1(*  Title:      HOL/Wellfounded.thy
2    Author:     Tobias Nipkow
3    Author:     Lawrence C Paulson
4    Author:     Konrad Slind
5    Author:     Alexander Krauss
6    Author:     Andrei Popescu, TU Muenchen
7*)
8
9section \<open>Well-founded Recursion\<close>
10
11theory Wellfounded
12  imports Transitive_Closure
13begin
14
15subsection \<open>Basic Definitions\<close>
16
17definition wf :: "('a \<times> 'a) set \<Rightarrow> bool"
18  where "wf r \<longleftrightarrow> (\<forall>P. (\<forall>x. (\<forall>y. (y, x) \<in> r \<longrightarrow> P y) \<longrightarrow> P x) \<longrightarrow> (\<forall>x. P x))"
19
20definition wfP :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> bool"
21  where "wfP r \<longleftrightarrow> wf {(x, y). r x y}"
22
23lemma wfP_wf_eq [pred_set_conv]: "wfP (\<lambda>x y. (x, y) \<in> r) = wf r"
24  by (simp add: wfP_def)
25
26lemma wfUNIVI: "(\<And>P x. (\<forall>x. (\<forall>y. (y, x) \<in> r \<longrightarrow> P y) \<longrightarrow> P x) \<Longrightarrow> P x) \<Longrightarrow> wf r"
27  unfolding wf_def by blast
28
29lemmas wfPUNIVI = wfUNIVI [to_pred]
30
31text \<open>Restriction to domain \<open>A\<close> and range \<open>B\<close>.
32  If \<open>r\<close> is well-founded over their intersection, then \<open>wf r\<close>.\<close>
33lemma wfI:
34  assumes "r \<subseteq> A \<times> B"
35    and "\<And>x P. \<lbrakk>\<forall>x. (\<forall>y. (y, x) \<in> r \<longrightarrow> P y) \<longrightarrow> P x;  x \<in> A; x \<in> B\<rbrakk> \<Longrightarrow> P x"
36  shows "wf r"
37  using assms unfolding wf_def by blast
38
39lemma wf_induct:
40  assumes "wf r"
41    and "\<And>x. \<forall>y. (y, x) \<in> r \<longrightarrow> P y \<Longrightarrow> P x"
42  shows "P a"
43  using assms unfolding wf_def by blast
44
45lemmas wfP_induct = wf_induct [to_pred]
46
47lemmas wf_induct_rule = wf_induct [rule_format, consumes 1, case_names less, induct set: wf]
48
49lemmas wfP_induct_rule = wf_induct_rule [to_pred, induct set: wfP]
50
51lemma wf_not_sym: "wf r \<Longrightarrow> (a, x) \<in> r \<Longrightarrow> (x, a) \<notin> r"
52  by (induct a arbitrary: x set: wf) blast
53
54lemma wf_asym:
55  assumes "wf r" "(a, x) \<in> r"
56  obtains "(x, a) \<notin> r"
57  by (drule wf_not_sym[OF assms])
58
59lemma wf_not_refl [simp]: "wf r \<Longrightarrow> (a, a) \<notin> r"
60  by (blast elim: wf_asym)
61
62lemma wf_irrefl:
63  assumes "wf r"
64  obtains "(a, a) \<notin> r"
65  by (drule wf_not_refl[OF assms])
66
67lemma wf_wellorderI:
68  assumes wf: "wf {(x::'a::ord, y). x < y}"
69    and lin: "OFCLASS('a::ord, linorder_class)"
70  shows "OFCLASS('a::ord, wellorder_class)"
71  apply (rule wellorder_class.intro [OF lin])
72  apply (simp add: wellorder_class.intro class.wellorder_axioms.intro wf_induct_rule [OF wf])
73  done
74
75lemma (in wellorder) wf: "wf {(x, y). x < y}"
76  unfolding wf_def by (blast intro: less_induct)
77
78
79subsection \<open>Basic Results\<close>
80
81text \<open>Point-free characterization of well-foundedness\<close>
82
83lemma wfE_pf:
84  assumes wf: "wf R"
85    and a: "A \<subseteq> R `` A"
86  shows "A = {}"
87proof -
88  from wf have "x \<notin> A" for x
89  proof induct
90    fix x assume "\<And>y. (y, x) \<in> R \<Longrightarrow> y \<notin> A"
91    then have "x \<notin> R `` A" by blast
92    with a show "x \<notin> A" by blast
93  qed
94  then show ?thesis by auto
95qed
96
97lemma wfI_pf:
98  assumes a: "\<And>A. A \<subseteq> R `` A \<Longrightarrow> A = {}"
99  shows "wf R"
100proof (rule wfUNIVI)
101  fix P :: "'a \<Rightarrow> bool" and x
102  let ?A = "{x. \<not> P x}"
103  assume "\<forall>x. (\<forall>y. (y, x) \<in> R \<longrightarrow> P y) \<longrightarrow> P x"
104  then have "?A \<subseteq> R `` ?A" by blast
105  with a show "P x" by blast
106qed
107
108
109subsubsection \<open>Minimal-element characterization of well-foundedness\<close>
110
111lemma wfE_min:
112  assumes wf: "wf R" and Q: "x \<in> Q"
113  obtains z where "z \<in> Q" "\<And>y. (y, z) \<in> R \<Longrightarrow> y \<notin> Q"
114  using Q wfE_pf[OF wf, of Q] by blast
115
116lemma wfE_min':
117  "wf R \<Longrightarrow> Q \<noteq> {} \<Longrightarrow> (\<And>z. z \<in> Q \<Longrightarrow> (\<And>y. (y, z) \<in> R \<Longrightarrow> y \<notin> Q) \<Longrightarrow> thesis) \<Longrightarrow> thesis"
118  using wfE_min[of R _ Q] by blast
119
120lemma wfI_min:
121  assumes a: "\<And>x Q. x \<in> Q \<Longrightarrow> \<exists>z\<in>Q. \<forall>y. (y, z) \<in> R \<longrightarrow> y \<notin> Q"
122  shows "wf R"
123proof (rule wfI_pf)
124  fix A
125  assume b: "A \<subseteq> R `` A"
126  have False if "x \<in> A" for x
127    using a[OF that] b by blast
128  then show "A = {}" by blast
129qed
130
131lemma wf_eq_minimal: "wf r \<longleftrightarrow> (\<forall>Q x. x \<in> Q \<longrightarrow> (\<exists>z\<in>Q. \<forall>y. (y, z) \<in> r \<longrightarrow> y \<notin> Q))"
132  apply (rule iffI)
133   apply (blast intro:  elim!: wfE_min)
134  by (rule wfI_min) auto
135
136lemmas wfP_eq_minimal = wf_eq_minimal [to_pred]
137
138
139subsubsection \<open>Well-foundedness of transitive closure\<close>
140
141lemma wf_trancl:
142  assumes "wf r"
143  shows "wf (r\<^sup>+)"
144proof -
145  have "P x" if induct_step: "\<And>x. (\<And>y. (y, x) \<in> r\<^sup>+ \<Longrightarrow> P y) \<Longrightarrow> P x" for P x
146  proof (rule induct_step)
147    show "P y" if "(y, x) \<in> r\<^sup>+" for y
148      using \<open>wf r\<close> and that
149    proof (induct x arbitrary: y)
150      case (less x)
151      note hyp = \<open>\<And>x' y'. (x', x) \<in> r \<Longrightarrow> (y', x') \<in> r\<^sup>+ \<Longrightarrow> P y'\<close>
152      from \<open>(y, x) \<in> r\<^sup>+\<close> show "P y"
153      proof cases
154        case base
155        show "P y"
156        proof (rule induct_step)
157          fix y'
158          assume "(y', y) \<in> r\<^sup>+"
159          with \<open>(y, x) \<in> r\<close> show "P y'"
160            by (rule hyp [of y y'])
161        qed
162      next
163        case step
164        then obtain x' where "(x', x) \<in> r" and "(y, x') \<in> r\<^sup>+"
165          by simp
166        then show "P y" by (rule hyp [of x' y])
167      qed
168    qed
169  qed
170  then show ?thesis unfolding wf_def by blast
171qed
172
173lemmas wfP_trancl = wf_trancl [to_pred]
174
175lemma wf_converse_trancl: "wf (r\<inverse>) \<Longrightarrow> wf ((r\<^sup>+)\<inverse>)"
176  apply (subst trancl_converse [symmetric])
177  apply (erule wf_trancl)
178  done
179
180text \<open>Well-foundedness of subsets\<close>
181
182lemma wf_subset: "wf r \<Longrightarrow> p \<subseteq> r \<Longrightarrow> wf p"
183  by (simp add: wf_eq_minimal) fast
184
185lemmas wfP_subset = wf_subset [to_pred]
186
187text \<open>Well-foundedness of the empty relation\<close>
188
189lemma wf_empty [iff]: "wf {}"
190  by (simp add: wf_def)
191
192lemma wfP_empty [iff]: "wfP (\<lambda>x y. False)"
193proof -
194  have "wfP bot"
195    by (fact wf_empty[to_pred bot_empty_eq2])
196  then show ?thesis
197    by (simp add: bot_fun_def)
198qed
199
200lemma wf_Int1: "wf r \<Longrightarrow> wf (r \<inter> r')"
201  by (erule wf_subset) (rule Int_lower1)
202
203lemma wf_Int2: "wf r \<Longrightarrow> wf (r' \<inter> r)"
204  by (erule wf_subset) (rule Int_lower2)
205
206text \<open>Exponentiation.\<close>
207lemma wf_exp:
208  assumes "wf (R ^^ n)"
209  shows "wf R"
210proof (rule wfI_pf)
211  fix A assume "A \<subseteq> R `` A"
212  then have "A \<subseteq> (R ^^ n) `` A"
213    by (induct n) force+
214  with \<open>wf (R ^^ n)\<close> show "A = {}"
215    by (rule wfE_pf)
216qed
217
218text \<open>Well-foundedness of \<open>insert\<close>.\<close>
219lemma wf_insert [iff]: "wf (insert (y,x) r) \<longleftrightarrow> wf r \<and> (x,y) \<notin> r\<^sup>*" (is "?lhs = ?rhs")
220proof
221  assume ?lhs then show ?rhs
222    by (blast elim: wf_trancl [THEN wf_irrefl]
223        intro: rtrancl_into_trancl1 wf_subset rtrancl_mono [THEN subsetD])
224next
225  assume R: ?rhs
226  then have R': "Q \<noteq> {} \<Longrightarrow> (\<exists>z\<in>Q. \<forall>y. (y, z) \<in> r \<longrightarrow> y \<notin> Q)" for Q
227    by (auto simp: wf_eq_minimal)
228  show ?lhs
229    unfolding wf_eq_minimal
230  proof clarify
231    fix Q :: "'a set" and q
232    assume "q \<in> Q"
233    then obtain a where "a \<in> Q" and a: "\<And>y. (y, a) \<in> r \<Longrightarrow> y \<notin> Q"
234      using R by (auto simp: wf_eq_minimal)
235    show "\<exists>z\<in>Q. \<forall>y'. (y', z) \<in> insert (y, x) r \<longrightarrow> y' \<notin> Q"
236    proof (cases "a=x")
237      case True
238      show ?thesis
239      proof (cases "y \<in> Q")
240        case True
241        then obtain z where "z \<in> Q" "(z, y) \<in> r\<^sup>*"
242                            "\<And>z'. (z', z) \<in> r \<longrightarrow> z' \<in> Q \<longrightarrow> (z', y) \<notin> r\<^sup>*"
243          using R' [of "{z \<in> Q. (z,y) \<in> r\<^sup>*}"] by auto
244        with R show ?thesis
245          by (rule_tac x="z" in bexI) (blast intro: rtrancl_trans)
246      next
247        case False
248        then show ?thesis
249          using a \<open>a \<in> Q\<close> by blast
250      qed
251    next
252      case False
253      with a \<open>a \<in> Q\<close> show ?thesis
254        by blast
255    qed
256  qed
257qed
258
259
260subsubsection \<open>Well-foundedness of image\<close>
261
262lemma wf_map_prod_image_Dom_Ran:
263  fixes r:: "('a \<times> 'a) set"
264    and f:: "'a \<Rightarrow> 'b"
265  assumes wf_r: "wf r"
266    and inj: "\<And> a a'. a \<in> Domain r \<Longrightarrow> a' \<in> Range r \<Longrightarrow> f a = f a' \<Longrightarrow> a = a'"
267  shows "wf (map_prod f f ` r)"
268proof (unfold wf_eq_minimal, clarify)
269  fix B :: "'b set" and b::"'b"
270  assume "b \<in> B"
271  define A where "A = f -` B \<inter> Domain r"
272  show "\<exists>z\<in>B. \<forall>y. (y, z) \<in> map_prod f f ` r \<longrightarrow> y \<notin> B"
273  proof (cases "A = {}")
274    case False
275    then obtain a0 where "a0 \<in> A" and "\<forall>a. (a, a0) \<in> r \<longrightarrow> a \<notin> A"
276      using wfE_min[OF wf_r] by auto
277    thus ?thesis
278      using inj unfolding A_def
279      by (intro bexI[of _ "f a0"]) auto
280  qed (insert \<open>b \<in> B\<close>, unfold A_def, auto)
281qed
282
283lemma wf_map_prod_image: "wf r \<Longrightarrow> inj f \<Longrightarrow> wf (map_prod f f ` r)"
284by(rule wf_map_prod_image_Dom_Ran) (auto dest: inj_onD)
285
286
287subsection \<open>Well-Foundedness Results for Unions\<close>
288
289lemma wf_union_compatible:
290  assumes "wf R" "wf S"
291  assumes "R O S \<subseteq> R"
292  shows "wf (R \<union> S)"
293proof (rule wfI_min)
294  fix x :: 'a and Q
295  let ?Q' = "{x \<in> Q. \<forall>y. (y, x) \<in> R \<longrightarrow> y \<notin> Q}"
296  assume "x \<in> Q"
297  obtain a where "a \<in> ?Q'"
298    by (rule wfE_min [OF \<open>wf R\<close> \<open>x \<in> Q\<close>]) blast
299  with \<open>wf S\<close> obtain z where "z \<in> ?Q'" and zmin: "\<And>y. (y, z) \<in> S \<Longrightarrow> y \<notin> ?Q'"
300    by (erule wfE_min)
301  have "y \<notin> Q" if "(y, z) \<in> S" for y
302  proof
303    from that have "y \<notin> ?Q'" by (rule zmin)
304    assume "y \<in> Q"
305    with \<open>y \<notin> ?Q'\<close> obtain w where "(w, y) \<in> R" and "w \<in> Q" by auto
306    from \<open>(w, y) \<in> R\<close> \<open>(y, z) \<in> S\<close> have "(w, z) \<in> R O S" by (rule relcompI)
307    with \<open>R O S \<subseteq> R\<close> have "(w, z) \<in> R" ..
308    with \<open>z \<in> ?Q'\<close> have "w \<notin> Q" by blast
309    with \<open>w \<in> Q\<close> show False by contradiction
310  qed
311  with \<open>z \<in> ?Q'\<close> show "\<exists>z\<in>Q. \<forall>y. (y, z) \<in> R \<union> S \<longrightarrow> y \<notin> Q" by blast
312qed
313
314
315text \<open>Well-foundedness of indexed union with disjoint domains and ranges.\<close>
316
317lemma wf_UN:
318  assumes r: "\<And>i. i \<in> I \<Longrightarrow> wf (r i)"
319    and disj: "\<And>i j. \<lbrakk>i \<in> I; j \<in> I; r i \<noteq> r j\<rbrakk> \<Longrightarrow> Domain (r i) \<inter> Range (r j) = {}"
320  shows "wf (\<Union>i\<in>I. r i)"
321  unfolding wf_eq_minimal
322proof clarify
323  fix A and a :: "'b"
324  assume "a \<in> A"
325  show "\<exists>z\<in>A. \<forall>y. (y, z) \<in> \<Union>(r ` I) \<longrightarrow> y \<notin> A"
326  proof (cases "\<exists>i\<in>I. \<exists>a\<in>A. \<exists>b\<in>A. (b, a) \<in> r i")
327    case True
328    then obtain i b c where ibc: "i \<in> I" "b \<in> A" "c \<in> A" "(c,b) \<in> r i"
329      by blast
330    have ri: "\<And>Q. Q \<noteq> {} \<Longrightarrow> \<exists>z\<in>Q. \<forall>y. (y, z) \<in> r i \<longrightarrow> y \<notin> Q"
331      using r [OF \<open>i \<in> I\<close>] unfolding wf_eq_minimal by auto
332    show ?thesis
333      using ri [of "{a. a \<in> A \<and> (\<exists>b\<in>A. (b, a) \<in> r i) }"] ibc disj
334      by blast
335  next
336    case False
337    with \<open>a \<in> A\<close> show ?thesis
338      by blast
339  qed
340qed
341
342lemma wfP_SUP:
343  "\<forall>i. wfP (r i) \<Longrightarrow> \<forall>i j. r i \<noteq> r j \<longrightarrow> inf (Domainp (r i)) (Rangep (r j)) = bot \<Longrightarrow>
344    wfP (\<Squnion>(range r))"
345  by (rule wf_UN[to_pred]) simp_all
346
347lemma wf_Union:
348  assumes "\<forall>r\<in>R. wf r"
349    and "\<forall>r\<in>R. \<forall>s\<in>R. r \<noteq> s \<longrightarrow> Domain r \<inter> Range s = {}"
350  shows "wf (\<Union>R)"
351  using assms wf_UN[of R "\<lambda>i. i"] by simp
352
353text \<open>
354  Intuition: We find an \<open>R \<union> S\<close>-min element of a nonempty subset \<open>A\<close> by case distinction.
355  \<^enum> There is a step \<open>a \<midarrow>R\<rightarrow> b\<close> with \<open>a, b \<in> A\<close>.
356    Pick an \<open>R\<close>-min element \<open>z\<close> of the (nonempty) set \<open>{a\<in>A | \<exists>b\<in>A. a \<midarrow>R\<rightarrow> b}\<close>.
357    By definition, there is \<open>z' \<in> A\<close> s.t. \<open>z \<midarrow>R\<rightarrow> z'\<close>. Because \<open>z\<close> is \<open>R\<close>-min in the
358    subset, \<open>z'\<close> must be \<open>R\<close>-min in \<open>A\<close>. Because \<open>z'\<close> has an \<open>R\<close>-predecessor, it cannot
359    have an \<open>S\<close>-successor and is thus \<open>S\<close>-min in \<open>A\<close> as well.
360  \<^enum> There is no such step.
361    Pick an \<open>S\<close>-min element of \<open>A\<close>. In this case it must be an \<open>R\<close>-min
362    element of \<open>A\<close> as well.
363\<close>
364lemma wf_Un: "wf r \<Longrightarrow> wf s \<Longrightarrow> Domain r \<inter> Range s = {} \<Longrightarrow> wf (r \<union> s)"
365  using wf_union_compatible[of s r]
366  by (auto simp: Un_ac)
367
368lemma wf_union_merge: "wf (R \<union> S) = wf (R O R \<union> S O R \<union> S)"
369  (is "wf ?A = wf ?B")
370proof
371  assume "wf ?A"
372  with wf_trancl have wfT: "wf (?A\<^sup>+)" .
373  moreover have "?B \<subseteq> ?A\<^sup>+"
374    by (subst trancl_unfold, subst trancl_unfold) blast
375  ultimately show "wf ?B" by (rule wf_subset)
376next
377  assume "wf ?B"
378  show "wf ?A"
379  proof (rule wfI_min)
380    fix Q :: "'a set" and x
381    assume "x \<in> Q"
382    with \<open>wf ?B\<close> obtain z where "z \<in> Q" and "\<And>y. (y, z) \<in> ?B \<Longrightarrow> y \<notin> Q"
383      by (erule wfE_min)
384    then have 1: "\<And>y. (y, z) \<in> R O R \<Longrightarrow> y \<notin> Q"
385      and 2: "\<And>y. (y, z) \<in> S O R \<Longrightarrow> y \<notin> Q"
386      and 3: "\<And>y. (y, z) \<in> S \<Longrightarrow> y \<notin> Q"
387      by auto
388    show "\<exists>z\<in>Q. \<forall>y. (y, z) \<in> ?A \<longrightarrow> y \<notin> Q"
389    proof (cases "\<forall>y. (y, z) \<in> R \<longrightarrow> y \<notin> Q")
390      case True
391      with \<open>z \<in> Q\<close> 3 show ?thesis by blast
392    next
393      case False
394      then obtain z' where "z'\<in>Q" "(z', z) \<in> R" by blast
395      have "\<forall>y. (y, z') \<in> ?A \<longrightarrow> y \<notin> Q"
396      proof (intro allI impI)
397        fix y assume "(y, z') \<in> ?A"
398        then show "y \<notin> Q"
399        proof
400          assume "(y, z') \<in> R"
401          then have "(y, z) \<in> R O R" using \<open>(z', z) \<in> R\<close> ..
402          with 1 show "y \<notin> Q" .
403        next
404          assume "(y, z') \<in> S"
405          then have "(y, z) \<in> S O R" using  \<open>(z', z) \<in> R\<close> ..
406          with 2 show "y \<notin> Q" .
407        qed
408      qed
409      with \<open>z' \<in> Q\<close> show ?thesis ..
410    qed
411  qed
412qed
413
414lemma wf_comp_self: "wf R \<longleftrightarrow> wf (R O R)"  \<comment> \<open>special case\<close>
415  by (rule wf_union_merge [where S = "{}", simplified])
416
417
418subsection \<open>Well-Foundedness of Composition\<close>
419
420text \<open>Bachmair and Dershowitz 1986, Lemma 2. [Provided by Tjark Weber]\<close>
421
422lemma qc_wf_relto_iff:
423  assumes "R O S \<subseteq> (R \<union> S)\<^sup>* O R" \<comment> \<open>R quasi-commutes over S\<close>
424  shows "wf (S\<^sup>* O R O S\<^sup>*) \<longleftrightarrow> wf R"
425    (is "wf ?S \<longleftrightarrow> _")
426proof
427  show "wf R" if "wf ?S"
428  proof -
429    have "R \<subseteq> ?S" by auto
430    with wf_subset [of ?S] that show "wf R"
431      by auto
432  qed
433next
434  show "wf ?S" if "wf R"
435  proof (rule wfI_pf)
436    fix A
437    assume A: "A \<subseteq> ?S `` A"
438    let ?X = "(R \<union> S)\<^sup>* `` A"
439    have *: "R O (R \<union> S)\<^sup>* \<subseteq> (R \<union> S)\<^sup>* O R"
440    proof -
441      have "(x, z) \<in> (R \<union> S)\<^sup>* O R" if "(y, z) \<in> (R \<union> S)\<^sup>*" and "(x, y) \<in> R" for x y z
442        using that
443      proof (induct y z)
444        case rtrancl_refl
445        then show ?case by auto
446      next
447        case (rtrancl_into_rtrancl a b c)
448        then have "(x, c) \<in> ((R \<union> S)\<^sup>* O (R \<union> S)\<^sup>*) O R"
449          using assms by blast
450        then show ?case by simp
451      qed
452      then show ?thesis by auto
453    qed
454    then have "R O S\<^sup>* \<subseteq> (R \<union> S)\<^sup>* O R"
455      using rtrancl_Un_subset by blast
456    then have "?S \<subseteq> (R \<union> S)\<^sup>* O (R \<union> S)\<^sup>* O R"
457      by (simp add: relcomp_mono rtrancl_mono)
458    also have "\<dots> = (R \<union> S)\<^sup>* O R"
459      by (simp add: O_assoc[symmetric])
460    finally have "?S O (R \<union> S)\<^sup>* \<subseteq> (R \<union> S)\<^sup>* O R O (R \<union> S)\<^sup>*"
461      by (simp add: O_assoc[symmetric] relcomp_mono)
462    also have "\<dots> \<subseteq> (R \<union> S)\<^sup>* O (R \<union> S)\<^sup>* O R"
463      using * by (simp add: relcomp_mono)
464    finally have "?S O (R \<union> S)\<^sup>* \<subseteq> (R \<union> S)\<^sup>* O R"
465      by (simp add: O_assoc[symmetric])
466    then have "(?S O (R \<union> S)\<^sup>*) `` A \<subseteq> ((R \<union> S)\<^sup>* O R) `` A"
467      by (simp add: Image_mono)
468    moreover have "?X \<subseteq> (?S O (R \<union> S)\<^sup>*) `` A"
469      using A by (auto simp: relcomp_Image)
470    ultimately have "?X \<subseteq> R `` ?X"
471      by (auto simp: relcomp_Image)
472    then have "?X = {}"
473      using \<open>wf R\<close> by (simp add: wfE_pf)
474    moreover have "A \<subseteq> ?X" by auto
475    ultimately show "A = {}" by simp
476  qed
477qed
478
479corollary wf_relcomp_compatible:
480  assumes "wf R" and "R O S \<subseteq> S O R"
481  shows "wf (S O R)"
482proof -
483  have "R O S \<subseteq> (R \<union> S)\<^sup>* O R"
484    using assms by blast
485  then have "wf (S\<^sup>* O R O S\<^sup>*)"
486    by (simp add: assms qc_wf_relto_iff)
487  then show ?thesis
488    by (rule Wellfounded.wf_subset) blast
489qed
490
491
492subsection \<open>Acyclic relations\<close>
493
494lemma wf_acyclic: "wf r \<Longrightarrow> acyclic r"
495  by (simp add: acyclic_def) (blast elim: wf_trancl [THEN wf_irrefl])
496
497lemmas wfP_acyclicP = wf_acyclic [to_pred]
498
499
500subsubsection \<open>Wellfoundedness of finite acyclic relations\<close>
501
502lemma finite_acyclic_wf:
503  assumes "finite r" "acyclic r" shows "wf r"
504  using assms
505proof (induction r rule: finite_induct)
506  case (insert x r)
507  then show ?case
508    by (cases x) simp
509qed simp
510
511lemma finite_acyclic_wf_converse: "finite r \<Longrightarrow> acyclic r \<Longrightarrow> wf (r\<inverse>)"
512  apply (erule finite_converse [THEN iffD2, THEN finite_acyclic_wf])
513  apply (erule acyclic_converse [THEN iffD2])
514  done
515
516text \<open>
517  Observe that the converse of an irreflexive, transitive,
518  and finite relation is again well-founded. Thus, we may
519  employ it for well-founded induction.
520\<close>
521lemma wf_converse:
522  assumes "irrefl r" and "trans r" and "finite r"
523  shows "wf (r\<inverse>)"
524proof -
525  have "acyclic r"
526    using \<open>irrefl r\<close> and \<open>trans r\<close>
527    by (simp add: irrefl_def acyclic_irrefl)
528  with \<open>finite r\<close> show ?thesis
529    by (rule finite_acyclic_wf_converse)
530qed
531
532lemma wf_iff_acyclic_if_finite: "finite r \<Longrightarrow> wf r = acyclic r"
533  by (blast intro: finite_acyclic_wf wf_acyclic)
534
535
536subsection \<open>\<^typ>\<open>nat\<close> is well-founded\<close>
537
538lemma less_nat_rel: "(<) = (\<lambda>m n. n = Suc m)\<^sup>+\<^sup>+"
539proof (rule ext, rule ext, rule iffI)
540  fix n m :: nat
541  show "(\<lambda>m n. n = Suc m)\<^sup>+\<^sup>+ m n" if "m < n"
542    using that
543  proof (induct n)
544    case 0
545    then show ?case by auto
546  next
547    case (Suc n)
548    then show ?case
549      by (auto simp add: less_Suc_eq_le le_less intro: tranclp.trancl_into_trancl)
550  qed
551  show "m < n" if "(\<lambda>m n. n = Suc m)\<^sup>+\<^sup>+ m n"
552    using that by (induct n) (simp_all add: less_Suc_eq_le reflexive le_less)
553qed
554
555definition pred_nat :: "(nat \<times> nat) set"
556  where "pred_nat = {(m, n). n = Suc m}"
557
558definition less_than :: "(nat \<times> nat) set"
559  where "less_than = pred_nat\<^sup>+"
560
561lemma less_eq: "(m, n) \<in> pred_nat\<^sup>+ \<longleftrightarrow> m < n"
562  unfolding less_nat_rel pred_nat_def trancl_def by simp
563
564lemma pred_nat_trancl_eq_le: "(m, n) \<in> pred_nat\<^sup>* \<longleftrightarrow> m \<le> n"
565  unfolding less_eq rtrancl_eq_or_trancl by auto
566
567lemma wf_pred_nat: "wf pred_nat"
568  apply (unfold wf_def pred_nat_def)
569  apply clarify
570  apply (induct_tac x)
571   apply blast+
572  done
573
574lemma wf_less_than [iff]: "wf less_than"
575  by (simp add: less_than_def wf_pred_nat [THEN wf_trancl])
576
577lemma trans_less_than [iff]: "trans less_than"
578  by (simp add: less_than_def)
579
580lemma less_than_iff [iff]: "((x,y) \<in> less_than) = (x<y)"
581  by (simp add: less_than_def less_eq)
582
583lemma total_less_than: "total less_than"
584  using total_on_def by force
585
586lemma wf_less: "wf {(x, y::nat). x < y}"
587  by (rule Wellfounded.wellorder_class.wf)
588
589
590subsection \<open>Accessible Part\<close>
591
592text \<open>
593  Inductive definition of the accessible part \<open>acc r\<close> of a
594  relation; see also @{cite "paulin-tlca"}.
595\<close>
596
597inductive_set acc :: "('a \<times> 'a) set \<Rightarrow> 'a set" for r :: "('a \<times> 'a) set"
598  where accI: "(\<And>y. (y, x) \<in> r \<Longrightarrow> y \<in> acc r) \<Longrightarrow> x \<in> acc r"
599
600abbreviation termip :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> bool"
601  where "termip r \<equiv> accp (r\<inverse>\<inverse>)"
602
603abbreviation termi :: "('a \<times> 'a) set \<Rightarrow> 'a set"
604  where "termi r \<equiv> acc (r\<inverse>)"
605
606lemmas accpI = accp.accI
607
608lemma accp_eq_acc [code]: "accp r = (\<lambda>x. x \<in> Wellfounded.acc {(x, y). r x y})"
609  by (simp add: acc_def)
610
611
612text \<open>Induction rules\<close>
613
614theorem accp_induct:
615  assumes major: "accp r a"
616  assumes hyp: "\<And>x. accp r x \<Longrightarrow> \<forall>y. r y x \<longrightarrow> P y \<Longrightarrow> P x"
617  shows "P a"
618  apply (rule major [THEN accp.induct])
619  apply (rule hyp)
620   apply (rule accp.accI)
621   apply auto
622  done
623
624lemmas accp_induct_rule = accp_induct [rule_format, induct set: accp]
625
626theorem accp_downward: "accp r b \<Longrightarrow> r a b \<Longrightarrow> accp r a"
627  by (cases rule: accp.cases)
628
629lemma not_accp_down:
630  assumes na: "\<not> accp R x"
631  obtains z where "R z x" and "\<not> accp R z"
632proof -
633  assume a: "\<And>z. R z x \<Longrightarrow> \<not> accp R z \<Longrightarrow> thesis"
634  show thesis
635  proof (cases "\<forall>z. R z x \<longrightarrow> accp R z")
636    case True
637    then have "\<And>z. R z x \<Longrightarrow> accp R z" by auto
638    then have "accp R x" by (rule accp.accI)
639    with na show thesis ..
640  next
641    case False then obtain z where "R z x" and "\<not> accp R z"
642      by auto
643    with a show thesis .
644  qed
645qed
646
647lemma accp_downwards_aux: "r\<^sup>*\<^sup>* b a \<Longrightarrow> accp r a \<longrightarrow> accp r b"
648  by (erule rtranclp_induct) (blast dest: accp_downward)+
649
650theorem accp_downwards: "accp r a \<Longrightarrow> r\<^sup>*\<^sup>* b a \<Longrightarrow> accp r b"
651  by (blast dest: accp_downwards_aux)
652
653theorem accp_wfPI: "\<forall>x. accp r x \<Longrightarrow> wfP r"
654  apply (rule wfPUNIVI)
655  apply (rule_tac P = P in accp_induct)
656   apply blast+
657  done
658
659theorem accp_wfPD: "wfP r \<Longrightarrow> accp r x"
660  apply (erule wfP_induct_rule)
661  apply (rule accp.accI)
662  apply blast
663  done
664
665theorem wfP_accp_iff: "wfP r = (\<forall>x. accp r x)"
666  by (blast intro: accp_wfPI dest: accp_wfPD)
667
668
669text \<open>Smaller relations have bigger accessible parts:\<close>
670
671lemma accp_subset:
672  assumes "R1 \<le> R2"
673  shows "accp R2 \<le> accp R1"
674proof (rule predicate1I)
675  fix x
676  assume "accp R2 x"
677  then show "accp R1 x"
678  proof (induct x)
679    fix x
680    assume "\<And>y. R2 y x \<Longrightarrow> accp R1 y"
681    with assms show "accp R1 x"
682      by (blast intro: accp.accI)
683  qed
684qed
685
686
687text \<open>This is a generalized induction theorem that works on
688  subsets of the accessible part.\<close>
689
690lemma accp_subset_induct:
691  assumes subset: "D \<le> accp R"
692    and dcl: "\<And>x z. D x \<Longrightarrow> R z x \<Longrightarrow> D z"
693    and "D x"
694    and istep: "\<And>x. D x \<Longrightarrow> (\<And>z. R z x \<Longrightarrow> P z) \<Longrightarrow> P x"
695  shows "P x"
696proof -
697  from subset and \<open>D x\<close>
698  have "accp R x" ..
699  then show "P x" using \<open>D x\<close>
700  proof (induct x)
701    fix x
702    assume "D x" and "\<And>y. R y x \<Longrightarrow> D y \<Longrightarrow> P y"
703    with dcl and istep show "P x" by blast
704  qed
705qed
706
707
708text \<open>Set versions of the above theorems\<close>
709
710lemmas acc_induct = accp_induct [to_set]
711lemmas acc_induct_rule = acc_induct [rule_format, induct set: acc]
712lemmas acc_downward = accp_downward [to_set]
713lemmas not_acc_down = not_accp_down [to_set]
714lemmas acc_downwards_aux = accp_downwards_aux [to_set]
715lemmas acc_downwards = accp_downwards [to_set]
716lemmas acc_wfI = accp_wfPI [to_set]
717lemmas acc_wfD = accp_wfPD [to_set]
718lemmas wf_acc_iff = wfP_accp_iff [to_set]
719lemmas acc_subset = accp_subset [to_set]
720lemmas acc_subset_induct = accp_subset_induct [to_set]
721
722
723subsection \<open>Tools for building wellfounded relations\<close>
724
725text \<open>Inverse Image\<close>
726
727lemma wf_inv_image [simp,intro!]: 
728  fixes f :: "'a \<Rightarrow> 'b"
729  assumes "wf r"
730  shows "wf (inv_image r f)"
731proof (clarsimp simp: inv_image_def wf_eq_minimal)
732  fix P and x::'a
733  assume "x \<in> P"
734  then obtain w where w: "w \<in> {w. \<exists>x::'a. x \<in> P \<and> f x = w}"
735    by auto
736  have *: "\<And>Q u. u \<in> Q \<Longrightarrow> \<exists>z\<in>Q. \<forall>y. (y, z) \<in> r \<longrightarrow> y \<notin> Q"
737    using assms by (auto simp add: wf_eq_minimal)
738  show "\<exists>z\<in>P. \<forall>y. (f y, f z) \<in> r \<longrightarrow> y \<notin> P"
739    using * [OF w] by auto
740qed
741
742text \<open>Measure functions into \<^typ>\<open>nat\<close>\<close>
743
744definition measure :: "('a \<Rightarrow> nat) \<Rightarrow> ('a \<times> 'a) set"
745  where "measure = inv_image less_than"
746
747lemma in_measure[simp, code_unfold]: "(x, y) \<in> measure f \<longleftrightarrow> f x < f y"
748  by (simp add:measure_def)
749
750lemma wf_measure [iff]: "wf (measure f)"
751  unfolding measure_def by (rule wf_less_than [THEN wf_inv_image])
752
753lemma wf_if_measure: "(\<And>x. P x \<Longrightarrow> f(g x) < f x) \<Longrightarrow> wf {(y,x). P x \<and> y = g x}"
754  for f :: "'a \<Rightarrow> nat"
755  using wf_measure[of f] unfolding measure_def inv_image_def less_than_def less_eq
756  by (rule wf_subset) auto
757
758
759subsubsection \<open>Lexicographic combinations\<close>
760
761definition lex_prod :: "('a \<times>'a) set \<Rightarrow> ('b \<times> 'b) set \<Rightarrow> (('a \<times> 'b) \<times> ('a \<times> 'b)) set"
762    (infixr "<*lex*>" 80)
763    where "ra <*lex*> rb = {((a, b), (a', b')). (a, a') \<in> ra \<or> a = a' \<and> (b, b') \<in> rb}"
764
765lemma in_lex_prod[simp]: "((a, b), (a', b')) \<in> r <*lex*> s \<longleftrightarrow> (a, a') \<in> r \<or> a = a' \<and> (b, b') \<in> s"
766  by (auto simp:lex_prod_def)
767
768lemma wf_lex_prod [intro!]:
769  assumes "wf ra" "wf rb"
770  shows "wf (ra <*lex*> rb)"
771proof (rule wfI)
772  fix z :: "'a \<times> 'b" and P
773  assume * [rule_format]: "\<forall>u. (\<forall>v. (v, u) \<in> ra <*lex*> rb \<longrightarrow> P v) \<longrightarrow> P u"
774  obtain x y where zeq: "z = (x,y)"
775    by fastforce
776  have "P(x,y)" using \<open>wf ra\<close>
777  proof (induction x arbitrary: y rule: wf_induct_rule)
778    case (less x)
779    note lessx = less
780    show ?case using \<open>wf rb\<close> less
781    proof (induction y rule: wf_induct_rule)
782      case (less y)
783      show ?case
784        by (force intro: * less.IH lessx)
785    qed
786  qed
787  then show "P z"
788    by (simp add: zeq)
789qed auto
790
791text \<open>\<open><*lex*>\<close> preserves transitivity\<close>
792lemma trans_lex_prod [simp,intro!]: "trans R1 \<Longrightarrow> trans R2 \<Longrightarrow> trans (R1 <*lex*> R2)"
793  unfolding trans_def lex_prod_def by blast
794
795lemma total_on_lex_prod [simp]: "total_on A r \<Longrightarrow> total_on B s \<Longrightarrow> total_on (A \<times> B) (r <*lex*> s)"
796  by (auto simp: total_on_def)
797
798lemma total_lex_prod [simp]: "total r \<Longrightarrow> total s \<Longrightarrow> total (r <*lex*> s)"
799  by (auto simp: total_on_def)
800
801text \<open>lexicographic combinations with measure functions\<close>
802
803definition mlex_prod :: "('a \<Rightarrow> nat) \<Rightarrow> ('a \<times> 'a) set \<Rightarrow> ('a \<times> 'a) set" (infixr "<*mlex*>" 80)
804  where "f <*mlex*> R = inv_image (less_than <*lex*> R) (\<lambda>x. (f x, x))"
805
806lemma
807  wf_mlex: "wf R \<Longrightarrow> wf (f <*mlex*> R)" and
808  mlex_less: "f x < f y \<Longrightarrow> (x, y) \<in> f <*mlex*> R" and
809  mlex_leq: "f x \<le> f y \<Longrightarrow> (x, y) \<in> R \<Longrightarrow> (x, y) \<in> f <*mlex*> R" and
810  mlex_iff: "(x, y) \<in> f <*mlex*> R \<longleftrightarrow> f x < f y \<or> f x = f y \<and> (x, y) \<in> R"
811  by (auto simp: mlex_prod_def)
812
813text \<open>Proper subset relation on finite sets.\<close>
814definition finite_psubset :: "('a set \<times> 'a set) set"
815  where "finite_psubset = {(A, B). A \<subset> B \<and> finite B}"
816
817lemma wf_finite_psubset[simp]: "wf finite_psubset"
818  apply (unfold finite_psubset_def)
819  apply (rule wf_measure [THEN wf_subset])
820  apply (simp add: measure_def inv_image_def less_than_def less_eq)
821  apply (fast elim!: psubset_card_mono)
822  done
823
824lemma trans_finite_psubset: "trans finite_psubset"
825  by (auto simp: finite_psubset_def less_le trans_def)
826
827lemma in_finite_psubset[simp]: "(A, B) \<in> finite_psubset \<longleftrightarrow> A \<subset> B \<and> finite B"
828  unfolding finite_psubset_def by auto
829
830text \<open>max- and min-extension of order to finite sets\<close>
831
832inductive_set max_ext :: "('a \<times> 'a) set \<Rightarrow> ('a set \<times> 'a set) set"
833  for R :: "('a \<times> 'a) set"
834  where max_extI[intro]:
835    "finite X \<Longrightarrow> finite Y \<Longrightarrow> Y \<noteq> {} \<Longrightarrow> (\<And>x. x \<in> X \<Longrightarrow> \<exists>y\<in>Y. (x, y) \<in> R) \<Longrightarrow> (X, Y) \<in> max_ext R"
836
837lemma max_ext_wf:
838  assumes wf: "wf r"
839  shows "wf (max_ext r)"
840proof (rule acc_wfI, intro allI)
841  show "M \<in> acc (max_ext r)" (is "_ \<in> ?W") for M
842  proof (induct M rule: infinite_finite_induct)
843    case empty
844    show ?case
845      by (rule accI) (auto elim: max_ext.cases)
846  next
847    case (insert a M)
848    from wf \<open>M \<in> ?W\<close> \<open>finite M\<close> show "insert a M \<in> ?W"
849    proof (induct arbitrary: M)
850      fix M a
851      assume "M \<in> ?W"
852      assume [intro]: "finite M"
853      assume hyp: "\<And>b M. (b, a) \<in> r \<Longrightarrow> M \<in> ?W \<Longrightarrow> finite M \<Longrightarrow> insert b M \<in> ?W"
854      have add_less: "M \<in> ?W \<Longrightarrow> (\<And>y. y \<in> N \<Longrightarrow> (y, a) \<in> r) \<Longrightarrow> N \<union> M \<in> ?W"
855        if "finite N" "finite M" for N M :: "'a set"
856        using that by (induct N arbitrary: M) (auto simp: hyp)
857      show "insert a M \<in> ?W"
858      proof (rule accI)
859        fix N
860        assume Nless: "(N, insert a M) \<in> max_ext r"
861        then have *: "\<And>x. x \<in> N \<Longrightarrow> (x, a) \<in> r \<or> (\<exists>y \<in> M. (x, y) \<in> r)"
862          by (auto elim!: max_ext.cases)
863
864        let ?N1 = "{n \<in> N. (n, a) \<in> r}"
865        let ?N2 = "{n \<in> N. (n, a) \<notin> r}"
866        have N: "?N1 \<union> ?N2 = N" by (rule set_eqI) auto
867        from Nless have "finite N" by (auto elim: max_ext.cases)
868        then have finites: "finite ?N1" "finite ?N2" by auto
869
870        have "?N2 \<in> ?W"
871        proof (cases "M = {}")
872          case [simp]: True
873          have Mw: "{} \<in> ?W" by (rule accI) (auto elim: max_ext.cases)
874          from * have "?N2 = {}" by auto
875          with Mw show "?N2 \<in> ?W" by (simp only:)
876        next
877          case False
878          from * finites have N2: "(?N2, M) \<in> max_ext r"
879            by (rule_tac max_extI[OF _ _ \<open>M \<noteq> {}\<close>]) auto
880          with \<open>M \<in> ?W\<close> show "?N2 \<in> ?W" by (rule acc_downward)
881        qed
882        with finites have "?N1 \<union> ?N2 \<in> ?W"
883          by (rule add_less) simp
884        then show "N \<in> ?W" by (simp only: N)
885      qed
886    qed
887  next
888    case infinite
889    show ?case
890      by (rule accI) (auto elim: max_ext.cases simp: infinite)
891  qed
892qed
893
894lemma max_ext_additive: "(A, B) \<in> max_ext R \<Longrightarrow> (C, D) \<in> max_ext R \<Longrightarrow> (A \<union> C, B \<union> D) \<in> max_ext R"
895  by (force elim!: max_ext.cases)
896
897definition min_ext :: "('a \<times> 'a) set \<Rightarrow> ('a set \<times> 'a set) set"
898  where "min_ext r = {(X, Y) | X Y. X \<noteq> {} \<and> (\<forall>y \<in> Y. (\<exists>x \<in> X. (x, y) \<in> r))}"
899
900lemma min_ext_wf:
901  assumes "wf r"
902  shows "wf (min_ext r)"
903proof (rule wfI_min)
904  show "\<exists>m \<in> Q. (\<forall>n. (n, m) \<in> min_ext r \<longrightarrow> n \<notin> Q)" if nonempty: "x \<in> Q"
905    for Q :: "'a set set" and x
906  proof (cases "Q = {{}}")
907    case True
908    then show ?thesis by (simp add: min_ext_def)
909  next
910    case False
911    with nonempty obtain e x where "x \<in> Q" "e \<in> x" by force
912    then have eU: "e \<in> \<Union>Q" by auto
913    with \<open>wf r\<close>
914    obtain z where z: "z \<in> \<Union>Q" "\<And>y. (y, z) \<in> r \<Longrightarrow> y \<notin> \<Union>Q"
915      by (erule wfE_min)
916    from z obtain m where "m \<in> Q" "z \<in> m" by auto
917    from \<open>m \<in> Q\<close> show ?thesis
918    proof (intro rev_bexI allI impI)
919      fix n
920      assume smaller: "(n, m) \<in> min_ext r"
921      with \<open>z \<in> m\<close> obtain y where "y \<in> n" "(y, z) \<in> r"
922        by (auto simp: min_ext_def)
923      with z(2) show "n \<notin> Q" by auto
924    qed
925  qed
926qed
927
928
929subsubsection \<open>Bounded increase must terminate\<close>
930
931lemma wf_bounded_measure:
932  fixes ub :: "'a \<Rightarrow> nat"
933    and f :: "'a \<Rightarrow> nat"
934  assumes "\<And>a b. (b, a) \<in> r \<Longrightarrow> ub b \<le> ub a \<and> ub a \<ge> f b \<and> f b > f a"
935  shows "wf r"
936  by (rule wf_subset[OF wf_measure[of "\<lambda>a. ub a - f a"]]) (auto dest: assms)
937
938lemma wf_bounded_set:
939  fixes ub :: "'a \<Rightarrow> 'b set"
940    and f :: "'a \<Rightarrow> 'b set"
941  assumes "\<And>a b. (b,a) \<in> r \<Longrightarrow> finite (ub a) \<and> ub b \<subseteq> ub a \<and> ub a \<supseteq> f b \<and> f b \<supset> f a"
942  shows "wf r"
943  apply (rule wf_bounded_measure[of r "\<lambda>a. card (ub a)" "\<lambda>a. card (f a)"])
944  apply (drule assms)
945  apply (blast intro: card_mono finite_subset psubset_card_mono dest: psubset_eq[THEN iffD2])
946  done
947
948lemma finite_subset_wf:
949  assumes "finite A"
950  shows "wf {(X, Y). X \<subset> Y \<and> Y \<subseteq> A}"
951  by (rule wf_subset[OF wf_finite_psubset[unfolded finite_psubset_def]])
952    (auto intro: finite_subset[OF _ assms])
953
954hide_const (open) acc accp
955
956end
957