cancel1 [simp]:
360     "(k#*m < k#*n) \<longleftrightarrow> (0 < natify(k) & natify(m) < natify(n))"
361apply (simp (no_asm) add: mult_less_cancel2 mult_commute [of k])
362done
363
364lemma mult_le_cancel2 [simp]: "(m#*k \<le> n#*k) \<longleftrightarrow> (0 < natify(k) \<longrightarrow> natify(m) \<le> natify(n))"
365apply (simp (no_asm_simp) add: not_lt_iff_le [THEN iff_sym])
366apply auto
367done
368
369lemma mult_le_cancel1 [simp]: "(k#*m \<le> k#*n) \<longleftrightarrow> (0 < natify(k) \<longrightarrow> natify(m) \<le> natify(n))"
370apply (simp (no_asm_simp) add: not_lt_iff_le [THEN iff_sym])
371apply auto
372done
373
374lemma mult_le_cancel_le1: "k \<in> nat ==> k #* m \<le> k \<longleftrightarrow> (0 < k \<longrightarrow> natify(m) \<le> 1)"
375by (cut_tac k = k and m = m and n = 1 in mult_le_cancel1, auto)
376
377lemma Ord_eq_iff_le: "[| Ord(m); Ord(n) |] ==> m=n \<longleftrightarrow> (m \<le> n & n \<le> m)"
378by (blast intro: le_anti_sym)
379
380lemma mult_cancel2_lemma:
381     "[| k: nat; m: nat; n: nat |] ==> (m#*k = n#*k) \<longleftrightarrow> (m=n | k=0)"
382apply (simp (no_asm_simp) add: Ord_eq_iff_le [of "m#*k"] Ord_eq_iff_le [of m])
383apply (auto simp add: Ord_0_lt_iff)
384done
385
386lemma mult_cancel2 [simp]:
387     "(m#*k = n#*k) \<longleftrightarrow> (natify(m) = natify(n) | natify(k) = 0)"
388apply (rule iff_trans)
389apply (rule_tac [2] mult_cancel2_lemma, auto)
390done
391
392lemma mult_cancel1 [simp]:
393     "(k#*m = k#*n) \<longleftrightarrow> (natify(m) = natify(n) | natify(k) = 0)"
394apply (simp (no_asm) add: mult_cancel2 mult_commute [of k])
395done
396
397
398(** Cancellation law for division **)
399
400lemma div_cancel_raw:
401     "[| 0<n; 0<k; k:nat; m:nat; n:nat |] ==> (k#*m) div (k#*n) = m div n"
402apply (erule_tac i = m in complete_induct)
403apply (case_tac "x<n")
404 apply (simp add: div_less zero_lt_mult_iff mult_lt_mono2)
405apply (simp add: not_lt_iff_le zero_lt_mult_iff le_refl [THEN mult_le_mono]
406          div_geq diff_mult_distrib2 [symmetric] div_termination [THEN ltD])
407done
408
409lemma div_cancel:
410     "[| 0 < natify(n);  0 < natify(k) |] ==> (k#*m) div (k#*n) = m div n"
411apply (cut_tac k = "natify (k) " and m = "natify (m)" and n = "natify (n)"
412       in div_cancel_raw)
413apply auto
414done
415
416
417subsection\<open>More Lemmas about Remainder\<close>
418
419lemma mult_mod_distrib_raw:
420     "[| k:nat; m:nat; n:nat |] ==> (k#*m) mod (k#*n) = k #* (m mod n)"
421apply (case_tac "k=0")
422 apply (simp add: DIVISION_BY_ZERO_MOD)
423apply (case_tac "n=0")
424 apply (simp add: DIVISION_BY_ZERO_MOD)
425apply (simp add: nat_into_Ord [THEN Ord_0_lt_iff])
426apply (erule_tac i = m in complete_induct)
427apply (case_tac "x<n")
428 apply (simp (no_asm_simp) add: mod_less zero_lt_mult_iff mult_lt_mono2)
429apply (simp add: not_lt_iff_le zero_lt_mult_iff le_refl [THEN mult_le_mono]
430         mod_geq diff_mult_distrib2 [symmetric] div_termination [THEN ltD])
431done
432
433lemma mod_mult_distrib2: "k #* (m mod n) = (k#*m) mod (k#*n)"
434apply (cut_tac k = "natify (k) " and m = "natify (m)" and n = "natify (n)"
435       in mult_mod_distrib_raw)
436apply auto
437done
438
439lemma mult_mod_distrib: "(m mod n) #* k = (m#*k) mod (n#*k)"
440apply (simp (no_asm) add: mult_commute mod_mult_distrib2)
441done
442
443lemma mod_add_self2_raw: "n \<in> nat ==> (m #+ n) mod n = m mod n"
444apply (subgoal_tac " (n #+ m) mod n = (n #+ m #- n) mod n")
445apply (simp add: add_commute)
446apply (subst mod_geq [symmetric], auto)
447done
448
449lemma mod_add_self2 [simp]: "(m #+ n) mod n = m mod n"
450apply (cut_tac n = "natify (n) " in mod_add_self2_raw)
451apply auto
452done
453
454lemma mod_add_self1 [simp]: "(n#+m) mod n = m mod n"
455apply (simp (no_asm_simp) add: add_commute mod_add_self2)
456done
457
458lemma mod_mult_self1_raw: "k \<in> nat ==> (m #+ k#*n) mod n = m mod n"
459apply (erule nat_induct)
460apply (simp_all (no_asm_simp) add: add_left_commute [of _ n])
461done
462
463lemma mod_mult_self1 [simp]: "(m #+ k#*n) mod n = m mod n"
464apply (cut_tac k = "natify (k) " in mod_mult_self1_raw)
465apply auto
466done
467
468lemma mod_mult_self2 [simp]: "(m #+ n#*k) mod n = m mod n"
469apply (simp (no_asm) add: mult_commute mod_mult_self1)
470done
471
472(*Lemma for gcd*)
473lemma mult_eq_self_implies_10: "m = m#*n ==> natify(n)=1 | m=0"
474apply (subgoal_tac "m: nat")
475 prefer 2
476 apply (erule ssubst)
477 apply simp
478apply (rule disjCI)
479apply (drule sym)
480apply (rule Ord_linear_lt [of "natify(n)" 1])
481apply simp_all
482 apply (subgoal_tac "m #* n = 0", simp)
483 apply (subst mult_natify2 [symmetric])
484 apply (simp del: mult_natify2)
485apply (drule nat_into_Ord [THEN Ord_0_lt, THEN [2] mult_lt_mono2], auto)
486done
487
488lemma less_imp_succ_add [rule_format]:
489     "[| m<n; n: nat |] ==> \<exists>k\<in>nat. n = succ(m#+k)"
490apply (frule lt_nat_in_nat, assumption)
491apply (erule rev_mp)
492apply (induct_tac "n")
493apply (simp_all (no_asm) add: le_iff)
494apply (blast elim!: leE intro!: add_0_right [symmetric] add_succ_right [symmetric])
495done
496
497lemma less_iff_succ_add:
498     "[| m: nat; n: nat |] ==> (m<n) \<longleftrightarrow> (\<exists>k\<in>nat. n = succ(m#+k))"
499by (auto intro: less_imp_succ_add)
500
501lemma add_lt_elim2:
502     "\<lbrakk>a #+ d = b #+ c; a < b; b \<in> nat; c \<in> nat; d \<in> nat\<rbrakk> \<Longrightarrow> c < d"
503by (drule less_imp_succ_add, auto)
504
505lemma add_le_elim2:
506     "\<lbrakk>a #+ d = b #+ c; a \<le> b; b \<in> nat; c \<in> nat; d \<in> nat\<rbrakk> \<Longrightarrow> c \<le> d"
507by (drule less_imp_succ_add, auto)
508
509
510subsubsection\<open>More Lemmas About Difference\<close>
511
512lemma diff_is_0_lemma:
513     "[| m: nat; n: nat |] ==> m #- n = 0 \<longleftrightarrow> m \<le> n"
514apply (rule_tac m = m and n = n in diff_induct, simp_all)
515done
516
517lemma diff_is_0_iff: "m #- n = 0 \<longleftrightarrow> natify(m) \<le> natify(n)"
518by (simp add: diff_is_0_lemma [symmetric])
519
520lemma nat_lt_imp_diff_eq_0:
521     "[| a:nat; b:nat; a<b |] ==> a #- b = 0"
522by (simp add: diff_is_0_iff le_iff)
523
524lemma raw_nat_diff_split:
525     "[| a:nat; b:nat |] ==>
526      (P(a #- b)) \<longleftrightarrow> ((a < b \<longrightarrow>P(0)) & (\<forall>d\<in>nat. a = b #+ d \<longrightarrow> P(d)))"
527apply (case_tac "a < b")
528 apply (force simp add: nat_lt_imp_diff_eq_0)
529apply (rule iffI, force, simp)
530apply (drule_tac x="a#-b" in bspec)
531apply (simp_all add: Ordinal.not_lt_iff_le add_diff_inverse)
532done
533
534lemma nat_diff_split:
535   "(P(a #- b)) \<longleftrightarrow>
536    (natify(a) < natify(b) \<longrightarrow>P(0)) & (\<forall>d\<in>nat. natify(a) = b #+ d \<longrightarrow> P(d))"
537apply (cut_tac P=P and a="natify(a)" and b="natify(b)" in raw_nat_diff_split)
538apply simp_all
539done
540
541text\<open>Difference and less-than\<close>
542
543lemma diff_lt_imp_lt: "[|(k#-i) < (k#-j); i\<in>nat; j\<in>nat; k\<in>nat|] ==> j<i"
544apply (erule rev_mp)
545apply (simp split: nat_diff_split, auto)
546 apply (blast intro: add_le_self lt_trans1)
547apply (rule not_le_iff_lt [THEN iffD1], auto)
548apply (subgoal_tac "i #+ da < j #+ d", force)
549apply (blast intro: add_le_lt_mono)
550done
551
552lemma lt_imp_diff_lt: "[|j<i; i\<le>k; k\<in>nat|] ==> (k#-i) < (k#-j)"
553apply (frule le_in_nat, assumption)
554apply (frule lt_nat_in_nat, assumption)
555apply (simp split: nat_diff_split, auto)
556  apply (blast intro: lt_asym lt_trans2)
557 apply (blast intro: lt_irrefl lt_trans2)
558apply (rule not_le_iff_lt [THEN iffD1], auto)
559apply (subgoal_tac "j #+ d < i #+ da", force)
560apply (blast intro: add_lt_le_mono)
561done
562
563
564lemma diff_lt_iff_lt: "[|i\<le>k; j\<in>nat; k\<in>nat|] ==> (k#-i) < (k#-j) \<longleftrightarrow> j<i"
565apply (frule le_in_nat, assumption)
566apply (blast intro: lt_imp_diff_lt diff_lt_imp_lt)
567done
568
569end
570