1(*  Title:      Tools/Code/code_namespace.ML
2    Author:     Florian Haftmann, TU Muenchen
3
4Mastering target language namespaces.
5*)
6
7signature CODE_NAMESPACE =
8sig
9  val variant_case_insensitive: string -> Name.context -> string * Name.context
10
11  datatype export = Private | Opaque | Public
12  val is_public: export -> bool
13  val not_private: export -> bool
14  val join_exports: export list -> export
15
16  type flat_program
17  val flat_program: Proof.context
18    -> { module_prefix: string, module_name: string,
19    reserved: Name.context, identifiers: Code_Printer.identifiers, empty_nsp: 'a,
20    namify_stmt: Code_Thingol.stmt -> string -> 'a -> string * 'a,
21    modify_stmt: Code_Thingol.stmt -> Code_Thingol.stmt option }
22      -> Code_Symbol.T list -> Code_Thingol.program
23      -> { deresolver: string -> Code_Symbol.T -> string,
24           flat_program: flat_program }
25
26  datatype ('a, 'b) node =
27      Dummy
28    | Stmt of export * 'a
29    | Module of ('b * (string * ('a, 'b) node) Code_Symbol.Graph.T)
30  type ('a, 'b) hierarchical_program
31  val hierarchical_program: Proof.context
32    -> { module_name: string,
33    reserved: Name.context, identifiers: Code_Printer.identifiers,
34    empty_nsp: 'c, namify_module: string -> 'c -> string * 'c,
35    namify_stmt: Code_Thingol.stmt -> string -> 'c -> string * 'c,
36    cyclic_modules: bool,
37    class_transitive: bool, class_relation_public: bool,
38    empty_data: 'b, memorize_data: Code_Symbol.T -> 'b -> 'b,
39    modify_stmts: (Code_Symbol.T * (export * Code_Thingol.stmt)) list -> (export * 'a) option list }
40      -> Code_Symbol.T list -> Code_Thingol.program
41      -> { deresolver: string list -> Code_Symbol.T -> string,
42           hierarchical_program: ('a, 'b) hierarchical_program }
43  val print_hierarchical: { print_module: string list -> string -> 'b -> 'c list -> 'c,
44    print_stmt: string list -> Code_Symbol.T * (export * 'a) -> 'c,
45    lift_markup: (Pretty.T -> Pretty.T) -> 'c -> 'c }
46      -> ('a, 'b) hierarchical_program -> 'c list
47end;
48
49structure Code_Namespace : CODE_NAMESPACE =
50struct
51
52(** name handling on case-insensitive file systems **)
53
54fun restore_for cs =
55  if forall Symbol.is_ascii_upper cs then map Symbol.to_ascii_upper
56  else if Symbol.is_ascii_upper (nth cs 0) then nth_map 0 Symbol.to_ascii_upper
57  else I;
58
59fun variant_case_insensitive s ctxt =
60  let
61    val cs = Symbol.explode s;
62    val s_lower = implode (map Symbol.to_ascii_lower cs);
63    val restore = implode o restore_for cs o Symbol.explode;
64  in
65    ctxt
66    |> Name.variant s_lower
67    |>> restore
68  end;
69
70
71(** export **)
72
73datatype export = Private | Opaque | Public;
74
75fun is_public Public = true
76  | is_public _ = false;
77
78fun not_private Public = true
79  | not_private Opaque = true
80  | not_private _ = false;
81
82fun mark_export Public _ = Public
83  | mark_export _ Public = Public
84  | mark_export Opaque _ = Opaque
85  | mark_export _ Opaque = Opaque
86  | mark_export _ _ = Private;
87
88fun join_exports exports = fold mark_export exports Private;
89
90fun dependent_exports { program = program, class_transitive = class_transitive } =
91  let
92    fun is_datatype_or_class (Code_Symbol.Type_Constructor _) = true
93      | is_datatype_or_class (Code_Symbol.Type_Class _) = true
94      | is_datatype_or_class _ = false;
95    fun is_relevant (Code_Symbol.Class_Relation _) = true
96      | is_relevant sym = is_datatype_or_class sym;
97    val proto_gr = Code_Symbol.Graph.restrict is_relevant program;
98    val gr =
99      proto_gr
100      |> Code_Symbol.Graph.fold
101          (fn (sym, (_, (_, deps))) =>
102            if is_relevant sym
103            then I
104            else
105              Code_Symbol.Graph.new_node (sym, Code_Thingol.NoStmt)
106              #> Code_Symbol.Graph.Keys.fold
107               (fn sym' =>
108                if is_relevant sym'
109                then Code_Symbol.Graph.add_edge (sym, sym')
110                else I) deps) program
111      |> class_transitive ?
112          Code_Symbol.Graph.fold (fn (sym as Code_Symbol.Type_Class _, _) =>
113            fold (curry Code_Symbol.Graph.add_edge sym)
114              ((remove (op =) sym o Code_Symbol.Graph.all_succs proto_gr) [sym]) | _ => I) proto_gr
115    fun deps_of sym =
116      let
117        val succs = Code_Symbol.Graph.Keys.dest o Code_Symbol.Graph.imm_succs gr;
118        val deps1 = succs sym;
119        val deps2 = [] |> fold (union (op =)) (map succs deps1) |> subtract (op =) deps1
120      in (deps1, deps2) end;
121  in
122    { is_datatype_or_class = is_datatype_or_class,
123      deps_of = deps_of }
124  end;
125
126fun mark_exports_aux { program = program, prefix_of = prefix_of, map_export = map_export,
127    is_datatype_or_class = is_datatype_or_class, deps_of = deps_of,
128    class_relation_public = class_relation_public } prefix sym =
129  let
130    val export = (if is_datatype_or_class sym then Opaque else Public);
131    val (dependent_export1, dependent_export2) =
132      case Code_Symbol.Graph.get_node program sym of
133          Code_Thingol.Fun _ => (SOME Opaque, NONE)
134        | Code_Thingol.Classinst _ => (SOME Opaque, NONE)
135        | Code_Thingol.Datatypecons _ => (SOME Public, SOME Opaque)
136        | Code_Thingol.Classparam _ => (SOME Public, SOME Opaque)
137        | Code_Thingol.Class _ => (SOME Opaque, NONE)
138        | Code_Thingol.Classrel _ =>
139           (if class_relation_public
140            then (SOME Public, SOME Opaque)
141            else (SOME Opaque, NONE))
142        | _ => (NONE, NONE);
143    val dependent_exports =
144      case dependent_export1 of
145        SOME export1 => (case dependent_export2 of
146          SOME export2 =>
147            let
148              val (deps1, deps2) = deps_of sym
149            in map (rpair export1) deps1 @ map (rpair export2) deps2 end
150        | NONE => map (rpair export1) (fst (deps_of sym)))
151      | NONE => [];
152  in 
153    map_export prefix sym (mark_export export)
154    #> fold (fn (sym, export) => map_export (prefix_of sym) sym (mark_export export))
155      dependent_exports
156  end;
157
158fun mark_exports { program = program, prefix_of = prefix_of, map_export = map_export,
159    class_transitive = class_transitive, class_relation_public = class_relation_public } =
160  let
161    val { is_datatype_or_class, deps_of } =
162      dependent_exports { program = program, class_transitive = class_transitive };
163  in
164    mark_exports_aux { program = program, prefix_of = prefix_of, map_export = map_export,
165      is_datatype_or_class = is_datatype_or_class, deps_of = deps_of,
166      class_relation_public = class_relation_public }
167  end;
168
169
170(** fundamental module name hierarchy **)
171
172fun module_fragments' { identifiers, reserved } name =
173  case Code_Symbol.lookup_module_data identifiers name of
174      SOME (fragments, _) => fragments
175    | NONE => map (fn fragment => fst (Name.variant fragment reserved)) (Long_Name.explode name);
176
177fun module_fragments { module_name, identifiers, reserved } =
178  if module_name = ""
179  then module_fragments' { identifiers = identifiers, reserved = reserved }
180  else K (Long_Name.explode module_name);
181
182fun build_module_namespace ctxt enforce_upper { module_prefix, module_name, identifiers, reserved } program =
183  let
184    val module_names = Code_Symbol.Graph.fold (insert (op =) o Code_Symbol.default_prefix ctxt o fst) program [];
185    val module_fragments' = module_fragments
186      { module_name = module_name, identifiers = identifiers, reserved = reserved };
187    val adjust_case = if enforce_upper then map (Name.enforce_case true) else I;
188  in
189    fold (fn name => Symtab.update (name, adjust_case (Long_Name.explode module_prefix @ module_fragments' name)))
190      module_names Symtab.empty
191  end;
192
193fun prep_symbol ctxt { module_namespace, force_module, identifiers } sym =
194  case Code_Symbol.lookup identifiers sym of
195      NONE => ((the o Symtab.lookup module_namespace o Code_Symbol.default_prefix ctxt) sym,
196        Code_Symbol.default_base sym)
197    | SOME prefix_name => if null force_module then prefix_name
198        else (force_module, snd prefix_name);
199
200fun has_priority identifiers = is_some o Code_Symbol.lookup identifiers;
201
202fun build_proto_program { empty, add_stmt, add_dep } program =
203  empty
204  |> Code_Symbol.Graph.fold (fn (sym, (stmt, _)) => add_stmt sym stmt) program
205  |> Code_Symbol.Graph.fold (fn (sym, (_, (_, syms))) =>
206      Code_Symbol.Graph.Keys.fold (add_dep sym) syms) program;
207
208fun prioritize has_priority = uncurry append o List.partition has_priority;
209
210
211(** flat program structure **)
212
213type flat_program = ((string * (export * Code_Thingol.stmt) option) Code_Symbol.Graph.T * (string * Code_Symbol.T list) list) Graph.T;
214
215fun flat_program ctxt { module_prefix, module_name, reserved,
216    identifiers, empty_nsp, namify_stmt, modify_stmt } exports program =
217  let
218
219    (* building module name hierarchy *)
220    val module_namespace = build_module_namespace ctxt true { module_prefix = module_prefix,
221      module_name = module_name, identifiers = identifiers, reserved = reserved } program;
222    val prep_sym = prep_symbol ctxt { module_namespace = module_namespace,
223      force_module = Long_Name.explode module_name, identifiers = identifiers }
224      #>> Long_Name.implode;
225    val sym_priority = has_priority identifiers;
226
227    (* distribute statements over hierarchy *)
228    val mark_exports = mark_exports { program = program, prefix_of = fst o prep_sym,
229      map_export = fn module_name => fn sym =>
230        Graph.map_node module_name o apfst o Code_Symbol.Graph.map_node sym o apsnd o apfst,
231        class_transitive = false, class_relation_public = false };
232    fun add_stmt sym stmt =
233      let
234        val (module_name, base) = prep_sym sym;
235      in
236        Graph.default_node (module_name, (Code_Symbol.Graph.empty, []))
237        #> (Graph.map_node module_name o apfst)
238          (Code_Symbol.Graph.new_node (sym, (base, (if null exports then Public else Private, stmt))))
239      end;
240    fun add_dep sym sym' =
241      let
242        val (module_name, _) = prep_sym sym;
243        val (module_name', _) = prep_sym sym';
244      in if module_name = module_name'
245        then (Graph.map_node module_name o apfst) (Code_Symbol.Graph.add_edge (sym, sym'))
246        else (Graph.map_node module_name o apsnd)
247          (AList.map_default (op =) (module_name', []) (insert (op =) sym'))
248          #> mark_exports module_name' sym'
249      end;
250    val proto_program = build_proto_program
251      { empty = Graph.empty, add_stmt = add_stmt, add_dep = add_dep } program
252      |> fold (fn sym => mark_exports ((fst o prep_sym) sym) sym) exports;
253
254    (* name declarations and statement modifications *)
255    fun declare sym (base, (_, stmt)) (gr, nsp) = 
256      let
257        val (base', nsp') = namify_stmt stmt base nsp;
258        val gr' = (Code_Symbol.Graph.map_node sym o apfst) (K base') gr;
259      in (gr', nsp') end;
260    fun declarations gr = (gr, empty_nsp)
261      |> fold (fn sym => declare sym (Code_Symbol.Graph.get_node gr sym))
262          (prioritize sym_priority (Code_Symbol.Graph.keys gr))
263      |> fst
264      |> Code_Symbol.Graph.map_strong_conn (fn syms_bases_exports_stmts =>
265        map snd syms_bases_exports_stmts
266        |> (map o apsnd) (fn (export, stmt) => Option.map (pair export) (modify_stmt stmt)));
267    val flat_program = proto_program
268      |> (Graph.map o K o apfst) declarations;
269
270    (* qualified and unqualified imports, deresolving *)
271    fun base_deresolver sym = fst (Code_Symbol.Graph.get_node
272      (fst (Graph.get_node flat_program (fst (prep_sym sym)))) sym);
273    fun classify_names gr imports =
274      let
275        val import_tab = maps
276          (fn (module_name, syms) => map (rpair module_name) syms) imports;
277        val imported_syms = map fst import_tab;
278        val here_syms = Code_Symbol.Graph.keys gr;
279      in
280        Code_Symbol.Table.empty
281        |> fold (fn sym => Code_Symbol.Table.update (sym, base_deresolver sym)) here_syms
282        |> fold (fn sym => Code_Symbol.Table.update (sym,
283            Long_Name.append (the (AList.lookup (op =) import_tab sym))
284              (base_deresolver sym))) imported_syms
285      end;
286    val deresolver_tab = Symtab.make (AList.make
287      (uncurry classify_names o Graph.get_node flat_program)
288        (Graph.keys flat_program));
289    fun deresolver "" sym =
290          Long_Name.append (fst (prep_sym sym)) (base_deresolver sym)
291      | deresolver module_name sym =
292          the (Code_Symbol.Table.lookup (the (Symtab.lookup deresolver_tab module_name)) sym)
293          handle Option.Option => error ("Unknown statement name: "
294            ^ Code_Symbol.quote ctxt sym);
295
296  in { deresolver = deresolver, flat_program = flat_program } end;
297
298
299(** hierarchical program structure **)
300
301datatype ('a, 'b) node =
302    Dummy
303  | Stmt of export * 'a
304  | Module of ('b * (string * ('a, 'b) node) Code_Symbol.Graph.T);
305
306type ('a, 'b) hierarchical_program = (string * ('a, 'b) node) Code_Symbol.Graph.T;
307
308fun the_stmt (Stmt (export, stmt)) = (export, stmt);
309
310fun map_module_content f (Module content) = Module (f content);
311
312fun map_module [] = I
313  | map_module (name_fragment :: name_fragments) =
314      apsnd o Code_Symbol.Graph.map_node (Code_Symbol.Module name_fragment) o apsnd o map_module_content
315        o map_module name_fragments;
316
317fun map_module_stmts f_module f_stmts sym_base_nodes =
318  let
319    val some_modules =
320      sym_base_nodes
321      |> map (fn (_, (base, Module content)) => SOME (base, content) | _ => NONE)
322      |> (burrow_options o map o apsnd) f_module;
323    val some_export_stmts =
324      sym_base_nodes
325      |> map (fn (sym, (base, Stmt export_stmt)) => SOME ((sym, export_stmt), base) | _ => NONE)
326      |> (burrow_options o burrow_fst) (fn [] => [] | xs => f_stmts xs)
327  in
328    map2 (fn SOME (base, content) => (K (base, Module content))
329      | NONE => fn SOME (some_export_stmt, base) =>
330          (base, case some_export_stmt of SOME export_stmt => Stmt export_stmt | NONE => Dummy))
331      some_modules some_export_stmts
332  end;
333
334fun hierarchical_program ctxt { module_name, reserved, identifiers, empty_nsp,
335      namify_module, namify_stmt, cyclic_modules,
336      class_transitive, class_relation_public,
337      empty_data, memorize_data, modify_stmts }
338      exports program =
339  let
340
341    (* building module name hierarchy *)
342    val module_namespace = build_module_namespace ctxt false { module_prefix = "",
343      module_name = module_name, identifiers = identifiers, reserved = reserved } program;
344    val prep_sym = prep_symbol ctxt { module_namespace = module_namespace,
345      force_module = Long_Name.explode module_name, identifiers = identifiers }
346    val sym_priority = has_priority identifiers;
347
348    (* building empty module hierarchy *)
349    val empty_module = (empty_data, Code_Symbol.Graph.empty);
350    fun ensure_module name_fragment (data, nodes) =
351      if can (Code_Symbol.Graph.get_node nodes) (Code_Symbol.Module name_fragment) then (data, nodes)
352      else (data,
353        nodes |> Code_Symbol.Graph.new_node (Code_Symbol.Module name_fragment, (name_fragment, Module empty_module)));
354    fun allocate_module [] = I
355      | allocate_module (name_fragment :: name_fragments) =
356          ensure_module name_fragment
357          #> (apsnd o Code_Symbol.Graph.map_node (Code_Symbol.Module name_fragment) o apsnd o map_module_content o allocate_module) name_fragments;
358    val empty_program =
359      empty_module
360      |> Symtab.fold (fn (_, fragments) => allocate_module fragments) module_namespace
361      |> Code_Symbol.Graph.fold (allocate_module o these o Option.map fst
362          o Code_Symbol.lookup identifiers o fst) program;
363
364    (* distribute statements over hierarchy *)
365    val mark_exports = mark_exports { program = program, prefix_of = fst o prep_sym,
366      map_export = fn name_fragments => fn sym => fn f =>
367        (map_module name_fragments o apsnd o Code_Symbol.Graph.map_node sym o apsnd)
368          (fn Stmt (export, stmt) => Stmt (f export, stmt)),
369      class_transitive = class_transitive, class_relation_public = class_relation_public };
370    fun add_stmt sym stmt =
371      let
372        val (name_fragments, base) = prep_sym sym;
373      in
374        (map_module name_fragments o apsnd)
375          (Code_Symbol.Graph.new_node (sym, (base, Stmt (if null exports then Public else Private, stmt))))
376      end;
377    fun add_edge_acyclic_error error_msg dep gr =
378      Code_Symbol.Graph.add_edge_acyclic dep gr
379        handle Code_Symbol.Graph.CYCLES _ => error (error_msg ())
380    fun add_dep sym sym' =
381      let
382        val (name_fragments, _) = prep_sym sym;
383        val (name_fragments', _) = prep_sym sym';
384        val (name_fragments_common, (diff, diff')) =
385          chop_common_prefix (op =) (name_fragments, name_fragments');
386        val is_cross_module = not (null diff andalso null diff');
387        val dep = apply2 hd (map Code_Symbol.Module diff @ [sym], map Code_Symbol.Module diff' @ [sym']);
388        val add_edge = if is_cross_module andalso not cyclic_modules
389          then add_edge_acyclic_error (fn _ => "Dependency "
390            ^ Code_Symbol.quote ctxt sym ^ " -> "
391            ^ Code_Symbol.quote ctxt sym'
392            ^ " would result in module dependency cycle") dep
393          else Code_Symbol.Graph.add_edge dep;
394      in
395        (map_module name_fragments_common o apsnd) add_edge
396        #> (if is_cross_module then mark_exports name_fragments' sym' else I)
397      end;
398    val proto_program = build_proto_program
399      { empty = empty_program, add_stmt = add_stmt, add_dep = add_dep } program
400      |> fold (fn sym => mark_exports ((fst o prep_sym) sym) sym) exports;
401
402    (* name declarations, data and statement modifications *)
403    fun make_declarations nsps (data, nodes) =
404      let
405        val (module_fragments, stmt_syms) =
406          Code_Symbol.Graph.keys nodes
407          |> List.partition
408              (fn sym => case Code_Symbol.Graph.get_node nodes sym
409                of (_, Module _) => true | _ => false)
410          |> apply2 (prioritize sym_priority)
411        fun declare namify sym (nsps, nodes) =
412          let
413            val (base, node) = Code_Symbol.Graph.get_node nodes sym;
414            val (base', nsps') = namify node base nsps;
415            val nodes' = Code_Symbol.Graph.map_node sym (K (base', node)) nodes;
416          in (nsps', nodes') end;
417        val (nsps', nodes') = (nsps, nodes)
418          |> fold (declare (K namify_module)) module_fragments
419          |> fold (declare (namify_stmt o snd o the_stmt)) stmt_syms;
420        fun modify_stmts' syms_stmts =
421          let
422            val stmts' = modify_stmts syms_stmts
423          in stmts' @ replicate (length syms_stmts - length stmts') NONE end;
424        val nodes'' =
425          nodes'
426          |> Code_Symbol.Graph.map_strong_conn (map_module_stmts (make_declarations nsps') modify_stmts');
427        val data' = fold memorize_data stmt_syms data;
428      in (data', nodes'') end;
429    val (_, hierarchical_program) = make_declarations empty_nsp proto_program;
430
431    (* deresolving *)
432    fun deresolver prefix_fragments sym =
433      let
434        val (name_fragments, _) = prep_sym sym;
435        val (_, (_, remainder)) = chop_common_prefix (op =) (prefix_fragments, name_fragments);
436        val nodes = fold (fn name_fragment => fn nodes => case Code_Symbol.Graph.get_node nodes (Code_Symbol.Module name_fragment)
437         of (_, Module (_, nodes)) => nodes) name_fragments hierarchical_program;
438        val (base', _) = Code_Symbol.Graph.get_node nodes sym;
439      in Long_Name.implode (remainder @ [base']) end
440        handle Code_Symbol.Graph.UNDEF _ => error ("Unknown statement name: "
441          ^ Code_Symbol.quote ctxt sym);
442
443  in { deresolver = deresolver, hierarchical_program = hierarchical_program } end;
444
445fun print_hierarchical { print_module, print_stmt, lift_markup } =
446  let
447    fun print_node _ (_, Dummy) =
448          NONE
449      | print_node prefix_fragments (sym, Stmt stmt) =
450          SOME (lift_markup (Code_Printer.markup_stmt sym)
451            (print_stmt prefix_fragments (sym, stmt)))
452      | print_node prefix_fragments (Code_Symbol.Module name_fragment, Module (data, nodes)) =
453          let
454            val prefix_fragments' = prefix_fragments @ [name_fragment]
455          in
456            Option.map (print_module prefix_fragments'
457              name_fragment data) (print_nodes prefix_fragments' nodes)
458          end
459    and print_nodes prefix_fragments nodes =
460      let
461        val xs = (map_filter (fn sym => print_node prefix_fragments
462          (sym, snd (Code_Symbol.Graph.get_node nodes sym))) o rev o flat o Code_Symbol.Graph.strong_conn) nodes
463      in if null xs then NONE else SOME xs end;
464  in these o print_nodes [] end;
465
466end;
467