1(*  Title:      Pure/proofterm.ML
2    Author:     Stefan Berghofer, TU Muenchen
3
4LF style proof terms.
5*)
6
7infix 8 % %% %>;
8
9signature PROOFTERM =
10sig
11  type thm_header =
12    {serial: serial, pos: Position.T list, theory_name: string, name: string,
13      prop: term, types: typ list option}
14  type thm_body
15  type thm_node
16  datatype proof =
17     MinProof
18   | PBound of int
19   | Abst of string * typ option * proof
20   | AbsP of string * term option * proof
21   | % of proof * term option
22   | %% of proof * proof
23   | Hyp of term
24   | PAxm of string * term * typ list option
25   | OfClass of typ * class
26   | Oracle of string * term * typ list option
27   | PThm of thm_header * thm_body
28  and proof_body = PBody of
29    {oracles: ((string * Position.T) * term option) Ord_List.T,
30     thms: (serial * thm_node) Ord_List.T,
31     proof: proof}
32  type oracle = (string * Position.T) * term option
33  type thm = serial * thm_node
34  exception MIN_PROOF of unit
35  val proof_of: proof_body -> proof
36  val join_proof: proof_body future -> proof
37  val map_proof_of: (proof -> proof) -> proof_body -> proof_body
38  val thm_header: serial -> Position.T list -> string -> string -> term -> typ list option ->
39    thm_header
40  val thm_body: proof_body -> thm_body
41  val thm_body_proof_raw: thm_body -> proof
42  val thm_body_proof_open: thm_body -> proof
43  val thm_node_theory_name: thm_node -> string
44  val thm_node_name: thm_node -> string
45  val thm_node_prop: thm_node -> term
46  val thm_node_body: thm_node -> proof_body future
47  val thm_node_thms: thm_node -> thm list
48  val join_thms: thm list -> proof_body list
49  val make_thm: thm_header -> thm_body -> thm
50  val fold_proof_atoms: bool -> (proof -> 'a -> 'a) -> proof list -> 'a -> 'a
51  val fold_body_thms:
52    ({serial: serial, name: string, prop: term, body: proof_body} -> 'a -> 'a) ->
53    proof_body list -> 'a -> 'a
54  val oracle_ord: oracle ord
55  val thm_ord: thm ord
56  val unions_oracles: oracle Ord_List.T list -> oracle Ord_List.T
57  val unions_thms: thm Ord_List.T list -> thm Ord_List.T
58  val no_proof_body: proof -> proof_body
59  val no_thm_names: proof -> proof
60  val no_thm_proofs: proof -> proof
61  val no_body_proofs: proof -> proof
62
63  val encode: Consts.T -> proof XML.Encode.T
64  val encode_body: Consts.T -> proof_body XML.Encode.T
65  val encode_standard_term: Consts.T -> term XML.Encode.T
66  val encode_standard_proof: Consts.T -> proof XML.Encode.T
67  val decode: Consts.T -> proof XML.Decode.T
68  val decode_body: Consts.T -> proof_body XML.Decode.T
69
70  val %> : proof * term -> proof
71
72  (*primitive operations*)
73  val proofs: int Unsynchronized.ref
74  val proofs_enabled: unit -> bool
75  val atomic_proof: proof -> bool
76  val compact_proof: proof -> bool
77  val proof_combt: proof * term list -> proof
78  val proof_combt': proof * term option list -> proof
79  val proof_combP: proof * proof list -> proof
80  val strip_combt: proof -> proof * term option list
81  val strip_combP: proof -> proof * proof list
82  val strip_thm_body: proof_body -> proof_body
83  val map_proof_same: term Same.operation -> typ Same.operation
84    -> (typ * class -> proof) -> proof Same.operation
85  val map_proof_terms_same: term Same.operation -> typ Same.operation -> proof Same.operation
86  val map_proof_types_same: typ Same.operation -> proof Same.operation
87  val map_proof_terms: (term -> term) -> (typ -> typ) -> proof -> proof
88  val map_proof_types: (typ -> typ) -> proof -> proof
89  val fold_proof_terms: (term -> 'a -> 'a) -> proof -> 'a -> 'a
90  val fold_proof_terms_types: (term -> 'a -> 'a) -> (typ -> 'a -> 'a) -> proof -> 'a -> 'a
91  val maxidx_proof: proof -> int -> int
92  val size_of_proof: proof -> int
93  val change_types: typ list option -> proof -> proof
94  val prf_abstract_over: term -> proof -> proof
95  val prf_incr_bv: int -> int -> int -> int -> proof -> proof
96  val incr_pboundvars: int -> int -> proof -> proof
97  val prf_loose_bvar1: proof -> int -> bool
98  val prf_loose_Pbvar1: proof -> int -> bool
99  val prf_add_loose_bnos: int -> int -> proof -> int list * int list -> int list * int list
100  val norm_proof: Envir.env -> proof -> proof
101  val norm_proof': Envir.env -> proof -> proof
102  val prf_subst_bounds: term list -> proof -> proof
103  val prf_subst_pbounds: proof list -> proof -> proof
104  val freeze_thaw_prf: proof -> proof * (proof -> proof)
105
106  (*proof terms for specific inference rules*)
107  val trivial_proof: proof
108  val implies_intr_proof: term -> proof -> proof
109  val implies_intr_proof': term -> proof -> proof
110  val forall_intr_proof: string * term -> typ option -> proof -> proof
111  val forall_intr_proof': term -> proof -> proof
112  val varify_proof: term -> (string * sort) list -> proof -> proof
113  val legacy_freezeT: term -> proof -> proof
114  val rotate_proof: term list -> term -> (string * typ) list -> term list -> int -> proof -> proof
115  val permute_prems_proof: term list -> int -> int -> proof -> proof
116  val generalize_proof: string list * string list -> int -> term -> proof -> proof
117  val instantiate: ((indexname * sort) * typ) list * ((indexname * typ) * term) list
118    -> proof -> proof
119  val lift_proof: term -> int -> term -> proof -> proof
120  val incr_indexes: int -> proof -> proof
121  val assumption_proof: term list -> term -> int -> proof -> proof
122  val bicompose_proof: bool -> term list -> term list -> term option -> term list ->
123    int -> int -> proof -> proof -> proof
124  val equality_axms: (string * term) list
125  val reflexive_axm: proof
126  val symmetric_axm: proof
127  val transitive_axm: proof
128  val equal_intr_axm: proof
129  val equal_elim_axm: proof
130  val abstract_rule_axm: proof
131  val combination_axm: proof
132  val reflexive_proof: proof
133  val symmetric_proof: proof -> proof
134  val transitive_proof: typ -> term -> proof -> proof -> proof
135  val equal_intr_proof: term -> term -> proof -> proof -> proof
136  val equal_elim_proof: term -> term -> proof -> proof -> proof
137  val abstract_rule_proof: string * term -> proof -> proof
138  val combination_proof: term -> term -> term -> term -> proof -> proof -> proof
139  val strip_shyps_proof: Sorts.algebra -> (typ * sort) list -> (typ * sort) list ->
140    sort list -> proof -> proof
141  val of_sort_proof: Sorts.algebra ->
142    (class * class -> proof) ->
143    (string * class list list * class -> proof) ->
144    (typ * class -> proof) -> typ * sort -> proof list
145  val axm_proof: string -> term -> proof
146  val oracle_proof: string -> term -> proof
147  val shrink_proof: proof -> proof
148
149  (*rewriting on proof terms*)
150  val add_prf_rrule: proof * proof -> theory -> theory
151  val add_prf_rproc: (typ list -> term option list -> proof -> (proof * proof) option) -> theory -> theory
152  val set_preproc: (theory -> proof -> proof) -> theory -> theory
153  val apply_preproc: theory -> proof -> proof
154  val forall_intr_variables_term: term -> term
155  val forall_intr_variables: term -> proof -> proof
156  val no_skel: proof
157  val normal_skel: proof
158  val rewrite_proof: theory -> (proof * proof) list *
159    (typ list -> term option list -> proof -> (proof * proof) option) list -> proof -> proof
160  val rewrite_proof_notypes: (proof * proof) list *
161    (typ list -> term option list -> proof -> (proof * proof) option) list -> proof -> proof
162  val rew_proof: theory -> proof -> proof
163
164  val reconstruct_proof: theory -> term -> proof -> proof
165  val prop_of': term list -> proof -> term
166  val prop_of: proof -> term
167  val expand_name_empty: thm_header -> string option
168  val expand_proof: theory -> (thm_header -> string option) -> proof -> proof
169
170  val standard_vars: Name.context -> term * proof option -> term * proof option
171  val standard_vars_term: Name.context -> term -> term
172  val add_standard_vars: proof -> (string * typ) list -> (string * typ) list
173  val add_standard_vars_term: term -> (string * typ) list -> (string * typ) list
174
175  val export_enabled: unit -> bool
176  val export_standard_enabled: unit -> bool
177  val export_proof_boxes_required: theory -> bool
178  val export_proof_boxes: proof_body list -> unit
179  val fulfill_norm_proof: theory -> (serial * proof_body) list -> proof_body -> proof_body
180  val thm_proof: theory -> (class * class -> proof) ->
181    (string * class list list * class -> proof) -> string * Position.T -> sort list ->
182    term list -> term -> (serial * proof_body future) list -> proof_body -> thm * proof
183  val unconstrain_thm_proof: theory -> (class * class -> proof) ->
184    (string * class list list * class -> proof) -> sort list -> term ->
185    (serial * proof_body future) list -> proof_body -> thm * proof
186  val get_identity: sort list -> term list -> term -> proof ->
187    {serial: serial, theory_name: string, name: string} option
188  val get_approximative_name: sort list -> term list -> term -> proof -> string
189  type thm_id = {serial: serial, theory_name: string}
190  val make_thm_id: serial * string -> thm_id
191  val thm_header_id: thm_header -> thm_id
192  val thm_id: thm -> thm_id
193  val get_id: sort list -> term list -> term -> proof -> thm_id option
194  val this_id: thm_id option -> thm_id -> bool
195  val proof_boxes: {excluded: thm_id -> bool, included: thm_id -> bool} ->
196    proof list -> (thm_header * proof) list  (*exception MIN_PROOF*)
197end
198
199structure Proofterm : PROOFTERM =
200struct
201
202(** datatype proof **)
203
204type thm_header =
205  {serial: serial, pos: Position.T list, theory_name: string, name: string,
206    prop: term, types: typ list option};
207
208datatype proof =
209   MinProof
210 | PBound of int
211 | Abst of string * typ option * proof
212 | AbsP of string * term option * proof
213 | op % of proof * term option
214 | op %% of proof * proof
215 | Hyp of term
216 | PAxm of string * term * typ list option
217 | OfClass of typ * class
218 | Oracle of string * term * typ list option
219 | PThm of thm_header * thm_body
220and proof_body = PBody of
221  {oracles: ((string * Position.T) * term option) Ord_List.T,
222   thms: (serial * thm_node) Ord_List.T,
223   proof: proof}
224and thm_body =
225  Thm_Body of {open_proof: proof -> proof, body: proof_body future}
226and thm_node =
227  Thm_Node of {theory_name: string, name: string, prop: term,
228    body: proof_body future, export: unit lazy, consolidate: unit lazy};
229
230type oracle = (string * Position.T) * term option;
231val oracle_ord: oracle ord =
232  prod_ord (prod_ord fast_string_ord Position.ord) (option_ord Term_Ord.fast_term_ord);
233
234type thm = serial * thm_node;
235val thm_ord: thm ord = fn ((i, _), (j, _)) => int_ord (j, i);
236
237
238exception MIN_PROOF of unit;
239
240fun proof_of (PBody {proof, ...}) = proof;
241val join_proof = Future.join #> proof_of;
242
243fun map_proof_of f (PBody {oracles, thms, proof}) =
244  PBody {oracles = oracles, thms = thms, proof = f proof};
245
246fun thm_header serial pos theory_name name prop types : thm_header =
247  {serial = serial, pos = pos, theory_name = theory_name, name = name, prop = prop, types = types};
248
249fun thm_body body = Thm_Body {open_proof = I, body = Future.value body};
250fun thm_body_proof_raw (Thm_Body {body, ...}) = join_proof body;
251fun thm_body_proof_open (Thm_Body {open_proof, body, ...}) = open_proof (join_proof body);
252
253fun rep_thm_node (Thm_Node args) = args;
254val thm_node_theory_name = #theory_name o rep_thm_node;
255val thm_node_name = #name o rep_thm_node;
256val thm_node_prop = #prop o rep_thm_node;
257val thm_node_body = #body o rep_thm_node;
258val thm_node_thms = thm_node_body #> Future.join #> (fn PBody {thms, ...} => thms);
259val thm_node_export = #export o rep_thm_node;
260val thm_node_consolidate = #consolidate o rep_thm_node;
261
262fun join_thms (thms: thm list) =
263  Future.joins (map (thm_node_body o #2) thms);
264
265val consolidate_bodies =
266  maps (fn PBody {thms, ...} => map (thm_node_consolidate o #2) thms)
267  #> Lazy.consolidate #> map Lazy.force #> ignore;
268
269fun make_thm_node theory_name name prop body export =
270  let
271    val consolidate =
272      Lazy.lazy_name "Proofterm.make_thm_node" (fn () =>
273        let val PBody {thms, ...} = Future.join body
274        in consolidate_bodies (join_thms thms) end);
275  in
276    Thm_Node {theory_name = theory_name, name = name, prop = prop, body = body,
277      export = export, consolidate = consolidate}
278  end;
279
280val no_export = Lazy.value ();
281
282fun make_thm ({serial, theory_name, name, prop, ...}: thm_header) (Thm_Body {body, ...}) =
283  (serial, make_thm_node theory_name name prop body no_export);
284
285
286(* proof atoms *)
287
288fun fold_proof_atoms all f =
289  let
290    fun app (Abst (_, _, prf)) = app prf
291      | app (AbsP (_, _, prf)) = app prf
292      | app (prf % _) = app prf
293      | app (prf1 %% prf2) = app prf1 #> app prf2
294      | app (prf as PThm ({serial = i, ...}, Thm_Body {body, ...})) = (fn (x, seen) =>
295          if Inttab.defined seen i then (x, seen)
296          else
297            let val (x', seen') =
298              (if all then app (join_proof body) else I) (x, Inttab.update (i, ()) seen)
299            in (f prf x', seen') end)
300      | app prf = (fn (x, seen) => (f prf x, seen));
301  in fn prfs => fn x => #1 (fold app prfs (x, Inttab.empty)) end;
302
303fun fold_body_thms f =
304  let
305    fun app (PBody {thms, ...}) =
306      tap join_thms thms |> fold (fn (i, thm_node) => fn (x, seen) =>
307        if Inttab.defined seen i then (x, seen)
308        else
309          let
310            val name = thm_node_name thm_node;
311            val prop = thm_node_prop thm_node;
312            val body = Future.join (thm_node_body thm_node);
313            val (x', seen') = app body (x, Inttab.update (i, ()) seen);
314          in (f {serial = i, name = name, prop = prop, body = body} x', seen') end);
315  in fn bodies => fn x => #1 (fold app bodies (x, Inttab.empty)) end;
316
317
318(* proof body *)
319
320val unions_oracles = Ord_List.unions oracle_ord;
321val unions_thms = Ord_List.unions thm_ord;
322
323fun no_proof_body proof = PBody {oracles = [], thms = [], proof = proof};
324val no_thm_body = thm_body (no_proof_body MinProof);
325
326fun no_thm_names (Abst (x, T, prf)) = Abst (x, T, no_thm_names prf)
327  | no_thm_names (AbsP (x, t, prf)) = AbsP (x, t, no_thm_names prf)
328  | no_thm_names (prf % t) = no_thm_names prf % t
329  | no_thm_names (prf1 %% prf2) = no_thm_names prf1 %% no_thm_names prf2
330  | no_thm_names (PThm ({serial, pos, theory_name, name = _, prop, types}, thm_body)) =
331      PThm (thm_header serial pos theory_name "" prop types, thm_body)
332  | no_thm_names a = a;
333
334fun no_thm_proofs (Abst (x, T, prf)) = Abst (x, T, no_thm_proofs prf)
335  | no_thm_proofs (AbsP (x, t, prf)) = AbsP (x, t, no_thm_proofs prf)
336  | no_thm_proofs (prf % t) = no_thm_proofs prf % t
337  | no_thm_proofs (prf1 %% prf2) = no_thm_proofs prf1 %% no_thm_proofs prf2
338  | no_thm_proofs (PThm (header, _)) = PThm (header, no_thm_body)
339  | no_thm_proofs a = a;
340
341fun no_body_proofs (Abst (x, T, prf)) = Abst (x, T, no_body_proofs prf)
342  | no_body_proofs (AbsP (x, t, prf)) = AbsP (x, t, no_body_proofs prf)
343  | no_body_proofs (prf % t) = no_body_proofs prf % t
344  | no_body_proofs (prf1 %% prf2) = no_body_proofs prf1 %% no_body_proofs prf2
345  | no_body_proofs (PThm (header, Thm_Body {open_proof, body})) =
346      let
347        val body' = Future.value (no_proof_body (join_proof body));
348        val thm_body' = Thm_Body {open_proof = open_proof, body = body'};
349      in PThm (header, thm_body') end
350  | no_body_proofs a = a;
351
352
353
354(** XML data representation **)
355
356(* encode *)
357
358local
359
360open XML.Encode Term_XML.Encode;
361
362fun proof consts prf = prf |> variant
363 [fn MinProof => ([], []),
364  fn PBound a => ([], int a),
365  fn Abst (a, b, c) => ([a], pair (option typ) (proof consts) (b, c)),
366  fn AbsP (a, b, c) => ([a], pair (option (term consts)) (proof consts) (b, c)),
367  fn a % b => ([], pair (proof consts) (option (term consts)) (a, b)),
368  fn a %% b => ([], pair (proof consts) (proof consts) (a, b)),
369  fn Hyp a => ([], term consts a),
370  fn PAxm (a, b, c) => ([a], pair (term consts) (option (list typ)) (b, c)),
371  fn OfClass (a, b) => ([b], typ a),
372  fn Oracle (a, b, c) => ([a], pair (term consts) (option (list typ)) (b, c)),
373  fn PThm ({serial, pos, theory_name, name, prop, types}, Thm_Body {open_proof, body, ...}) =>
374    ([int_atom serial, theory_name, name],
375      pair (list properties) (pair (term consts) (pair (option (list typ)) (proof_body consts)))
376        (map Position.properties_of pos, (prop, (types, map_proof_of open_proof (Future.join body)))))]
377and proof_body consts (PBody {oracles, thms, proof = prf}) =
378  triple (list (pair (pair string (properties o Position.properties_of))
379      (option (term consts)))) (list (thm consts)) (proof consts) (oracles, thms, prf)
380and thm consts (a, thm_node) =
381  pair int (pair string (pair string (pair (term consts) (proof_body consts))))
382    (a, (thm_node_theory_name thm_node, (thm_node_name thm_node, (thm_node_prop thm_node,
383      (Future.join (thm_node_body thm_node))))));
384
385fun standard_term consts t = t |> variant
386 [fn Const (a, b) => ([a], list typ (Consts.typargs consts (a, b))),
387  fn Free (a, _) => ([a], []),
388  fn Var (a, _) => (indexname a, []),
389  fn Bound a => ([], int a),
390  fn Abs (a, b, c) => ([a], pair typ (standard_term consts) (b, c)),
391  fn op $ a => ([], pair (standard_term consts) (standard_term consts) a)];
392
393fun standard_proof consts prf = prf |> variant
394 [fn MinProof => ([], []),
395  fn PBound a => ([], int a),
396  fn Abst (a, SOME b, c) => ([a], pair typ (standard_proof consts) (b, c)),
397  fn AbsP (a, SOME b, c) => ([a], pair (standard_term consts) (standard_proof consts) (b, c)),
398  fn a % SOME b => ([], pair (standard_proof consts) (standard_term consts) (a, b)),
399  fn a %% b => ([], pair (standard_proof consts) (standard_proof consts) (a, b)),
400  fn Hyp a => ([], standard_term consts a),
401  fn PAxm (name, _, SOME Ts) => ([name], list typ Ts),
402  fn OfClass (T, c) => ([c], typ T),
403  fn Oracle (name, prop, SOME Ts) => ([name], pair (standard_term consts) (list typ) (prop, Ts)),
404  fn PThm ({serial, theory_name, name, types = SOME Ts, ...}, _) =>
405    ([int_atom serial, theory_name, name], list typ Ts)];
406
407in
408
409val encode = proof;
410val encode_body = proof_body;
411val encode_standard_term = standard_term;
412val encode_standard_proof = standard_proof;
413
414end;
415
416
417(* decode *)
418
419local
420
421open XML.Decode Term_XML.Decode;
422
423fun proof consts prf = prf |> variant
424 [fn ([], []) => MinProof,
425  fn ([], a) => PBound (int a),
426  fn ([a], b) => let val (c, d) = pair (option typ) (proof consts) b in Abst (a, c, d) end,
427  fn ([a], b) => let val (c, d) = pair (option (term consts)) (proof consts) b in AbsP (a, c, d) end,
428  fn ([], a) => op % (pair (proof consts) (option (term consts)) a),
429  fn ([], a) => op %% (pair (proof consts) (proof consts) a),
430  fn ([], a) => Hyp (term consts a),
431  fn ([a], b) => let val (c, d) = pair (term consts) (option (list typ)) b in PAxm (a, c, d) end,
432  fn ([b], a) => OfClass (typ a, b),
433  fn ([a], b) => let val (c, d) = pair (term consts) (option (list typ)) b in Oracle (a, c, d) end,
434  fn ([a, b, c], d) =>
435    let
436      val ((e, (f, (g, h)))) =
437        pair (list properties) (pair (term consts) (pair (option (list typ)) (proof_body consts))) d;
438      val header = thm_header (int_atom a) (map Position.of_properties e) b c f g;
439    in PThm (header, thm_body h) end]
440and proof_body consts x =
441  let
442    val (a, b, c) =
443      triple (list (pair (pair string (Position.of_properties o properties))
444        (option (term consts)))) (list (thm consts)) (proof consts) x;
445  in PBody {oracles = a, thms = b, proof = c} end
446and thm consts x =
447  let
448    val (a, (b, (c, (d, e)))) =
449      pair int (pair string (pair string (pair (term consts) (proof_body consts)))) x
450  in (a, make_thm_node b c d (Future.value e) no_export) end;
451
452in
453
454val decode = proof;
455val decode_body = proof_body;
456
457end;
458
459
460(** proof objects with different levels of detail **)
461
462val proofs = Unsynchronized.ref 2;
463fun proofs_enabled () = ! proofs >= 2;
464
465fun atomic_proof prf =
466  (case prf of
467    Abst _ => false
468  | AbsP _ => false
469  | op % _ => false
470  | op %% _ => false
471  | MinProof => false
472  | _ => true);
473
474fun compact_proof (prf % _) = compact_proof prf
475  | compact_proof (prf1 %% prf2) = atomic_proof prf2 andalso compact_proof prf1
476  | compact_proof prf = atomic_proof prf;
477
478fun (prf %> t) = prf % SOME t;
479
480val proof_combt = Library.foldl (op %>);
481val proof_combt' = Library.foldl (op %);
482val proof_combP = Library.foldl (op %%);
483
484fun strip_combt prf =
485    let fun stripc (prf % t, ts) = stripc (prf, t::ts)
486          | stripc  x =  x
487    in  stripc (prf, [])  end;
488
489fun strip_combP prf =
490    let fun stripc (prf %% prf', prfs) = stripc (prf, prf'::prfs)
491          | stripc  x =  x
492    in  stripc (prf, [])  end;
493
494fun strip_thm_body (body as PBody {proof, ...}) =
495  (case fst (strip_combt (fst (strip_combP proof))) of
496    PThm (_, Thm_Body {body = body', ...}) => Future.join body'
497  | _ => body);
498
499val mk_Abst = fold_rev (fn (x, _: typ) => fn prf => Abst (x, NONE, prf));
500val mk_AbsP = fold_rev (fn _: term => fn prf => AbsP ("H", NONE, prf));
501
502fun map_proof_same term typ ofclass =
503  let
504    val typs = Same.map typ;
505
506    fun proof (Abst (s, T, prf)) =
507          (Abst (s, Same.map_option typ T, Same.commit proof prf)
508            handle Same.SAME => Abst (s, T, proof prf))
509      | proof (AbsP (s, t, prf)) =
510          (AbsP (s, Same.map_option term t, Same.commit proof prf)
511            handle Same.SAME => AbsP (s, t, proof prf))
512      | proof (prf % t) =
513          (proof prf % Same.commit (Same.map_option term) t
514            handle Same.SAME => prf % Same.map_option term t)
515      | proof (prf1 %% prf2) =
516          (proof prf1 %% Same.commit proof prf2
517            handle Same.SAME => prf1 %% proof prf2)
518      | proof (PAxm (a, prop, SOME Ts)) = PAxm (a, prop, SOME (typs Ts))
519      | proof (OfClass T_c) = ofclass T_c
520      | proof (Oracle (a, prop, SOME Ts)) = Oracle (a, prop, SOME (typs Ts))
521      | proof (PThm ({serial, pos, theory_name, name, prop, types = SOME Ts}, thm_body)) =
522          PThm (thm_header serial pos theory_name name prop (SOME (typs Ts)), thm_body)
523      | proof _ = raise Same.SAME;
524  in proof end;
525
526fun map_proof_terms_same term typ = map_proof_same term typ (fn (T, c) => OfClass (typ T, c));
527fun map_proof_types_same typ = map_proof_terms_same (Term_Subst.map_types_same typ) typ;
528
529fun same eq f x =
530  let val x' = f x
531  in if eq (x, x') then raise Same.SAME else x' end;
532
533fun map_proof_terms f g = Same.commit (map_proof_terms_same (same (op =) f) (same (op =) g));
534fun map_proof_types f = Same.commit (map_proof_types_same (same (op =) f));
535
536fun fold_proof_terms f (Abst (_, _, prf)) = fold_proof_terms f prf
537  | fold_proof_terms f (AbsP (_, SOME t, prf)) = f t #> fold_proof_terms f prf
538  | fold_proof_terms f (AbsP (_, NONE, prf)) = fold_proof_terms f prf
539  | fold_proof_terms f (prf % SOME t) = fold_proof_terms f prf #> f t
540  | fold_proof_terms f (prf % NONE) = fold_proof_terms f prf
541  | fold_proof_terms f (prf1 %% prf2) = fold_proof_terms f prf1 #> fold_proof_terms f prf2
542  | fold_proof_terms _ _ = I;
543
544fun fold_proof_terms_types f g (Abst (_, SOME T, prf)) = g T #> fold_proof_terms_types f g prf
545  | fold_proof_terms_types f g (Abst (_, NONE, prf)) = fold_proof_terms_types f g prf
546  | fold_proof_terms_types f g (AbsP (_, SOME t, prf)) = f t #> fold_proof_terms_types f g prf
547  | fold_proof_terms_types f g (AbsP (_, NONE, prf)) = fold_proof_terms_types f g prf
548  | fold_proof_terms_types f g (prf % SOME t) = fold_proof_terms_types f g prf #> f t
549  | fold_proof_terms_types f g (prf % NONE) = fold_proof_terms_types f g prf
550  | fold_proof_terms_types f g (prf1 %% prf2) =
551      fold_proof_terms_types f g prf1 #> fold_proof_terms_types f g prf2
552  | fold_proof_terms_types _ g (PAxm (_, _, SOME Ts)) = fold g Ts
553  | fold_proof_terms_types _ g (OfClass (T, _)) = g T
554  | fold_proof_terms_types _ g (Oracle (_, _, SOME Ts)) = fold g Ts
555  | fold_proof_terms_types _ g (PThm ({types = SOME Ts, ...}, _)) = fold g Ts
556  | fold_proof_terms_types _ _ _ = I;
557
558fun maxidx_proof prf = fold_proof_terms_types Term.maxidx_term Term.maxidx_typ prf;
559
560fun size_of_proof (Abst (_, _, prf)) = 1 + size_of_proof prf
561  | size_of_proof (AbsP (_, _, prf)) = 1 + size_of_proof prf
562  | size_of_proof (prf % _) = 1 + size_of_proof prf
563  | size_of_proof (prf1 %% prf2) = size_of_proof prf1 + size_of_proof prf2
564  | size_of_proof _ = 1;
565
566fun change_types types (PAxm (name, prop, _)) = PAxm (name, prop, types)
567  | change_types (SOME [T]) (OfClass (_, c)) = OfClass (T, c)
568  | change_types types (Oracle (name, prop, _)) = Oracle (name, prop, types)
569  | change_types types (PThm ({serial, pos, theory_name, name, prop, types = _}, thm_body)) =
570      PThm (thm_header serial pos theory_name name prop types, thm_body)
571  | change_types _ prf = prf;
572
573
574(* utilities *)
575
576fun strip_abs (_::Ts) (Abs (_, _, t)) = strip_abs Ts t
577  | strip_abs _ t = t;
578
579fun mk_abs Ts t = Library.foldl (fn (t', T) => Abs ("", T, t')) (t, Ts);
580
581
582(*Abstraction of a proof term over its occurrences of v,
583    which must contain no loose bound variables.
584  The resulting proof term is ready to become the body of an Abst.*)
585
586fun prf_abstract_over v =
587  let
588    fun abst' lev u = if v aconv u then Bound lev else
589      (case u of
590         Abs (a, T, t) => Abs (a, T, abst' (lev + 1) t)
591       | f $ t => (abst' lev f $ absth' lev t handle Same.SAME => f $ abst' lev t)
592       | _ => raise Same.SAME)
593    and absth' lev t = (abst' lev t handle Same.SAME => t);
594
595    fun abst lev (AbsP (a, t, prf)) =
596          (AbsP (a, Same.map_option (abst' lev) t, absth lev prf)
597           handle Same.SAME => AbsP (a, t, abst lev prf))
598      | abst lev (Abst (a, T, prf)) = Abst (a, T, abst (lev + 1) prf)
599      | abst lev (prf1 %% prf2) = (abst lev prf1 %% absth lev prf2
600          handle Same.SAME => prf1 %% abst lev prf2)
601      | abst lev (prf % t) = (abst lev prf % Option.map (absth' lev) t
602          handle Same.SAME => prf % Same.map_option (abst' lev) t)
603      | abst _ _ = raise Same.SAME
604    and absth lev prf = (abst lev prf handle Same.SAME => prf);
605
606  in absth 0 end;
607
608
609(*increments a proof term's non-local bound variables
610  required when moving a proof term within abstractions
611     inc is  increment for bound variables
612     lev is  level at which a bound variable is considered 'loose'*)
613
614fun incr_bv' inct tlev t = incr_bv (inct, tlev, t);
615
616fun prf_incr_bv' incP _ Plev _ (PBound i) =
617      if i >= Plev then PBound (i+incP) else raise Same.SAME
618  | prf_incr_bv' incP inct Plev tlev (AbsP (a, t, body)) =
619      (AbsP (a, Same.map_option (same (op =) (incr_bv' inct tlev)) t,
620         prf_incr_bv incP inct (Plev+1) tlev body) handle Same.SAME =>
621           AbsP (a, t, prf_incr_bv' incP inct (Plev+1) tlev body))
622  | prf_incr_bv' incP inct Plev tlev (Abst (a, T, body)) =
623      Abst (a, T, prf_incr_bv' incP inct Plev (tlev+1) body)
624  | prf_incr_bv' incP inct Plev tlev (prf %% prf') =
625      (prf_incr_bv' incP inct Plev tlev prf %% prf_incr_bv incP inct Plev tlev prf'
626       handle Same.SAME => prf %% prf_incr_bv' incP inct Plev tlev prf')
627  | prf_incr_bv' incP inct Plev tlev (prf % t) =
628      (prf_incr_bv' incP inct Plev tlev prf % Option.map (incr_bv' inct tlev) t
629       handle Same.SAME => prf % Same.map_option (same (op =) (incr_bv' inct tlev)) t)
630  | prf_incr_bv' _ _ _ _ _ = raise Same.SAME
631and prf_incr_bv incP inct Plev tlev prf =
632      (prf_incr_bv' incP inct Plev tlev prf handle Same.SAME => prf);
633
634fun incr_pboundvars  0 0 prf = prf
635  | incr_pboundvars incP inct prf = prf_incr_bv incP inct 0 0 prf;
636
637
638fun prf_loose_bvar1 (prf1 %% prf2) k = prf_loose_bvar1 prf1 k orelse prf_loose_bvar1 prf2 k
639  | prf_loose_bvar1 (prf % SOME t) k = prf_loose_bvar1 prf k orelse loose_bvar1 (t, k)
640  | prf_loose_bvar1 (_ % NONE) _ = true
641  | prf_loose_bvar1 (AbsP (_, SOME t, prf)) k = loose_bvar1 (t, k) orelse prf_loose_bvar1 prf k
642  | prf_loose_bvar1 (AbsP (_, NONE, _)) _ = true
643  | prf_loose_bvar1 (Abst (_, _, prf)) k = prf_loose_bvar1 prf (k+1)
644  | prf_loose_bvar1 _ _ = false;
645
646fun prf_loose_Pbvar1 (PBound i) k = i = k
647  | prf_loose_Pbvar1 (prf1 %% prf2) k = prf_loose_Pbvar1 prf1 k orelse prf_loose_Pbvar1 prf2 k
648  | prf_loose_Pbvar1 (prf % _) k = prf_loose_Pbvar1 prf k
649  | prf_loose_Pbvar1 (AbsP (_, _, prf)) k = prf_loose_Pbvar1 prf (k+1)
650  | prf_loose_Pbvar1 (Abst (_, _, prf)) k = prf_loose_Pbvar1 prf k
651  | prf_loose_Pbvar1 _ _ = false;
652
653fun prf_add_loose_bnos plev _ (PBound i) (is, js) =
654      if i < plev then (is, js) else (insert (op =) (i-plev) is, js)
655  | prf_add_loose_bnos plev tlev (prf1 %% prf2) p =
656      prf_add_loose_bnos plev tlev prf2
657        (prf_add_loose_bnos plev tlev prf1 p)
658  | prf_add_loose_bnos plev tlev (prf % opt) (is, js) =
659      prf_add_loose_bnos plev tlev prf
660        (case opt of
661          NONE => (is, insert (op =) ~1 js)
662        | SOME t => (is, add_loose_bnos (t, tlev, js)))
663  | prf_add_loose_bnos plev tlev (AbsP (_, opt, prf)) (is, js) =
664      prf_add_loose_bnos (plev+1) tlev prf
665        (case opt of
666          NONE => (is, insert (op =) ~1 js)
667        | SOME t => (is, add_loose_bnos (t, tlev, js)))
668  | prf_add_loose_bnos plev tlev (Abst (_, _, prf)) p =
669      prf_add_loose_bnos plev (tlev+1) prf p
670  | prf_add_loose_bnos _ _ _ _ = ([], []);
671
672
673(* substitutions *)
674
675fun del_conflicting_tvars envT T = Term_Subst.instantiateT
676  (map_filter (fn ixnS as (_, S) =>
677     (Type.lookup envT ixnS; NONE) handle TYPE _ =>
678        SOME (ixnS, Logic.dummy_tfree S)) (Term.add_tvarsT T [])) T;
679
680fun del_conflicting_vars env t = Term_Subst.instantiate
681  (map_filter (fn ixnS as (_, S) =>
682     (Type.lookup (Envir.type_env env) ixnS; NONE) handle TYPE _ =>
683        SOME (ixnS, Logic.dummy_tfree S)) (Term.add_tvars t []),
684   map_filter (fn (ixnT as (_, T)) =>
685     (Envir.lookup env ixnT; NONE) handle TYPE _ =>
686        SOME (ixnT, Free ("dummy", T))) (Term.add_vars t [])) t;
687
688fun norm_proof env =
689  let
690    val envT = Envir.type_env env;
691    fun msg s = warning ("type conflict in norm_proof:\n" ^ s);
692    fun htype f t = f env t handle TYPE (s, _, _) =>
693      (msg s; f env (del_conflicting_vars env t));
694    fun htypeT f T = f envT T handle TYPE (s, _, _) =>
695      (msg s; f envT (del_conflicting_tvars envT T));
696    fun htypeTs f Ts = f envT Ts handle TYPE (s, _, _) =>
697      (msg s; f envT (map (del_conflicting_tvars envT) Ts));
698
699    fun norm (Abst (s, T, prf)) =
700          (Abst (s, Same.map_option (htypeT Envir.norm_type_same) T, Same.commit norm prf)
701            handle Same.SAME => Abst (s, T, norm prf))
702      | norm (AbsP (s, t, prf)) =
703          (AbsP (s, Same.map_option (htype Envir.norm_term_same) t, Same.commit norm prf)
704            handle Same.SAME => AbsP (s, t, norm prf))
705      | norm (prf % t) =
706          (norm prf % Option.map (htype Envir.norm_term) t
707            handle Same.SAME => prf % Same.map_option (htype Envir.norm_term_same) t)
708      | norm (prf1 %% prf2) =
709          (norm prf1 %% Same.commit norm prf2
710            handle Same.SAME => prf1 %% norm prf2)
711      | norm (PAxm (s, prop, Ts)) =
712          PAxm (s, prop, Same.map_option (htypeTs Envir.norm_types_same) Ts)
713      | norm (OfClass (T, c)) =
714          OfClass (htypeT Envir.norm_type_same T, c)
715      | norm (Oracle (s, prop, Ts)) =
716          Oracle (s, prop, Same.map_option (htypeTs Envir.norm_types_same) Ts)
717      | norm (PThm ({serial = i, pos = p, theory_name, name = a, prop = t, types = Ts}, thm_body)) =
718          PThm (thm_header i p theory_name a t
719            (Same.map_option (htypeTs Envir.norm_types_same) Ts), thm_body)
720      | norm _ = raise Same.SAME;
721  in Same.commit norm end;
722
723
724(* remove some types in proof term (to save space) *)
725
726fun remove_types (Abs (s, _, t)) = Abs (s, dummyT, remove_types t)
727  | remove_types (t $ u) = remove_types t $ remove_types u
728  | remove_types (Const (s, _)) = Const (s, dummyT)
729  | remove_types t = t;
730
731fun remove_types_env (Envir.Envir {maxidx, tenv, tyenv}) =
732  Envir.Envir {maxidx = maxidx, tenv = Vartab.map (K (apsnd remove_types)) tenv, tyenv = tyenv};
733
734fun norm_proof' env prf = norm_proof (remove_types_env env) prf;
735
736
737(* substitution of bound variables *)
738
739fun prf_subst_bounds args prf =
740  let
741    val n = length args;
742    fun subst' lev (Bound i) =
743         (if i<lev then raise Same.SAME    (*var is locally bound*)
744          else  incr_boundvars lev (nth args (i-lev))
745                  handle General.Subscript => Bound (i-n))  (*loose: change it*)
746      | subst' lev (Abs (a, T, body)) = Abs (a, T,  subst' (lev+1) body)
747      | subst' lev (f $ t) = (subst' lev f $ substh' lev t
748          handle Same.SAME => f $ subst' lev t)
749      | subst' _ _ = raise Same.SAME
750    and substh' lev t = (subst' lev t handle Same.SAME => t);
751
752    fun subst lev (AbsP (a, t, body)) =
753        (AbsP (a, Same.map_option (subst' lev) t, substh lev body)
754          handle Same.SAME => AbsP (a, t, subst lev body))
755      | subst lev (Abst (a, T, body)) = Abst (a, T, subst (lev+1) body)
756      | subst lev (prf %% prf') = (subst lev prf %% substh lev prf'
757          handle Same.SAME => prf %% subst lev prf')
758      | subst lev (prf % t) = (subst lev prf % Option.map (substh' lev) t
759          handle Same.SAME => prf % Same.map_option (subst' lev) t)
760      | subst _ _ = raise Same.SAME
761    and substh lev prf = (subst lev prf handle Same.SAME => prf);
762  in (case args of [] => prf | _ => substh 0 prf) end;
763
764fun prf_subst_pbounds args prf =
765  let
766    val n = length args;
767    fun subst (PBound i) Plev tlev =
768         (if i < Plev then raise Same.SAME    (*var is locally bound*)
769          else incr_pboundvars Plev tlev (nth args (i-Plev))
770                 handle General.Subscript => PBound (i-n)  (*loose: change it*))
771      | subst (AbsP (a, t, body)) Plev tlev = AbsP (a, t, subst body (Plev+1) tlev)
772      | subst (Abst (a, T, body)) Plev tlev = Abst (a, T, subst body Plev (tlev+1))
773      | subst (prf %% prf') Plev tlev = (subst prf Plev tlev %% substh prf' Plev tlev
774          handle Same.SAME => prf %% subst prf' Plev tlev)
775      | subst (prf % t) Plev tlev = subst prf Plev tlev % t
776      | subst  _ _ _ = raise Same.SAME
777    and substh prf Plev tlev = (subst prf Plev tlev handle Same.SAME => prf)
778  in (case args of [] => prf | _ => substh prf 0 0) end;
779
780
781(* freezing and thawing of variables in proof terms *)
782
783local
784
785fun frzT names =
786  map_type_tvar (fn (ixn, S) => TFree (the (AList.lookup (op =) names ixn), S));
787
788fun thawT names =
789  map_type_tfree (fn (a, S) =>
790    (case AList.lookup (op =) names a of
791      NONE => TFree (a, S)
792    | SOME ixn => TVar (ixn, S)));
793
794fun freeze names names' (t $ u) =
795      freeze names names' t $ freeze names names' u
796  | freeze names names' (Abs (s, T, t)) =
797      Abs (s, frzT names' T, freeze names names' t)
798  | freeze _ names' (Const (s, T)) = Const (s, frzT names' T)
799  | freeze _ names' (Free (s, T)) = Free (s, frzT names' T)
800  | freeze names names' (Var (ixn, T)) =
801      Free (the (AList.lookup (op =) names ixn), frzT names' T)
802  | freeze _ _ t = t;
803
804fun thaw names names' (t $ u) =
805      thaw names names' t $ thaw names names' u
806  | thaw names names' (Abs (s, T, t)) =
807      Abs (s, thawT names' T, thaw names names' t)
808  | thaw _ names' (Const (s, T)) = Const (s, thawT names' T)
809  | thaw names names' (Free (s, T)) =
810      let val T' = thawT names' T in
811        (case AList.lookup (op =) names s of
812          NONE => Free (s, T')
813        | SOME ixn => Var (ixn, T'))
814      end
815  | thaw _ names' (Var (ixn, T)) = Var (ixn, thawT names' T)
816  | thaw _ _ t = t;
817
818in
819
820fun freeze_thaw_prf prf =
821  let
822    val (fs, Tfs, vs, Tvs) = fold_proof_terms_types
823      (fn t => fn (fs, Tfs, vs, Tvs) =>
824         (Term.add_free_names t fs, Term.add_tfree_names t Tfs,
825          Term.add_var_names t vs, Term.add_tvar_names t Tvs))
826      (fn T => fn (fs, Tfs, vs, Tvs) =>
827         (fs, Term.add_tfree_namesT T Tfs,
828          vs, Term.add_tvar_namesT T Tvs))
829      prf ([], [], [], []);
830    val names = vs ~~ Name.variant_list fs (map fst vs);
831    val names' = Tvs ~~ Name.variant_list Tfs (map fst Tvs);
832    val rnames = map swap names;
833    val rnames' = map swap names';
834  in
835    (map_proof_terms (freeze names names') (frzT names') prf,
836     map_proof_terms (thaw rnames rnames') (thawT rnames'))
837  end;
838
839end;
840
841
842
843(** inference rules **)
844
845(* trivial implication *)
846
847val trivial_proof = AbsP ("H", NONE, PBound 0);
848
849
850(* implication introduction *)
851
852fun gen_implies_intr_proof f h prf =
853  let
854    fun abshyp i (Hyp t) = if h aconv t then PBound i else raise Same.SAME
855      | abshyp i (Abst (s, T, prf)) = Abst (s, T, abshyp i prf)
856      | abshyp i (AbsP (s, t, prf)) = AbsP (s, t, abshyp (i + 1) prf)
857      | abshyp i (prf % t) = abshyp i prf % t
858      | abshyp i (prf1 %% prf2) =
859          (abshyp i prf1 %% abshyph i prf2
860            handle Same.SAME => prf1 %% abshyp i prf2)
861      | abshyp _ _ = raise Same.SAME
862    and abshyph i prf = (abshyp i prf handle Same.SAME => prf);
863  in
864    AbsP ("H", f h, abshyph 0 prf)
865  end;
866
867val implies_intr_proof = gen_implies_intr_proof (K NONE);
868val implies_intr_proof' = gen_implies_intr_proof SOME;
869
870
871(* forall introduction *)
872
873fun forall_intr_proof (a, v) opt_T prf = Abst (a, opt_T, prf_abstract_over v prf);
874
875fun forall_intr_proof' v prf =
876  let val (a, T) = (case v of Var ((a, _), T) => (a, T) | Free (a, T) => (a, T))
877  in forall_intr_proof (a, v) (SOME T) prf end;
878
879
880(* varify *)
881
882fun varify_proof t fixed prf =
883  let
884    val fs = Term.fold_types (Term.fold_atyps
885      (fn TFree v => if member (op =) fixed v then I else insert (op =) v | _ => I)) t [];
886    val used = Name.context
887      |> fold_types (fold_atyps (fn TVar ((a, _), _) => Name.declare a | _ => I)) t;
888    val fmap = fs ~~ #1 (fold_map Name.variant (map fst fs) used);
889    fun thaw (a, S) =
890      (case AList.lookup (op =) fmap (a, S) of
891        NONE => TFree (a, S)
892      | SOME b => TVar ((b, 0), S));
893  in map_proof_terms (map_types (map_type_tfree thaw)) (map_type_tfree thaw) prf end;
894
895
896local
897
898fun new_name ix (pairs, used) =
899  let val v = singleton (Name.variant_list used) (string_of_indexname ix)
900  in ((ix, v) :: pairs, v :: used) end;
901
902fun freeze_one alist (ix, sort) =
903  (case AList.lookup (op =) alist ix of
904    NONE => TVar (ix, sort)
905  | SOME name => TFree (name, sort));
906
907in
908
909fun legacy_freezeT t prf =
910  let
911    val used = Term.add_tfree_names t [];
912    val (alist, _) = fold_rev new_name (map #1 (Term.add_tvars t [])) ([], used);
913  in
914    (case alist of
915      [] => prf (*nothing to do!*)
916    | _ =>
917        let val frzT = map_type_tvar (freeze_one alist)
918        in map_proof_terms (map_types frzT) frzT prf end)
919  end;
920
921end;
922
923
924(* rotate assumptions *)
925
926fun rotate_proof Bs Bi' params asms m prf =
927  let
928    val i = length asms;
929    val j = length Bs;
930  in
931    mk_AbsP (Bs @ [Bi']) (proof_combP (prf, map PBound
932      (j downto 1) @ [mk_Abst params (mk_AbsP asms
933        (proof_combP (proof_combt (PBound i, map Bound ((length params - 1) downto 0)),
934          map PBound (((i-m-1) downto 0) @ ((i-1) downto (i-m))))))]))
935  end;
936
937
938(* permute premises *)
939
940fun permute_prems_proof prems' j k prf =
941  let val n = length prems' in
942    mk_AbsP prems'
943      (proof_combP (prf, map PBound ((n-1 downto n-j) @ (k-1 downto 0) @ (n-j-1 downto k))))
944  end;
945
946
947(* generalization *)
948
949fun generalize_proof (tfrees, frees) idx prop prf =
950  let
951    val gen =
952      if null frees then []
953      else
954        fold_aterms (fn Free (x, T) => member (op =) frees x ? insert (op =) (x, T) | _ => I)
955          (Term_Subst.generalize (tfrees, []) idx prop) [];
956  in
957    prf
958    |> Same.commit (map_proof_terms_same
959        (Term_Subst.generalize_same (tfrees, []) idx)
960        (Term_Subst.generalizeT_same tfrees idx))
961    |> fold (fn (x, T) => forall_intr_proof (x, Free (x, T)) NONE) gen
962    |> fold_rev (fn (x, T) => fn prf' => prf' %> Var (Name.clean_index (x, idx), T)) gen
963  end;
964
965
966(* instantiation *)
967
968fun instantiate (instT, inst) =
969  Same.commit (map_proof_terms_same
970    (Term_Subst.instantiate_same (instT, map (apsnd remove_types) inst))
971    (Term_Subst.instantiateT_same instT));
972
973
974(* lifting *)
975
976fun lift_proof Bi inc prop prf =
977  let
978    fun lift'' Us Ts t =
979      strip_abs Ts (Logic.incr_indexes ([], Us, inc) (mk_abs Ts t));
980
981    fun lift' Us Ts (Abst (s, T, prf)) =
982          (Abst (s, Same.map_option (Logic.incr_tvar_same inc) T, lifth' Us (dummyT::Ts) prf)
983           handle Same.SAME => Abst (s, T, lift' Us (dummyT::Ts) prf))
984      | lift' Us Ts (AbsP (s, t, prf)) =
985          (AbsP (s, Same.map_option (same (op =) (lift'' Us Ts)) t, lifth' Us Ts prf)
986           handle Same.SAME => AbsP (s, t, lift' Us Ts prf))
987      | lift' Us Ts (prf % t) = (lift' Us Ts prf % Option.map (lift'' Us Ts) t
988          handle Same.SAME => prf % Same.map_option (same (op =) (lift'' Us Ts)) t)
989      | lift' Us Ts (prf1 %% prf2) = (lift' Us Ts prf1 %% lifth' Us Ts prf2
990          handle Same.SAME => prf1 %% lift' Us Ts prf2)
991      | lift' _ _ (PAxm (s, prop, Ts)) =
992          PAxm (s, prop, (Same.map_option o Same.map) (Logic.incr_tvar_same inc) Ts)
993      | lift' _ _ (OfClass (T, c)) =
994          OfClass (Logic.incr_tvar_same inc T, c)
995      | lift' _ _ (Oracle (s, prop, Ts)) =
996          Oracle (s, prop, (Same.map_option o Same.map) (Logic.incr_tvar_same inc) Ts)
997      | lift' _ _ (PThm ({serial = i, pos = p, theory_name, name = s, prop, types = Ts}, thm_body)) =
998          PThm (thm_header i p theory_name s prop
999            ((Same.map_option o Same.map) (Logic.incr_tvar inc) Ts), thm_body)
1000      | lift' _ _ _ = raise Same.SAME
1001    and lifth' Us Ts prf = (lift' Us Ts prf handle Same.SAME => prf);
1002
1003    val ps = map (Logic.lift_all inc Bi) (Logic.strip_imp_prems prop);
1004    val k = length ps;
1005
1006    fun mk_app b (i, j, prf) =
1007          if b then (i-1, j, prf %% PBound i) else (i, j-1, prf %> Bound j);
1008
1009    fun lift Us bs i j (Const ("Pure.imp", _) $ A $ B) =
1010            AbsP ("H", NONE (*A*), lift Us (true::bs) (i+1) j B)
1011      | lift Us bs i j (Const ("Pure.all", _) $ Abs (a, T, t)) =
1012            Abst (a, NONE (*T*), lift (T::Us) (false::bs) i (j+1) t)
1013      | lift Us bs i j _ = proof_combP (lifth' (rev Us) [] prf,
1014            map (fn k => (#3 (fold_rev mk_app bs (i-1, j-1, PBound k))))
1015              (i + k - 1 downto i));
1016  in
1017    mk_AbsP ps (lift [] [] 0 0 Bi)
1018  end;
1019
1020fun incr_indexes i =
1021  Same.commit (map_proof_terms_same
1022    (Logic.incr_indexes_same ([], [], i)) (Logic.incr_tvar_same i));
1023
1024
1025(* proof by assumption *)
1026
1027fun mk_asm_prf t i m =
1028  let
1029    fun imp_prf _ i 0 = PBound i
1030      | imp_prf (Const ("Pure.imp", _) $ A $ B) i m = AbsP ("H", NONE (*A*), imp_prf B (i+1) (m-1))
1031      | imp_prf _ i _ = PBound i;
1032    fun all_prf (Const ("Pure.all", _) $ Abs (a, T, t)) = Abst (a, NONE (*T*), all_prf t)
1033      | all_prf t = imp_prf t (~i) m
1034  in all_prf t end;
1035
1036fun assumption_proof Bs Bi n prf =
1037  mk_AbsP Bs (proof_combP (prf, map PBound (length Bs - 1 downto 0) @ [mk_asm_prf Bi n ~1]));
1038
1039
1040(* composition of object rule with proof state *)
1041
1042fun flatten_params_proof i j n (Const ("Pure.imp", _) $ A $ B, k) =
1043      AbsP ("H", NONE (*A*), flatten_params_proof (i+1) j n (B, k))
1044  | flatten_params_proof i j n (Const ("Pure.all", _) $ Abs (a, T, t), k) =
1045      Abst (a, NONE (*T*), flatten_params_proof i (j+1) n (t, k))
1046  | flatten_params_proof i j n (_, k) = proof_combP (proof_combt (PBound (k+i),
1047      map Bound (j-1 downto 0)), map PBound (remove (op =) (i-n) (i-1 downto 0)));
1048
1049fun bicompose_proof flatten Bs As A oldAs n m rprf sprf =
1050  let
1051    val lb = length Bs;
1052    val la = length As;
1053  in
1054    mk_AbsP (Bs @ As) (proof_combP (sprf,
1055      map PBound (lb + la - 1 downto la)) %%
1056        proof_combP (rprf, (if n>0 then [mk_asm_prf (the A) n m] else []) @
1057          map (if flatten then flatten_params_proof 0 0 n else PBound o snd)
1058            (oldAs ~~ (la - 1 downto 0))))
1059  end;
1060
1061
1062
1063(** type classes **)
1064
1065fun strip_shyps_proof algebra present witnessed extra prf =
1066  let
1067    val replacements = present @ witnessed @ map (`Logic.dummy_tfree) extra;
1068    fun get_replacement S =
1069      replacements |> get_first (fn (T', S') =>
1070        if Sorts.sort_le algebra (S', S) then SOME T' else NONE);
1071    fun replace T =
1072      if exists (fn (T', _) => T' = T) present then raise Same.SAME
1073      else
1074        (case get_replacement (Type.sort_of_atyp T) of
1075          SOME T' => T'
1076        | NONE => raise Fail "strip_shyps_proof: bad type variable in proof term");
1077  in Same.commit (map_proof_types_same (Term_Subst.map_atypsT_same replace)) prf end;
1078
1079fun of_sort_proof algebra classrel_proof arity_proof hyps =
1080  Sorts.of_sort_derivation algebra
1081   {class_relation = fn _ => fn _ => fn (prf, c1) => fn c2 =>
1082      if c1 = c2 then prf else classrel_proof (c1, c2) %% prf,
1083    type_constructor = fn (a, _) => fn dom => fn c =>
1084      let val Ss = map (map snd) dom and prfs = maps (map fst) dom
1085      in proof_combP (arity_proof (a, Ss, c), prfs) end,
1086    type_variable = fn typ => map (fn c => (hyps (typ, c), c)) (Type.sort_of_atyp typ)};
1087
1088
1089
1090(** axioms and theorems **)
1091
1092val add_type_variables = (fold_types o fold_atyps) (insert (op =));
1093fun type_variables_of t = rev (add_type_variables t []);
1094
1095val add_variables = fold_aterms (fn a => (is_Var a orelse is_Free a) ? insert (op =) a);
1096fun variables_of t = rev (add_variables t []);
1097
1098fun test_args _ [] = true
1099  | test_args is (Bound i :: ts) =
1100      not (member (op =) is i) andalso test_args (i :: is) ts
1101  | test_args _ _ = false;
1102
1103fun is_fun (Type ("fun", _)) = true
1104  | is_fun (TVar _) = true
1105  | is_fun _ = false;
1106
1107fun vars_of t = map Var (rev (Term.add_vars t []));
1108
1109fun add_funvars Ts (vs, t) =
1110  if is_fun (fastype_of1 (Ts, t)) then
1111    union (op =) vs (map_filter (fn Var (ixn, T) =>
1112      if is_fun T then SOME ixn else NONE | _ => NONE) (vars_of t))
1113  else vs;
1114
1115fun add_npvars q p Ts (vs, Const ("Pure.imp", _) $ t $ u) =
1116      add_npvars q p Ts (add_npvars q (not p) Ts (vs, t), u)
1117  | add_npvars q p Ts (vs, Const ("Pure.all", Type (_, [Type (_, [T, _]), _])) $ t) =
1118      add_npvars q p Ts (vs, if p andalso q then betapply (t, Var (("",0), T)) else t)
1119  | add_npvars q p Ts (vs, Abs (_, T, t)) = add_npvars q p (T::Ts) (vs, t)
1120  | add_npvars _ _ Ts (vs, t) = add_npvars' Ts (vs, t)
1121and add_npvars' Ts (vs, t) =
1122  (case strip_comb t of
1123    (Var (ixn, _), ts) => if test_args [] ts then vs
1124      else Library.foldl (add_npvars' Ts)
1125        (AList.update (op =) (ixn,
1126          Library.foldl (add_funvars Ts) ((these ooo AList.lookup) (op =) vs ixn, ts)) vs, ts)
1127  | (Abs (_, T, u), ts) => Library.foldl (add_npvars' (T::Ts)) (vs, u :: ts)
1128  | (_, ts) => Library.foldl (add_npvars' Ts) (vs, ts));
1129
1130fun prop_vars (Const ("Pure.imp", _) $ P $ Q) = union (op =) (prop_vars P) (prop_vars Q)
1131  | prop_vars (Const ("Pure.all", _) $ Abs (_, _, t)) = prop_vars t
1132  | prop_vars t = (case strip_comb t of (Var (ixn, _), _) => [ixn] | _ => []);
1133
1134fun is_proj t =
1135  let
1136    fun is_p i t =
1137      (case strip_comb t of
1138        (Bound _, []) => false
1139      | (Bound j, ts) => j >= i orelse exists (is_p i) ts
1140      | (Abs (_, _, u), _) => is_p (i+1) u
1141      | (_, ts) => exists (is_p i) ts)
1142  in
1143    (case strip_abs_body t of
1144      Bound _ => true
1145    | t' => is_p 0 t')
1146  end;
1147
1148fun prop_args prop =
1149  let
1150    val needed_vars =
1151      union (op =) (Library.foldl (uncurry (union (op =)))
1152        ([], map (uncurry (insert (op =))) (add_npvars true true [] ([], prop))))
1153      (prop_vars prop);
1154  in
1155    variables_of prop |> map
1156      (fn var as Var (ixn, _) => if member (op =) needed_vars ixn then SOME var else NONE
1157        | free => SOME free)
1158  end;
1159
1160fun const_proof mk name prop =
1161  let
1162    val args = prop_args prop;
1163    val ({outer_constraints, ...}, prop1) = Logic.unconstrainT [] prop;
1164    val head = mk (name, prop1, NONE);
1165  in proof_combP (proof_combt' (head, args), map OfClass outer_constraints) end;
1166
1167val axm_proof = const_proof PAxm;
1168val oracle_proof = const_proof Oracle;
1169
1170val shrink_proof =
1171  let
1172    fun shrink ls lev (prf as Abst (a, T, body)) =
1173          let val (b, is, ch, body') = shrink ls (lev+1) body
1174          in (b, is, ch, if ch then Abst (a, T, body') else prf) end
1175      | shrink ls lev (prf as AbsP (a, t, body)) =
1176          let val (b, is, ch, body') = shrink (lev::ls) lev body
1177          in (b orelse member (op =) is 0, map_filter (fn 0 => NONE | i => SOME (i-1)) is,
1178            ch, if ch then AbsP (a, t, body') else prf)
1179          end
1180      | shrink ls lev prf =
1181          let val (is, ch, _, prf') = shrink' ls lev [] [] prf
1182          in (false, is, ch, prf') end
1183    and shrink' ls lev ts prfs (prf as prf1 %% prf2) =
1184          let
1185            val p as (_, is', ch', prf') = shrink ls lev prf2;
1186            val (is, ch, ts', prf'') = shrink' ls lev ts (p::prfs) prf1
1187          in (union (op =) is is', ch orelse ch', ts',
1188              if ch orelse ch' then prf'' %% prf' else prf)
1189          end
1190      | shrink' ls lev ts prfs (prf as prf1 % t) =
1191          let val (is, ch, (ch', t')::ts', prf') = shrink' ls lev (t::ts) prfs prf1
1192          in (is, ch orelse ch', ts',
1193              if ch orelse ch' then prf' % t' else prf) end
1194      | shrink' ls lev ts prfs (prf as PBound i) =
1195          (if exists (fn SOME (Bound j) => lev-j <= nth ls i | _ => true) ts
1196             orelse has_duplicates (op =)
1197               (Library.foldl (fn (js, SOME (Bound j)) => j :: js | (js, _) => js) ([], ts))
1198             orelse exists #1 prfs then [i] else [], false, map (pair false) ts, prf)
1199      | shrink' _ _ ts _ (Hyp t) = ([], false, map (pair false) ts, Hyp t)
1200      | shrink' _ _ ts _ (prf as MinProof) = ([], false, map (pair false) ts, prf)
1201      | shrink' _ _ ts _ (prf as OfClass _) = ([], false, map (pair false) ts, prf)
1202      | shrink' _ _ ts prfs prf =
1203          let
1204            val prop =
1205              (case prf of
1206                PAxm (_, prop, _) => prop
1207              | Oracle (_, prop, _) => prop
1208              | PThm ({prop, ...}, _) => prop
1209              | _ => raise Fail "shrink: proof not in normal form");
1210            val vs = vars_of prop;
1211            val (ts', ts'') = chop (length vs) ts;
1212            val insts = take (length ts') (map (fst o dest_Var) vs) ~~ ts';
1213            val nvs = Library.foldl (fn (ixns', (ixn, ixns)) =>
1214              insert (op =) ixn
1215                (case AList.lookup (op =) insts ixn of
1216                  SOME (SOME t) => if is_proj t then union (op =) ixns ixns' else ixns'
1217                | _ => union (op =) ixns ixns'))
1218                  (needed prop ts'' prfs, add_npvars false true [] ([], prop));
1219            val insts' = map
1220              (fn (ixn, x as SOME _) => if member (op =) nvs ixn then (false, x) else (true, NONE)
1221                | (_, x) => (false, x)) insts
1222          in ([], false, insts' @ map (pair false) ts'', prf) end
1223    and needed (Const ("Pure.imp", _) $ t $ u) ts ((b, _, _, _)::prfs) =
1224          union (op =) (if b then map (fst o dest_Var) (vars_of t) else []) (needed u ts prfs)
1225      | needed (Var (ixn, _)) (_::_) _ = [ixn]
1226      | needed _ _ _ = [];
1227  in fn prf => #4 (shrink [] 0 prf) end;
1228
1229
1230
1231(** axioms for equality **)
1232
1233val aT = TFree ("'a", []);
1234val bT = TFree ("'b", []);
1235val x = Free ("x", aT);
1236val y = Free ("y", aT);
1237val z = Free ("z", aT);
1238val A = Free ("A", propT);
1239val B = Free ("B", propT);
1240val f = Free ("f", aT --> bT);
1241val g = Free ("g", aT --> bT);
1242
1243val equality_axms =
1244 [("reflexive", Logic.mk_equals (x, x)),
1245  ("symmetric", Logic.mk_implies (Logic.mk_equals (x, y), Logic.mk_equals (y, x))),
1246  ("transitive",
1247    Logic.list_implies ([Logic.mk_equals (x, y), Logic.mk_equals (y, z)], Logic.mk_equals (x, z))),
1248  ("equal_intr",
1249    Logic.list_implies ([Logic.mk_implies (A, B), Logic.mk_implies (B, A)], Logic.mk_equals (A, B))),
1250  ("equal_elim", Logic.list_implies ([Logic.mk_equals (A, B), A], B)),
1251  ("abstract_rule",
1252    Logic.mk_implies
1253      (Logic.all x (Logic.mk_equals (f $ x, g $ x)),
1254        Logic.mk_equals (lambda x (f $ x), lambda x (g $ x)))),
1255  ("combination", Logic.list_implies
1256    ([Logic.mk_equals (f, g), Logic.mk_equals (x, y)], Logic.mk_equals (f $ x, g $ y)))];
1257
1258val [reflexive_axm, symmetric_axm, transitive_axm, equal_intr_axm,
1259  equal_elim_axm, abstract_rule_axm, combination_axm] =
1260    map (fn (s, t) => PAxm ("Pure." ^ s, Logic.varify_global t, NONE)) equality_axms;
1261
1262val reflexive_proof = reflexive_axm % NONE;
1263
1264val is_reflexive_proof = fn PAxm ("Pure.reflexive", _, _) % _ => true | _ => false;
1265
1266fun symmetric_proof prf =
1267  if is_reflexive_proof prf then prf
1268  else symmetric_axm % NONE % NONE %% prf;
1269
1270fun transitive_proof U u prf1 prf2 =
1271  if is_reflexive_proof prf1 then prf2
1272  else if is_reflexive_proof prf2 then prf1
1273  else if U = propT then transitive_axm % NONE % SOME (remove_types u) % NONE %% prf1 %% prf2
1274  else transitive_axm % NONE % NONE % NONE %% prf1 %% prf2;
1275
1276fun equal_intr_proof A B prf1 prf2 =
1277  equal_intr_axm %> remove_types A %> remove_types B %% prf1 %% prf2;
1278
1279fun equal_elim_proof A B prf1 prf2 =
1280  equal_elim_axm %> remove_types A %> remove_types B %% prf1 %% prf2;
1281
1282fun abstract_rule_proof (a, x) prf =
1283  abstract_rule_axm % NONE % NONE %% forall_intr_proof (a, x) NONE prf;
1284
1285fun check_comb (PAxm ("Pure.combination", _, _) % f % _ % _ % _ %% prf %% _) =
1286      is_some f orelse check_comb prf
1287  | check_comb (PAxm ("Pure.transitive", _, _) % _ % _ % _ %% prf1 %% prf2) =
1288      check_comb prf1 andalso check_comb prf2
1289  | check_comb (PAxm ("Pure.symmetric", _, _) % _ % _ %% prf) = check_comb prf
1290  | check_comb _ = false;
1291
1292fun combination_proof f g t u prf1 prf2 =
1293  let
1294    val f = Envir.beta_norm f;
1295    val g = Envir.beta_norm g;
1296    val prf =
1297      if check_comb prf1 then
1298        combination_axm % NONE % NONE
1299      else
1300        (case prf1 of
1301          PAxm ("Pure.reflexive", _, _) % _ =>
1302            combination_axm %> remove_types f % NONE
1303        | _ => combination_axm %> remove_types f %> remove_types g)
1304  in
1305    prf %
1306      (case head_of f of
1307        Abs _ => SOME (remove_types t)
1308      | Var _ => SOME (remove_types t)
1309      | _ => NONE) %
1310      (case head_of g of
1311        Abs _ => SOME (remove_types u)
1312      | Var _ => SOME (remove_types u)
1313      | _ => NONE) %% prf1 %% prf2
1314  end;
1315
1316
1317
1318(** rewriting on proof terms **)
1319
1320(* simple first order matching functions for terms and proofs (see pattern.ML) *)
1321
1322exception PMatch;
1323
1324fun flt (i: int) = filter (fn n => n < i);
1325
1326fun fomatch Ts tymatch j instsp p =
1327  let
1328    fun mtch (instsp as (tyinsts, insts)) = fn
1329        (Var (ixn, T), t)  =>
1330          if j>0 andalso not (null (flt j (loose_bnos t)))
1331          then raise PMatch
1332          else (tymatch (tyinsts, fn () => (T, fastype_of1 (Ts, t))),
1333            (ixn, t) :: insts)
1334      | (Free (a, T), Free (b, U)) =>
1335          if a=b then (tymatch (tyinsts, K (T, U)), insts) else raise PMatch
1336      | (Const (a, T), Const (b, U))  =>
1337          if a=b then (tymatch (tyinsts, K (T, U)), insts) else raise PMatch
1338      | (f $ t, g $ u) => mtch (mtch instsp (f, g)) (t, u)
1339      | (Bound i, Bound j) => if i=j then instsp else raise PMatch
1340      | _ => raise PMatch
1341  in mtch instsp (apply2 Envir.beta_eta_contract p) end;
1342
1343fun match_proof Ts tymatch =
1344  let
1345    fun optmatch _ inst (NONE, _) = inst
1346      | optmatch _ _ (SOME _, NONE) = raise PMatch
1347      | optmatch mtch inst (SOME x, SOME y) = mtch inst (x, y)
1348
1349    fun matcht Ts j (pinst, tinst) (t, u) =
1350      (pinst, fomatch Ts tymatch j tinst (t, Envir.beta_norm u));
1351    fun matchT (pinst, (tyinsts, insts)) p =
1352      (pinst, (tymatch (tyinsts, K p), insts));
1353    fun matchTs inst (Ts, Us) = Library.foldl (uncurry matchT) (inst, Ts ~~ Us);
1354
1355    fun mtch Ts i j (pinst, tinst) (Hyp (Var (ixn, _)), prf) =
1356          if i = 0 andalso j = 0 then ((ixn, prf) :: pinst, tinst)
1357          else
1358            (case apfst (flt i) (apsnd (flt j) (prf_add_loose_bnos 0 0 prf ([], []))) of
1359              ([], []) => ((ixn, incr_pboundvars (~i) (~j) prf) :: pinst, tinst)
1360            | ([], _) =>
1361                if j = 0 then ((ixn, incr_pboundvars (~i) (~j) prf) :: pinst, tinst)
1362                else raise PMatch
1363            | _ => raise PMatch)
1364      | mtch Ts i j inst (prf1 % opt1, prf2 % opt2) =
1365          optmatch (matcht Ts j) (mtch Ts i j inst (prf1, prf2)) (opt1, opt2)
1366      | mtch Ts i j inst (prf1 %% prf2, prf1' %% prf2') =
1367          mtch Ts i j (mtch Ts i j inst (prf1, prf1')) (prf2, prf2')
1368      | mtch Ts i j inst (Abst (_, opT, prf1), Abst (_, opU, prf2)) =
1369          mtch (the_default dummyT opU :: Ts) i (j+1)
1370            (optmatch matchT inst (opT, opU)) (prf1, prf2)
1371      | mtch Ts i j inst (prf1, Abst (_, opU, prf2)) =
1372          mtch (the_default dummyT opU :: Ts) i (j+1) inst
1373            (incr_pboundvars 0 1 prf1 %> Bound 0, prf2)
1374      | mtch Ts i j inst (AbsP (_, opt, prf1), AbsP (_, opu, prf2)) =
1375          mtch Ts (i+1) j (optmatch (matcht Ts j) inst (opt, opu)) (prf1, prf2)
1376      | mtch Ts i j inst (prf1, AbsP (_, _, prf2)) =
1377          mtch Ts (i+1) j inst (incr_pboundvars 1 0 prf1 %% PBound 0, prf2)
1378      | mtch Ts i j inst (PAxm (s1, _, opTs), PAxm (s2, _, opUs)) =
1379          if s1 = s2 then optmatch matchTs inst (opTs, opUs)
1380          else raise PMatch
1381      | mtch Ts i j inst (OfClass (T1, c1), OfClass (T2, c2)) =
1382          if c1 = c2 then matchT inst (T1, T2)
1383          else raise PMatch
1384      | mtch Ts i j inst
1385            (PThm ({name = name1, prop = prop1, types = types1, ...}, _),
1386              PThm ({name = name2, prop = prop2, types = types2, ...}, _)) =
1387          if name1 = name2 andalso prop1 = prop2
1388          then optmatch matchTs inst (types1, types2)
1389          else raise PMatch
1390      | mtch _ _ _ inst (PBound i, PBound j) = if i = j then inst else raise PMatch
1391      | mtch _ _ _ _ _ = raise PMatch
1392  in mtch Ts 0 0 end;
1393
1394fun prf_subst (pinst, (tyinsts, insts)) =
1395  let
1396    val substT = Envir.subst_type_same tyinsts;
1397    val substTs = Same.map substT;
1398
1399    fun subst' lev (Var (xi, _)) =
1400        (case AList.lookup (op =) insts xi of
1401          NONE => raise Same.SAME
1402        | SOME u => incr_boundvars lev u)
1403      | subst' _ (Const (s, T)) = Const (s, substT T)
1404      | subst' _ (Free (s, T)) = Free (s, substT T)
1405      | subst' lev (Abs (a, T, body)) =
1406          (Abs (a, substT T, Same.commit (subst' (lev + 1)) body)
1407            handle Same.SAME => Abs (a, T, subst' (lev + 1) body))
1408      | subst' lev (f $ t) =
1409          (subst' lev f $ Same.commit (subst' lev) t
1410            handle Same.SAME => f $ subst' lev t)
1411      | subst' _ _ = raise Same.SAME;
1412
1413    fun subst plev tlev (AbsP (a, t, body)) =
1414          (AbsP (a, Same.map_option (subst' tlev) t, Same.commit (subst (plev + 1) tlev) body)
1415            handle Same.SAME => AbsP (a, t, subst (plev + 1) tlev body))
1416      | subst plev tlev (Abst (a, T, body)) =
1417          (Abst (a, Same.map_option substT T, Same.commit (subst plev (tlev + 1)) body)
1418            handle Same.SAME => Abst (a, T, subst plev (tlev + 1) body))
1419      | subst plev tlev (prf %% prf') =
1420          (subst plev tlev prf %% Same.commit (subst plev tlev) prf'
1421            handle Same.SAME => prf %% subst plev tlev prf')
1422      | subst plev tlev (prf % t) =
1423          (subst plev tlev prf % Same.commit (Same.map_option (subst' tlev)) t
1424            handle Same.SAME => prf % Same.map_option (subst' tlev) t)
1425      | subst plev tlev (Hyp (Var (xi, _))) =
1426          (case AList.lookup (op =) pinst xi of
1427            NONE => raise Same.SAME
1428          | SOME prf' => incr_pboundvars plev tlev prf')
1429      | subst _ _ (PAxm (id, prop, Ts)) = PAxm (id, prop, Same.map_option substTs Ts)
1430      | subst _ _ (OfClass (T, c)) = OfClass (substT T, c)
1431      | subst _ _ (Oracle (id, prop, Ts)) = Oracle (id, prop, Same.map_option substTs Ts)
1432      | subst _ _ (PThm ({serial = i, pos = p, theory_name, name = id, prop, types}, thm_body)) =
1433          PThm (thm_header i p theory_name id prop (Same.map_option substTs types), thm_body)
1434      | subst _ _ _ = raise Same.SAME;
1435  in fn t => subst 0 0 t handle Same.SAME => t end;
1436
1437(*A fast unification filter: true unless the two terms cannot be unified.
1438  Terms must be NORMAL.  Treats all Vars as distinct. *)
1439fun could_unify prf1 prf2 =
1440  let
1441    fun matchrands (prf1 %% prf2) (prf1' %% prf2') =
1442          could_unify prf2 prf2' andalso matchrands prf1 prf1'
1443      | matchrands (prf % SOME t) (prf' % SOME t') =
1444          Term.could_unify (t, t') andalso matchrands prf prf'
1445      | matchrands (prf % _) (prf' % _) = matchrands prf prf'
1446      | matchrands _ _ = true
1447
1448    fun head_of (prf %% _) = head_of prf
1449      | head_of (prf % _) = head_of prf
1450      | head_of prf = prf
1451
1452  in case (head_of prf1, head_of prf2) of
1453        (_, Hyp (Var _)) => true
1454      | (Hyp (Var _), _) => true
1455      | (PAxm (a, _, _), PAxm (b, _, _)) => a = b andalso matchrands prf1 prf2
1456      | (OfClass (_, c), OfClass (_, d)) => c = d andalso matchrands prf1 prf2
1457      | (PThm ({name = a, prop = propa, ...}, _), PThm ({name = b, prop = propb, ...}, _)) =>
1458          a = b andalso propa = propb andalso matchrands prf1 prf2
1459      | (PBound i, PBound j) => i = j andalso matchrands prf1 prf2
1460      | (AbsP _, _) =>  true   (*because of possible eta equality*)
1461      | (Abst _, _) =>  true
1462      | (_, AbsP _) =>  true
1463      | (_, Abst _) =>  true
1464      | _ => false
1465  end;
1466
1467
1468(* rewrite proof *)
1469
1470val no_skel = PBound 0;
1471val normal_skel = Hyp (Var ((Name.uu, 0), propT));
1472
1473fun rewrite_prf tymatch (rules, procs) prf =
1474  let
1475    fun rew _ _ (Abst (_, _, body) % SOME t) = SOME (prf_subst_bounds [t] body, no_skel)
1476      | rew _ _ (AbsP (_, _, body) %% prf) = SOME (prf_subst_pbounds [prf] body, no_skel)
1477      | rew Ts hs prf =
1478          (case get_first (fn r => r Ts hs prf) procs of
1479            NONE => get_first (fn (prf1, prf2) => SOME (prf_subst
1480              (match_proof Ts tymatch ([], (Vartab.empty, [])) (prf1, prf)) prf2, prf2)
1481                 handle PMatch => NONE) (filter (could_unify prf o fst) rules)
1482          | some => some);
1483
1484    fun rew0 Ts hs (prf as AbsP (_, _, prf' %% PBound 0)) =
1485          if prf_loose_Pbvar1 prf' 0 then rew Ts hs prf
1486          else
1487            let val prf'' = incr_pboundvars (~1) 0 prf'
1488            in SOME (the_default (prf'', no_skel) (rew Ts hs prf'')) end
1489      | rew0 Ts hs (prf as Abst (_, _, prf' % SOME (Bound 0))) =
1490          if prf_loose_bvar1 prf' 0 then rew Ts hs prf
1491          else
1492            let val prf'' = incr_pboundvars 0 (~1) prf'
1493            in SOME (the_default (prf'', no_skel) (rew Ts hs prf'')) end
1494      | rew0 Ts hs prf = rew Ts hs prf;
1495
1496    fun rew1 _ _ (Hyp (Var _)) _ = NONE
1497      | rew1 Ts hs skel prf =
1498          (case rew2 Ts hs skel prf of
1499            SOME prf1 =>
1500              (case rew0 Ts hs prf1 of
1501                SOME (prf2, skel') => SOME (the_default prf2 (rew1 Ts hs skel' prf2))
1502              | NONE => SOME prf1)
1503          | NONE =>
1504              (case rew0 Ts hs prf of
1505                SOME (prf1, skel') => SOME (the_default prf1 (rew1 Ts hs skel' prf1))
1506              | NONE => NONE))
1507
1508    and rew2 Ts hs skel (prf % SOME t) =
1509          (case prf of
1510            Abst (_, _, body) =>
1511              let val prf' = prf_subst_bounds [t] body
1512              in SOME (the_default prf' (rew2 Ts hs no_skel prf')) end
1513          | _ =>
1514              (case rew1 Ts hs (case skel of skel' % _ => skel' | _ => no_skel) prf of
1515                SOME prf' => SOME (prf' % SOME t)
1516              | NONE => NONE))
1517      | rew2 Ts hs skel (prf % NONE) = Option.map (fn prf' => prf' % NONE)
1518          (rew1 Ts hs (case skel of skel' % _ => skel' | _ => no_skel) prf)
1519      | rew2 Ts hs skel (prf1 %% prf2) =
1520          (case prf1 of
1521            AbsP (_, _, body) =>
1522              let val prf' = prf_subst_pbounds [prf2] body
1523              in SOME (the_default prf' (rew2 Ts hs no_skel prf')) end
1524          | _ =>
1525            let
1526              val (skel1, skel2) =
1527                (case skel of
1528                  skel1 %% skel2 => (skel1, skel2)
1529                | _ => (no_skel, no_skel))
1530            in
1531              (case rew1 Ts hs skel1 prf1 of
1532                SOME prf1' =>
1533                  (case rew1 Ts hs skel2 prf2 of
1534                    SOME prf2' => SOME (prf1' %% prf2')
1535                  | NONE => SOME (prf1' %% prf2))
1536              | NONE =>
1537                  (case rew1 Ts hs skel2 prf2 of
1538                    SOME prf2' => SOME (prf1 %% prf2')
1539                  | NONE => NONE))
1540            end)
1541      | rew2 Ts hs skel (Abst (s, T, prf)) =
1542          (case rew1 (the_default dummyT T :: Ts) hs
1543              (case skel of Abst (_, _, skel') => skel' | _ => no_skel) prf of
1544            SOME prf' => SOME (Abst (s, T, prf'))
1545          | NONE => NONE)
1546      | rew2 Ts hs skel (AbsP (s, t, prf)) =
1547          (case rew1 Ts (t :: hs) (case skel of AbsP (_, _, skel') => skel' | _ => no_skel) prf of
1548            SOME prf' => SOME (AbsP (s, t, prf'))
1549          | NONE => NONE)
1550      | rew2 _ _ _ _ = NONE;
1551
1552  in the_default prf (rew1 [] [] no_skel prf) end;
1553
1554fun rewrite_proof thy = rewrite_prf (fn (tyenv, f) =>
1555  Sign.typ_match thy (f ()) tyenv handle Type.TYPE_MATCH => raise PMatch);
1556
1557fun rewrite_proof_notypes rews = rewrite_prf fst rews;
1558
1559
1560(* theory data *)
1561
1562structure Data = Theory_Data
1563(
1564  type T =
1565    ((stamp * (proof * proof)) list *
1566     (stamp * (typ list -> term option list -> proof -> (proof * proof) option)) list) *
1567    (theory -> proof -> proof) option;
1568
1569  val empty = (([], []), NONE);
1570  val extend = I;
1571  fun merge (((rules1, procs1), preproc1), ((rules2, procs2), preproc2)) : T =
1572    ((AList.merge (op =) (K true) (rules1, rules2),
1573      AList.merge (op =) (K true) (procs1, procs2)),
1574      merge_options (preproc1, preproc2));
1575);
1576
1577fun get_rew_data thy =
1578  let val (rules, procs) = #1 (Data.get thy)
1579  in (map #2 rules, map #2 procs) end;
1580
1581fun rew_proof thy = rewrite_prf fst (get_rew_data thy);
1582
1583fun add_prf_rrule r = (Data.map o apfst o apfst) (cons (stamp (), r));
1584fun add_prf_rproc p = (Data.map o apfst o apsnd) (cons (stamp (), p));
1585
1586fun set_preproc f = (Data.map o apsnd) (K (SOME f));
1587fun apply_preproc thy = (case #2 (Data.get thy) of NONE => I | SOME f => f thy);
1588
1589
1590
1591(** reconstruction of partial proof terms **)
1592
1593fun forall_intr_variables_term prop = fold_rev Logic.all (variables_of prop) prop;
1594fun forall_intr_variables prop prf = fold_rev forall_intr_proof' (variables_of prop) prf;
1595
1596local
1597
1598fun app_types shift prop Ts prf =
1599  let
1600    val inst = type_variables_of prop ~~ Ts;
1601    fun subst_same A =
1602      (case AList.lookup (op =) inst A of SOME T => T | NONE => raise Same.SAME);
1603    val subst_type_same =
1604      Term_Subst.map_atypsT_same
1605        (fn TVar ((a, i), S) => subst_same (TVar ((a, i - shift), S)) | A => subst_same A);
1606  in Same.commit (map_proof_types_same subst_type_same) prf end;
1607
1608fun guess_name (PThm ({name, ...}, _)) = name
1609  | guess_name (prf %% Hyp _) = guess_name prf
1610  | guess_name (prf %% OfClass _) = guess_name prf
1611  | guess_name (prf % NONE) = guess_name prf
1612  | guess_name (prf % SOME (Var _)) = guess_name prf
1613  | guess_name _ = "";
1614
1615
1616(* generate constraints for proof term *)
1617
1618fun mk_var env Ts T =
1619  let val (env', v) = Envir.genvar "a" (env, rev Ts ---> T)
1620  in (list_comb (v, map Bound (length Ts - 1 downto 0)), env') end;
1621
1622fun mk_tvar S (Envir.Envir {maxidx, tenv, tyenv}) =
1623  (TVar (("'t", maxidx + 1), S),
1624    Envir.Envir {maxidx = maxidx + 1, tenv = tenv, tyenv = tyenv});
1625
1626val mk_abs = fold (fn T => fn u => Abs ("", T, u));
1627
1628fun unifyT thy env T U =
1629  let
1630    val Envir.Envir {maxidx, tenv, tyenv} = env;
1631    val (tyenv', maxidx') = Sign.typ_unify thy (T, U) (tyenv, maxidx);
1632  in Envir.Envir {maxidx = maxidx', tenv = tenv, tyenv = tyenv'} end;
1633
1634fun chaseT env (T as TVar v) =
1635      (case Type.lookup (Envir.type_env env) v of
1636        NONE => T
1637      | SOME T' => chaseT env T')
1638  | chaseT _ T = T;
1639
1640fun infer_type thy (env as Envir.Envir {maxidx, tenv, tyenv}) _ vTs (t as Const (s, T)) =
1641      if T = dummyT then
1642        (case Sign.const_type thy s of
1643          NONE => error ("reconstruct_proof: No such constant: " ^ quote s)
1644        | SOME T =>
1645            let val T' = Type.strip_sorts (Logic.incr_tvar (maxidx + 1) T) in
1646              (Const (s, T'), T', vTs,
1647                Envir.Envir {maxidx = maxidx + 1, tenv = tenv, tyenv = tyenv})
1648            end)
1649      else (t, T, vTs, env)
1650  | infer_type _ env _ vTs (t as Free (s, T)) =
1651      if T = dummyT then
1652        (case Symtab.lookup vTs s of
1653          NONE =>
1654            let val (T, env') = mk_tvar [] env
1655            in (Free (s, T), T, Symtab.update_new (s, T) vTs, env') end
1656        | SOME T => (Free (s, T), T, vTs, env))
1657      else (t, T, vTs, env)
1658  | infer_type _ _ _ _ (Var _) = error "reconstruct_proof: internal error"
1659  | infer_type thy env Ts vTs (Abs (s, T, t)) =
1660      let
1661        val (T', env') = if T = dummyT then mk_tvar [] env else (T, env);
1662        val (t', U, vTs', env'') = infer_type thy env' (T' :: Ts) vTs t
1663      in (Abs (s, T', t'), T' --> U, vTs', env'') end
1664  | infer_type thy env Ts vTs (t $ u) =
1665      let
1666        val (t', T, vTs1, env1) = infer_type thy env Ts vTs t;
1667        val (u', U, vTs2, env2) = infer_type thy env1 Ts vTs1 u;
1668      in
1669        (case chaseT env2 T of
1670          Type ("fun", [U', V]) => (t' $ u', V, vTs2, unifyT thy env2 U U')
1671        | _ =>
1672          let val (V, env3) = mk_tvar [] env2
1673          in (t' $ u', V, vTs2, unifyT thy env3 T (U --> V)) end)
1674      end
1675  | infer_type _ env Ts vTs (t as Bound i) = ((t, nth Ts i, vTs, env)
1676      handle General.Subscript => error ("infer_type: bad variable index " ^ string_of_int i));
1677
1678fun cantunify thy (t, u) =
1679  error ("Non-unifiable terms:\n" ^
1680    Syntax.string_of_term_global thy t ^ "\n\n" ^ Syntax.string_of_term_global thy u);
1681
1682fun decompose thy Ts (p as (t, u)) env =
1683  let
1684    fun rigrig (a, T) (b, U) uT ts us =
1685      if a <> b then cantunify thy p
1686      else apfst flat (fold_map (decompose thy Ts) (ts ~~ us) (uT env T U))
1687  in
1688    case apply2 (strip_comb o Envir.head_norm env) p of
1689      ((Const c, ts), (Const d, us)) => rigrig c d (unifyT thy) ts us
1690    | ((Free c, ts), (Free d, us)) => rigrig c d (unifyT thy) ts us
1691    | ((Bound i, ts), (Bound j, us)) =>
1692        rigrig (i, dummyT) (j, dummyT) (K o K) ts us
1693    | ((Abs (_, T, t), []), (Abs (_, U, u), [])) =>
1694        decompose thy (T::Ts) (t, u) (unifyT thy env T U)
1695    | ((Abs (_, T, t), []), _) =>
1696        decompose thy (T::Ts) (t, incr_boundvars 1 u $ Bound 0) env
1697    | (_, (Abs (_, T, u), [])) =>
1698        decompose thy (T::Ts) (incr_boundvars 1 t $ Bound 0, u) env
1699    | _ => ([(mk_abs Ts t, mk_abs Ts u)], env)
1700  end;
1701
1702fun make_constraints_cprf thy env cprf =
1703  let
1704    fun add_cnstrt Ts prop prf cs env vTs (t, u) =
1705      let
1706        val t' = mk_abs Ts t;
1707        val u' = mk_abs Ts u
1708      in
1709        (prop, prf, cs, Pattern.unify (Context.Theory thy) (t', u') env, vTs)
1710          handle Pattern.Pattern =>
1711            let val (cs', env') = decompose thy [] (t', u') env
1712            in (prop, prf, cs @ cs', env', vTs) end
1713          | Pattern.Unif => cantunify thy (Envir.norm_term env t', Envir.norm_term env u')
1714      end;
1715
1716    fun mk_cnstrts_atom env vTs prop opTs prf =
1717          let
1718            val prop_types = type_variables_of prop;
1719            val (Ts, env') =
1720              (case opTs of
1721                NONE => fold_map (mk_tvar o Type.sort_of_atyp) prop_types env
1722              | SOME Ts => (Ts, env));
1723            val prop' = subst_atomic_types (prop_types ~~ Ts)
1724              (forall_intr_variables_term prop) handle ListPair.UnequalLengths =>
1725                error ("Wrong number of type arguments for " ^ quote (guess_name prf))
1726          in (prop', change_types (SOME Ts) prf, [], env', vTs) end;
1727
1728    fun head_norm (prop, prf, cnstrts, env, vTs) =
1729      (Envir.head_norm env prop, prf, cnstrts, env, vTs);
1730
1731    fun mk_cnstrts env _ Hs vTs (PBound i) = ((nth Hs i, PBound i, [], env, vTs)
1732          handle General.Subscript => error ("mk_cnstrts: bad variable index " ^ string_of_int i))
1733      | mk_cnstrts env Ts Hs vTs (Abst (s, opT, cprf)) =
1734          let
1735            val (T, env') =
1736              (case opT of
1737                NONE => mk_tvar [] env
1738              | SOME T => (T, env));
1739            val (t, prf, cnstrts, env'', vTs') =
1740              mk_cnstrts env' (T::Ts) (map (incr_boundvars 1) Hs) vTs cprf;
1741          in
1742            (Const ("Pure.all", (T --> propT) --> propT) $ Abs (s, T, t), Abst (s, SOME T, prf),
1743              cnstrts, env'', vTs')
1744          end
1745      | mk_cnstrts env Ts Hs vTs (AbsP (s, SOME t, cprf)) =
1746          let
1747            val (t', _, vTs', env') = infer_type thy env Ts vTs t;
1748            val (u, prf, cnstrts, env'', vTs'') = mk_cnstrts env' Ts (t'::Hs) vTs' cprf;
1749          in (Logic.mk_implies (t', u), AbsP (s, SOME t', prf), cnstrts, env'', vTs'')
1750          end
1751      | mk_cnstrts env Ts Hs vTs (AbsP (s, NONE, cprf)) =
1752          let
1753            val (t, env') = mk_var env Ts propT;
1754            val (u, prf, cnstrts, env'', vTs') = mk_cnstrts env' Ts (t::Hs) vTs cprf;
1755          in (Logic.mk_implies (t, u), AbsP (s, SOME t, prf), cnstrts, env'', vTs')
1756          end
1757      | mk_cnstrts env Ts Hs vTs (cprf1 %% cprf2) =
1758          let val (u, prf2, cnstrts, env', vTs') = mk_cnstrts env Ts Hs vTs cprf2
1759          in (case head_norm (mk_cnstrts env' Ts Hs vTs' cprf1) of
1760              (Const ("Pure.imp", _) $ u' $ t', prf1, cnstrts', env'', vTs'') =>
1761                add_cnstrt Ts t' (prf1 %% prf2) (cnstrts' @ cnstrts)
1762                  env'' vTs'' (u, u')
1763            | (t, prf1, cnstrts', env'', vTs'') =>
1764                let val (v, env''') = mk_var env'' Ts propT
1765                in add_cnstrt Ts v (prf1 %% prf2) (cnstrts' @ cnstrts)
1766                  env''' vTs'' (t, Logic.mk_implies (u, v))
1767                end)
1768          end
1769      | mk_cnstrts env Ts Hs vTs (cprf % SOME t) =
1770          let val (t', U, vTs1, env1) = infer_type thy env Ts vTs t
1771          in (case head_norm (mk_cnstrts env1 Ts Hs vTs1 cprf) of
1772             (Const ("Pure.all", Type ("fun", [Type ("fun", [T, _]), _])) $ f,
1773                 prf, cnstrts, env2, vTs2) =>
1774               let val env3 = unifyT thy env2 T U
1775               in (betapply (f, t'), prf % SOME t', cnstrts, env3, vTs2)
1776               end
1777           | (u, prf, cnstrts, env2, vTs2) =>
1778               let val (v, env3) = mk_var env2 Ts (U --> propT);
1779               in
1780                 add_cnstrt Ts (v $ t') (prf % SOME t') cnstrts env3 vTs2
1781                   (u, Const ("Pure.all", (U --> propT) --> propT) $ v)
1782               end)
1783          end
1784      | mk_cnstrts env Ts Hs vTs (cprf % NONE) =
1785          (case head_norm (mk_cnstrts env Ts Hs vTs cprf) of
1786             (Const ("Pure.all", Type ("fun", [Type ("fun", [T, _]), _])) $ f,
1787                 prf, cnstrts, env', vTs') =>
1788               let val (t, env'') = mk_var env' Ts T
1789               in (betapply (f, t), prf % SOME t, cnstrts, env'', vTs')
1790               end
1791           | (u, prf, cnstrts, env', vTs') =>
1792               let
1793                 val (T, env1) = mk_tvar [] env';
1794                 val (v, env2) = mk_var env1 Ts (T --> propT);
1795                 val (t, env3) = mk_var env2 Ts T
1796               in
1797                 add_cnstrt Ts (v $ t) (prf % SOME t) cnstrts env3 vTs'
1798                   (u, Const ("Pure.all", (T --> propT) --> propT) $ v)
1799               end)
1800      | mk_cnstrts env _ _ vTs (prf as PThm ({prop, types = opTs, ...}, _)) =
1801          mk_cnstrts_atom env vTs prop opTs prf
1802      | mk_cnstrts env _ _ vTs (prf as PAxm (_, prop, opTs)) =
1803          mk_cnstrts_atom env vTs prop opTs prf
1804      | mk_cnstrts env _ _ vTs (prf as OfClass (T, c)) =
1805          mk_cnstrts_atom env vTs (Logic.mk_of_class (T, c)) NONE prf
1806      | mk_cnstrts env _ _ vTs (prf as Oracle (_, prop, opTs)) =
1807          mk_cnstrts_atom env vTs prop opTs prf
1808      | mk_cnstrts env _ _ vTs (Hyp t) = (t, Hyp t, [], env, vTs)
1809      | mk_cnstrts _ _ _ _ MinProof = raise MIN_PROOF ()
1810  in mk_cnstrts env [] [] Symtab.empty cprf end;
1811
1812
1813(* update list of free variables of constraints *)
1814
1815fun upd_constrs env cs =
1816  let
1817    val tenv = Envir.term_env env;
1818    val tyenv = Envir.type_env env;
1819    val dom = []
1820      |> Vartab.fold (cons o #1) tenv
1821      |> Vartab.fold (cons o #1) tyenv;
1822    val vran = []
1823      |> Vartab.fold (Term.add_var_names o #2 o #2) tenv
1824      |> Vartab.fold (Term.add_tvar_namesT o #2 o #2) tyenv;
1825    fun check_cs [] = []
1826      | check_cs ((u, p, vs) :: ps) =
1827          let val vs' = subtract (op =) dom vs in
1828            if vs = vs' then (u, p, vs) :: check_cs ps
1829            else (true, p, fold (insert op =) vs' vran) :: check_cs ps
1830          end;
1831  in check_cs cs end;
1832
1833
1834(* solution of constraints *)
1835
1836fun solve _ [] bigenv = bigenv
1837  | solve thy cs bigenv =
1838      let
1839        fun search _ [] =
1840              error ("Unsolvable constraints:\n" ^
1841                Pretty.string_of (Pretty.chunks (map (fn (_, p, _) =>
1842                  Syntax.pretty_flexpair (Syntax.init_pretty_global thy)
1843                    (apply2 (Envir.norm_term bigenv) p)) cs)))
1844          | search env ((u, p as (t1, t2), vs)::ps) =
1845              if u then
1846                let
1847                  val tn1 = Envir.norm_term bigenv t1;
1848                  val tn2 = Envir.norm_term bigenv t2
1849                in
1850                  if Pattern.pattern tn1 andalso Pattern.pattern tn2 then
1851                    (Pattern.unify (Context.Theory thy) (tn1, tn2) env, ps)
1852                      handle Pattern.Unif => cantunify thy (tn1, tn2)
1853                  else
1854                    let val (cs', env') = decompose thy [] (tn1, tn2) env
1855                    in if cs' = [(tn1, tn2)] then
1856                         apsnd (cons (false, (tn1, tn2), vs)) (search env ps)
1857                       else search env' (map (fn q => (true, q, vs)) cs' @ ps)
1858                    end
1859                end
1860              else apsnd (cons (false, p, vs)) (search env ps);
1861        val Envir.Envir {maxidx, ...} = bigenv;
1862        val (env, cs') = search (Envir.empty maxidx) cs;
1863      in
1864        solve thy (upd_constrs env cs') (Envir.merge (bigenv, env))
1865      end;
1866
1867in
1868
1869
1870(* reconstruction of proofs *)
1871
1872fun reconstruct_proof thy prop cprf =
1873  let
1874    val (cprf' % SOME prop', thawf) = freeze_thaw_prf (cprf % SOME prop);
1875    val (t, prf, cs, env, _) = make_constraints_cprf thy
1876      (Envir.empty (maxidx_proof cprf ~1)) cprf';
1877    val cs' =
1878      map (apply2 (Envir.norm_term env)) ((t, prop') :: cs)
1879      |> map (fn p => (true, p, Term.add_var_names (#1 p) (Term.add_var_names (#2 p) [])));
1880    val env' = solve thy cs' env;
1881  in thawf (norm_proof env' prf) end handle MIN_PROOF () => MinProof;
1882
1883fun prop_of_atom prop Ts =
1884  subst_atomic_types (type_variables_of prop ~~ Ts) (forall_intr_variables_term prop);
1885
1886val head_norm = Envir.head_norm Envir.init;
1887
1888fun prop_of0 Hs (PBound i) = nth Hs i
1889  | prop_of0 Hs (Abst (s, SOME T, prf)) =
1890      Logic.all_const T $ (Abs (s, T, prop_of0 Hs prf))
1891  | prop_of0 Hs (AbsP (_, SOME t, prf)) =
1892      Logic.mk_implies (t, prop_of0 (t :: Hs) prf)
1893  | prop_of0 Hs (prf % SOME t) = (case head_norm (prop_of0 Hs prf) of
1894      Const ("Pure.all", _) $ f => f $ t
1895    | _ => error "prop_of: all expected")
1896  | prop_of0 Hs (prf1 %% _) = (case head_norm (prop_of0 Hs prf1) of
1897      Const ("Pure.imp", _) $ _ $ Q => Q
1898    | _ => error "prop_of: ==> expected")
1899  | prop_of0 _ (Hyp t) = t
1900  | prop_of0 _ (PThm ({prop, types = SOME Ts, ...}, _)) = prop_of_atom prop Ts
1901  | prop_of0 _ (PAxm (_, prop, SOME Ts)) = prop_of_atom prop Ts
1902  | prop_of0 _ (OfClass (T, c)) = Logic.mk_of_class (T, c)
1903  | prop_of0 _ (Oracle (_, prop, SOME Ts)) = prop_of_atom prop Ts
1904  | prop_of0 _ _ = error "prop_of: partial proof object";
1905
1906val prop_of' = Envir.beta_eta_contract oo prop_of0;
1907val prop_of = prop_of' [];
1908
1909
1910(* expand and reconstruct subproofs *)
1911
1912fun expand_name_empty (header: thm_header) = if #name header = "" then SOME "" else NONE;
1913
1914fun expand_proof thy expand_name prf =
1915  let
1916    fun expand seen maxidx (AbsP (s, t, prf)) =
1917          let val (seen', maxidx', prf') = expand seen maxidx prf
1918          in (seen', maxidx', AbsP (s, t, prf')) end
1919      | expand seen maxidx (Abst (s, T, prf)) =
1920          let val (seen', maxidx', prf') = expand seen maxidx prf
1921          in (seen', maxidx', Abst (s, T, prf')) end
1922      | expand seen maxidx (prf1 %% prf2) =
1923          let
1924            val (seen', maxidx', prf1') = expand seen maxidx prf1;
1925            val (seen'', maxidx'', prf2') = expand seen' maxidx' prf2;
1926          in (seen'', maxidx'', prf1' %% prf2') end
1927      | expand seen maxidx (prf % t) =
1928          let val (seen', maxidx', prf') = expand seen maxidx prf
1929          in (seen', maxidx', prf' % t) end
1930      | expand seen maxidx (prf as PThm (header, thm_body)) =
1931          let val {serial, pos, theory_name, name, prop, types} = header in
1932            (case expand_name header of
1933              SOME name' =>
1934                if name' = "" andalso is_some types then
1935                  let
1936                    val (seen', maxidx', prf') =
1937                      (case Inttab.lookup seen serial of
1938                        NONE =>
1939                          let
1940                            val prf1 =
1941                              thm_body_proof_open thm_body
1942                              |> reconstruct_proof thy prop
1943                              |> forall_intr_variables prop;
1944                            val (seen1, maxidx1, prf2) = expand_init seen prf1
1945                            val seen2 = seen1 |> Inttab.update (serial, (maxidx1, prf2));
1946                          in (seen2, maxidx1, prf2) end
1947                      | SOME (maxidx1, prf1) => (seen, maxidx1, prf1));
1948                    val prf'' = prf'
1949                      |> incr_indexes (maxidx + 1) |> app_types (maxidx + 1) prop (the types);
1950                  in (seen', maxidx' + maxidx + 1, prf'') end
1951                else if name' <> name then
1952                  (seen, maxidx, PThm (thm_header serial pos theory_name name' prop types, thm_body))
1953                else (seen, maxidx, prf)
1954            | NONE => (seen, maxidx, prf))
1955          end
1956      | expand seen maxidx prf = (seen, maxidx, prf)
1957    and expand_init seen prf = expand seen (maxidx_proof prf ~1) prf;
1958
1959  in #3 (expand_init Inttab.empty prf) end;
1960
1961end;
1962
1963
1964
1965(** promises **)
1966
1967fun fulfill_norm_proof thy ps body0 =
1968  let
1969    val _ = consolidate_bodies (map #2 ps @ [body0]);
1970    val PBody {oracles = oracles0, thms = thms0, proof = proof0} = body0;
1971    val oracles =
1972      unions_oracles
1973        (fold (fn (_, PBody {oracles, ...}) => not (null oracles) ? cons oracles) ps [oracles0]);
1974    val thms =
1975      unions_thms (fold (fn (_, PBody {thms, ...}) => not (null thms) ? cons thms) ps [thms0]);
1976    val proof = rew_proof thy proof0;
1977  in PBody {oracles = oracles, thms = thms, proof = proof} end;
1978
1979fun fulfill_proof_future thy promises (postproc: proof_body -> proof_body) body =
1980  let
1981    fun fulfill () =
1982      postproc (fulfill_norm_proof thy (map (apsnd Future.join) promises) (Future.join body));
1983  in
1984    if null promises then Future.map postproc body
1985    else if Future.is_finished body andalso length promises = 1 then
1986      Future.map (fn _ => fulfill ()) (snd (hd promises))
1987    else
1988      (singleton o Future.forks)
1989        {name = "Proofterm.fulfill_proof_future", group = NONE,
1990          deps = Future.task_of body :: map (Future.task_of o snd) promises, pri = 1,
1991          interrupts = true}
1992        fulfill
1993  end;
1994
1995
1996
1997(** theorems **)
1998
1999(* standardization of variables for export: only frees and named bounds *)
2000
2001local
2002
2003val declare_names_term = Term.declare_term_frees;
2004val declare_names_term' = fn SOME t => declare_names_term t | NONE => I;
2005val declare_names_proof = fold_proof_terms declare_names_term;
2006
2007fun variant names bs x =
2008  #1 (Name.variant x (fold Name.declare bs names));
2009
2010fun variant_term bs (Abs (x, T, t)) =
2011      let
2012        val x' = variant (declare_names_term t Name.context) bs x;
2013        val t' = variant_term (x' :: bs) t;
2014      in Abs (x', T, t') end
2015  | variant_term bs (t $ u) = variant_term bs t $ variant_term bs u
2016  | variant_term _ t = t;
2017
2018fun variant_proof bs (Abst (x, T, prf)) =
2019      let
2020        val x' = variant (declare_names_proof prf Name.context) bs x;
2021        val prf' = variant_proof (x' :: bs) prf;
2022      in Abst (x', T, prf') end
2023  | variant_proof bs (AbsP (x, t, prf)) =
2024      let
2025        val x' = variant (declare_names_term' t (declare_names_proof prf Name.context)) bs x;
2026        val t' = Option.map (variant_term bs) t;
2027        val prf' = variant_proof (x' :: bs) prf;
2028      in AbsP (x', t', prf') end
2029  | variant_proof bs (prf % t) = variant_proof bs prf % Option.map (variant_term bs) t
2030  | variant_proof bs (prf1 %% prf2) = variant_proof bs prf1 %% variant_proof bs prf2
2031  | variant_proof bs (Hyp t) = Hyp (variant_term bs t)
2032  | variant_proof _ prf = prf;
2033
2034val used_frees_type = fold_atyps (fn TFree (a, _) => Name.declare a | _ => I);
2035fun used_frees_term t = fold_types used_frees_type t #> Term.declare_term_frees t;
2036val used_frees_proof = fold_proof_terms_types used_frees_term used_frees_type;
2037
2038val unvarifyT = Term.map_atyps (fn TVar ((a, _), S) => TFree (a, S) | T => T);
2039val unvarify = Term.map_aterms (fn Var ((x, _), T) => Free (x, T) | t => t) #> map_types unvarifyT;
2040val unvarify_proof = map_proof_terms unvarify unvarifyT;
2041
2042fun hidden_types prop proof =
2043  let
2044    val visible = (fold_types o fold_atyps) (insert (op =)) prop [];
2045    val add_hiddenT = fold_atyps (fn T => not (member (op =) visible T) ? insert (op =) T);
2046  in rev (fold_proof_terms_types (fold_types add_hiddenT) add_hiddenT proof []) end;
2047
2048fun standard_hidden_types term proof =
2049  let
2050    val hidden = hidden_types term proof;
2051    val idx = Term.maxidx_term term (maxidx_proof proof ~1) + 1;
2052    fun smash T =
2053      if member (op =) hidden T then
2054        (case Type.sort_of_atyp T of
2055          [] => dummyT
2056        | S => TVar (("'", idx), S))
2057      else T;
2058    val smashT = map_atyps smash;
2059  in map_proof_terms (map_types smashT) smashT proof end;
2060
2061fun standard_hidden_terms term proof =
2062  let
2063    fun add_unless excluded x =
2064      ((is_Free x orelse is_Var x) andalso not (member (op =) excluded x)) ? insert (op =) x;
2065    val visible = fold_aterms (add_unless []) term [];
2066    val hidden = fold_proof_terms (fold_aterms (add_unless visible)) proof [];
2067    val dummy_term = Term.map_aterms (fn x =>
2068      if member (op =) hidden x then Term.dummy_pattern (Term.fastype_of x) else x);
2069  in proof |> not (null hidden) ? map_proof_terms dummy_term I end;
2070
2071in
2072
2073fun standard_vars used (term, opt_proof) =
2074  let
2075    val proofs = opt_proof
2076      |> Option.map (standard_hidden_types term #> standard_hidden_terms term) |> the_list;
2077    val proof_terms = rev (fold (fold_proof_terms_types cons (cons o Logic.mk_type)) proofs []);
2078    val used_frees = used
2079      |> used_frees_term term
2080      |> fold used_frees_proof proofs;
2081    val inst = Term_Subst.zero_var_indexes_inst used_frees (term :: proof_terms);
2082    val term' = term |> Term_Subst.instantiate inst |> unvarify |> variant_term [];
2083    val proofs' = proofs |> map (instantiate inst #> unvarify_proof #> variant_proof []);
2084  in (term', try hd proofs') end;
2085
2086fun standard_vars_term used t = #1 (standard_vars used (t, NONE));
2087
2088val add_standard_vars_term = fold_aterms
2089  (fn Free (x, T) =>
2090    (fn env =>
2091      (case AList.lookup (op =) env x of
2092        NONE => (x, T) :: env
2093      | SOME T' =>
2094          if T = T' then env
2095          else raise TYPE ("standard_vars_env: type conflict for variable " ^ quote x, [T, T'], [])))
2096    | _ => I);
2097
2098val add_standard_vars = fold_proof_terms add_standard_vars_term;
2099
2100end;
2101
2102
2103(* PThm nodes *)
2104
2105fun prune_body body =
2106  if Options.default_bool "prune_proofs"
2107  then (Future.map o map_proof_of) (K MinProof) body
2108  else body;
2109
2110fun export_enabled () = Options.default_bool "export_proofs";
2111fun export_standard_enabled () = Options.default_bool "export_standard_proofs";
2112
2113fun export_proof_boxes_required thy =
2114  Context.theory_name thy = Context.PureN orelse
2115    (export_enabled () andalso not (export_standard_enabled ()));
2116
2117fun export_proof_boxes bodies =
2118  let
2119    fun export_thm (i, thm_node) boxes =
2120      if Inttab.defined boxes i then boxes
2121      else
2122        boxes
2123        |> Inttab.update (i, thm_node_export thm_node)
2124        |> fold export_thm (thm_node_thms thm_node);
2125
2126    fun export_body (PBody {thms, ...}) = fold export_thm thms;
2127
2128    val exports = (bodies, Inttab.empty) |-> fold export_body |> Inttab.dest;
2129  in List.app (Lazy.force o #2) exports end;
2130
2131local
2132
2133fun unconstrainT_proof algebra classrel_proof arity_proof (ucontext: Logic.unconstrain_context) =
2134  let
2135    fun hyp_map hyp =
2136      (case AList.lookup (op =) (#constraints ucontext) hyp of
2137        SOME t => Hyp t
2138      | NONE => raise Fail "unconstrainT_proof: missing constraint");
2139
2140    val typ = Term_Subst.map_atypsT_same (Type.strip_sorts o #atyp_map ucontext);
2141    fun ofclass (ty, c) =
2142      let val ty' = Term.map_atyps (#atyp_map ucontext) ty;
2143      in the_single (of_sort_proof algebra classrel_proof arity_proof hyp_map (ty', [c])) end;
2144  in
2145    Same.commit (map_proof_same (Term_Subst.map_types_same typ) typ ofclass)
2146    #> fold_rev (implies_intr_proof o snd) (#constraints ucontext)
2147  end;
2148
2149fun export_proof thy i prop prf0 =
2150  let
2151    val prf = prf0
2152      |> reconstruct_proof thy prop
2153      |> apply_preproc thy;
2154    val (prop', SOME prf') = (prop, SOME prf) |> standard_vars Name.context;
2155    val args = [] |> add_standard_vars_term prop' |> add_standard_vars prf' |> rev;
2156    val typargs = [] |> Term.add_tfrees prop' |> fold_proof_terms Term.add_tfrees prf' |> rev;
2157
2158    val consts = Sign.consts_of thy;
2159    val xml = (typargs, (args, (prop', no_thm_names prf'))) |>
2160      let
2161        open XML.Encode Term_XML.Encode;
2162        val encode_vars = list (pair string typ);
2163        val encode_term = encode_standard_term consts;
2164        val encode_proof = encode_standard_proof consts;
2165      in pair (list (pair string sort)) (pair encode_vars (pair encode_term encode_proof)) end;
2166  in
2167    Export.export_params
2168     {theory = thy,
2169      binding = Path.binding0 (Path.make ["proofs", string_of_int i]),
2170      executable = false,
2171      compress = true,
2172      strict = false} xml
2173  end;
2174
2175fun prepare_thm_proof unconstrain thy classrel_proof arity_proof
2176    (name, pos) shyps hyps concl promises body =
2177  let
2178    val named = name <> "";
2179
2180    val prop = Logic.list_implies (hyps, concl);
2181    val args = prop_args prop;
2182
2183    val (ucontext, prop1) = Logic.unconstrainT shyps prop;
2184
2185    val PBody {oracles = oracles0, thms = thms0, proof = prf} = body;
2186    val body0 =
2187      Future.value
2188        (PBody {oracles = oracles0, thms = thms0,
2189          proof = if proofs_enabled () then fold_rev implies_intr_proof hyps prf else MinProof});
2190
2191    fun new_prf () =
2192      let
2193        val i = serial ();
2194        val unconstrainT =
2195          unconstrainT_proof (Sign.classes_of thy) classrel_proof arity_proof ucontext;
2196        val postproc = map_proof_of (unconstrainT #> named ? rew_proof thy);
2197      in (i, fulfill_proof_future thy promises postproc body0) end;
2198
2199    val (i, body') =
2200      (*somewhat non-deterministic proof boxes!*)
2201      if export_enabled () then new_prf ()
2202      else
2203        (case strip_combt (fst (strip_combP prf)) of
2204          (PThm ({serial = ser, name = a, prop = prop', types = NONE, ...}, thm_body'), args') =>
2205            if (a = "" orelse a = name) andalso prop' = prop1 andalso args' = args then
2206              let
2207                val Thm_Body {body = body', ...} = thm_body';
2208                val i = if a = "" andalso named then serial () else ser;
2209              in (i, body' |> ser <> i ? Future.map (map_proof_of (rew_proof thy))) end
2210            else new_prf ()
2211        | _ => new_prf ());
2212
2213    val open_proof = not named ? rew_proof thy;
2214
2215    val export =
2216      if export_enabled () then
2217        Lazy.lazy (fn () =>
2218          join_proof body' |> open_proof |> export_proof thy i prop1 handle exn =>
2219            if Exn.is_interrupt exn then
2220              raise Fail ("Interrupt: potential resource problems while exporting proof " ^
2221                string_of_int i)
2222            else Exn.reraise exn)
2223      else no_export;
2224
2225    val thm_body = prune_body body';
2226    val theory_name = Context.theory_long_name thy;
2227    val thm = (i, make_thm_node theory_name name prop1 thm_body export);
2228
2229    val header = thm_header i ([pos, Position.thread_data ()]) theory_name name prop1 NONE;
2230    val head = PThm (header, Thm_Body {open_proof = open_proof, body = thm_body});
2231    val proof =
2232      if unconstrain then
2233        proof_combt' (head, (map o Option.map o Term.map_types) (#map_atyps ucontext) args)
2234      else
2235        proof_combP (proof_combt' (head, args),
2236          map OfClass (#outer_constraints ucontext) @ map Hyp hyps);
2237  in (thm, proof) end;
2238
2239in
2240
2241fun thm_proof thy = prepare_thm_proof false thy;
2242
2243fun unconstrain_thm_proof thy classrel_proof arity_proof shyps concl promises body =
2244  prepare_thm_proof true thy classrel_proof arity_proof ("", Position.none)
2245    shyps [] concl promises body;
2246
2247end;
2248
2249
2250(* PThm identity *)
2251
2252fun get_identity shyps hyps prop prf =
2253  let val (_, prop) = Logic.unconstrainT shyps (Logic.list_implies (hyps, prop)) in
2254    (case fst (strip_combt (fst (strip_combP prf))) of
2255      PThm ({serial, theory_name, name, prop = prop', ...}, _) =>
2256        if prop = prop'
2257        then SOME {serial = serial, theory_name = theory_name, name = name} else NONE
2258    | _ => NONE)
2259  end;
2260
2261fun get_approximative_name shyps hyps prop prf =
2262  Option.map #name (get_identity shyps hyps prop prf) |> the_default "";
2263
2264
2265(* thm_id *)
2266
2267type thm_id = {serial: serial, theory_name: string};
2268
2269fun make_thm_id (serial, theory_name) : thm_id =
2270  {serial = serial, theory_name = theory_name};
2271
2272fun thm_header_id ({serial, theory_name, ...}: thm_header) =
2273  make_thm_id (serial, theory_name);
2274
2275fun thm_id (serial, thm_node) : thm_id =
2276  make_thm_id (serial, thm_node_theory_name thm_node);
2277
2278fun get_id shyps hyps prop prf : thm_id option =
2279  (case get_identity shyps hyps prop prf of
2280    NONE => NONE
2281  | SOME {name = "", ...} => NONE
2282  | SOME {serial, theory_name, ...} => SOME (make_thm_id (serial, theory_name)));
2283
2284fun this_id NONE _ = false
2285  | this_id (SOME (thm_id: thm_id)) (thm_id': thm_id) = #serial thm_id = #serial thm_id';
2286
2287
2288(* proof boxes: intermediate PThm nodes *)
2289
2290fun proof_boxes {included, excluded} proofs =
2291  let
2292    fun boxes_of (Abst (_, _, prf)) = boxes_of prf
2293      | boxes_of (AbsP (_, _, prf)) = boxes_of prf
2294      | boxes_of (prf % _) = boxes_of prf
2295      | boxes_of (prf1 %% prf2) = boxes_of prf1 #> boxes_of prf2
2296      | boxes_of (PThm (header as {serial = i, ...}, thm_body)) =
2297          (fn boxes =>
2298            let val thm_id = thm_header_id header in
2299              if Inttab.defined boxes i orelse (excluded thm_id andalso not (included thm_id))
2300              then boxes
2301              else
2302                let
2303                  val prf' = thm_body_proof_open thm_body;
2304                  val boxes' = Inttab.update (i, (header, prf')) boxes;
2305                in boxes_of prf' boxes' end
2306            end)
2307      | boxes_of MinProof = raise MIN_PROOF ()
2308      | boxes_of _ = I;
2309  in Inttab.fold_rev (cons o #2) (fold boxes_of proofs Inttab.empty) [] end;
2310
2311end;
2312
2313structure Basic_Proofterm =
2314struct
2315  datatype proof = datatype Proofterm.proof
2316  datatype proof_body = datatype Proofterm.proof_body
2317  val op %> = Proofterm.%>
2318end;
2319
2320open Basic_Proofterm;
2321