1(*  Title:      HOL/Tools/BNF/bnf_lfp.ML
2    Author:     Dmitriy Traytel, TU Muenchen
3    Author:     Andrei Popescu, TU Muenchen
4    Copyright   2012
5
6Datatype construction.
7*)
8
9signature BNF_LFP =
10sig
11  val construct_lfp: mixfix list -> binding list -> binding list -> binding list ->
12    binding list list -> binding list -> (string * sort) list -> typ list * typ list list ->
13    BNF_Def.bnf list -> BNF_Comp.absT_info list -> local_theory ->
14    BNF_FP_Util.fp_result * local_theory
15end;
16
17structure BNF_LFP : BNF_LFP =
18struct
19
20open BNF_Def
21open BNF_Util
22open BNF_Tactics
23open BNF_Comp
24open BNF_FP_Util
25open BNF_FP_Def_Sugar
26open BNF_LFP_Util
27open BNF_LFP_Tactics
28
29(*all BNFs have the same lives*)
30fun construct_lfp mixfixes map_bs rel_bs pred_bs set_bss0 bs resBs (resDs, Dss) bnfs absT_infos
31    lthy =
32  let
33    val time = time lthy;
34    val timer = time (Timer.startRealTimer ());
35
36    val live = live_of_bnf (hd bnfs);
37    val n = length bnfs; (*active*)
38    val ks = 1 upto n;
39    val m = live - n; (*passive, if 0 don't generate a new BNF*)
40
41    val internals = Config.get lthy bnf_internals;
42    val b_names = map Binding.name_of bs;
43    val b_name = mk_common_name b_names;
44    val b = Binding.name b_name;
45
46    fun mk_internal_of_b name =
47      Binding.prefix_name (name ^ "_") #> Binding.prefix true b_name #> Binding.concealed;
48    fun mk_internal_b name = mk_internal_of_b name b;
49    fun mk_internal_bs name = map (mk_internal_of_b name) bs;
50    val external_bs = map2 (Binding.prefix false) b_names bs
51      |> not internals ? map Binding.concealed;
52
53    val deads = fold (union (op =)) Dss resDs;
54    val names_lthy = fold Variable.declare_typ deads lthy;
55    val passives = map fst (subtract (op = o apsnd TFree) deads resBs);
56
57    (* tvars *)
58    val (((((passiveAs, activeAs), passiveBs), activeBs), passiveCs), activeCs) =
59      names_lthy
60      |> variant_tfrees passives
61      ||>> mk_TFrees n
62      ||>> variant_tfrees passives
63      ||>> mk_TFrees n
64      ||>> variant_tfrees passives
65      ||>> mk_TFrees n
66      |> fst;
67
68    val allAs = passiveAs @ activeAs;
69    val allBs' = passiveBs @ activeBs;
70    val Ass = replicate n allAs;
71    val allBs = passiveAs @ activeBs;
72    val Bss = replicate n allBs;
73    val allCs = passiveAs @ activeCs;
74    val allCs' = passiveBs @ activeCs;
75    val Css' = replicate n allCs';
76
77    (* types *)
78    val dead_poss =
79      map (fn x => if member (op =) deads (TFree x) then SOME (TFree x) else NONE) resBs;
80    fun mk_param NONE passive = (hd passive, tl passive)
81      | mk_param (SOME a) passive = (a, passive);
82    val mk_params = fold_map mk_param dead_poss #> fst;
83
84    fun mk_FTs Ts = map2 (fn Ds => mk_T_of_bnf Ds Ts) Dss bnfs;
85    val (params, params') = `(map Term.dest_TFree) (mk_params passiveAs);
86    val FTsAs = mk_FTs allAs;
87    val FTsBs = mk_FTs allBs;
88    val FTsCs = mk_FTs allCs;
89    val BTs = map HOLogic.mk_setT activeAs;
90    val B'Ts = map HOLogic.mk_setT activeBs;
91    val B''Ts = map HOLogic.mk_setT activeCs;
92    val sTs = map2 (curry op -->) FTsAs activeAs;
93    val s'Ts = map2 (curry op -->) FTsBs activeBs;
94    val s''Ts = map2 (curry op -->) FTsCs activeCs;
95    val fTs = map2 (curry op -->) activeAs activeBs;
96    val inv_fTs = map2 (curry op -->) activeBs activeAs;
97    val self_fTs = map2 (curry op -->) activeAs activeAs;
98    val gTs = map2 (curry op -->) activeBs activeCs;
99    val all_gTs = map2 (curry op -->) allBs allCs';
100
101    (* terms *)
102    val mapsAsAs = @{map 4} mk_map_of_bnf Dss Ass Ass bnfs;
103    val mapsAsBs = @{map 4} mk_map_of_bnf Dss Ass Bss bnfs;
104    val mapsBsCs' = @{map 4} mk_map_of_bnf Dss Bss Css' bnfs;
105    val mapsAsCs' = @{map 4} mk_map_of_bnf Dss Ass Css' bnfs;
106    fun mk_setss Ts = @{map 3} mk_sets_of_bnf (map (replicate live) Dss)
107      (map (replicate live) (replicate n Ts)) bnfs;
108    val setssAs = mk_setss allAs;
109    val bd0s = @{map 3} mk_bd_of_bnf Dss Ass bnfs;
110    val bds =
111      @{map 3} (fn bd0 => fn Ds => fn bnf => mk_csum bd0
112        (mk_card_of (HOLogic.mk_UNIV
113          (mk_T_of_bnf Ds (replicate live (fst (dest_relT (fastype_of bd0)))) bnf))))
114      bd0s Dss bnfs;
115    val witss = map wits_of_bnf bnfs;
116
117    val ((((((((zs, zs'), Bs), ss), fs), self_fs), all_gs), (xFs, xFs')), _) =
118      lthy
119      |> mk_Frees' "z" activeAs
120      ||>> mk_Frees "B" BTs
121      ||>> mk_Frees "s" sTs
122      ||>> mk_Frees "f" fTs
123      ||>> mk_Frees "f" self_fTs
124      ||>> mk_Frees "g" all_gTs
125      ||>> mk_Frees' "x" FTsAs;
126
127    val passive_UNIVs = map HOLogic.mk_UNIV passiveAs;
128    val active_UNIVs = map HOLogic.mk_UNIV activeAs;
129    val passive_ids = map HOLogic.id_const passiveAs;
130    val active_ids = map HOLogic.id_const activeAs;
131
132    (* thms *)
133    val bd0_card_orders = map bd_card_order_of_bnf bnfs;
134    val bd0_Card_orders = map bd_Card_order_of_bnf bnfs;
135    val bd0_Cinfinites = map bd_Cinfinite_of_bnf bnfs;
136    val set_bd0ss = map set_bd_of_bnf bnfs;
137
138    val bd_Card_order = @{thm Card_order_csum};
139    val bd_Card_orders = replicate n bd_Card_order;
140    val bd_Cinfinites = map (fn thm => thm RS @{thm Cinfinite_csum1}) bd0_Cinfinites;
141    val bd_Cnotzeros = map (fn thm => thm RS @{thm Cinfinite_Cnotzero}) bd_Cinfinites;
142    val bd_Cinfinite = hd bd_Cinfinites;
143    val set_bdss =
144      map2 (fn set_bd0s => fn bd0_Card_order =>
145        map (fn thm => ctrans OF [thm, bd0_Card_order RS @{thm ordLeq_csum1}]) set_bd0s)
146      set_bd0ss bd0_Card_orders;
147    val in_bds = map in_bd_of_bnf bnfs;
148    val sym_map_comps = map (fn bnf => map_comp0_of_bnf bnf RS sym) bnfs;
149    val map_comps = map map_comp_of_bnf bnfs;
150    val map_cong0s = map map_cong0_of_bnf bnfs;
151    val map_id0s = map map_id0_of_bnf bnfs;
152    val map_ids = map map_id_of_bnf bnfs;
153    val set_mapss = map set_map_of_bnf bnfs;
154    val rel_mono_strong0s = map rel_mono_strong0_of_bnf bnfs;
155    val le_rel_OOs = map le_rel_OO_of_bnf bnfs;
156
157    val timer = time (timer "Extracted terms & thms");
158
159    (* nonemptiness check *)
160    fun new_wit X (wit: nonemptiness_witness) = subset (op =) (#I wit, (0 upto m - 1) @ map snd X);
161
162    val all = m upto m + n - 1;
163
164    fun enrich X = map_filter (fn i =>
165      (case find_first (fn (_, i') => i = i') X of
166        NONE =>
167          (case find_index (new_wit X) (nth witss (i - m)) of
168            ~1 => NONE
169          | j => SOME (j, i))
170      | SOME ji => SOME ji)) all;
171    val reachable = fixpoint (op =) enrich [];
172    val _ = (case subtract (op =) (map snd reachable) all of
173        [] => ()
174      | i :: _ => raise EMPTY_DATATYPE (Binding.name_of (nth bs (i - m))));
175
176    val wit_thms = flat (map2 (fn bnf => fn (j, _) => nth (wit_thmss_of_bnf bnf) j) bnfs reachable);
177
178    val timer = time (timer "Checked nonemptiness");
179
180    (* derived thms *)
181
182    (*map g1 ... gm g(m+1) ... g(m+n) (map id ... id f(m+1) ... f(m+n) x) =
183      map g1 ... gm (g(m+1) o f(m+1)) ... (g(m+n) o f(m+n)) x*)
184    fun mk_map_comp_id x mapAsBs mapBsCs mapAsCs map_comp0 =
185      let
186        val lhs = Term.list_comb (mapBsCs, all_gs) $
187          (Term.list_comb (mapAsBs, passive_ids @ fs) $ x);
188        val rhs = Term.list_comb (mapAsCs,
189          take m all_gs @ map HOLogic.mk_comp (drop m all_gs ~~ fs)) $ x;
190        val vars = fold (Variable.add_free_names lthy) [lhs, rhs] [];
191      in
192        Goal.prove_sorry lthy vars [] (mk_Trueprop_eq (lhs, rhs))
193          (fn {context = ctxt, prems = _} => mk_map_comp_id_tac ctxt map_comp0)
194        |> Thm.close_derivation \<^here>
195      end;
196
197    val map_comp_id_thms = @{map 5} mk_map_comp_id xFs mapsAsBs mapsBsCs' mapsAsCs' map_comps;
198
199    (*forall a : set(m+1) x. f(m+1) a = a; ...; forall a : set(m+n) x. f(m+n) a = a ==>
200      map id ... id f(m+1) ... f(m+n) x = x*)
201    fun mk_map_cong0L x mapAsAs sets map_cong0 map_id =
202      let
203        fun mk_prem set f z z' = HOLogic.mk_Trueprop
204          (mk_Ball (set $ x) (Term.absfree z' (HOLogic.mk_eq (f $ z, z))));
205        val prems = @{map 4} mk_prem (drop m sets) self_fs zs zs';
206        val goal = mk_Trueprop_eq (Term.list_comb (mapAsAs, passive_ids @ self_fs) $ x, x);
207        val vars = fold (Variable.add_free_names lthy) (goal :: prems) [];
208      in
209        Goal.prove_sorry lthy vars [] (Logic.list_implies (prems, goal))
210          (fn {context = ctxt, prems = _} => mk_map_cong0L_tac ctxt m map_cong0 map_id)
211        |> Thm.close_derivation \<^here>
212      end;
213
214    val map_cong0L_thms = @{map 5} mk_map_cong0L xFs mapsAsAs setssAs map_cong0s map_ids;
215    val in_mono'_thms = map (fn bnf => in_mono_of_bnf bnf OF (replicate m subset_refl)) bnfs;
216    val in_cong'_thms = map (fn bnf => in_cong_of_bnf bnf OF (replicate m refl)) bnfs;
217
218    val timer = time (timer "Derived simple theorems");
219
220    (* algebra *)
221
222    val alg_bind = mk_internal_b algN;
223    val alg_def_bind = (Thm.def_binding alg_bind, []);
224
225    (*forall i = 1 ... n: (\<forall>x \<in> Fi_in UNIV .. UNIV B1 ... Bn. si x \<in> Bi)*)
226    val alg_spec =
227      let
228        val ins = @{map 3} mk_in (replicate n (passive_UNIVs @ Bs)) setssAs FTsAs;
229        fun mk_alg_conjunct B s X x x' =
230          mk_Ball X (Term.absfree x' (HOLogic.mk_mem (s $ x, B)));
231
232        val rhs = Library.foldr1 HOLogic.mk_conj (@{map 5} mk_alg_conjunct Bs ss ins xFs xFs')
233      in
234        fold_rev (Term.absfree o Term.dest_Free) (Bs @ ss) rhs
235      end;
236
237    val ((alg_free, (_, alg_def_free)), (lthy, lthy_old)) =
238      lthy
239      |> Local_Theory.open_target |> snd
240      |> Local_Theory.define ((alg_bind, NoSyn), (alg_def_bind, alg_spec))
241      ||> `Local_Theory.close_target;
242
243    val phi = Proof_Context.export_morphism lthy_old lthy;
244    val alg = fst (Term.dest_Const (Morphism.term phi alg_free));
245    val alg_def = mk_unabs_def (2 * n) (HOLogic.mk_obj_eq (Morphism.thm phi alg_def_free));
246
247    fun mk_alg Bs ss =
248      let
249        val args = Bs @ ss;
250        val Ts = map fastype_of args;
251        val algT = Library.foldr (op -->) (Ts, HOLogic.boolT);
252      in
253        Term.list_comb (Const (alg, algT), args)
254      end;
255
256    val ((((((((zs, zs'), Bs), B's), ss), s's), fs), (xFs, xFs')), _) =
257      lthy
258      |> mk_Frees' "z" activeAs
259      ||>> mk_Frees "B" BTs
260      ||>> mk_Frees "B'" B'Ts
261      ||>> mk_Frees "s" sTs
262      ||>> mk_Frees "s'" s'Ts
263      ||>> mk_Frees "f" fTs
264      ||>> mk_Frees' "x" FTsAs;
265
266    val alg_set_thms =
267      let
268        val alg_prem = HOLogic.mk_Trueprop (mk_alg Bs ss);
269        fun mk_prem x set B = HOLogic.mk_Trueprop (mk_leq (set $ x) B);
270        fun mk_concl s x B = mk_Trueprop_mem (s $ x, B);
271        val premss = map2 ((fn x => fn sets => map2 (mk_prem x) (drop m sets) Bs)) xFs setssAs;
272        val concls = @{map 3} mk_concl ss xFs Bs;
273        val goals = map2 (fn prems => fn concl =>
274          Logic.list_implies (alg_prem :: prems, concl)) premss concls;
275      in
276        map (fn goal =>
277          Variable.add_free_names lthy goal []
278          |> (fn vars => Goal.prove_sorry lthy vars [] goal (fn {context = ctxt, prems = _} =>
279            mk_alg_set_tac ctxt alg_def))
280          |> Thm.close_derivation \<^here>)
281        goals
282      end;
283
284    val timer = time (timer "Algebra definition & thms");
285
286    val alg_not_empty_thms =
287      let
288        val alg_prem =
289          HOLogic.mk_Trueprop (mk_alg Bs ss);
290        val concls = map (HOLogic.mk_Trueprop o mk_not_empty) Bs;
291        val goals =
292          map (fn concl => Logic.mk_implies (alg_prem, concl)) concls;
293      in
294        map2 (fn goal => fn alg_set =>
295          Variable.add_free_names lthy goal []
296          |> (fn vars => Goal.prove_sorry lthy vars [] goal
297            (fn {context = ctxt, prems = _} =>
298              mk_alg_not_empty_tac ctxt alg_set alg_set_thms wit_thms))
299          |> Thm.close_derivation \<^here>)
300        goals alg_set_thms
301      end;
302
303    val timer = time (timer "Proved nonemptiness");
304
305    (* morphism *)
306
307    val mor_bind = mk_internal_b morN;
308    val mor_def_bind = (Thm.def_binding mor_bind, []);
309
310    (*fbetw) forall i = 1 ... n: (\<forall>x \<in> Bi. f x \<in> B'i)*)
311    (*mor) forall i = 1 ... n: (\<forall>x \<in> Fi_in UNIV ... UNIV B1 ... Bn.
312       f (s1 x) = s1' (Fi_map id ... id f1 ... fn x))*)
313    val mor_spec =
314      let
315        fun mk_fbetw f B1 B2 z z' =
316          mk_Ball B1 (Term.absfree z' (HOLogic.mk_mem (f $ z, B2)));
317        fun mk_mor sets mapAsBs f s s' T x x' =
318          mk_Ball (mk_in (passive_UNIVs @ Bs) sets T)
319            (Term.absfree x' (HOLogic.mk_eq (f $ (s $ x), s' $
320              (Term.list_comb (mapAsBs, passive_ids @ fs) $ x))));
321        val rhs = HOLogic.mk_conj
322          (Library.foldr1 HOLogic.mk_conj (@{map 5} mk_fbetw fs Bs B's zs zs'),
323          Library.foldr1 HOLogic.mk_conj
324            (@{map 8} mk_mor setssAs mapsAsBs fs ss s's FTsAs xFs xFs'))
325      in
326        fold_rev (Term.absfree o Term.dest_Free) (Bs @ ss @ B's @ s's @ fs) rhs
327      end;
328
329    val ((mor_free, (_, mor_def_free)), (lthy, lthy_old)) =
330      lthy
331      |> Local_Theory.open_target |> snd
332      |> Local_Theory.define ((mor_bind, NoSyn), (mor_def_bind, mor_spec))
333      ||> `Local_Theory.close_target;
334
335    val phi = Proof_Context.export_morphism lthy_old lthy;
336    val mor = fst (Term.dest_Const (Morphism.term phi mor_free));
337    val mor_def = mk_unabs_def (5 * n) (HOLogic.mk_obj_eq (Morphism.thm phi mor_def_free));
338
339    fun mk_mor Bs1 ss1 Bs2 ss2 fs =
340      let
341        val args = Bs1 @ ss1 @ Bs2 @ ss2 @ fs;
342        val Ts = map fastype_of (Bs1 @ ss1 @ Bs2 @ ss2 @ fs);
343        val morT = Library.foldr (op -->) (Ts, HOLogic.boolT);
344      in
345        Term.list_comb (Const (mor, morT), args)
346      end;
347
348    val (((((((((((Bs, Bs_copy), B's), B''s), ss), s's), s''s), fs), fs_copy), gs), xFs), _) =
349      lthy
350      |> mk_Frees "B" BTs
351      ||>> mk_Frees "B" BTs
352      ||>> mk_Frees "B'" B'Ts
353      ||>> mk_Frees "B''" B''Ts
354      ||>> mk_Frees "s" sTs
355      ||>> mk_Frees "s'" s'Ts
356      ||>> mk_Frees "s''" s''Ts
357      ||>> mk_Frees "f" fTs
358      ||>> mk_Frees "f" fTs
359      ||>> mk_Frees "g" gTs
360      ||>> mk_Frees "x" FTsAs;
361
362    val morE_thms =
363      let
364        val prem = HOLogic.mk_Trueprop (mk_mor Bs ss B's s's fs);
365        fun mk_elim_prem sets x T = HOLogic.mk_Trueprop
366          (HOLogic.mk_mem (x, mk_in (passive_UNIVs @ Bs) sets T));
367        fun mk_elim_goal sets mapAsBs f s s' x T =
368          Logic.list_implies ([prem, mk_elim_prem sets x T],
369            mk_Trueprop_eq (f $ (s $ x), s' $ Term.list_comb (mapAsBs, passive_ids @ fs @ [x])));
370        val elim_goals = @{map 7} mk_elim_goal setssAs mapsAsBs fs ss s's xFs FTsAs;
371        fun prove goal =
372          Variable.add_free_names lthy goal []
373          |> (fn vars => Goal.prove_sorry lthy vars [] goal (fn {context = ctxt, prems = _} =>
374            mk_mor_elim_tac ctxt mor_def))
375          |> Thm.close_derivation \<^here>;
376      in
377        map prove elim_goals
378      end;
379
380    val mor_incl_thm =
381      let
382        val prems = map2 (HOLogic.mk_Trueprop oo mk_leq) Bs Bs_copy;
383        val concl = HOLogic.mk_Trueprop (mk_mor Bs ss Bs_copy ss active_ids);
384        val vars = fold (Variable.add_free_names lthy) (concl :: prems) [];
385      in
386        Goal.prove_sorry lthy vars [] (Logic.list_implies (prems, concl))
387          (fn {context = ctxt, prems = _} => mk_mor_incl_tac ctxt mor_def map_ids)
388        |> Thm.close_derivation \<^here>
389      end;
390
391    val mor_comp_thm =
392      let
393        val prems =
394          [HOLogic.mk_Trueprop (mk_mor Bs ss B's s's fs),
395           HOLogic.mk_Trueprop (mk_mor B's s's B''s s''s gs)];
396        val concl =
397          HOLogic.mk_Trueprop (mk_mor Bs ss B''s s''s (map2 (curry HOLogic.mk_comp) gs fs));
398        val vars = fold (Variable.add_free_names lthy) (concl :: prems) [];
399      in
400        Goal.prove_sorry lthy vars [] (Logic.list_implies (prems, concl))
401          (fn {context = ctxt, prems = _} => mk_mor_comp_tac ctxt mor_def set_mapss map_comp_id_thms)
402        |> Thm.close_derivation \<^here>
403      end;
404
405    val mor_cong_thm =
406      let
407        val prems = map HOLogic.mk_Trueprop
408         (map2 (curry HOLogic.mk_eq) fs_copy fs @ [mk_mor Bs ss B's s's fs])
409        val concl = HOLogic.mk_Trueprop (mk_mor Bs ss B's s's fs_copy);
410        val vars = fold (Variable.add_free_names lthy) (concl :: prems) [];
411      in
412        Goal.prove_sorry lthy vars [] (Logic.list_implies (prems, concl))
413          (fn {context = ctxt, prems = _} => (hyp_subst_tac ctxt THEN' assume_tac ctxt) 1)
414        |> Thm.close_derivation \<^here>
415      end;
416
417    val mor_str_thm =
418      let
419        val maps = map2 (fn Ds => fn bnf => Term.list_comb
420          (mk_map_of_bnf Ds (passiveAs @ FTsAs) allAs bnf, passive_ids @ ss)) Dss bnfs;
421        val goal = HOLogic.mk_Trueprop
422          (mk_mor (map HOLogic.mk_UNIV FTsAs) maps active_UNIVs ss ss);
423        val vars = Variable.add_free_names lthy goal [];
424      in
425        Goal.prove_sorry lthy vars [] goal
426          (fn {context = ctxt, prems = _} => mk_mor_str_tac ctxt ks mor_def)
427        |> Thm.close_derivation \<^here>
428      end;
429
430    val mor_UNIV_thm =
431      let
432        fun mk_conjunct mapAsBs f s s' = HOLogic.mk_eq
433            (HOLogic.mk_comp (f, s),
434            HOLogic.mk_comp (s', Term.list_comb (mapAsBs, passive_ids @ fs)));
435        val lhs = mk_mor active_UNIVs ss (map HOLogic.mk_UNIV activeBs) s's fs;
436        val rhs = Library.foldr1 HOLogic.mk_conj (@{map 4} mk_conjunct mapsAsBs fs ss s's);
437        val vars = fold (Variable.add_free_names lthy) [lhs, rhs] [];
438      in
439        Goal.prove_sorry lthy vars [] (mk_Trueprop_eq (lhs, rhs))
440          (fn {context = ctxt, prems = _} => mk_mor_UNIV_tac ctxt m morE_thms mor_def)
441        |> Thm.close_derivation \<^here>
442      end;
443
444    val timer = time (timer "Morphism definition & thms");
445
446    (* bounds *)
447
448    val sum_bd = Library.foldr1 (uncurry mk_csum) bds;
449    val sum_bdT = fst (dest_relT (fastype_of sum_bd));
450    val (sum_bdT_params, sum_bdT_params') = `(map TFree) (Term.add_tfreesT sum_bdT []);
451
452    val (lthy, sbd, sbd_Cinfinite, sbd_Card_order, set_sbdss, in_sbds) =
453      if n = 1
454      then (lthy, sum_bd, bd_Cinfinite, bd_Card_order, set_bdss, in_bds)
455      else
456        let
457          val sbdT_bind = mk_internal_b sum_bdTN;
458
459          val ((sbdT_name, (sbdT_glob_info, sbdT_loc_info)), lthy) =
460            typedef (sbdT_bind, sum_bdT_params', NoSyn)
461              (HOLogic.mk_UNIV sum_bdT) NONE (fn ctxt =>
462                EVERY' [rtac ctxt exI, rtac ctxt UNIV_I] 1) lthy;
463
464          val sbdT = Type (sbdT_name, sum_bdT_params);
465          val Abs_sbdT = Const (#Abs_name sbdT_glob_info, sum_bdT --> sbdT);
466
467          val sbd_bind = mk_internal_b sum_bdN;
468          val sbd_def_bind = (Thm.def_binding sbd_bind, []);
469
470          val sbd_spec = mk_dir_image sum_bd Abs_sbdT;
471
472          val ((sbd_free, (_, sbd_def_free)), (lthy, lthy_old)) =
473            lthy
474            |> Local_Theory.open_target |> snd
475            |> Local_Theory.define ((sbd_bind, NoSyn), (sbd_def_bind, sbd_spec))
476            ||> `Local_Theory.close_target;
477
478          val phi = Proof_Context.export_morphism lthy_old lthy;
479
480          val sbd_def = HOLogic.mk_obj_eq (Morphism.thm phi sbd_def_free);
481          val sbd = Const (fst (Term.dest_Const (Morphism.term phi sbd_free)), mk_relT (`I sbdT));
482
483          val Abs_sbdT_inj = mk_Abs_inj_thm (#Abs_inject sbdT_loc_info);
484
485          val sum_Cinfinite = mk_sum_Cinfinite bd_Cinfinites;
486          val sum_Card_order = sum_Cinfinite RS conjunct2;
487
488          val sbd_ordIso = @{thm ssubst_Pair_rhs} OF
489            [@{thm dir_image} OF [Abs_sbdT_inj, sum_Card_order], sbd_def];
490          val sbd_Cinfinite = @{thm Cinfinite_cong} OF [sbd_ordIso, sum_Cinfinite];
491          val sbd_Card_order = sbd_Cinfinite RS conjunct2;
492
493          fun mk_set_sbd i bd_Card_order bds =
494            map (fn thm => @{thm ordLeq_ordIso_trans} OF
495              [bd_Card_order RS mk_ordLeq_csum n i thm, sbd_ordIso]) bds;
496          val set_sbdss = @{map 3} mk_set_sbd ks bd_Card_orders set_bdss;
497
498          fun mk_in_bd_sum i Co Cnz bd =
499            Cnz RS ((@{thm ordLeq_ordIso_trans} OF
500              [Co RS mk_ordLeq_csum n i (Co RS @{thm ordLeq_refl}), sbd_ordIso]) RS
501              (bd RS @{thm ordLeq_transitive[OF _ cexp_mono2_Cnotzero[OF _ Card_order_csum]]}));
502          val in_sbds = @{map 4} mk_in_bd_sum ks bd_Card_orders bd_Cnotzeros in_bds;
503       in
504         (lthy, sbd, sbd_Cinfinite, sbd_Card_order, set_sbdss, in_sbds)
505       end;
506
507    val sbd_Cnotzero = sbd_Cinfinite RS @{thm Cinfinite_Cnotzero};
508    val suc_bd = mk_cardSuc sbd;
509
510    val field_suc_bd = mk_Field suc_bd;
511    val suc_bdT = fst (dest_relT (fastype_of suc_bd));
512    fun mk_Asuc_bd [] = mk_cexp ctwo suc_bd
513      | mk_Asuc_bd As =
514        mk_cexp (mk_csum (Library.foldr1 (uncurry mk_csum) (map mk_card_of As)) ctwo) suc_bd;
515
516    val suc_bd_Card_order =  sbd_Card_order RS @{thm cardSuc_Card_order};
517    val suc_bd_Cinfinite = sbd_Cinfinite RS @{thm Cinfinite_cardSuc};
518    val suc_bd_Cnotzero = suc_bd_Cinfinite RS @{thm Cinfinite_Cnotzero};
519    val suc_bd_worel = suc_bd_Card_order RS @{thm Card_order_wo_rel}
520    val basis_Asuc = if m = 0 then @{thm ordLeq_refl[OF Card_order_ctwo]}
521        else @{thm ordLeq_csum2[OF Card_order_ctwo]};
522    val Asuc_bd_Cinfinite = suc_bd_Cinfinite RS (basis_Asuc RS @{thm Cinfinite_cexp});
523
524    val suc_bd_Asuc_bd = @{thm ordLess_ordLeq_trans[OF ordLess_ctwo_cexp cexp_mono1]} OF
525      [suc_bd_Card_order, basis_Asuc, suc_bd_Card_order];
526
527
528    val Asuc_bd = mk_Asuc_bd passive_UNIVs;
529    val Asuc_bdT = fst (dest_relT (fastype_of Asuc_bd));
530    val II_BTs = replicate n (HOLogic.mk_setT Asuc_bdT);
531    val II_sTs = map2 (fn Ds => fn bnf =>
532      mk_T_of_bnf Ds (passiveAs @ replicate n Asuc_bdT) bnf --> Asuc_bdT) Dss bnfs;
533
534    val ((((((Bs, ss), idxs), Asi_name), (idx, idx')), (jdx, jdx')), _) =
535      lthy
536      |> mk_Frees "B" BTs
537      ||>> mk_Frees "s" sTs
538      ||>> mk_Frees "i" (replicate n suc_bdT)
539      ||>> (fn ctxt => apfst the_single (mk_fresh_names ctxt 1 "Asi"))
540      ||>> yield_singleton (apfst (op ~~) oo mk_Frees' "i") suc_bdT
541      ||>> yield_singleton (apfst (op ~~) oo mk_Frees' "j") suc_bdT;
542
543    val suc_bd_limit_thm =
544      let
545        val prem = HOLogic.mk_Trueprop (Library.foldr1 HOLogic.mk_conj
546          (map (fn idx => HOLogic.mk_mem (idx, field_suc_bd)) idxs));
547        fun mk_conjunct idx = HOLogic.mk_conj (mk_not_eq idx jdx,
548          HOLogic.mk_mem (HOLogic.mk_prod (idx, jdx), suc_bd));
549        val concl = HOLogic.mk_Trueprop (mk_Bex field_suc_bd
550          (Term.absfree jdx' (Library.foldr1 HOLogic.mk_conj (map mk_conjunct idxs))));
551        val vars = fold (Variable.add_free_names lthy) [prem, concl] [];
552      in
553        Goal.prove_sorry lthy vars [] (Logic.list_implies ([prem], concl))
554          (fn {context = ctxt, prems = _} => mk_bd_limit_tac ctxt n suc_bd_Cinfinite)
555        |> Thm.close_derivation \<^here>
556      end;
557
558    val timer = time (timer "Bounds");
559
560    (* minimal algebra *)
561
562    fun mk_minG Asi i k = mk_UNION (mk_underS suc_bd $ i)
563      (Term.absfree jdx' (mk_nthN n (Asi $ jdx) k));
564
565    fun mk_minH_component Asi i sets Ts s k =
566      HOLogic.mk_binop \<^const_name>\<open>sup\<close>
567      (mk_minG Asi i k, mk_image s $ mk_in (passive_UNIVs @ map (mk_minG Asi i) ks) sets Ts);
568
569    fun mk_min_algs ss =
570      let
571        val BTs = map (range_type o fastype_of) ss;
572        val Ts = passiveAs @ BTs;
573        val (Asi, Asi') = `Free (Asi_name, suc_bdT -->
574          Library.foldr1 HOLogic.mk_prodT (map HOLogic.mk_setT BTs));
575      in
576         mk_worec suc_bd (Term.absfree Asi' (Term.absfree idx' (HOLogic.mk_tuple
577           (@{map 4} (mk_minH_component Asi idx) (mk_setss Ts) (mk_FTs Ts) ss ks))))
578      end;
579
580    val (min_algs_thms, min_algs_mono_thms, card_of_min_algs_thm, least_min_algs_thm) =
581      let
582        val i_field = HOLogic.mk_mem (idx, field_suc_bd);
583        val min_algs = mk_min_algs ss;
584
585        val min_algss = map (fn k => mk_nthN n (min_algs $ idx) k) ks;
586
587        val concl = HOLogic.mk_Trueprop
588          (HOLogic.mk_eq (min_algs $ idx, HOLogic.mk_tuple
589            (@{map 4} (mk_minH_component min_algs idx) setssAs FTsAs ss ks)));
590        val goal = Logic.mk_implies (HOLogic.mk_Trueprop i_field, concl);
591        val vars = Variable.add_free_names lthy goal [];
592
593        val min_algs_thm = Goal.prove_sorry lthy vars [] goal
594          (fn {context = ctxt, prems = _} => mk_min_algs_tac ctxt suc_bd_worel in_cong'_thms)
595          |> Thm.close_derivation \<^here>;
596
597        val min_algs_thms = map (fn k => min_algs_thm RS mk_nthI n k) ks;
598
599        fun mk_mono_goal min_alg =
600          HOLogic.mk_Trueprop (mk_relChain suc_bd (Term.absfree idx' min_alg));
601
602        val monos =
603          map2 (fn goal => fn min_algs =>
604            Variable.add_free_names lthy goal []
605            |> (fn vars => Goal.prove_sorry lthy vars [] goal
606              (fn {context = ctxt, prems = _} => mk_min_algs_mono_tac ctxt min_algs))
607            |> Thm.close_derivation \<^here>)
608          (map mk_mono_goal min_algss) min_algs_thms;
609
610        fun mk_card_conjunct min_alg = mk_ordLeq (mk_card_of min_alg) Asuc_bd;
611        val card_conjunction = Library.foldr1 HOLogic.mk_conj (map mk_card_conjunct min_algss);
612        val card_cT = Thm.ctyp_of lthy suc_bdT;
613        val card_ct = Thm.cterm_of lthy (Term.absfree idx' card_conjunction);
614
615        val card_of =
616          let
617            val goal = HOLogic.mk_Trueprop (HOLogic.mk_imp (i_field, card_conjunction));
618            val vars = Variable.add_free_names lthy goal [];
619          in
620            Goal.prove_sorry lthy vars [] goal
621              (fn {context = ctxt, prems = _} => mk_min_algs_card_of_tac ctxt card_cT card_ct
622                m suc_bd_worel min_algs_thms in_sbds
623                sbd_Card_order sbd_Cnotzero suc_bd_Card_order suc_bd_Cinfinite suc_bd_Cnotzero
624                suc_bd_Asuc_bd Asuc_bd_Cinfinite)
625            |> Thm.close_derivation \<^here>
626          end;
627
628        val least_prem = HOLogic.mk_Trueprop (mk_alg Bs ss);
629        val least_conjunction = Library.foldr1 HOLogic.mk_conj (map2 mk_leq min_algss Bs);
630        val least_cT = Thm.ctyp_of lthy suc_bdT;
631        val least_ct = Thm.cterm_of lthy (Term.absfree idx' least_conjunction);
632
633        val least =
634          let
635            val goal = Logic.mk_implies (least_prem,
636              HOLogic.mk_Trueprop (HOLogic.mk_imp (i_field, least_conjunction)));
637            val vars = Variable.add_free_names lthy goal [];
638          in
639            Goal.prove_sorry lthy vars [] goal
640              (fn {context = ctxt, prems = _} => mk_min_algs_least_tac ctxt least_cT least_ct
641                suc_bd_worel min_algs_thms alg_set_thms)
642            |> Thm.close_derivation \<^here>
643          end;
644      in
645        (min_algs_thms, monos, card_of, least)
646      end;
647
648    val timer = time (timer "min_algs definition & thms");
649
650    val min_alg_binds = mk_internal_bs min_algN;
651    fun min_alg_bind i = nth min_alg_binds (i - 1);
652    val min_alg_def_bind = rpair [] o Thm.def_binding o min_alg_bind;
653
654    fun min_alg_spec i =
655      let
656        val rhs = mk_UNION (field_suc_bd)
657          (Term.absfree idx' (mk_nthN n (mk_min_algs ss $ idx) i));
658      in
659        fold_rev (Term.absfree o Term.dest_Free) ss rhs
660      end;
661
662    val ((min_alg_frees, (_, min_alg_def_frees)), (lthy, lthy_old)) =
663      lthy
664      |> Local_Theory.open_target |> snd
665      |> fold_map (fn i => Local_Theory.define
666        ((min_alg_bind i, NoSyn), (min_alg_def_bind i, min_alg_spec i))) ks
667      |>> apsnd split_list o split_list
668      ||> `Local_Theory.close_target;
669
670    val phi = Proof_Context.export_morphism lthy_old lthy;
671    val min_algs = map (fst o Term.dest_Const o Morphism.term phi) min_alg_frees;
672    val min_alg_defs = map (fn def =>
673      mk_unabs_def n (HOLogic.mk_obj_eq (Morphism.thm phi def))) min_alg_def_frees;
674
675    fun mk_min_alg ss i =
676      let
677        val T = HOLogic.mk_setT (range_type (fastype_of (nth ss (i - 1))))
678        val Ts = map fastype_of ss;
679        val min_algT = Library.foldr (op -->) (Ts, T);
680      in
681        Term.list_comb (Const (nth min_algs (i - 1), min_algT), ss)
682      end;
683
684    val min_algs = map (mk_min_alg ss) ks;
685
686    val ((Bs, ss), _) =
687      lthy
688      |> mk_Frees "B" BTs
689      ||>> mk_Frees "s" sTs;
690
691    val (alg_min_alg_thm, card_of_min_alg_thms, least_min_alg_thms, mor_incl_min_alg_thm) =
692      let
693        val alg_min_alg =
694          let
695            val goal = HOLogic.mk_Trueprop (mk_alg min_algs ss);
696            val vars = Variable.add_free_names lthy goal [];
697          in
698            Goal.prove_sorry lthy vars [] goal
699              (fn {context = ctxt, prems = _} => mk_alg_min_alg_tac ctxt m alg_def min_alg_defs
700                suc_bd_limit_thm sbd_Cinfinite set_sbdss min_algs_thms min_algs_mono_thms)
701            |> Thm.close_derivation \<^here>
702          end;
703
704        fun mk_card_of_thm min_alg def =
705          let
706            val goal = HOLogic.mk_Trueprop (mk_ordLeq (mk_card_of min_alg) Asuc_bd);
707            val vars = Variable.add_free_names lthy goal [];
708          in
709            Goal.prove_sorry lthy vars [] goal
710              (fn {context = ctxt, prems = _} => mk_card_of_min_alg_tac ctxt def card_of_min_algs_thm
711                suc_bd_Card_order suc_bd_Asuc_bd Asuc_bd_Cinfinite)
712            |> Thm.close_derivation \<^here>
713          end;
714
715        fun mk_least_thm min_alg B def =
716          let
717            val prem = HOLogic.mk_Trueprop (mk_alg Bs ss);
718            val goal = Logic.mk_implies (prem, HOLogic.mk_Trueprop (mk_leq min_alg B));
719            val vars = Variable.add_free_names lthy goal [];
720          in
721            Goal.prove_sorry lthy vars [] goal
722              (fn {context = ctxt, prems = _} => mk_least_min_alg_tac ctxt def least_min_algs_thm)
723            |> Thm.close_derivation \<^here>
724          end;
725
726        val leasts = @{map 3} mk_least_thm min_algs Bs min_alg_defs;
727
728        val incl =
729          let
730            val prem = HOLogic.mk_Trueprop (mk_alg Bs ss);
731            val goal = Logic.mk_implies (prem,
732              HOLogic.mk_Trueprop (mk_mor min_algs ss Bs ss active_ids));
733            val vars = Variable.add_free_names lthy goal [];
734          in
735            Goal.prove_sorry lthy vars [] goal
736              (fn {context = ctxt, prems = _} =>
737                EVERY' (rtac ctxt mor_incl_thm :: map (etac ctxt) leasts) 1)
738            |> Thm.close_derivation \<^here>
739          end;
740      in
741        (alg_min_alg, map2 mk_card_of_thm min_algs min_alg_defs, leasts, incl)
742      end;
743
744    val timer = time (timer "Minimal algebra definition & thms");
745
746    val II_repT = HOLogic.mk_prodT (HOLogic.mk_tupleT II_BTs, HOLogic.mk_tupleT II_sTs);
747    val IIT_bind = mk_internal_b IITN;
748
749    val ((IIT_name, (IIT_glob_info, IIT_loc_info)), lthy) =
750      typedef (IIT_bind, params, NoSyn)
751        (HOLogic.mk_UNIV II_repT) NONE (fn ctxt => EVERY' [rtac ctxt exI, rtac ctxt UNIV_I] 1) lthy;
752
753    val IIT = Type (IIT_name, params');
754    val Abs_IIT = Const (#Abs_name IIT_glob_info, II_repT --> IIT);
755    val Rep_IIT = Const (#Rep_name IIT_glob_info, IIT --> II_repT);
756    val Abs_IIT_inverse_thm = UNIV_I RS #Abs_inverse IIT_loc_info;
757
758    val initT = IIT --> Asuc_bdT;
759    val active_initTs = replicate n initT;
760    val init_FTs = map2 (fn Ds => mk_T_of_bnf Ds (passiveAs @ active_initTs)) Dss bnfs;
761    val init_fTs = map (fn T => initT --> T) activeAs;
762
763    val ((((II_Bs, II_ss), (iidx, iidx')), init_xFs), _) =
764      lthy
765      |> mk_Frees "IIB" II_BTs
766      ||>> mk_Frees "IIs" II_sTs
767      ||>> yield_singleton (apfst (op ~~) oo mk_Frees' "i") IIT
768      ||>> mk_Frees "x" init_FTs;
769
770    val II = HOLogic.mk_Collect (fst iidx', IIT, list_exists_free (II_Bs @ II_ss)
771      (HOLogic.mk_conj (HOLogic.mk_eq (iidx,
772        Abs_IIT $ (HOLogic.mk_prod (HOLogic.mk_tuple II_Bs, HOLogic.mk_tuple II_ss))),
773        mk_alg II_Bs II_ss)));
774
775    val select_Bs = map (mk_nthN n (HOLogic.mk_fst (Rep_IIT $ iidx))) ks;
776    val select_ss = map (mk_nthN n (HOLogic.mk_snd (Rep_IIT $ iidx))) ks;
777
778    val str_init_binds = mk_internal_bs str_initN;
779    fun str_init_bind i = nth str_init_binds (i - 1);
780    val str_init_def_bind = rpair [] o Thm.def_binding o str_init_bind;
781
782    fun str_init_spec i =
783      let
784        val init_xF = nth init_xFs (i - 1)
785        val select_s = nth select_ss (i - 1);
786        val map = mk_map_of_bnf (nth Dss (i - 1))
787          (passiveAs @ active_initTs) (passiveAs @ replicate n Asuc_bdT)
788          (nth bnfs (i - 1));
789        val map_args = passive_ids @ replicate n (mk_rapp iidx Asuc_bdT);
790        val rhs = select_s $ (Term.list_comb (map, map_args) $ init_xF);
791      in
792        fold_rev (Term.absfree o Term.dest_Free) [init_xF, iidx] rhs
793      end;
794
795    val ((str_init_frees, (_, str_init_def_frees)), (lthy, lthy_old)) =
796      lthy
797      |> Local_Theory.open_target |> snd
798      |> fold_map (fn i => Local_Theory.define
799        ((str_init_bind i, NoSyn), (str_init_def_bind i, str_init_spec i))) ks
800      |>> apsnd split_list o split_list
801      ||> `Local_Theory.close_target;
802
803    val phi = Proof_Context.export_morphism lthy_old lthy;
804    val str_inits =
805      map (Term.subst_atomic_types (map (`(Morphism.typ phi)) params') o Morphism.term phi)
806        str_init_frees;
807
808    val str_init_defs = map (fn def =>
809      mk_unabs_def 2 (HOLogic.mk_obj_eq (Morphism.thm phi def))) str_init_def_frees;
810
811    val car_inits = map (mk_min_alg str_inits) ks;
812
813    val (((((((((Bs, ss), Asuc_fs), (iidx, iidx')), init_xs), (init_xFs, init_xFs')), init_fs),
814        init_fs_copy), init_phis), _) =
815      lthy
816      |> mk_Frees "B" BTs
817      ||>> mk_Frees "s" sTs
818      ||>> mk_Frees "f" (map (fn T => Asuc_bdT --> T) activeAs)
819      ||>> yield_singleton (apfst (op ~~) oo mk_Frees' "i") IIT
820      ||>> mk_Frees "ix" active_initTs
821      ||>> mk_Frees' "x" init_FTs
822      ||>> mk_Frees "f" init_fTs
823      ||>> mk_Frees "f" init_fTs
824      ||>> mk_Frees "P" (replicate n (mk_pred1T initT));
825
826    val alg_init_thm =
827      infer_instantiate' lthy (map (SOME o Thm.cterm_of lthy) str_inits) alg_min_alg_thm;
828
829    val alg_select_thm = Goal.prove_sorry lthy [] []
830      (HOLogic.mk_Trueprop (mk_Ball II
831        (Term.absfree iidx' (mk_alg select_Bs select_ss))))
832      (fn {context = ctxt, prems = _} => mk_alg_select_tac ctxt Abs_IIT_inverse_thm)
833      |> Thm.close_derivation \<^here>;
834
835    val mor_select_thm =
836      let
837        val i_prem = mk_Trueprop_mem (iidx, II);
838        val mor_prem = HOLogic.mk_Trueprop (mk_mor select_Bs select_ss active_UNIVs ss Asuc_fs);
839        val prems = [i_prem, mor_prem];
840        val concl = HOLogic.mk_Trueprop
841          (mk_mor car_inits str_inits active_UNIVs ss
842            (map (fn f => HOLogic.mk_comp (f, mk_rapp iidx Asuc_bdT)) Asuc_fs));
843        val vars = fold (Variable.add_free_names lthy) (concl :: prems) [];
844      in
845        Goal.prove_sorry lthy vars [] (Logic.list_implies (prems, concl))
846          (fn {context = ctxt, prems = _} => mk_mor_select_tac ctxt mor_def mor_cong_thm
847            mor_comp_thm mor_incl_min_alg_thm alg_def alg_select_thm alg_set_thms set_mapss
848            str_init_defs)
849        |> Thm.close_derivation \<^here>
850      end;
851
852    val init_unique_mor_thms =
853      let
854        val prems = map2 (HOLogic.mk_Trueprop oo curry HOLogic.mk_mem) init_xs car_inits
855        val mor_prems = map HOLogic.mk_Trueprop
856          [mk_mor car_inits str_inits Bs ss init_fs,
857          mk_mor car_inits str_inits Bs ss init_fs_copy];
858        fun mk_fun_eq f g x = HOLogic.mk_eq (f $ x, g $ x);
859        val unique = HOLogic.mk_Trueprop
860          (Library.foldr1 HOLogic.mk_conj (@{map 3} mk_fun_eq init_fs init_fs_copy init_xs));
861        val cts = map (Thm.cterm_of lthy) ss;
862        val all_prems = prems @ mor_prems;
863        val vars = fold (Variable.add_free_names lthy) (unique :: all_prems) [];
864        val unique_mor =
865          Goal.prove_sorry lthy vars [] (Logic.list_implies (all_prems, unique))
866            (fn {context = ctxt, prems = _} => mk_init_unique_mor_tac ctxt cts m alg_def
867              alg_init_thm least_min_alg_thms in_mono'_thms alg_set_thms morE_thms map_cong0s)
868          |> Thm.close_derivation \<^here>;
869      in
870        split_conj_thm unique_mor
871      end;
872
873    val init_setss = mk_setss (passiveAs @ active_initTs);
874    val active_init_setss = map (drop m) init_setss;
875    val init_ins = map2 (fn sets => mk_in (passive_UNIVs @ car_inits) sets) init_setss init_FTs;
876
877    fun mk_closed phis =
878      let
879        fun mk_conjunct phi str_init init_sets init_in x x' =
880          let
881            val prem = Library.foldr1 HOLogic.mk_conj
882              (map2 (fn set => mk_Ball (set $ x)) init_sets phis);
883            val concl = phi $ (str_init $ x);
884          in
885            mk_Ball init_in (Term.absfree x' (HOLogic.mk_imp (prem, concl)))
886          end;
887      in
888        Library.foldr1 HOLogic.mk_conj
889          (@{map 6} mk_conjunct phis str_inits active_init_setss init_ins init_xFs init_xFs')
890      end;
891
892    val init_induct_thm =
893      let
894        val prem = HOLogic.mk_Trueprop (mk_closed init_phis);
895        val concl = HOLogic.mk_Trueprop (Library.foldr1 HOLogic.mk_conj
896          (map2 mk_Ball car_inits init_phis));
897        val vars = fold (Variable.add_free_names lthy) [concl, prem] [];
898      in
899        Goal.prove_sorry lthy vars [] (Logic.mk_implies (prem, concl))
900          (fn {context = ctxt, prems = _} => mk_init_induct_tac ctxt m alg_def alg_init_thm
901            least_min_alg_thms alg_set_thms)
902        |> Thm.close_derivation \<^here>
903      end;
904
905    val timer = time (timer "Initiality definition & thms");
906
907    val ((T_names, (T_glob_infos, T_loc_infos)), lthy) =
908      lthy
909      |> @{fold_map 3} (fn b => fn mx => fn car_init =>
910        typedef (b, params, mx) car_init NONE
911          (fn ctxt =>
912            EVERY' [rtac ctxt iffD2, rtac ctxt @{thm ex_in_conv}, resolve_tac ctxt alg_not_empty_thms,
913            rtac ctxt alg_init_thm] 1)) bs mixfixes car_inits
914      |>> apsnd split_list o split_list;
915
916    val Ts = map (fn name => Type (name, params')) T_names;
917    fun mk_Ts passive = map (Term.typ_subst_atomic (passiveAs ~~ passive)) Ts;
918    val Ts' = mk_Ts passiveBs;
919    val Rep_Ts = map2 (fn info => fn T => Const (#Rep_name info, T --> initT)) T_glob_infos Ts;
920    val Abs_Ts = map2 (fn info => fn T => Const (#Abs_name info, initT --> T)) T_glob_infos Ts;
921
922    val type_defs = map #type_definition T_loc_infos;
923    val Reps = map #Rep T_loc_infos;
924    val Rep_inverses = map #Rep_inverse T_loc_infos;
925    val Abs_inverses = map #Abs_inverse T_loc_infos;
926
927    val timer = time (timer "THE TYPEDEFs & Rep/Abs thms");
928
929    val UNIVs = map HOLogic.mk_UNIV Ts;
930    val FTs = mk_FTs (passiveAs @ Ts);
931    val FTs' = mk_FTs (passiveBs @ Ts');
932    fun mk_set_Ts T = passiveAs @ replicate n (HOLogic.mk_setT T);
933    val setFTss = map (mk_FTs o mk_set_Ts) passiveAs;
934    val FTs_setss = mk_setss (passiveAs @ Ts);
935    val FTs'_setss = mk_setss (passiveBs @ Ts');
936    val map_FT_inits = map2 (fn Ds =>
937      mk_map_of_bnf Ds (passiveAs @ Ts) (passiveAs @ active_initTs)) Dss bnfs;
938    val fTs = map2 (curry op -->) Ts activeAs;
939    val foldT = Library.foldr1 HOLogic.mk_prodT (map2 (curry op -->) Ts activeAs);
940
941    val ((ss, (fold_f, fold_f')), _) =
942      lthy
943      |> mk_Frees "s" sTs
944      ||>> yield_singleton (apfst (op ~~) oo mk_Frees' "f") foldT;
945
946    fun ctor_bind i = nth external_bs (i - 1) |> Binding.prefix_name (ctorN ^ "_");
947    val ctor_def_bind = rpair [] o Binding.concealed o Thm.def_binding o ctor_bind;
948
949    fun ctor_spec abs str map_FT_init =
950      Library.foldl1 HOLogic.mk_comp [abs, str,
951        Term.list_comb (map_FT_init, map HOLogic.id_const passiveAs @ Rep_Ts)];
952
953    val ((ctor_frees, (_, ctor_def_frees)), (lthy, lthy_old)) =
954      lthy
955      |> Local_Theory.open_target |> snd
956      |> @{fold_map 4} (fn i => fn abs => fn str => fn mapx =>
957        Local_Theory.define
958          ((ctor_bind i, NoSyn), (ctor_def_bind i, ctor_spec abs str mapx)))
959          ks Abs_Ts str_inits map_FT_inits
960      |>> apsnd split_list o split_list
961      ||> `Local_Theory.close_target;
962
963    val phi = Proof_Context.export_morphism lthy_old lthy;
964    fun mk_ctors passive =
965      map (Term.subst_atomic_types (map (Morphism.typ phi) params' ~~ (mk_params passive)) o
966        Morphism.term phi) ctor_frees;
967    val ctors = mk_ctors passiveAs;
968    val ctor's = mk_ctors passiveBs;
969    val ctor_defs = map (fn def => HOLogic.mk_obj_eq (Morphism.thm phi def)) ctor_def_frees;
970
971    val (mor_Rep_thm, mor_Abs_thm) =
972      let
973        val defs = mor_def :: ctor_defs;
974
975        val mor_Rep =
976          Goal.prove_sorry lthy [] []
977            (HOLogic.mk_Trueprop (mk_mor UNIVs ctors car_inits str_inits Rep_Ts))
978            (fn {context = ctxt, prems = _} => mk_mor_Rep_tac ctxt m defs Reps Abs_inverses
979              alg_min_alg_thm alg_set_thms set_mapss)
980          |> Thm.close_derivation \<^here>;
981
982        fun mk_ct initFT str abs = Term.absdummy initFT (abs $ (str $ Bound 0))
983        val cts = @{map 3} (Thm.cterm_of lthy ooo mk_ct) init_FTs str_inits Abs_Ts;
984
985        val mor_Abs =
986          Goal.prove_sorry lthy [] []
987            (HOLogic.mk_Trueprop (mk_mor car_inits str_inits UNIVs ctors Abs_Ts))
988            (fn {context = ctxt, prems = _} => mk_mor_Abs_tac ctxt cts defs Abs_inverses
989              map_comp_id_thms map_cong0L_thms)
990          |> Thm.close_derivation \<^here>;
991      in
992        (mor_Rep, mor_Abs)
993      end;
994
995    val timer = time (timer "ctor definitions & thms");
996
997    val fold_fun = Term.absfree fold_f'
998      (mk_mor UNIVs ctors active_UNIVs ss (map (mk_nthN n fold_f) ks));
999    val foldx = HOLogic.choice_const foldT $ fold_fun;
1000
1001    fun fold_bind i = nth external_bs (i - 1) |> Binding.prefix_name (ctor_foldN ^ "_");
1002    val fold_def_bind = rpair [] o Binding.concealed o Thm.def_binding o fold_bind;
1003
1004    fun fold_spec i = fold_rev (Term.absfree o Term.dest_Free) ss (mk_nthN n foldx i);
1005
1006    val ((fold_frees, (_, fold_def_frees)), (lthy, lthy_old)) =
1007      lthy
1008      |> Local_Theory.open_target |> snd
1009      |> fold_map (fn i =>
1010        Local_Theory.define ((fold_bind i, NoSyn), (fold_def_bind i, fold_spec i))) ks
1011      |>> apsnd split_list o split_list
1012      ||> `Local_Theory.close_target;
1013
1014    val phi = Proof_Context.export_morphism lthy_old lthy;
1015    val folds = map (Morphism.term phi) fold_frees;
1016    val fold_names = map (fst o dest_Const) folds;
1017    fun mk_folds passives actives =
1018      @{map 3} (fn name => fn T => fn active =>
1019        Const (name, Library.foldr (op -->)
1020          (map2 (curry op -->) (mk_FTs (passives @ actives)) actives, T --> active)))
1021      fold_names (mk_Ts passives) actives;
1022    fun mk_fold Ts ss i = Term.list_comb (Const (nth fold_names (i - 1), Library.foldr (op -->)
1023      (map fastype_of ss, nth Ts (i - 1) --> range_type (fastype_of (nth ss (i - 1))))), ss);
1024    val fold_defs = map (fn def =>
1025      mk_unabs_def n (HOLogic.mk_obj_eq (Morphism.thm phi def))) fold_def_frees;
1026
1027    (* algebra copies *)
1028
1029    val ((((((Bs, B's), ss), s's), inv_fs), fs), _) =
1030      lthy
1031      |> mk_Frees "B" BTs
1032      ||>> mk_Frees "B'" B'Ts
1033      ||>> mk_Frees "s" sTs
1034      ||>> mk_Frees "s'" s'Ts
1035      ||>> mk_Frees "f" inv_fTs
1036      ||>> mk_Frees "f" fTs;
1037
1038    val copy_thm =
1039      let
1040        val prems = HOLogic.mk_Trueprop (mk_alg Bs ss) ::
1041          @{map 3} (HOLogic.mk_Trueprop ooo mk_bij_betw) inv_fs B's Bs;
1042        val concl = HOLogic.mk_Trueprop (list_exists_free s's
1043          (HOLogic.mk_conj (mk_alg B's s's, mk_mor B's s's Bs ss inv_fs)));
1044        val vars = fold (Variable.add_free_names lthy) (concl :: prems) [];
1045      in
1046        Goal.prove_sorry lthy vars [] (Logic.list_implies (prems, concl))
1047          (fn {context = ctxt, prems = _} => mk_copy_tac ctxt m alg_def mor_def alg_set_thms
1048            set_mapss)
1049        |> Thm.close_derivation \<^here>
1050      end;
1051
1052    val init_ex_mor_thm =
1053      let
1054        val goal = HOLogic.mk_Trueprop
1055          (list_exists_free fs (mk_mor UNIVs ctors active_UNIVs ss fs));
1056        val vars = Variable.add_free_names lthy goal [];
1057      in
1058        Goal.prove_sorry lthy vars [] goal
1059          (fn {context = ctxt, prems = _} =>
1060            mk_init_ex_mor_tac ctxt Abs_IIT_inverse_thm (alg_min_alg_thm RS copy_thm)
1061              card_of_min_alg_thms mor_Rep_thm mor_comp_thm mor_select_thm mor_incl_thm)
1062        |> Thm.close_derivation \<^here>
1063      end;
1064
1065    val mor_fold_thm =
1066      let
1067        val mor_cong = mor_cong_thm OF (map (mk_nth_conv n) ks);
1068        val cT = Thm.ctyp_of lthy foldT;
1069        val ct = Thm.cterm_of lthy fold_fun
1070        val goal = HOLogic.mk_Trueprop (mk_mor UNIVs ctors active_UNIVs ss (map (mk_fold Ts ss) ks));
1071        val vars = Variable.add_free_names lthy goal [];
1072      in
1073        Goal.prove_sorry lthy vars [] goal
1074          (fn {context = ctxt, ...} =>
1075            mk_mor_fold_tac ctxt cT ct fold_defs init_ex_mor_thm mor_cong)
1076        |> Thm.close_derivation \<^here>
1077      end;
1078
1079    val ctor_fold_thms = map (fn morE => rule_by_tactic lthy
1080      ((rtac lthy CollectI THEN' CONJ_WRAP' (K (rtac lthy @{thm subset_UNIV})) (1 upto m + n)) 1)
1081      (mor_fold_thm RS morE)) morE_thms;
1082
1083    val (fold_unique_mor_thms, fold_unique_mor_thm) =
1084      let
1085        val prem = HOLogic.mk_Trueprop (mk_mor UNIVs ctors active_UNIVs ss fs);
1086        fun mk_fun_eq f i = HOLogic.mk_eq (f, mk_fold Ts ss i);
1087        val unique = HOLogic.mk_Trueprop (Library.foldr1 HOLogic.mk_conj (map2 mk_fun_eq fs ks));
1088        val vars = fold (Variable.add_free_names lthy) [prem, unique] [];
1089        val unique_mor = Goal.prove_sorry lthy vars [] (Logic.mk_implies (prem, unique))
1090          (fn {context = ctxt, prems = _} => mk_fold_unique_mor_tac ctxt type_defs
1091            init_unique_mor_thms Reps mor_comp_thm mor_Abs_thm mor_fold_thm)
1092          |> Thm.close_derivation \<^here>;
1093      in
1094        `split_conj_thm unique_mor
1095      end;
1096
1097    val (ctor_fold_unique_thms, ctor_fold_unique_thm) =
1098      `split_conj_thm (mk_conjIN n RS
1099        (mor_UNIV_thm RS iffD2 RS fold_unique_mor_thm))
1100
1101    val fold_ctor_thms =
1102      map (fn thm => (mor_incl_thm OF replicate n @{thm subset_UNIV}) RS thm RS sym)
1103        fold_unique_mor_thms;
1104
1105    val ctor_o_fold_thms =
1106      let
1107        val mor = mor_comp_thm OF [mor_fold_thm, mor_str_thm];
1108      in
1109        map2 (fn unique => fn fold_ctor =>
1110          trans OF [mor RS unique, fold_ctor]) fold_unique_mor_thms fold_ctor_thms
1111      end;
1112
1113    val timer = time (timer "fold definitions & thms");
1114
1115    val map_ctors = map2 (fn Ds => fn bnf =>
1116      Term.list_comb (mk_map_of_bnf Ds (passiveAs @ FTs) (passiveAs @ Ts) bnf,
1117        map HOLogic.id_const passiveAs @ ctors)) Dss bnfs;
1118
1119    fun dtor_bind i = nth external_bs (i - 1) |> Binding.prefix_name (dtorN ^ "_");
1120    val dtor_def_bind = rpair [] o Binding.concealed o Thm.def_binding o dtor_bind;
1121
1122    fun dtor_spec i = mk_fold Ts map_ctors i;
1123
1124    val ((dtor_frees, (_, dtor_def_frees)), (lthy, lthy_old)) =
1125      lthy
1126      |> Local_Theory.open_target |> snd
1127      |> fold_map (fn i =>
1128        Local_Theory.define ((dtor_bind i, NoSyn), (dtor_def_bind i, dtor_spec i))) ks
1129      |>> apsnd split_list o split_list
1130      ||> `Local_Theory.close_target;
1131
1132    val phi = Proof_Context.export_morphism lthy_old lthy;
1133    fun mk_dtors params =
1134      map (Term.subst_atomic_types (map (Morphism.typ phi) params' ~~ params) o Morphism.term phi)
1135        dtor_frees;
1136    val dtors = mk_dtors params';
1137    val dtor_defs = map (fn def => HOLogic.mk_obj_eq (Morphism.thm phi def)) dtor_def_frees;
1138
1139    val ctor_o_dtor_thms = map2 (Local_Defs.fold lthy o single) dtor_defs ctor_o_fold_thms;
1140
1141    val dtor_o_ctor_thms =
1142      let
1143        fun mk_goal dtor ctor FT =
1144          mk_Trueprop_eq (HOLogic.mk_comp (dtor, ctor), HOLogic.id_const FT);
1145        val goals = @{map 3} mk_goal dtors ctors FTs;
1146      in
1147        @{map 5} (fn goal => fn dtor_def => fn foldx => fn map_comp_id => fn map_cong0L =>
1148          Goal.prove_sorry lthy [] [] goal
1149            (fn {context = ctxt, prems = _} => mk_dtor_o_ctor_tac ctxt dtor_def foldx map_comp_id
1150              map_cong0L ctor_o_fold_thms)
1151          |> Thm.close_derivation \<^here>)
1152        goals dtor_defs ctor_fold_thms map_comp_id_thms map_cong0L_thms
1153      end;
1154
1155    val dtor_ctor_thms = map (fn thm => thm RS @{thm pointfree_idE}) dtor_o_ctor_thms;
1156    val ctor_dtor_thms = map (fn thm => thm RS @{thm pointfree_idE}) ctor_o_dtor_thms;
1157
1158    val bij_dtor_thms =
1159      map2 (fn thm1 => fn thm2 => @{thm o_bij} OF [thm1, thm2]) ctor_o_dtor_thms dtor_o_ctor_thms;
1160    val inj_dtor_thms = map (fn thm => thm RS @{thm bij_is_inj}) bij_dtor_thms;
1161    val surj_dtor_thms = map (fn thm => thm RS @{thm bij_is_surj}) bij_dtor_thms;
1162    val dtor_nchotomy_thms = map (fn thm => thm RS @{thm surjD}) surj_dtor_thms;
1163    val dtor_inject_thms = map (fn thm => thm RS @{thm inj_eq}) inj_dtor_thms;
1164    val dtor_exhaust_thms = map (fn thm => thm RS exE) dtor_nchotomy_thms;
1165
1166    val bij_ctor_thms =
1167      map2 (fn thm1 => fn thm2 => @{thm o_bij} OF [thm1, thm2]) dtor_o_ctor_thms ctor_o_dtor_thms;
1168    val inj_ctor_thms = map (fn thm => thm RS @{thm bij_is_inj}) bij_ctor_thms;
1169    val surj_ctor_thms = map (fn thm => thm RS @{thm bij_is_surj}) bij_ctor_thms;
1170    val ctor_nchotomy_thms = map (fn thm => thm RS @{thm surjD}) surj_ctor_thms;
1171    val ctor_inject_thms = map (fn thm => thm RS @{thm inj_eq}) inj_ctor_thms;
1172    val ctor_exhaust_thms = map (fn thm => thm RS exE) ctor_nchotomy_thms;
1173
1174    val timer = time (timer "dtor definitions & thms");
1175
1176    val (((((((Izs, (Izs1, Izs1'))), (Izs2, Izs2')), xFs), yFs), init_phis), _) =
1177      lthy
1178      |> mk_Frees "z" Ts
1179      ||>> mk_Frees' "z1" Ts
1180      ||>> mk_Frees' "z2" Ts'
1181      ||>> mk_Frees "x" FTs
1182      ||>> mk_Frees "y" FTs'
1183      ||>> mk_Frees "P" (replicate n (mk_pred1T initT));
1184
1185    val phis = map2 retype_const_or_free (map mk_pred1T Ts) init_phis;
1186    val phi2s = map2 retype_const_or_free (map2 mk_pred2T Ts Ts') init_phis;
1187
1188    val (ctor_induct_thm, induct_params) =
1189      let
1190        fun mk_prem phi ctor sets x =
1191          let
1192            fun mk_IH phi set z =
1193              let
1194                val prem = mk_Trueprop_mem (z, set $ x);
1195                val concl = HOLogic.mk_Trueprop (phi $ z);
1196              in
1197                Logic.all z (Logic.mk_implies (prem, concl))
1198              end;
1199
1200            val IHs = @{map 3} mk_IH phis (drop m sets) Izs;
1201            val concl = HOLogic.mk_Trueprop (phi $ (ctor $ x));
1202          in
1203            Logic.all x (Logic.list_implies (IHs, concl))
1204          end;
1205
1206        val prems = @{map 4} mk_prem phis ctors FTs_setss xFs;
1207
1208        fun mk_concl phi z = phi $ z;
1209        val concl = HOLogic.mk_Trueprop (Library.foldr1 HOLogic.mk_conj (map2 mk_concl phis Izs));
1210
1211        val goal = Logic.list_implies (prems, concl);
1212        val vars = Variable.add_free_names lthy goal [];
1213      in
1214        (Goal.prove_sorry lthy vars [] goal
1215          (fn {context = ctxt, prems = _} =>
1216            mk_ctor_induct_tac ctxt m set_mapss init_induct_thm morE_thms mor_Abs_thm
1217            Rep_inverses Abs_inverses Reps)
1218        |> Thm.close_derivation \<^here>,
1219        rev (Term.add_tfrees goal []))
1220      end;
1221
1222    val cTs = map (SOME o Thm.ctyp_of lthy o TFree) induct_params;
1223
1224    val weak_ctor_induct_thms =
1225      let fun insts i = (replicate (i - 1) TrueI) @ (asm_rl :: replicate (n - i) TrueI);
1226      in map (fn i => (ctor_induct_thm OF insts i) RS mk_conjunctN n i) ks end;
1227
1228    val (ctor_induct2_thm, induct2_params) =
1229      let
1230        fun mk_prem phi ctor ctor' sets sets' x y =
1231          let
1232            fun mk_IH phi set set' z1 z2 =
1233              let
1234                val prem1 = mk_Trueprop_mem (z1, (set $ x));
1235                val prem2 = mk_Trueprop_mem (z2, (set' $ y));
1236                val concl = HOLogic.mk_Trueprop (phi $ z1 $ z2);
1237              in
1238                fold_rev Logic.all [z1, z2] (Logic.list_implies ([prem1, prem2], concl))
1239              end;
1240
1241            val IHs = @{map 5} mk_IH phi2s (drop m sets) (drop m sets') Izs1 Izs2;
1242            val concl = HOLogic.mk_Trueprop (phi $ (ctor $ x) $ (ctor' $ y));
1243          in
1244            fold_rev Logic.all [x, y] (Logic.list_implies (IHs, concl))
1245          end;
1246
1247        val prems = @{map 7} mk_prem phi2s ctors ctor's FTs_setss FTs'_setss xFs yFs;
1248
1249        fun mk_concl phi z1 z2 = phi $ z1 $ z2;
1250        val concl = HOLogic.mk_Trueprop (Library.foldr1 HOLogic.mk_conj
1251          (@{map 3} mk_concl phi2s Izs1 Izs2));
1252        fun mk_t phi (z1, z1') (z2, z2') =
1253          Term.absfree z1' (HOLogic.mk_all (fst z2', snd z2', phi $ z1 $ z2));
1254        val cts = @{map 3} (SOME o Thm.cterm_of lthy ooo mk_t) phi2s (Izs1 ~~ Izs1') (Izs2 ~~ Izs2');
1255        val goal = Logic.list_implies (prems, concl);
1256        val vars = Variable.add_free_names lthy goal [];
1257      in
1258        (Goal.prove_sorry lthy vars [] goal
1259          (fn {context = ctxt, prems = _} => mk_ctor_induct2_tac ctxt cTs cts ctor_induct_thm
1260            weak_ctor_induct_thms)
1261        |> Thm.close_derivation \<^here>,
1262        rev (Term.add_tfrees goal []))
1263      end;
1264
1265    val timer = time (timer "induction");
1266
1267    fun mk_ctor_map_DEADID_thm ctor_inject map_id0 =
1268      trans OF [id_apply, iffD2 OF [ctor_inject, map_id0 RS sym]];
1269
1270    fun mk_ctor_map_unique_DEADID_thm () =
1271      let
1272        val (funs, algs) =
1273          HOLogic.conjuncts (HOLogic.dest_Trueprop (Thm.concl_of ctor_fold_unique_thm))
1274          |> map_split HOLogic.dest_eq
1275          ||>  snd o strip_comb o hd
1276          |> @{apply 2} (map (fst o dest_Var));
1277        fun mk_fun_insts T ix = Thm.cterm_of lthy (Var (ix, T --> T));
1278        val theta =
1279          (funs ~~ @{map 2} mk_fun_insts Ts funs) @ (algs ~~ map (Thm.cterm_of lthy) ctors);
1280        val ctor_fold_ctors = (ctor_fold_unique_thm OF
1281          map (fn thm => mk_trans @{thm id_o} (mk_sym (thm RS
1282            @{thm trans[OF arg_cong2[of _ _ _ _ "(\<circ>)", OF refl] o_id]}))) map_id0s)
1283          |> split_conj_thm |> map mk_sym;
1284      in
1285        infer_instantiate lthy theta ctor_fold_unique_thm
1286        |> unfold_thms lthy ctor_fold_ctors
1287        |> Morphism.thm (Local_Theory.target_morphism lthy)
1288      end;
1289
1290    fun mk_ctor_Irel_DEADID_thm ctor_inject bnf =
1291      trans OF [ctor_inject, rel_eq_of_bnf bnf RS @{thm predicate2_eqD} RS sym];
1292
1293    val IphiTs = map2 mk_pred2T passiveAs passiveBs;
1294    val Ipsi1Ts = map2 mk_pred2T passiveAs passiveCs;
1295    val Ipsi2Ts = map2 mk_pred2T passiveCs passiveBs;
1296    val activephiTs = map2 mk_pred2T activeAs activeBs;
1297    val activeIphiTs = map2 mk_pred2T Ts Ts';
1298
1299    val rels = map2 (fn Ds => mk_rel_of_bnf Ds (passiveAs @ Ts) (passiveBs @ Ts')) Dss bnfs;
1300
1301    (*register new datatypes as BNFs*)
1302    val (timer, Ibnfs, (ctor_Imap_o_thms, ctor_Imap_thms), ctor_Imap_unique_thm, ctor_Iset_thmss',
1303        ctor_Irel_thms, Ibnf_notes, lthy) =
1304      if m = 0 then
1305        (timer, replicate n DEADID_bnf,
1306        map_split (`(mk_pointfree2 lthy)) (map2 mk_ctor_map_DEADID_thm ctor_inject_thms map_ids),
1307        mk_ctor_map_unique_DEADID_thm (),
1308        replicate n [], map2 mk_ctor_Irel_DEADID_thm ctor_inject_thms bnfs, [], lthy)
1309      else let
1310        val fTs = map2 (curry op -->) passiveAs passiveBs;
1311        val uTs = map2 (curry op -->) Ts Ts';
1312
1313        val ((((fs, fs'), (AFss, AFss')), (ys, ys')), _) =
1314          lthy
1315          |> mk_Frees' "f" fTs
1316          ||>> mk_Freess' "z" setFTss
1317          ||>> mk_Frees' "y" passiveAs;
1318
1319        val map_FTFT's = map2 (fn Ds =>
1320          mk_map_of_bnf Ds (passiveAs @ Ts) (passiveBs @ Ts')) Dss bnfs;
1321        fun mk_passive_maps ATs BTs Ts =
1322          map2 (fn Ds => mk_map_of_bnf Ds (ATs @ Ts) (BTs @ Ts)) Dss bnfs;
1323        fun mk_map_fold_arg fs Ts ctor fmap =
1324          HOLogic.mk_comp (ctor, Term.list_comb (fmap, fs @ map HOLogic.id_const Ts));
1325        fun mk_map Ts fs Ts' ctors mk_maps =
1326          mk_fold Ts (map2 (mk_map_fold_arg fs Ts') ctors (mk_maps Ts'));
1327        val pmapsABT' = mk_passive_maps passiveAs passiveBs;
1328        val fs_maps = map (mk_map Ts fs Ts' ctor's pmapsABT') ks;
1329
1330        val ls = 1 upto m;
1331        val setsss = map (mk_setss o mk_set_Ts) passiveAs;
1332
1333        fun mk_col l T z z' sets =
1334          let
1335            fun mk_UN set = mk_Union T $ (set $ z);
1336          in
1337            Term.absfree z'
1338              (mk_union (nth sets (l - 1) $ z,
1339                Library.foldl1 mk_union (map mk_UN (drop m sets))))
1340          end;
1341
1342        val colss = @{map 5} (fn l => fn T => @{map 3} (mk_col l T)) ls passiveAs AFss AFss' setsss;
1343        val setss_by_range = map (fn cols => map (mk_fold Ts cols) ks) colss;
1344        val setss_by_bnf = transpose setss_by_range;
1345
1346        val set_bss =
1347          map (flat o map2 (fn B => fn b =>
1348            if member (op =) deads (TFree B) then [] else [b]) resBs) set_bss0;
1349
1350        val ctor_witss =
1351          let
1352            val witss = map2 (fn Ds => fn bnf => mk_wits_of_bnf
1353              (replicate (nwits_of_bnf bnf) Ds)
1354              (replicate (nwits_of_bnf bnf) (passiveAs @ Ts)) bnf) Dss bnfs;
1355            fun close_wit (I, wit) = fold_rev Term.absfree (map (nth ys') I) wit;
1356            fun wit_apply (arg_I, arg_wit) (fun_I, fun_wit) =
1357              (union (op =) arg_I fun_I, fun_wit $ arg_wit);
1358
1359            fun gen_arg support i =
1360              if i < m then [([i], nth ys i)]
1361              else maps (mk_wit support (nth ctors (i - m)) (i - m)) (nth support (i - m))
1362            and mk_wit support ctor i (I, wit) =
1363              let val args = map (gen_arg (nth_map i (remove (op =) (I, wit)) support)) I;
1364              in
1365                (args, [([], wit)])
1366                |-> fold (map_product wit_apply)
1367                |> map (apsnd (fn t => ctor $ t))
1368                |> minimize_wits
1369              end;
1370          in
1371            @{map 3} (fn ctor => fn i => map close_wit o minimize_wits o maps (mk_wit witss ctor i))
1372              ctors (0 upto n - 1) witss
1373          end;
1374
1375        val (lthy, sbd0, sbd0_card_order, sbd0_Cinfinite, set_sbd0ss) =
1376          if n = 1
1377          then (lthy, hd bd0s, hd bd0_card_orders, hd bd0_Cinfinites, set_bd0ss)
1378          else
1379            let
1380              val sum_bd0 = Library.foldr1 (uncurry mk_csum) bd0s;
1381              val sum_bd0T = fst (dest_relT (fastype_of sum_bd0));
1382              val (sum_bd0T_params, sum_bd0T_params') = `(map TFree) (Term.add_tfreesT sum_bd0T []);
1383
1384              val sbd0T_bind = mk_internal_b (sum_bdTN ^ "0");
1385
1386              val ((sbd0T_name, (sbd0T_glob_info, sbd0T_loc_info)), lthy) =
1387                typedef (sbd0T_bind, sum_bd0T_params', NoSyn)
1388                  (HOLogic.mk_UNIV sum_bd0T) NONE (fn ctxt =>
1389                    EVERY' [rtac ctxt exI, rtac ctxt UNIV_I] 1) lthy;
1390
1391              val sbd0T = Type (sbd0T_name, sum_bd0T_params);
1392              val Abs_sbd0T = Const (#Abs_name sbd0T_glob_info, sum_bd0T --> sbd0T);
1393
1394              val sbd0_bind = mk_internal_b (sum_bdN ^ "0");
1395              val sbd0_def_bind = (Thm.def_binding sbd0_bind, []);
1396
1397              val sbd0_spec = mk_dir_image sum_bd0 Abs_sbd0T;
1398
1399              val ((sbd0_free, (_, sbd0_def_free)), (lthy, lthy_old)) =
1400                lthy
1401                |> Local_Theory.open_target |> snd
1402                |> Local_Theory.define ((sbd0_bind, NoSyn), (sbd0_def_bind, sbd0_spec))
1403                ||> `Local_Theory.close_target;
1404
1405              val phi = Proof_Context.export_morphism lthy_old lthy;
1406
1407              val sbd0_def = HOLogic.mk_obj_eq (Morphism.thm phi sbd0_def_free);
1408              val sbd0 = Const (fst (Term.dest_Const (Morphism.term phi sbd0_free)),
1409                mk_relT (`I sbd0T));
1410
1411              val Abs_sbd0T_inj = mk_Abs_inj_thm (#Abs_inject sbd0T_loc_info);
1412              val Abs_sbd0T_bij = mk_Abs_bij_thm lthy Abs_sbd0T_inj (#Abs_cases sbd0T_loc_info);
1413
1414              val sum_Cinfinite = mk_sum_Cinfinite bd0_Cinfinites;
1415              val sum_Card_order = sum_Cinfinite RS conjunct2;
1416              val sum_card_order = mk_sum_card_order bd0_card_orders;
1417
1418              val sbd0_ordIso = @{thm ssubst_Pair_rhs} OF
1419                [@{thm dir_image} OF [Abs_sbd0T_inj, sum_Card_order], sbd0_def];
1420              val sbd0_Cinfinite = @{thm Cinfinite_cong} OF [sbd0_ordIso, sum_Cinfinite];
1421
1422              val sbd0_card_order = @{thm iffD2[OF arg_cong[of _ _ card_order]]} OF
1423                [sbd0_def, @{thm card_order_dir_image} OF [Abs_sbd0T_bij, sum_card_order]];
1424
1425              fun mk_set_sbd0 i bd0_Card_order bd0s =
1426                map (fn thm => @{thm ordLeq_ordIso_trans} OF
1427                  [bd0_Card_order RS mk_ordLeq_csum n i thm, sbd0_ordIso]) bd0s;
1428              val set_sbd0ss = @{map 3} mk_set_sbd0 ks bd0_Card_orders set_bd0ss;
1429            in
1430              (lthy, sbd0, sbd0_card_order, sbd0_Cinfinite, set_sbd0ss)
1431            end;
1432
1433        val (Ibnf_consts, lthy) =
1434          @{fold_map 9} (fn b => fn map_b => fn rel_b => fn pred_b => fn set_bs => fn mapx =>
1435              fn sets => fn wits => fn T => fn lthy =>
1436            define_bnf_consts Hardly_Inline (user_policy Note_Some lthy) false (SOME deads)
1437              map_b rel_b pred_b set_bs
1438              (((((((b, T), fold_rev Term.absfree fs' mapx), sets), sbd0), wits), NONE), NONE) lthy)
1439          bs map_bs rel_bs pred_bs set_bss fs_maps setss_by_bnf ctor_witss Ts lthy;
1440
1441        val ((((((((((((((Izs, (Izs1, Izs1')), (Izs2, Izs2')), xFs), yFs))), Iphis), Ipsi1s),
1442            Ipsi2s), fs), fs_copy), us), (ys, ys')), _) =
1443          lthy
1444          |> mk_Frees "z" Ts
1445          ||>> mk_Frees' "z1" Ts
1446          ||>> mk_Frees' "z2" Ts'
1447          ||>> mk_Frees "x" FTs
1448          ||>> mk_Frees "y" FTs'
1449          ||>> mk_Frees "R" IphiTs
1450          ||>> mk_Frees "R" Ipsi1Ts
1451          ||>> mk_Frees "Q" Ipsi2Ts
1452          ||>> mk_Frees "f" fTs
1453          ||>> mk_Frees "f" fTs
1454          ||>> mk_Frees "u" uTs
1455          ||>> mk_Frees' "y" passiveAs;
1456
1457        val (_, Iconsts, Iconst_defs, mk_Iconsts) = @{split_list 4} Ibnf_consts;
1458        val (_, Isetss, Ibds_Ds, Iwitss_Ds, _, _) = @{split_list 6} Iconsts;
1459        val (Imap_defs, Iset_defss, Ibd_defs, Iwit_defss, Irel_defs, Ipred_defs) =
1460          @{split_list 6} Iconst_defs;
1461        val (mk_Imaps_Ds, mk_It_Ds, _, mk_Irels_Ds, mk_Ipreds_Ds, _, _) =
1462          @{split_list 7} mk_Iconsts;
1463
1464        val Irel_unabs_defs = map (fn def => mk_unabs_def m (HOLogic.mk_obj_eq def)) Irel_defs;
1465        val Ipred_unabs_defs = map (fn def => mk_unabs_def m (HOLogic.mk_obj_eq def)) Ipred_defs;
1466        val Iset_defs = flat Iset_defss;
1467
1468        fun mk_Imaps As Bs = map (fn mk => mk deads As Bs) mk_Imaps_Ds;
1469        fun mk_Isetss As = map2 (fn mk => fn Isets => map (mk deads As) Isets) mk_It_Ds Isetss;
1470        val Ibds = map2 (fn mk => mk deads passiveAs) mk_It_Ds Ibds_Ds;
1471        val Iwitss =
1472          map2 (fn mk => fn Iwits => map (mk deads passiveAs o snd) Iwits) mk_It_Ds Iwitss_Ds;
1473        fun mk_Irels As Bs = map (fn mk => mk deads As Bs) mk_Irels_Ds;
1474        fun mk_Ipreds As = map (fn mk => mk deads As) mk_Ipreds_Ds;
1475
1476        val Imaps = mk_Imaps passiveAs passiveBs;
1477        val fs_Imaps = map (fn m => Term.list_comb (m, fs)) Imaps;
1478        val fs_copy_Imaps = map (fn m => Term.list_comb (m, fs_copy)) Imaps;
1479        val (Isetss_by_range, Isetss_by_bnf) = `transpose (mk_Isetss passiveAs);
1480
1481        val map_setss = map (fn T => map2 (fn Ds =>
1482          mk_map_of_bnf Ds (passiveAs @ Ts) (mk_set_Ts T)) Dss bnfs) passiveAs;
1483
1484        val timer = time (timer "bnf constants for the new datatypes");
1485
1486        val (ctor_Imap_thms, ctor_Imap_o_thms) =
1487          let
1488            fun mk_goal fs_map map ctor ctor' =
1489              mk_Trueprop_eq (HOLogic.mk_comp (fs_map, ctor),
1490                HOLogic.mk_comp (ctor', Term.list_comb (map, fs @ fs_Imaps)));
1491            val goals = @{map 4} mk_goal fs_Imaps map_FTFT's ctors ctor's;
1492            val maps =
1493              @{map 4} (fn goal => fn foldx => fn map_comp_id => fn map_cong0 =>
1494                Variable.add_free_names lthy goal []
1495                |> (fn vars => Goal.prove_sorry lthy vars [] goal
1496                  (fn {context = ctxt, prems = _} => unfold_thms_tac ctxt Imap_defs THEN
1497                    mk_map_tac ctxt m n foldx map_comp_id map_cong0))
1498                |> Thm.close_derivation \<^here>)
1499              goals ctor_fold_thms map_comp_id_thms map_cong0s;
1500          in
1501            `(map (fn thm => thm RS @{thm comp_eq_dest})) maps
1502          end;
1503
1504        val (ctor_Imap_unique_thms, ctor_Imap_unique_thm) =
1505          let
1506            fun mk_prem u map ctor ctor' =
1507              mk_Trueprop_eq (HOLogic.mk_comp (u, ctor),
1508                HOLogic.mk_comp (ctor', Term.list_comb (map, fs @ us)));
1509            val prems = @{map 4} mk_prem us map_FTFT's ctors ctor's;
1510            val goal =
1511              HOLogic.mk_Trueprop (Library.foldr1 HOLogic.mk_conj
1512                (map2 (curry HOLogic.mk_eq) us fs_Imaps));
1513            val vars = fold (Variable.add_free_names lthy) (goal :: prems) [];
1514            val unique = Goal.prove_sorry lthy vars [] (Logic.list_implies (prems, goal))
1515              (fn {context = ctxt, prems = _} => unfold_thms_tac ctxt Imap_defs THEN
1516                mk_ctor_map_unique_tac ctxt ctor_fold_unique_thm sym_map_comps)
1517              |> Thm.close_derivation \<^here>;
1518          in
1519            `split_conj_thm unique
1520          end;
1521
1522        val timer = time (timer "map functions for the new datatypes");
1523
1524        val ctor_Iset_thmss =
1525          let
1526            fun mk_goal sets ctor set col map =
1527              mk_Trueprop_eq (HOLogic.mk_comp (set, ctor),
1528                HOLogic.mk_comp (col, Term.list_comb (map, passive_ids @ sets)));
1529            val goalss =
1530              @{map 3} (fn sets => @{map 4} (mk_goal sets) ctors sets)
1531                Isetss_by_range colss map_setss;
1532            val setss = map (map2 (fn foldx => fn goal =>
1533                Goal.prove_sorry lthy [] [] goal (fn {context = ctxt, prems = _} =>
1534                  unfold_thms_tac ctxt Iset_defs THEN mk_set_tac ctxt foldx)
1535                |> Thm.close_derivation \<^here>)
1536              ctor_fold_thms) goalss;
1537
1538            fun mk_simp_goal pas_set act_sets sets ctor z set =
1539              mk_Trueprop_eq (set $ (ctor $ z),
1540                mk_union (pas_set $ z,
1541                  Library.foldl1 mk_union (map2 (fn X => mk_UNION (X $ z)) act_sets sets)));
1542            val simp_goalss =
1543              map2 (fn i => fn sets =>
1544                @{map 4} (fn Fsets => mk_simp_goal (nth Fsets (i - 1)) (drop m Fsets) sets)
1545                  FTs_setss ctors xFs sets)
1546                ls Isetss_by_range;
1547
1548            val ctor_setss = @{map 3} (fn i => @{map 3} (fn set_nats => fn goal => fn set =>
1549              Variable.add_free_names lthy goal []
1550              |> (fn vars => Goal.prove_sorry lthy vars [] goal
1551                  (fn {context = ctxt, prems = _} =>
1552                    mk_ctor_set_tac ctxt set (nth set_nats (i - 1)) (drop m set_nats)))
1553                |> Thm.close_derivation \<^here>)
1554              set_mapss) ls simp_goalss setss;
1555          in
1556            ctor_setss
1557          end;
1558
1559        fun mk_set_thms ctor_set = (@{thm xt1(3)} OF [ctor_set, @{thm Un_upper1}]) ::
1560          map (fn i => (@{thm xt1(3)} OF [ctor_set, @{thm Un_upper2}]) RS
1561            (mk_Un_upper n i RS subset_trans) RSN
1562            (2, @{thm UN_upper} RS subset_trans))
1563            (1 upto n);
1564        val set_Iset_thmsss = transpose (map (map mk_set_thms) ctor_Iset_thmss);
1565
1566        val timer = time (timer "set functions for the new datatypes");
1567
1568        val cxs = map (SOME o Thm.cterm_of lthy) Izs;
1569        val Isetss_by_range' =
1570          map (map (Term.subst_atomic_types (passiveAs ~~ passiveBs))) Isetss_by_range;
1571
1572        val Iset_Imap0_thmss =
1573          let
1574            fun mk_set_map0 f map z set set' =
1575              HOLogic.mk_eq (mk_image f $ (set $ z), set' $ (map $ z));
1576
1577            fun mk_cphi f map z set set' = Thm.cterm_of lthy
1578              (Term.absfree (dest_Free z) (mk_set_map0 f map z set set'));
1579
1580            val csetss = map (map (Thm.cterm_of lthy)) Isetss_by_range';
1581
1582            val cphiss = @{map 3} (fn f => fn sets => fn sets' =>
1583              (@{map 4} (mk_cphi f) fs_Imaps Izs sets sets')) fs Isetss_by_range Isetss_by_range';
1584
1585            val inducts = map (fn cphis =>
1586              Thm.instantiate' cTs (map SOME cphis @ cxs) ctor_induct_thm) cphiss;
1587
1588            val goals =
1589              @{map 3} (fn f => fn sets => fn sets' =>
1590                HOLogic.mk_Trueprop (Library.foldr1 HOLogic.mk_conj
1591                  (@{map 4} (mk_set_map0 f) fs_Imaps Izs sets sets')))
1592                  fs Isetss_by_range Isetss_by_range';
1593
1594            fun mk_tac ctxt induct = mk_set_nat_tac ctxt m (rtac ctxt induct) set_mapss ctor_Imap_thms;
1595            val thms =
1596              @{map 5} (fn goal => fn csets => fn ctor_sets => fn induct => fn i =>
1597                Variable.add_free_names lthy goal []
1598                |> (fn vars => Goal.prove_sorry lthy vars [] goal
1599                  (fn {context = ctxt, prems = _} => mk_tac ctxt induct csets ctor_sets i))
1600                |> Thm.close_derivation \<^here>)
1601              goals csetss ctor_Iset_thmss inducts ls;
1602          in
1603            map split_conj_thm thms
1604          end;
1605
1606        val Iset_bd_thmss =
1607          let
1608            fun mk_set_bd z bd set = mk_ordLeq (mk_card_of (set $ z)) bd;
1609
1610            fun mk_cphi z set = Thm.cterm_of lthy (Term.absfree (dest_Free z) (mk_set_bd z sbd0 set));
1611
1612            val cphiss = map (map2 mk_cphi Izs) Isetss_by_range;
1613
1614            val inducts = map (fn cphis =>
1615              Thm.instantiate' cTs (map SOME cphis @ cxs) ctor_induct_thm) cphiss;
1616
1617            val goals =
1618              map (fn sets =>
1619                HOLogic.mk_Trueprop (Library.foldr1 HOLogic.mk_conj
1620                  (@{map 3} mk_set_bd Izs Ibds sets))) Isetss_by_range;
1621
1622            fun mk_tac ctxt induct = mk_set_bd_tac ctxt m (rtac ctxt induct) sbd0_Cinfinite set_sbd0ss;
1623            val thms =
1624              @{map 4} (fn goal => fn ctor_sets => fn induct => fn i =>
1625                Variable.add_free_names lthy goal []
1626                |> (fn vars => Goal.prove_sorry lthy vars [] goal
1627                    (fn {context = ctxt, prems = _} => unfold_thms_tac ctxt Ibd_defs THEN
1628                      mk_tac ctxt induct ctor_sets i))
1629                |> Thm.close_derivation \<^here>)
1630              goals ctor_Iset_thmss inducts ls;
1631          in
1632            map split_conj_thm thms
1633          end;
1634
1635        val Imap_cong0_thms =
1636          let
1637            fun mk_prem z set f g y y' =
1638              mk_Ball (set $ z) (Term.absfree y' (HOLogic.mk_eq (f $ y, g $ y)));
1639
1640            fun mk_map_cong0 sets z fmap gmap =
1641              HOLogic.mk_imp
1642                (Library.foldr1 HOLogic.mk_conj (@{map 5} (mk_prem z) sets fs fs_copy ys ys'),
1643                HOLogic.mk_eq (fmap $ z, gmap $ z));
1644
1645            fun mk_cphi sets z fmap gmap =
1646              Thm.cterm_of lthy (Term.absfree (dest_Free z) (mk_map_cong0 sets z fmap gmap));
1647
1648            val cphis = @{map 4} mk_cphi Isetss_by_bnf Izs fs_Imaps fs_copy_Imaps;
1649
1650            val induct = Thm.instantiate' cTs (map SOME cphis @ cxs) ctor_induct_thm;
1651
1652            val goal =
1653              HOLogic.mk_Trueprop (Library.foldr1 HOLogic.mk_conj
1654                (@{map 4} mk_map_cong0 Isetss_by_bnf Izs fs_Imaps fs_copy_Imaps));
1655            val vars = Variable.add_free_names lthy goal [];
1656
1657            val thm = Goal.prove_sorry lthy vars [] goal
1658                (fn {context = ctxt, prems = _} => mk_mcong_tac ctxt (rtac ctxt induct) set_Iset_thmsss
1659                  map_cong0s ctor_Imap_thms)
1660              |> Thm.close_derivation \<^here>;
1661          in
1662            split_conj_thm thm
1663          end;
1664
1665        val in_rels = map in_rel_of_bnf bnfs;
1666        val in_Irels = map (fn def => trans OF [def, @{thm OO_Grp_alt}] RS @{thm predicate2_eqD})
1667            Irel_unabs_defs;
1668
1669        val ctor_Iset_incl_thmss = map (map hd) set_Iset_thmsss;
1670        val ctor_set_Iset_incl_thmsss = map (transpose o map tl) set_Iset_thmsss;
1671        val ctor_Iset_thmss' = transpose ctor_Iset_thmss;
1672
1673        val Irels = mk_Irels passiveAs passiveBs;
1674        val Ipreds = mk_Ipreds passiveAs;
1675        val Irelphis = map (fn rel => Term.list_comb (rel, Iphis)) Irels;
1676        val relphis = map (fn rel => Term.list_comb (rel, Iphis @ Irelphis)) rels;
1677        val Irelpsi1s = map (fn rel => Term.list_comb (rel, Ipsi1s)) (mk_Irels passiveAs passiveCs);
1678        val Irelpsi2s = map (fn rel => Term.list_comb (rel, Ipsi2s)) (mk_Irels passiveCs passiveBs);
1679        val Irelpsi12s = map (fn rel =>
1680            Term.list_comb (rel, map2 (curry mk_rel_compp) Ipsi1s Ipsi2s)) Irels;
1681
1682        val ctor_Irel_thms =
1683          let
1684            fun mk_goal xF yF ctor ctor' Irelphi relphi =
1685              mk_Trueprop_eq (Irelphi $ (ctor $ xF) $ (ctor' $ yF), relphi $ xF $ yF);
1686            val goals = @{map 6} mk_goal xFs yFs ctors ctor's Irelphis relphis;
1687          in
1688            @{map 12} (fn i => fn goal => fn in_rel => fn map_comp0 => fn map_cong0 =>
1689              fn ctor_map => fn ctor_sets => fn ctor_inject => fn ctor_dtor =>
1690              fn set_map0s => fn ctor_set_incls => fn ctor_set_set_inclss =>
1691              Variable.add_free_names lthy goal []
1692              |> (fn vars => Goal.prove_sorry lthy vars [] goal
1693               (fn {context = ctxt, prems = _} =>
1694                 mk_ctor_rel_tac ctxt in_Irels i in_rel map_comp0 map_cong0 ctor_map ctor_sets
1695                   ctor_inject ctor_dtor set_map0s ctor_set_incls ctor_set_set_inclss))
1696              |> Thm.close_derivation \<^here>)
1697            ks goals in_rels map_comps map_cong0s ctor_Imap_thms ctor_Iset_thmss'
1698              ctor_inject_thms ctor_dtor_thms set_mapss ctor_Iset_incl_thmss
1699              ctor_set_Iset_incl_thmsss
1700          end;
1701
1702        val le_Irel_OO_thm =
1703          let
1704            fun mk_le_Irel_OO Irelpsi1 Irelpsi2 Irelpsi12 Iz1 Iz2 =
1705              HOLogic.mk_imp (mk_rel_compp (Irelpsi1, Irelpsi2) $ Iz1 $ Iz2,
1706                Irelpsi12 $ Iz1 $ Iz2);
1707            val goals = @{map 5} mk_le_Irel_OO Irelpsi1s Irelpsi2s Irelpsi12s Izs1 Izs2;
1708
1709            val cTs = map (SOME o Thm.ctyp_of lthy o TFree) induct2_params;
1710            val cxs = map (SOME o Thm.cterm_of lthy) (splice Izs1 Izs2);
1711            fun mk_cphi z1 z2 goal = SOME (Thm.cterm_of lthy (Term.absfree z1 (Term.absfree z2 goal)));
1712            val cphis = @{map 3} mk_cphi Izs1' Izs2' goals;
1713            val induct = Thm.instantiate' cTs (cphis @ cxs) ctor_induct2_thm;
1714
1715            val goal = HOLogic.mk_Trueprop (Library.foldr1 HOLogic.mk_conj goals);
1716            val vars = Variable.add_free_names lthy goal [];
1717          in
1718            Goal.prove_sorry lthy vars [] goal
1719              (fn {context = ctxt, prems = _} => mk_le_rel_OO_tac ctxt m induct ctor_nchotomy_thms
1720                ctor_Irel_thms rel_mono_strong0s le_rel_OOs)
1721            |> Thm.close_derivation \<^here>
1722          end;
1723
1724        val timer = time (timer "helpers for BNF properties");
1725
1726        val map_id0_tacs = map (fn thm => fn ctxt => mk_map_id0_tac ctxt map_id0s thm)
1727          ctor_Imap_unique_thms;
1728        val map_comp0_tacs =
1729          map2 (fn thm => fn i => fn ctxt =>
1730            mk_map_comp0_tac ctxt map_comps ctor_Imap_thms thm i)
1731          ctor_Imap_unique_thms ks;
1732        val map_cong0_tacs = map (fn thm => fn ctxt => mk_map_cong0_tac ctxt m thm) Imap_cong0_thms;
1733        val set_map0_tacss = map (map (fn thm => fn ctxt => mk_set_map0_tac ctxt thm))
1734          (transpose Iset_Imap0_thmss);
1735        val bd_co_tacs = replicate n (fn ctxt =>
1736          unfold_thms_tac ctxt Ibd_defs THEN rtac ctxt sbd0_card_order 1);
1737        val bd_cinf_tacs = replicate n (fn ctxt =>
1738          unfold_thms_tac ctxt Ibd_defs THEN rtac ctxt (sbd0_Cinfinite RS conjunct1) 1);
1739        val set_bd_tacss = map (map (fn thm => fn ctxt => rtac ctxt thm 1)) (transpose Iset_bd_thmss);
1740        val le_rel_OO_tacs = map (fn i => fn ctxt =>
1741          (rtac ctxt @{thm predicate2I} THEN' etac ctxt (le_Irel_OO_thm RS mk_conjunctN n i RS mp)) 1) ks;
1742
1743        val rel_OO_Grp_tacs = map (fn def => fn ctxt => rtac ctxt def 1) Irel_unabs_defs;
1744
1745        val pred_set_tacs = map (fn def => fn ctxt => rtac ctxt def 1) Ipred_unabs_defs;
1746
1747        val tacss = @{map 10} zip_axioms map_id0_tacs map_comp0_tacs map_cong0_tacs set_map0_tacss
1748          bd_co_tacs bd_cinf_tacs set_bd_tacss le_rel_OO_tacs rel_OO_Grp_tacs pred_set_tacs;
1749
1750        fun wit_tac ctxt = unfold_thms_tac ctxt (flat Iwit_defss) THEN
1751          mk_wit_tac ctxt n (flat ctor_Iset_thmss) (maps wit_thms_of_bnf bnfs);
1752
1753        val (Ibnfs, lthy) =
1754          @{fold_map 6} (fn tacs => fn map_b => fn rel_b => fn pred_b => fn set_bs => fn consts =>
1755            bnf_def Do_Inline (user_policy Note_Some) false I tacs wit_tac (SOME deads)
1756              map_b rel_b pred_b set_bs consts)
1757          tacss map_bs rel_bs pred_bs set_bss
1758            (((((((replicate n Binding.empty ~~ Ts) ~~ Imaps) ~~ Isetss_by_bnf) ~~ Ibds) ~~
1759              Iwitss) ~~ map SOME Irels) ~~ map SOME Ipreds) lthy;
1760
1761        val timer = time (timer "registered new datatypes as BNFs");
1762
1763        val ls' = if m = 1 then [0] else ls
1764
1765        val Ibnf_common_notes =
1766          [(ctor_map_uniqueN, [ctor_Imap_unique_thm])]
1767          |> map (fn (thmN, thms) =>
1768            ((Binding.qualify true (Binding.name_of b) (Binding.name thmN), []), [(thms, [])]));
1769
1770        val Ibnf_notes =
1771          [(ctor_mapN, map single ctor_Imap_thms),
1772          (ctor_relN, map single ctor_Irel_thms),
1773          (ctor_set_inclN, ctor_Iset_incl_thmss),
1774          (ctor_set_set_inclN, map flat ctor_set_Iset_incl_thmsss)] @
1775          map2 (fn i => fn thms => (mk_ctor_setN i, map single thms)) ls' ctor_Iset_thmss
1776          |> maps (fn (thmN, thmss) =>
1777            map2 (fn b => fn thms =>
1778              ((Binding.qualify true (Binding.name_of b) (Binding.name thmN), []), [(thms, [])]))
1779            bs thmss)
1780      in
1781        (timer, Ibnfs, (ctor_Imap_o_thms, ctor_Imap_thms), ctor_Imap_unique_thm, ctor_Iset_thmss',
1782          ctor_Irel_thms, Ibnf_common_notes @ Ibnf_notes, lthy)
1783      end;
1784
1785    val ((((((xFs, yFs)), Iphis), activephis), activeIphis), _) =
1786      lthy
1787      |> mk_Frees "x" FTs
1788      ||>> mk_Frees "y" FTs'
1789      ||>> mk_Frees "R" IphiTs
1790      ||>> mk_Frees "S" activephiTs
1791      ||>> mk_Frees "IR" activeIphiTs;
1792
1793    val ctor_fold_o_Imap_thms = mk_xtor_co_iter_o_map_thms Least_FP false m ctor_fold_unique_thm
1794      ctor_Imap_o_thms (map (mk_pointfree2 lthy) ctor_fold_thms) sym_map_comps map_cong0s;
1795
1796    val Irels = if m = 0 then map HOLogic.eq_const Ts
1797      else map (mk_rel_of_bnf deads passiveAs passiveBs) Ibnfs;
1798    val Irel_induct_thm =
1799      mk_xtor_rel_co_induct_thm Least_FP rels activeIphis Irels Iphis xFs yFs ctors ctor's
1800        (fn {context = ctxt, prems = IHs} => mk_rel_induct_tac ctxt IHs m ctor_induct2_thm ks
1801           ctor_Irel_thms rel_mono_strong0s) lthy;
1802
1803    val rels = map2 (fn Ds => mk_rel_of_bnf Ds allAs allBs') Dss bnfs;
1804    val ctor_fold_transfer_thms =
1805      mk_xtor_co_iter_transfer_thms Least_FP rels activephis activephis Irels Iphis
1806        (mk_folds passiveAs activeAs) (mk_folds passiveBs activeBs)
1807        (fn {context = ctxt, prems = _} => mk_fold_transfer_tac ctxt m Irel_induct_thm
1808          (map map_transfer_of_bnf bnfs) ctor_fold_thms)
1809        lthy;
1810
1811    val timer = time (timer "relator induction");
1812
1813    fun mk_Ts As = map (typ_subst_atomic (passiveAs ~~ As)) Ts;
1814    val export = map (Morphism.term (Local_Theory.target_morphism lthy))
1815    val ((recs, (ctor_rec_thms, ctor_rec_unique_thm, ctor_rec_o_Imap_thms, ctor_rec_transfer_thms)),
1816        lthy) = lthy
1817      |> derive_xtor_co_recs Least_FP external_bs mk_Ts (Dss, resDs) bnfs
1818        (export ctors) (export folds)
1819        ctor_fold_unique_thm ctor_fold_thms ctor_fold_transfer_thms ctor_Imap_thms ctor_Irel_thms
1820        (replicate n NONE);
1821
1822    val timer = time (timer "recursor");
1823
1824    val common_notes =
1825      [(ctor_inductN, [ctor_induct_thm]),
1826      (ctor_induct2N, [ctor_induct2_thm]),
1827      (ctor_rel_inductN, [Irel_induct_thm])]
1828      |> map (fn (thmN, thms) =>
1829        ((Binding.qualify true (Binding.name_of b) (Binding.name thmN), []), [(thms, [])]));
1830
1831    val notes =
1832      [(ctor_dtorN, ctor_dtor_thms),
1833      (ctor_exhaustN, ctor_exhaust_thms),
1834      (ctor_foldN, ctor_fold_thms),
1835      (ctor_fold_o_mapN, ctor_fold_o_Imap_thms),
1836      (ctor_fold_transferN, ctor_fold_transfer_thms),
1837      (ctor_fold_uniqueN, ctor_fold_unique_thms),
1838      (ctor_injectN, ctor_inject_thms),
1839      (dtor_ctorN, dtor_ctor_thms),
1840      (dtor_exhaustN, dtor_exhaust_thms),
1841      (dtor_injectN, dtor_inject_thms)]
1842      |> map (apsnd (map single))
1843      |> maps (fn (thmN, thmss) =>
1844        map2 (fn b => fn thms =>
1845          ((Binding.qualify true (Binding.name_of b) (Binding.name thmN), []), [(thms, [])]))
1846        bs thmss);
1847
1848    val lthy' = lthy |> internals ? snd o Local_Theory.notes (common_notes @ notes @ Ibnf_notes);
1849
1850    val fp_res =
1851      {Ts = Ts, bnfs = Ibnfs, pre_bnfs = bnfs, absT_infos = absT_infos,
1852       ctors = ctors, dtors = dtors, xtor_un_folds = folds, xtor_co_recs = export recs,
1853       xtor_co_induct = ctor_induct_thm, dtor_ctors = dtor_ctor_thms,
1854       ctor_dtors = ctor_dtor_thms, ctor_injects = ctor_inject_thms,
1855       dtor_injects = dtor_inject_thms, xtor_maps = ctor_Imap_thms,
1856       xtor_map_unique = ctor_Imap_unique_thm, xtor_setss = ctor_Iset_thmss',
1857       xtor_rels = ctor_Irel_thms, xtor_un_fold_thms = ctor_fold_thms,
1858       xtor_co_rec_thms = ctor_rec_thms, xtor_un_fold_unique = ctor_fold_unique_thm,
1859       xtor_co_rec_unique = ctor_rec_unique_thm,
1860       xtor_un_fold_o_maps = ctor_fold_o_Imap_thms,
1861       xtor_co_rec_o_maps = ctor_rec_o_Imap_thms,
1862       xtor_un_fold_transfers = ctor_fold_transfer_thms,
1863       xtor_co_rec_transfers = ctor_rec_transfer_thms, xtor_rel_co_induct = Irel_induct_thm,
1864       dtor_set_inducts = []};
1865  in
1866    timer; (fp_res, lthy')
1867  end;
1868
1869val _ =
1870  Outer_Syntax.local_theory \<^command_keyword>\<open>datatype\<close> "define inductive datatypes"
1871    (parse_co_datatype_cmd Least_FP construct_lfp);
1872
1873end;
1874