1(*  Title       : Series.thy
2    Author      : Jacques D. Fleuriot
3    Copyright   : 1998  University of Cambridge
4
5Converted to Isar and polished by lcp
6Converted to sum and polished yet more by TNN
7Additional contributions by Jeremy Avigad
8*)
9
10section \<open>Infinite Series\<close>
11
12theory Series
13imports Limits Inequalities
14begin
15
16subsection \<open>Definition of infinite summability\<close>
17
18definition sums :: "(nat \<Rightarrow> 'a::{topological_space, comm_monoid_add}) \<Rightarrow> 'a \<Rightarrow> bool"
19    (infixr "sums" 80)
20  where "f sums s \<longleftrightarrow> (\<lambda>n. \<Sum>i<n. f i) \<longlonglongrightarrow> s"
21
22definition summable :: "(nat \<Rightarrow> 'a::{topological_space, comm_monoid_add}) \<Rightarrow> bool"
23  where "summable f \<longleftrightarrow> (\<exists>s. f sums s)"
24
25definition suminf :: "(nat \<Rightarrow> 'a::{topological_space, comm_monoid_add}) \<Rightarrow> 'a"
26    (binder "\<Sum>" 10)
27  where "suminf f = (THE s. f sums s)"
28
29text\<open>Variants of the definition\<close>
30lemma sums_def': "f sums s \<longleftrightarrow> (\<lambda>n. \<Sum>i = 0..n. f i) \<longlonglongrightarrow> s"
31  unfolding sums_def
32  apply (subst LIMSEQ_Suc_iff [symmetric])
33  apply (simp only: lessThan_Suc_atMost atLeast0AtMost)
34  done
35
36lemma sums_def_le: "f sums s \<longleftrightarrow> (\<lambda>n. \<Sum>i\<le>n. f i) \<longlonglongrightarrow> s"
37  by (simp add: sums_def' atMost_atLeast0)
38
39lemma bounded_imp_summable:
40  fixes a :: "nat \<Rightarrow> 'a::{conditionally_complete_linorder,linorder_topology,linordered_comm_semiring_strict}"
41  assumes 0: "\<And>n. a n \<ge> 0" and bounded: "\<And>n. (\<Sum>k\<le>n. a k) \<le> B"
42  shows "summable a" 
43proof -
44  have "bdd_above (range(\<lambda>n. \<Sum>k\<le>n. a k))"
45    by (meson bdd_aboveI2 bounded)
46  moreover have "incseq (\<lambda>n. \<Sum>k\<le>n. a k)"
47    by (simp add: mono_def "0" sum_mono2)
48  ultimately obtain s where "(\<lambda>n. \<Sum>k\<le>n. a k) \<longlonglongrightarrow> s"
49    using LIMSEQ_incseq_SUP by blast
50  then show ?thesis
51    by (auto simp: sums_def_le summable_def)
52qed
53
54
55subsection \<open>Infinite summability on topological monoids\<close>
56
57lemma sums_subst[trans]: "f = g \<Longrightarrow> g sums z \<Longrightarrow> f sums z"
58  by simp
59
60lemma sums_cong: "(\<And>n. f n = g n) \<Longrightarrow> f sums c \<longleftrightarrow> g sums c"
61  by (drule ext) simp
62
63lemma sums_summable: "f sums l \<Longrightarrow> summable f"
64  by (simp add: sums_def summable_def, blast)
65
66lemma summable_iff_convergent: "summable f \<longleftrightarrow> convergent (\<lambda>n. \<Sum>i<n. f i)"
67  by (simp add: summable_def sums_def convergent_def)
68
69lemma summable_iff_convergent': "summable f \<longleftrightarrow> convergent (\<lambda>n. sum f {..n})"
70  by (simp_all only: summable_iff_convergent convergent_def
71        lessThan_Suc_atMost [symmetric] LIMSEQ_Suc_iff[of "\<lambda>n. sum f {..<n}"])
72
73lemma suminf_eq_lim: "suminf f = lim (\<lambda>n. \<Sum>i<n. f i)"
74  by (simp add: suminf_def sums_def lim_def)
75
76lemma sums_zero[simp, intro]: "(\<lambda>n. 0) sums 0"
77  unfolding sums_def by simp
78
79lemma summable_zero[simp, intro]: "summable (\<lambda>n. 0)"
80  by (rule sums_zero [THEN sums_summable])
81
82lemma sums_group: "f sums s \<Longrightarrow> 0 < k \<Longrightarrow> (\<lambda>n. sum f {n * k ..< n * k + k}) sums s"
83  apply (simp only: sums_def sum.nat_group tendsto_def eventually_sequentially)
84  apply (erule all_forward imp_forward exE| assumption)+
85  apply (rule_tac x="N" in exI)
86  by (metis le_square mult.commute mult.left_neutral mult_le_cancel2 mult_le_mono)
87
88lemma suminf_cong: "(\<And>n. f n = g n) \<Longrightarrow> suminf f = suminf g"
89  by (rule arg_cong[of f g], rule ext) simp
90
91lemma summable_cong:
92  fixes f g :: "nat \<Rightarrow> 'a::real_normed_vector"
93  assumes "eventually (\<lambda>x. f x = g x) sequentially"
94  shows "summable f = summable g"
95proof -
96  from assms obtain N where N: "\<forall>n\<ge>N. f n = g n"
97    by (auto simp: eventually_at_top_linorder)
98  define C where "C = (\<Sum>k<N. f k - g k)"
99  from eventually_ge_at_top[of N]
100  have "eventually (\<lambda>n. sum f {..<n} = C + sum g {..<n}) sequentially"
101  proof eventually_elim
102    case (elim n)
103    then have "{..<n} = {..<N} \<union> {N..<n}"
104      by auto
105    also have "sum f ... = sum f {..<N} + sum f {N..<n}"
106      by (intro sum.union_disjoint) auto
107    also from N have "sum f {N..<n} = sum g {N..<n}"
108      by (intro sum.cong) simp_all
109    also have "sum f {..<N} + sum g {N..<n} = C + (sum g {..<N} + sum g {N..<n})"
110      unfolding C_def by (simp add: algebra_simps sum_subtractf)
111    also have "sum g {..<N} + sum g {N..<n} = sum g ({..<N} \<union> {N..<n})"
112      by (intro sum.union_disjoint [symmetric]) auto
113    also from elim have "{..<N} \<union> {N..<n} = {..<n}"
114      by auto
115    finally show "sum f {..<n} = C + sum g {..<n}" .
116  qed
117  from convergent_cong[OF this] show ?thesis
118    by (simp add: summable_iff_convergent convergent_add_const_iff)
119qed
120
121lemma sums_finite:
122  assumes [simp]: "finite N"
123    and f: "\<And>n. n \<notin> N \<Longrightarrow> f n = 0"
124  shows "f sums (\<Sum>n\<in>N. f n)"
125proof -
126  have eq: "sum f {..<n + Suc (Max N)} = sum f N" for n
127    by (rule sum.mono_neutral_right) (auto simp: add_increasing less_Suc_eq_le f)
128  show ?thesis
129    unfolding sums_def
130    by (rule LIMSEQ_offset[of _ "Suc (Max N)"])
131      (simp add: eq atLeast0LessThan del: add_Suc_right)
132qed
133
134corollary sums_0: "(\<And>n. f n = 0) \<Longrightarrow> (f sums 0)"
135    by (metis (no_types) finite.emptyI sum.empty sums_finite)
136
137lemma summable_finite: "finite N \<Longrightarrow> (\<And>n. n \<notin> N \<Longrightarrow> f n = 0) \<Longrightarrow> summable f"
138  by (rule sums_summable) (rule sums_finite)
139
140lemma sums_If_finite_set: "finite A \<Longrightarrow> (\<lambda>r. if r \<in> A then f r else 0) sums (\<Sum>r\<in>A. f r)"
141  using sums_finite[of A "(\<lambda>r. if r \<in> A then f r else 0)"] by simp
142
143lemma summable_If_finite_set[simp, intro]: "finite A \<Longrightarrow> summable (\<lambda>r. if r \<in> A then f r else 0)"
144  by (rule sums_summable) (rule sums_If_finite_set)
145
146lemma sums_If_finite: "finite {r. P r} \<Longrightarrow> (\<lambda>r. if P r then f r else 0) sums (\<Sum>r | P r. f r)"
147  using sums_If_finite_set[of "{r. P r}"] by simp
148
149lemma summable_If_finite[simp, intro]: "finite {r. P r} \<Longrightarrow> summable (\<lambda>r. if P r then f r else 0)"
150  by (rule sums_summable) (rule sums_If_finite)
151
152lemma sums_single: "(\<lambda>r. if r = i then f r else 0) sums f i"
153  using sums_If_finite[of "\<lambda>r. r = i"] by simp
154
155lemma summable_single[simp, intro]: "summable (\<lambda>r. if r = i then f r else 0)"
156  by (rule sums_summable) (rule sums_single)
157
158context
159  fixes f :: "nat \<Rightarrow> 'a::{t2_space,comm_monoid_add}"
160begin
161
162lemma summable_sums[intro]: "summable f \<Longrightarrow> f sums (suminf f)"
163  by (simp add: summable_def sums_def suminf_def)
164     (metis convergent_LIMSEQ_iff convergent_def lim_def)
165
166lemma summable_LIMSEQ: "summable f \<Longrightarrow> (\<lambda>n. \<Sum>i<n. f i) \<longlonglongrightarrow> suminf f"
167  by (rule summable_sums [unfolded sums_def])
168
169lemma summable_LIMSEQ': "summable f \<Longrightarrow> (\<lambda>n. \<Sum>i\<le>n. f i) \<longlonglongrightarrow> suminf f"
170  using sums_def_le by blast
171
172lemma sums_unique: "f sums s \<Longrightarrow> s = suminf f"
173  by (metis limI suminf_eq_lim sums_def)
174
175lemma sums_iff: "f sums x \<longleftrightarrow> summable f \<and> suminf f = x"
176  by (metis summable_sums sums_summable sums_unique)
177
178lemma summable_sums_iff: "summable f \<longleftrightarrow> f sums suminf f"
179  by (auto simp: sums_iff summable_sums)
180
181lemma sums_unique2: "f sums a \<Longrightarrow> f sums b \<Longrightarrow> a = b"
182  for a b :: 'a
183  by (simp add: sums_iff)
184
185lemma suminf_finite:
186  assumes N: "finite N"
187    and f: "\<And>n. n \<notin> N \<Longrightarrow> f n = 0"
188  shows "suminf f = (\<Sum>n\<in>N. f n)"
189  using sums_finite[OF assms, THEN sums_unique] by simp
190
191end
192
193lemma suminf_zero[simp]: "suminf (\<lambda>n. 0::'a::{t2_space, comm_monoid_add}) = 0"
194  by (rule sums_zero [THEN sums_unique, symmetric])
195
196
197subsection \<open>Infinite summability on ordered, topological monoids\<close>
198
199lemma sums_le: "\<forall>n. f n \<le> g n \<Longrightarrow> f sums s \<Longrightarrow> g sums t \<Longrightarrow> s \<le> t"
200  for f g :: "nat \<Rightarrow> 'a::{ordered_comm_monoid_add,linorder_topology}"
201  by (rule LIMSEQ_le) (auto intro: sum_mono simp: sums_def)
202
203context
204  fixes f :: "nat \<Rightarrow> 'a::{ordered_comm_monoid_add,linorder_topology}"
205begin
206
207lemma suminf_le: "\<forall>n. f n \<le> g n \<Longrightarrow> summable f \<Longrightarrow> summable g \<Longrightarrow> suminf f \<le> suminf g"
208  by (auto dest: sums_summable intro: sums_le)
209
210lemma sum_le_suminf:
211  shows "summable f \<Longrightarrow> finite I \<Longrightarrow> \<forall>m\<in>- I. 0 \<le> f m \<Longrightarrow> sum f I \<le> suminf f"
212  by (rule sums_le[OF _ sums_If_finite_set summable_sums]) auto
213
214lemma suminf_nonneg: "summable f \<Longrightarrow> \<forall>n. 0 \<le> f n \<Longrightarrow> 0 \<le> suminf f"
215  using sum_le_suminf by force
216
217lemma suminf_le_const: "summable f \<Longrightarrow> (\<And>n. sum f {..<n} \<le> x) \<Longrightarrow> suminf f \<le> x"
218  by (metis LIMSEQ_le_const2 summable_LIMSEQ)
219
220lemma suminf_eq_zero_iff: "summable f \<Longrightarrow> \<forall>n. 0 \<le> f n \<Longrightarrow> suminf f = 0 \<longleftrightarrow> (\<forall>n. f n = 0)"
221proof
222  assume "summable f" "suminf f = 0" and pos: "\<forall>n. 0 \<le> f n"
223  then have f: "(\<lambda>n. \<Sum>i<n. f i) \<longlonglongrightarrow> 0"
224    using summable_LIMSEQ[of f] by simp
225  then have "\<And>i. (\<Sum>n\<in>{i}. f n) \<le> 0"
226  proof (rule LIMSEQ_le_const)
227    show "\<exists>N. \<forall>n\<ge>N. (\<Sum>n\<in>{i}. f n) \<le> sum f {..<n}" for i
228      using pos by (intro exI[of _ "Suc i"] allI impI sum_mono2) auto
229  qed
230  with pos show "\<forall>n. f n = 0"
231    by (auto intro!: antisym)
232qed (metis suminf_zero fun_eq_iff)
233
234lemma suminf_pos_iff: "summable f \<Longrightarrow> \<forall>n. 0 \<le> f n \<Longrightarrow> 0 < suminf f \<longleftrightarrow> (\<exists>i. 0 < f i)"
235  using sum_le_suminf[of "{}"] suminf_eq_zero_iff by (simp add: less_le)
236
237lemma suminf_pos2:
238  assumes "summable f" "\<forall>n. 0 \<le> f n" "0 < f i"
239  shows "0 < suminf f"
240proof -
241  have "0 < (\<Sum>n<Suc i. f n)"
242    using assms by (intro sum_pos2[where i=i]) auto
243  also have "\<dots> \<le> suminf f"
244    using assms by (intro sum_le_suminf) auto
245  finally show ?thesis .
246qed
247
248lemma suminf_pos: "summable f \<Longrightarrow> \<forall>n. 0 < f n \<Longrightarrow> 0 < suminf f"
249  by (intro suminf_pos2[where i=0]) (auto intro: less_imp_le)
250
251end
252
253context
254  fixes f :: "nat \<Rightarrow> 'a::{ordered_cancel_comm_monoid_add,linorder_topology}"
255begin
256
257lemma sum_less_suminf2:
258  "summable f \<Longrightarrow> \<forall>m\<ge>n. 0 \<le> f m \<Longrightarrow> n \<le> i \<Longrightarrow> 0 < f i \<Longrightarrow> sum f {..<n} < suminf f"
259  using sum_le_suminf[of f "{..< Suc i}"]
260    and add_strict_increasing[of "f i" "sum f {..<n}" "sum f {..<i}"]
261    and sum_mono2[of "{..<i}" "{..<n}" f]
262  by (auto simp: less_imp_le ac_simps)
263
264lemma sum_less_suminf: "summable f \<Longrightarrow> \<forall>m\<ge>n. 0 < f m \<Longrightarrow> sum f {..<n} < suminf f"
265  using sum_less_suminf2[of n n] by (simp add: less_imp_le)
266
267end
268
269lemma summableI_nonneg_bounded:
270  fixes f :: "nat \<Rightarrow> 'a::{ordered_comm_monoid_add,linorder_topology,conditionally_complete_linorder}"
271  assumes pos[simp]: "\<And>n. 0 \<le> f n"
272    and le: "\<And>n. (\<Sum>i<n. f i) \<le> x"
273  shows "summable f"
274  unfolding summable_def sums_def [abs_def]
275proof (rule exI LIMSEQ_incseq_SUP)+
276  show "bdd_above (range (\<lambda>n. sum f {..<n}))"
277    using le by (auto simp: bdd_above_def)
278  show "incseq (\<lambda>n. sum f {..<n})"
279    by (auto simp: mono_def intro!: sum_mono2)
280qed
281
282lemma summableI[intro, simp]: "summable f"
283  for f :: "nat \<Rightarrow> 'a::{canonically_ordered_monoid_add,linorder_topology,complete_linorder}"
284  by (intro summableI_nonneg_bounded[where x=top] zero_le top_greatest)
285
286lemma suminf_eq_SUP_real:
287  assumes X: "summable X" "\<And>i. 0 \<le> X i" shows "suminf X = (SUP i. \<Sum>n<i. X n::real)"
288  by (intro LIMSEQ_unique[OF summable_LIMSEQ] X LIMSEQ_incseq_SUP)
289     (auto intro!: bdd_aboveI2[where M="\<Sum>i. X i"] sum_le_suminf X monoI sum_mono2)
290
291
292subsection \<open>Infinite summability on topological monoids\<close>
293
294context
295  fixes f g :: "nat \<Rightarrow> 'a::{t2_space,topological_comm_monoid_add}"
296begin
297
298lemma sums_Suc:
299  assumes "(\<lambda>n. f (Suc n)) sums l"
300  shows "f sums (l + f 0)"
301proof  -
302  have "(\<lambda>n. (\<Sum>i<n. f (Suc i)) + f 0) \<longlonglongrightarrow> l + f 0"
303    using assms by (auto intro!: tendsto_add simp: sums_def)
304  moreover have "(\<Sum>i<n. f (Suc i)) + f 0 = (\<Sum>i<Suc n. f i)" for n
305    unfolding lessThan_Suc_eq_insert_0
306    by (simp add: ac_simps sum.atLeast1_atMost_eq image_Suc_lessThan)
307  ultimately show ?thesis
308    by (auto simp: sums_def simp del: sum.lessThan_Suc intro: LIMSEQ_Suc_iff[THEN iffD1])
309qed
310
311lemma sums_add: "f sums a \<Longrightarrow> g sums b \<Longrightarrow> (\<lambda>n. f n + g n) sums (a + b)"
312  unfolding sums_def by (simp add: sum.distrib tendsto_add)
313
314lemma summable_add: "summable f \<Longrightarrow> summable g \<Longrightarrow> summable (\<lambda>n. f n + g n)"
315  unfolding summable_def by (auto intro: sums_add)
316
317lemma suminf_add: "summable f \<Longrightarrow> summable g \<Longrightarrow> suminf f + suminf g = (\<Sum>n. f n + g n)"
318  by (intro sums_unique sums_add summable_sums)
319
320end
321
322context
323  fixes f :: "'i \<Rightarrow> nat \<Rightarrow> 'a::{t2_space,topological_comm_monoid_add}"
324    and I :: "'i set"
325begin
326
327lemma sums_sum: "(\<And>i. i \<in> I \<Longrightarrow> (f i) sums (x i)) \<Longrightarrow> (\<lambda>n. \<Sum>i\<in>I. f i n) sums (\<Sum>i\<in>I. x i)"
328  by (induct I rule: infinite_finite_induct) (auto intro!: sums_add)
329
330lemma suminf_sum: "(\<And>i. i \<in> I \<Longrightarrow> summable (f i)) \<Longrightarrow> (\<Sum>n. \<Sum>i\<in>I. f i n) = (\<Sum>i\<in>I. \<Sum>n. f i n)"
331  using sums_unique[OF sums_sum, OF summable_sums] by simp
332
333lemma summable_sum: "(\<And>i. i \<in> I \<Longrightarrow> summable (f i)) \<Longrightarrow> summable (\<lambda>n. \<Sum>i\<in>I. f i n)"
334  using sums_summable[OF sums_sum[OF summable_sums]] .
335
336end
337
338lemma sums_If_finite_set':
339  fixes f g :: "nat \<Rightarrow> 'a::{t2_space,topological_ab_group_add}"
340  assumes "g sums S" and "finite A" and "S' = S + (\<Sum>n\<in>A. f n - g n)"
341  shows   "(\<lambda>n. if n \<in> A then f n else g n) sums S'"
342proof -
343  have "(\<lambda>n. g n + (if n \<in> A then f n - g n else 0)) sums (S + (\<Sum>n\<in>A. f n - g n))"
344    by (intro sums_add assms sums_If_finite_set)
345  also have "(\<lambda>n. g n + (if n \<in> A then f n - g n else 0)) = (\<lambda>n. if n \<in> A then f n else g n)"
346    by (simp add: fun_eq_iff)
347  finally show ?thesis using assms by simp
348qed
349
350subsection \<open>Infinite summability on real normed vector spaces\<close>
351
352context
353  fixes f :: "nat \<Rightarrow> 'a::real_normed_vector"
354begin
355
356lemma sums_Suc_iff: "(\<lambda>n. f (Suc n)) sums s \<longleftrightarrow> f sums (s + f 0)"
357proof -
358  have "f sums (s + f 0) \<longleftrightarrow> (\<lambda>i. \<Sum>j<Suc i. f j) \<longlonglongrightarrow> s + f 0"
359    by (subst LIMSEQ_Suc_iff) (simp add: sums_def)
360  also have "\<dots> \<longleftrightarrow> (\<lambda>i. (\<Sum>j<i. f (Suc j)) + f 0) \<longlonglongrightarrow> s + f 0"
361    by (simp add: ac_simps lessThan_Suc_eq_insert_0 image_Suc_lessThan sum.atLeast1_atMost_eq)
362  also have "\<dots> \<longleftrightarrow> (\<lambda>n. f (Suc n)) sums s"
363  proof
364    assume "(\<lambda>i. (\<Sum>j<i. f (Suc j)) + f 0) \<longlonglongrightarrow> s + f 0"
365    with tendsto_add[OF this tendsto_const, of "- f 0"] show "(\<lambda>i. f (Suc i)) sums s"
366      by (simp add: sums_def)
367  qed (auto intro: tendsto_add simp: sums_def)
368  finally show ?thesis ..
369qed
370
371lemma summable_Suc_iff: "summable (\<lambda>n. f (Suc n)) = summable f"
372proof
373  assume "summable f"
374  then have "f sums suminf f"
375    by (rule summable_sums)
376  then have "(\<lambda>n. f (Suc n)) sums (suminf f - f 0)"
377    by (simp add: sums_Suc_iff)
378  then show "summable (\<lambda>n. f (Suc n))"
379    unfolding summable_def by blast
380qed (auto simp: sums_Suc_iff summable_def)
381
382lemma sums_Suc_imp: "f 0 = 0 \<Longrightarrow> (\<lambda>n. f (Suc n)) sums s \<Longrightarrow> (\<lambda>n. f n) sums s"
383  using sums_Suc_iff by simp
384
385end
386
387context (* Separate contexts are necessary to allow general use of the results above, here. *)
388  fixes f :: "nat \<Rightarrow> 'a::real_normed_vector"
389begin
390
391lemma sums_diff: "f sums a \<Longrightarrow> g sums b \<Longrightarrow> (\<lambda>n. f n - g n) sums (a - b)"
392  unfolding sums_def by (simp add: sum_subtractf tendsto_diff)
393
394lemma summable_diff: "summable f \<Longrightarrow> summable g \<Longrightarrow> summable (\<lambda>n. f n - g n)"
395  unfolding summable_def by (auto intro: sums_diff)
396
397lemma suminf_diff: "summable f \<Longrightarrow> summable g \<Longrightarrow> suminf f - suminf g = (\<Sum>n. f n - g n)"
398  by (intro sums_unique sums_diff summable_sums)
399
400lemma sums_minus: "f sums a \<Longrightarrow> (\<lambda>n. - f n) sums (- a)"
401  unfolding sums_def by (simp add: sum_negf tendsto_minus)
402
403lemma summable_minus: "summable f \<Longrightarrow> summable (\<lambda>n. - f n)"
404  unfolding summable_def by (auto intro: sums_minus)
405
406lemma suminf_minus: "summable f \<Longrightarrow> (\<Sum>n. - f n) = - (\<Sum>n. f n)"
407  by (intro sums_unique [symmetric] sums_minus summable_sums)
408
409lemma sums_iff_shift: "(\<lambda>i. f (i + n)) sums s \<longleftrightarrow> f sums (s + (\<Sum>i<n. f i))"
410proof (induct n arbitrary: s)
411  case 0
412  then show ?case by simp
413next
414  case (Suc n)
415  then have "(\<lambda>i. f (Suc i + n)) sums s \<longleftrightarrow> (\<lambda>i. f (i + n)) sums (s + f n)"
416    by (subst sums_Suc_iff) simp
417  with Suc show ?case
418    by (simp add: ac_simps)
419qed
420
421corollary sums_iff_shift': "(\<lambda>i. f (i + n)) sums (s - (\<Sum>i<n. f i)) \<longleftrightarrow> f sums s"
422  by (simp add: sums_iff_shift)
423
424lemma sums_zero_iff_shift:
425  assumes "\<And>i. i < n \<Longrightarrow> f i = 0"
426  shows "(\<lambda>i. f (i+n)) sums s \<longleftrightarrow> (\<lambda>i. f i) sums s"
427  by (simp add: assms sums_iff_shift)
428
429lemma summable_iff_shift: "summable (\<lambda>n. f (n + k)) \<longleftrightarrow> summable f"
430  by (metis diff_add_cancel summable_def sums_iff_shift [abs_def])
431
432lemma sums_split_initial_segment: "f sums s \<Longrightarrow> (\<lambda>i. f (i + n)) sums (s - (\<Sum>i<n. f i))"
433  by (simp add: sums_iff_shift)
434
435lemma summable_ignore_initial_segment: "summable f \<Longrightarrow> summable (\<lambda>n. f(n + k))"
436  by (simp add: summable_iff_shift)
437
438lemma suminf_minus_initial_segment: "summable f \<Longrightarrow> (\<Sum>n. f (n + k)) = (\<Sum>n. f n) - (\<Sum>i<k. f i)"
439  by (rule sums_unique[symmetric]) (auto simp: sums_iff_shift)
440
441lemma suminf_split_initial_segment: "summable f \<Longrightarrow> suminf f = (\<Sum>n. f(n + k)) + (\<Sum>i<k. f i)"
442  by (auto simp add: suminf_minus_initial_segment)
443
444lemma suminf_split_head: "summable f \<Longrightarrow> (\<Sum>n. f (Suc n)) = suminf f - f 0"
445  using suminf_split_initial_segment[of 1] by simp
446
447lemma suminf_exist_split:
448  fixes r :: real
449  assumes "0 < r" and "summable f"
450  shows "\<exists>N. \<forall>n\<ge>N. norm (\<Sum>i. f (i + n)) < r"
451proof -
452  from LIMSEQ_D[OF summable_LIMSEQ[OF \<open>summable f\<close>] \<open>0 < r\<close>]
453  obtain N :: nat where "\<forall> n \<ge> N. norm (sum f {..<n} - suminf f) < r"
454    by auto
455  then show ?thesis
456    by (auto simp: norm_minus_commute suminf_minus_initial_segment[OF \<open>summable f\<close>])
457qed
458
459lemma summable_LIMSEQ_zero: "summable f \<Longrightarrow> f \<longlonglongrightarrow> 0"
460  apply (drule summable_iff_convergent [THEN iffD1])
461  apply (drule convergent_Cauchy)
462  apply (simp only: Cauchy_iff LIMSEQ_iff)
463  by (metis add.commute add_diff_cancel_right' diff_zero le_SucI sum.lessThan_Suc)
464
465lemma summable_imp_convergent: "summable f \<Longrightarrow> convergent f"
466  by (force dest!: summable_LIMSEQ_zero simp: convergent_def)
467
468lemma summable_imp_Bseq: "summable f \<Longrightarrow> Bseq f"
469  by (simp add: convergent_imp_Bseq summable_imp_convergent)
470
471end
472
473lemma summable_minus_iff: "summable (\<lambda>n. - f n) \<longleftrightarrow> summable f"
474  for f :: "nat \<Rightarrow> 'a::real_normed_vector"
475  by (auto dest: summable_minus)  (* used two ways, hence must be outside the context above *)
476
477lemma (in bounded_linear) sums: "(\<lambda>n. X n) sums a \<Longrightarrow> (\<lambda>n. f (X n)) sums (f a)"
478  unfolding sums_def by (drule tendsto) (simp only: sum)
479
480lemma (in bounded_linear) summable: "summable (\<lambda>n. X n) \<Longrightarrow> summable (\<lambda>n. f (X n))"
481  unfolding summable_def by (auto intro: sums)
482
483lemma (in bounded_linear) suminf: "summable (\<lambda>n. X n) \<Longrightarrow> f (\<Sum>n. X n) = (\<Sum>n. f (X n))"
484  by (intro sums_unique sums summable_sums)
485
486lemmas sums_of_real = bounded_linear.sums [OF bounded_linear_of_real]
487lemmas summable_of_real = bounded_linear.summable [OF bounded_linear_of_real]
488lemmas suminf_of_real = bounded_linear.suminf [OF bounded_linear_of_real]
489
490lemmas sums_scaleR_left = bounded_linear.sums[OF bounded_linear_scaleR_left]
491lemmas summable_scaleR_left = bounded_linear.summable[OF bounded_linear_scaleR_left]
492lemmas suminf_scaleR_left = bounded_linear.suminf[OF bounded_linear_scaleR_left]
493
494lemmas sums_scaleR_right = bounded_linear.sums[OF bounded_linear_scaleR_right]
495lemmas summable_scaleR_right = bounded_linear.summable[OF bounded_linear_scaleR_right]
496lemmas suminf_scaleR_right = bounded_linear.suminf[OF bounded_linear_scaleR_right]
497
498lemma summable_const_iff: "summable (\<lambda>_. c) \<longleftrightarrow> c = 0"
499  for c :: "'a::real_normed_vector"
500proof -
501  have "\<not> summable (\<lambda>_. c)" if "c \<noteq> 0"
502  proof -
503    from that have "filterlim (\<lambda>n. of_nat n * norm c) at_top sequentially"
504      by (subst mult.commute)
505        (auto intro!: filterlim_tendsto_pos_mult_at_top filterlim_real_sequentially)
506    then have "\<not> convergent (\<lambda>n. norm (\<Sum>k<n. c))"
507      by (intro filterlim_at_infinity_imp_not_convergent filterlim_at_top_imp_at_infinity)
508        (simp_all add: sum_constant_scaleR)
509    then show ?thesis
510      unfolding summable_iff_convergent using convergent_norm by blast
511  qed
512  then show ?thesis by auto
513qed
514
515
516subsection \<open>Infinite summability on real normed algebras\<close>
517
518context
519  fixes f :: "nat \<Rightarrow> 'a::real_normed_algebra"
520begin
521
522lemma sums_mult: "f sums a \<Longrightarrow> (\<lambda>n. c * f n) sums (c * a)"
523  by (rule bounded_linear.sums [OF bounded_linear_mult_right])
524
525lemma summable_mult: "summable f \<Longrightarrow> summable (\<lambda>n. c * f n)"
526  by (rule bounded_linear.summable [OF bounded_linear_mult_right])
527
528lemma suminf_mult: "summable f \<Longrightarrow> suminf (\<lambda>n. c * f n) = c * suminf f"
529  by (rule bounded_linear.suminf [OF bounded_linear_mult_right, symmetric])
530
531lemma sums_mult2: "f sums a \<Longrightarrow> (\<lambda>n. f n * c) sums (a * c)"
532  by (rule bounded_linear.sums [OF bounded_linear_mult_left])
533
534lemma summable_mult2: "summable f \<Longrightarrow> summable (\<lambda>n. f n * c)"
535  by (rule bounded_linear.summable [OF bounded_linear_mult_left])
536
537lemma suminf_mult2: "summable f \<Longrightarrow> suminf f * c = (\<Sum>n. f n * c)"
538  by (rule bounded_linear.suminf [OF bounded_linear_mult_left])
539
540end
541
542lemma sums_mult_iff:
543  fixes f :: "nat \<Rightarrow> 'a::{real_normed_algebra,field}"
544  assumes "c \<noteq> 0"
545  shows "(\<lambda>n. c * f n) sums (c * d) \<longleftrightarrow> f sums d"
546  using sums_mult[of f d c] sums_mult[of "\<lambda>n. c * f n" "c * d" "inverse c"]
547  by (force simp: field_simps assms)
548
549lemma sums_mult2_iff:
550  fixes f :: "nat \<Rightarrow> 'a::{real_normed_algebra,field}"
551  assumes "c \<noteq> 0"
552  shows   "(\<lambda>n. f n * c) sums (d * c) \<longleftrightarrow> f sums d"
553  using sums_mult_iff[OF assms, of f d] by (simp add: mult.commute)
554
555lemma sums_of_real_iff:
556  "(\<lambda>n. of_real (f n) :: 'a::real_normed_div_algebra) sums of_real c \<longleftrightarrow> f sums c"
557  by (simp add: sums_def of_real_sum[symmetric] tendsto_of_real_iff del: of_real_sum)
558
559
560subsection \<open>Infinite summability on real normed fields\<close>
561
562context
563  fixes c :: "'a::real_normed_field"
564begin
565
566lemma sums_divide: "f sums a \<Longrightarrow> (\<lambda>n. f n / c) sums (a / c)"
567  by (rule bounded_linear.sums [OF bounded_linear_divide])
568
569lemma summable_divide: "summable f \<Longrightarrow> summable (\<lambda>n. f n / c)"
570  by (rule bounded_linear.summable [OF bounded_linear_divide])
571
572lemma suminf_divide: "summable f \<Longrightarrow> suminf (\<lambda>n. f n / c) = suminf f / c"
573  by (rule bounded_linear.suminf [OF bounded_linear_divide, symmetric])
574
575lemma summable_inverse_divide: "summable (inverse \<circ> f) \<Longrightarrow> summable (\<lambda>n. c / f n)"
576  by (auto dest: summable_mult [of _ c] simp: field_simps)
577
578lemma sums_mult_D: "(\<lambda>n. c * f n) sums a \<Longrightarrow> c \<noteq> 0 \<Longrightarrow> f sums (a/c)"
579  using sums_mult_iff by fastforce
580
581lemma summable_mult_D: "summable (\<lambda>n. c * f n) \<Longrightarrow> c \<noteq> 0 \<Longrightarrow> summable f"
582  by (auto dest: summable_divide)
583
584
585text \<open>Sum of a geometric progression.\<close>
586
587lemma geometric_sums:
588  assumes "norm c < 1"
589  shows "(\<lambda>n. c^n) sums (1 / (1 - c))"
590proof -
591  have neq_0: "c - 1 \<noteq> 0"
592    using assms by auto
593  then have "(\<lambda>n. c ^ n / (c - 1) - 1 / (c - 1)) \<longlonglongrightarrow> 0 / (c - 1) - 1 / (c - 1)"
594    by (intro tendsto_intros assms)
595  then have "(\<lambda>n. (c ^ n - 1) / (c - 1)) \<longlonglongrightarrow> 1 / (1 - c)"
596    by (simp add: nonzero_minus_divide_right [OF neq_0] diff_divide_distrib)
597  with neq_0 show "(\<lambda>n. c ^ n) sums (1 / (1 - c))"
598    by (simp add: sums_def geometric_sum)
599qed
600
601lemma summable_geometric: "norm c < 1 \<Longrightarrow> summable (\<lambda>n. c^n)"
602  by (rule geometric_sums [THEN sums_summable])
603
604lemma suminf_geometric: "norm c < 1 \<Longrightarrow> suminf (\<lambda>n. c^n) = 1 / (1 - c)"
605  by (rule sums_unique[symmetric]) (rule geometric_sums)
606
607lemma summable_geometric_iff: "summable (\<lambda>n. c ^ n) \<longleftrightarrow> norm c < 1"
608proof
609  assume "summable (\<lambda>n. c ^ n :: 'a :: real_normed_field)"
610  then have "(\<lambda>n. norm c ^ n) \<longlonglongrightarrow> 0"
611    by (simp add: norm_power [symmetric] tendsto_norm_zero_iff summable_LIMSEQ_zero)
612  from order_tendstoD(2)[OF this zero_less_one] obtain n where "norm c ^ n < 1"
613    by (auto simp: eventually_at_top_linorder)
614  then show "norm c < 1" using one_le_power[of "norm c" n]
615    by (cases "norm c \<ge> 1") (linarith, simp)
616qed (rule summable_geometric)
617
618end
619
620lemma power_half_series: "(\<lambda>n. (1/2::real)^Suc n) sums 1"
621proof -
622  have 2: "(\<lambda>n. (1/2::real)^n) sums 2"
623    using geometric_sums [of "1/2::real"] by auto
624  have "(\<lambda>n. (1/2::real)^Suc n) = (\<lambda>n. (1 / 2) ^ n / 2)"
625    by (simp add: mult.commute)
626  then show ?thesis
627    using sums_divide [OF 2, of 2] by simp
628qed
629
630
631subsection \<open>Telescoping\<close>
632
633lemma telescope_sums:
634  fixes c :: "'a::real_normed_vector"
635  assumes "f \<longlonglongrightarrow> c"
636  shows "(\<lambda>n. f (Suc n) - f n) sums (c - f 0)"
637  unfolding sums_def
638proof (subst LIMSEQ_Suc_iff [symmetric])
639  have "(\<lambda>n. \<Sum>k<Suc n. f (Suc k) - f k) = (\<lambda>n. f (Suc n) - f 0)"
640    by (simp add: lessThan_Suc_atMost atLeast0AtMost [symmetric] sum_Suc_diff)
641  also have "\<dots> \<longlonglongrightarrow> c - f 0"
642    by (intro tendsto_diff LIMSEQ_Suc[OF assms] tendsto_const)
643  finally show "(\<lambda>n. \<Sum>n<Suc n. f (Suc n) - f n) \<longlonglongrightarrow> c - f 0" .
644qed
645
646lemma telescope_sums':
647  fixes c :: "'a::real_normed_vector"
648  assumes "f \<longlonglongrightarrow> c"
649  shows "(\<lambda>n. f n - f (Suc n)) sums (f 0 - c)"
650  using sums_minus[OF telescope_sums[OF assms]] by (simp add: algebra_simps)
651
652lemma telescope_summable:
653  fixes c :: "'a::real_normed_vector"
654  assumes "f \<longlonglongrightarrow> c"
655  shows "summable (\<lambda>n. f (Suc n) - f n)"
656  using telescope_sums[OF assms] by (simp add: sums_iff)
657
658lemma telescope_summable':
659  fixes c :: "'a::real_normed_vector"
660  assumes "f \<longlonglongrightarrow> c"
661  shows "summable (\<lambda>n. f n - f (Suc n))"
662  using summable_minus[OF telescope_summable[OF assms]] by (simp add: algebra_simps)
663
664
665subsection \<open>Infinite summability on Banach spaces\<close>
666
667text \<open>Cauchy-type criterion for convergence of series (c.f. Harrison).\<close>
668
669lemma summable_Cauchy: "summable f \<longleftrightarrow> (\<forall>e>0. \<exists>N. \<forall>m\<ge>N. \<forall>n. norm (sum f {m..<n}) < e)" (is "_ = ?rhs")
670  for f :: "nat \<Rightarrow> 'a::banach"
671proof
672  assume f: "summable f"
673  show ?rhs
674  proof clarify
675    fix e :: real
676    assume "0 < e"
677    then obtain M where M: "\<And>m n. \<lbrakk>m\<ge>M; n\<ge>M\<rbrakk> \<Longrightarrow> norm (sum f {..<m} - sum f {..<n}) < e"
678      using f by (force simp add: summable_iff_convergent Cauchy_convergent_iff [symmetric] Cauchy_iff)
679    have "norm (sum f {m..<n}) < e" if "m \<ge> M" for m n
680    proof (cases m n rule: linorder_class.le_cases)
681      assume "m \<le> n"
682      then show ?thesis
683        by (metis (mono_tags, hide_lams) M atLeast0LessThan order_trans sum_diff_nat_ivl that zero_le)
684    next
685      assume "n \<le> m"
686      then show ?thesis
687        by (simp add: \<open>0 < e\<close>)
688    qed
689    then show "\<exists>N. \<forall>m\<ge>N. \<forall>n. norm (sum f {m..<n}) < e"
690      by blast
691  qed
692next
693  assume r: ?rhs
694  then show "summable f"
695    unfolding summable_iff_convergent Cauchy_convergent_iff [symmetric] Cauchy_iff
696  proof clarify
697    fix e :: real
698    assume "0 < e"
699    with r obtain N where N: "\<And>m n. m \<ge> N \<Longrightarrow> norm (sum f {m..<n}) < e"
700      by blast
701    have "norm (sum f {..<m} - sum f {..<n}) < e" if "m\<ge>N" "n\<ge>N" for m n
702    proof (cases m n rule: linorder_class.le_cases)
703      assume "m \<le> n"
704      then show ?thesis
705        by (metis Groups_Big.sum_diff N finite_lessThan lessThan_minus_lessThan lessThan_subset_iff norm_minus_commute \<open>m\<ge>N\<close>)
706    next
707      assume "n \<le> m"
708      then show ?thesis
709        by (metis Groups_Big.sum_diff N finite_lessThan lessThan_minus_lessThan lessThan_subset_iff \<open>n\<ge>N\<close>)
710    qed
711    then show "\<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. norm (sum f {..<m} - sum f {..<n}) < e"
712      by blast
713  qed
714qed
715
716lemma summable_Cauchy':
717  fixes f :: "nat \<Rightarrow> 'a :: banach"
718  assumes "eventually (\<lambda>m. \<forall>n\<ge>m. norm (sum f {m..<n}) \<le> g m) sequentially"
719  assumes "filterlim g (nhds 0) sequentially"
720  shows "summable f"
721proof (subst summable_Cauchy, intro allI impI, goal_cases)
722  case (1 e)
723  from order_tendstoD(2)[OF assms(2) this] and assms(1)
724  have "eventually (\<lambda>m. \<forall>n. norm (sum f {m..<n}) < e) at_top"
725  proof eventually_elim
726    case (elim m)
727    show ?case
728    proof
729      fix n
730      from elim show "norm (sum f {m..<n}) < e"
731        by (cases "n \<ge> m") auto
732    qed
733  qed
734  thus ?case by (auto simp: eventually_at_top_linorder)
735qed
736
737context
738  fixes f :: "nat \<Rightarrow> 'a::banach"
739begin
740
741text \<open>Absolute convergence imples normal convergence.\<close>
742
743lemma summable_norm_cancel: "summable (\<lambda>n. norm (f n)) \<Longrightarrow> summable f"
744  unfolding summable_Cauchy
745  apply (erule all_forward imp_forward ex_forward | assumption)+
746  apply (fastforce simp add: order_le_less_trans [OF norm_sum] order_le_less_trans [OF abs_ge_self])
747  done
748
749lemma summable_norm: "summable (\<lambda>n. norm (f n)) \<Longrightarrow> norm (suminf f) \<le> (\<Sum>n. norm (f n))"
750  by (auto intro: LIMSEQ_le tendsto_norm summable_norm_cancel summable_LIMSEQ norm_sum)
751
752text \<open>Comparison tests.\<close>
753
754lemma summable_comparison_test: 
755  assumes fg: "\<exists>N. \<forall>n\<ge>N. norm (f n) \<le> g n" and g: "summable g"
756  shows "summable f"
757proof -
758  obtain N where N: "\<And>n. n\<ge>N \<Longrightarrow> norm (f n) \<le> g n" 
759    using assms by blast
760  show ?thesis
761  proof (clarsimp simp add: summable_Cauchy)
762    fix e :: real
763    assume "0 < e"
764    then obtain Ng where Ng: "\<And>m n. m \<ge> Ng \<Longrightarrow> norm (sum g {m..<n}) < e" 
765      using g by (fastforce simp: summable_Cauchy)
766    with N have "norm (sum f {m..<n}) < e" if "m\<ge>max N Ng" for m n
767    proof -
768      have "norm (sum f {m..<n}) \<le> sum g {m..<n}"
769        using N that by (force intro: sum_norm_le)
770      also have "... \<le> norm (sum g {m..<n})"
771        by simp
772      also have "... < e"
773        using Ng that by auto
774      finally show ?thesis .
775    qed
776    then show "\<exists>N. \<forall>m\<ge>N. \<forall>n. norm (sum f {m..<n}) < e" 
777      by blast
778  qed
779qed
780
781lemma summable_comparison_test_ev:
782  "eventually (\<lambda>n. norm (f n) \<le> g n) sequentially \<Longrightarrow> summable g \<Longrightarrow> summable f"
783  by (rule summable_comparison_test) (auto simp: eventually_at_top_linorder)
784
785text \<open>A better argument order.\<close>
786lemma summable_comparison_test': "summable g \<Longrightarrow> (\<And>n. n \<ge> N \<Longrightarrow> norm (f n) \<le> g n) \<Longrightarrow> summable f"
787  by (rule summable_comparison_test) auto
788
789
790subsection \<open>The Ratio Test\<close>
791
792lemma summable_ratio_test:
793  assumes "c < 1" "\<And>n. n \<ge> N \<Longrightarrow> norm (f (Suc n)) \<le> c * norm (f n)"
794  shows "summable f"
795proof (cases "0 < c")
796  case True
797  show "summable f"
798  proof (rule summable_comparison_test)
799    show "\<exists>N'. \<forall>n\<ge>N'. norm (f n) \<le> (norm (f N) / (c ^ N)) * c ^ n"
800    proof (intro exI allI impI)
801      fix n
802      assume "N \<le> n"
803      then show "norm (f n) \<le> (norm (f N) / (c ^ N)) * c ^ n"
804      proof (induct rule: inc_induct)
805        case base
806        with True show ?case by simp
807      next
808        case (step m)
809        have "norm (f (Suc m)) / c ^ Suc m * c ^ n \<le> norm (f m) / c ^ m * c ^ n"
810          using \<open>0 < c\<close> \<open>c < 1\<close> assms(2)[OF \<open>N \<le> m\<close>] by (simp add: field_simps)
811        with step show ?case by simp
812      qed
813    qed
814    show "summable (\<lambda>n. norm (f N) / c ^ N * c ^ n)"
815      using \<open>0 < c\<close> \<open>c < 1\<close> by (intro summable_mult summable_geometric) simp
816  qed
817next
818  case False
819  have "f (Suc n) = 0" if "n \<ge> N" for n
820  proof -
821    from that have "norm (f (Suc n)) \<le> c * norm (f n)"
822      by (rule assms(2))
823    also have "\<dots> \<le> 0"
824      using False by (simp add: not_less mult_nonpos_nonneg)
825    finally show ?thesis
826      by auto
827  qed
828  then show "summable f"
829    by (intro sums_summable[OF sums_finite, of "{.. Suc N}"]) (auto simp: not_le Suc_less_eq2)
830qed
831
832end
833
834
835text \<open>Relations among convergence and absolute convergence for power series.\<close>
836
837lemma Abel_lemma:
838  fixes a :: "nat \<Rightarrow> 'a::real_normed_vector"
839  assumes r: "0 \<le> r"
840    and r0: "r < r0"
841    and M: "\<And>n. norm (a n) * r0^n \<le> M"
842  shows "summable (\<lambda>n. norm (a n) * r^n)"
843proof (rule summable_comparison_test')
844  show "summable (\<lambda>n. M * (r / r0) ^ n)"
845    using assms by (auto simp add: summable_mult summable_geometric)
846  show "norm (norm (a n) * r ^ n) \<le> M * (r / r0) ^ n" for n
847    using r r0 M [of n] dual_order.order_iff_strict
848    by (fastforce simp add: abs_mult field_simps)
849qed
850
851
852text \<open>Summability of geometric series for real algebras.\<close>
853
854lemma complete_algebra_summable_geometric:
855  fixes x :: "'a::{real_normed_algebra_1,banach}"
856  assumes "norm x < 1"
857  shows "summable (\<lambda>n. x ^ n)"
858proof (rule summable_comparison_test)
859  show "\<exists>N. \<forall>n\<ge>N. norm (x ^ n) \<le> norm x ^ n"
860    by (simp add: norm_power_ineq)
861  from assms show "summable (\<lambda>n. norm x ^ n)"
862    by (simp add: summable_geometric)
863qed
864
865
866subsection \<open>Cauchy Product Formula\<close>
867
868text \<open>
869  Proof based on Analysis WebNotes: Chapter 07, Class 41
870  \<^url>\<open>http://www.math.unl.edu/~webnotes/classes/class41/prp77.htm\<close>
871\<close>
872
873lemma Cauchy_product_sums:
874  fixes a b :: "nat \<Rightarrow> 'a::{real_normed_algebra,banach}"
875  assumes a: "summable (\<lambda>k. norm (a k))"
876    and b: "summable (\<lambda>k. norm (b k))"
877  shows "(\<lambda>k. \<Sum>i\<le>k. a i * b (k - i)) sums ((\<Sum>k. a k) * (\<Sum>k. b k))"
878proof -
879  let ?S1 = "\<lambda>n::nat. {..<n} \<times> {..<n}"
880  let ?S2 = "\<lambda>n::nat. {(i,j). i + j < n}"
881  have S1_mono: "\<And>m n. m \<le> n \<Longrightarrow> ?S1 m \<subseteq> ?S1 n" by auto
882  have S2_le_S1: "\<And>n. ?S2 n \<subseteq> ?S1 n" by auto
883  have S1_le_S2: "\<And>n. ?S1 (n div 2) \<subseteq> ?S2 n" by auto
884  have finite_S1: "\<And>n. finite (?S1 n)" by simp
885  with S2_le_S1 have finite_S2: "\<And>n. finite (?S2 n)" by (rule finite_subset)
886
887  let ?g = "\<lambda>(i,j). a i * b j"
888  let ?f = "\<lambda>(i,j). norm (a i) * norm (b j)"
889  have f_nonneg: "\<And>x. 0 \<le> ?f x" by auto
890  then have norm_sum_f: "\<And>A. norm (sum ?f A) = sum ?f A"
891    unfolding real_norm_def
892    by (simp only: abs_of_nonneg sum_nonneg [rule_format])
893
894  have "(\<lambda>n. (\<Sum>k<n. a k) * (\<Sum>k<n. b k)) \<longlonglongrightarrow> (\<Sum>k. a k) * (\<Sum>k. b k)"
895    by (intro tendsto_mult summable_LIMSEQ summable_norm_cancel [OF a] summable_norm_cancel [OF b])
896  then have 1: "(\<lambda>n. sum ?g (?S1 n)) \<longlonglongrightarrow> (\<Sum>k. a k) * (\<Sum>k. b k)"
897    by (simp only: sum_product sum.Sigma [rule_format] finite_lessThan)
898
899  have "(\<lambda>n. (\<Sum>k<n. norm (a k)) * (\<Sum>k<n. norm (b k))) \<longlonglongrightarrow> (\<Sum>k. norm (a k)) * (\<Sum>k. norm (b k))"
900    using a b by (intro tendsto_mult summable_LIMSEQ)
901  then have "(\<lambda>n. sum ?f (?S1 n)) \<longlonglongrightarrow> (\<Sum>k. norm (a k)) * (\<Sum>k. norm (b k))"
902    by (simp only: sum_product sum.Sigma [rule_format] finite_lessThan)
903  then have "convergent (\<lambda>n. sum ?f (?S1 n))"
904    by (rule convergentI)
905  then have Cauchy: "Cauchy (\<lambda>n. sum ?f (?S1 n))"
906    by (rule convergent_Cauchy)
907  have "Zfun (\<lambda>n. sum ?f (?S1 n - ?S2 n)) sequentially"
908  proof (rule ZfunI, simp only: eventually_sequentially norm_sum_f)
909    fix r :: real
910    assume r: "0 < r"
911    from CauchyD [OF Cauchy r] obtain N
912      where "\<forall>m\<ge>N. \<forall>n\<ge>N. norm (sum ?f (?S1 m) - sum ?f (?S1 n)) < r" ..
913    then have "\<And>m n. N \<le> n \<Longrightarrow> n \<le> m \<Longrightarrow> norm (sum ?f (?S1 m - ?S1 n)) < r"
914      by (simp only: sum_diff finite_S1 S1_mono)
915    then have N: "\<And>m n. N \<le> n \<Longrightarrow> n \<le> m \<Longrightarrow> sum ?f (?S1 m - ?S1 n) < r"
916      by (simp only: norm_sum_f)
917    show "\<exists>N. \<forall>n\<ge>N. sum ?f (?S1 n - ?S2 n) < r"
918    proof (intro exI allI impI)
919      fix n
920      assume "2 * N \<le> n"
921      then have n: "N \<le> n div 2" by simp
922      have "sum ?f (?S1 n - ?S2 n) \<le> sum ?f (?S1 n - ?S1 (n div 2))"
923        by (intro sum_mono2 finite_Diff finite_S1 f_nonneg Diff_mono subset_refl S1_le_S2)
924      also have "\<dots> < r"
925        using n div_le_dividend by (rule N)
926      finally show "sum ?f (?S1 n - ?S2 n) < r" .
927    qed
928  qed
929  then have "Zfun (\<lambda>n. sum ?g (?S1 n - ?S2 n)) sequentially"
930    apply (rule Zfun_le [rule_format])
931    apply (simp only: norm_sum_f)
932    apply (rule order_trans [OF norm_sum sum_mono])
933    apply (auto simp add: norm_mult_ineq)
934    done
935  then have 2: "(\<lambda>n. sum ?g (?S1 n) - sum ?g (?S2 n)) \<longlonglongrightarrow> 0"
936    unfolding tendsto_Zfun_iff diff_0_right
937    by (simp only: sum_diff finite_S1 S2_le_S1)
938  with 1 have "(\<lambda>n. sum ?g (?S2 n)) \<longlonglongrightarrow> (\<Sum>k. a k) * (\<Sum>k. b k)"
939    by (rule Lim_transform2)
940  then show ?thesis
941    by (simp only: sums_def sum.triangle_reindex)
942qed
943
944lemma Cauchy_product:
945  fixes a b :: "nat \<Rightarrow> 'a::{real_normed_algebra,banach}"
946  assumes "summable (\<lambda>k. norm (a k))"
947    and "summable (\<lambda>k. norm (b k))"
948  shows "(\<Sum>k. a k) * (\<Sum>k. b k) = (\<Sum>k. \<Sum>i\<le>k. a i * b (k - i))"
949  using assms by (rule Cauchy_product_sums [THEN sums_unique])
950
951lemma summable_Cauchy_product:
952  fixes a b :: "nat \<Rightarrow> 'a::{real_normed_algebra,banach}"
953  assumes "summable (\<lambda>k. norm (a k))"
954    and "summable (\<lambda>k. norm (b k))"
955  shows "summable (\<lambda>k. \<Sum>i\<le>k. a i * b (k - i))"
956  using Cauchy_product_sums[OF assms] by (simp add: sums_iff)
957
958
959subsection \<open>Series on \<^typ>\<open>real\<close>s\<close>
960
961lemma summable_norm_comparison_test:
962  "\<exists>N. \<forall>n\<ge>N. norm (f n) \<le> g n \<Longrightarrow> summable g \<Longrightarrow> summable (\<lambda>n. norm (f n))"
963  by (rule summable_comparison_test) auto
964
965lemma summable_rabs_comparison_test: "\<exists>N. \<forall>n\<ge>N. \<bar>f n\<bar> \<le> g n \<Longrightarrow> summable g \<Longrightarrow> summable (\<lambda>n. \<bar>f n\<bar>)"
966  for f :: "nat \<Rightarrow> real"
967  by (rule summable_comparison_test) auto
968
969lemma summable_rabs_cancel: "summable (\<lambda>n. \<bar>f n\<bar>) \<Longrightarrow> summable f"
970  for f :: "nat \<Rightarrow> real"
971  by (rule summable_norm_cancel) simp
972
973lemma summable_rabs: "summable (\<lambda>n. \<bar>f n\<bar>) \<Longrightarrow> \<bar>suminf f\<bar> \<le> (\<Sum>n. \<bar>f n\<bar>)"
974  for f :: "nat \<Rightarrow> real"
975  by (fold real_norm_def) (rule summable_norm)
976
977lemma summable_zero_power [simp]: "summable (\<lambda>n. 0 ^ n :: 'a::{comm_ring_1,topological_space})"
978proof -
979  have "(\<lambda>n. 0 ^ n :: 'a) = (\<lambda>n. if n = 0 then 0^0 else 0)"
980    by (intro ext) (simp add: zero_power)
981  moreover have "summable \<dots>" by simp
982  ultimately show ?thesis by simp
983qed
984
985lemma summable_zero_power' [simp]: "summable (\<lambda>n. f n * 0 ^ n :: 'a::{ring_1,topological_space})"
986proof -
987  have "(\<lambda>n. f n * 0 ^ n :: 'a) = (\<lambda>n. if n = 0 then f 0 * 0^0 else 0)"
988    by (intro ext) (simp add: zero_power)
989  moreover have "summable \<dots>" by simp
990  ultimately show ?thesis by simp
991qed
992
993lemma summable_power_series:
994  fixes z :: real
995  assumes le_1: "\<And>i. f i \<le> 1"
996    and nonneg: "\<And>i. 0 \<le> f i"
997    and z: "0 \<le> z" "z < 1"
998  shows "summable (\<lambda>i. f i * z^i)"
999proof (rule summable_comparison_test[OF _ summable_geometric])
1000  show "norm z < 1"
1001    using z by (auto simp: less_imp_le)
1002  show "\<And>n. \<exists>N. \<forall>na\<ge>N. norm (f na * z ^ na) \<le> z ^ na"
1003    using z
1004    by (auto intro!: exI[of _ 0] mult_left_le_one_le simp: abs_mult nonneg power_abs less_imp_le le_1)
1005qed
1006
1007lemma summable_0_powser: "summable (\<lambda>n. f n * 0 ^ n :: 'a::real_normed_div_algebra)"
1008proof -
1009  have A: "(\<lambda>n. f n * 0 ^ n) = (\<lambda>n. if n = 0 then f n else 0)"
1010    by (intro ext) auto
1011  then show ?thesis
1012    by (subst A) simp_all
1013qed
1014
1015lemma summable_powser_split_head:
1016  "summable (\<lambda>n. f (Suc n) * z ^ n :: 'a::real_normed_div_algebra) = summable (\<lambda>n. f n * z ^ n)"
1017proof -
1018  have "summable (\<lambda>n. f (Suc n) * z ^ n) \<longleftrightarrow> summable (\<lambda>n. f (Suc n) * z ^ Suc n)"
1019    (is "?lhs \<longleftrightarrow> ?rhs")
1020  proof
1021    show ?rhs if ?lhs
1022      using summable_mult2[OF that, of z]
1023      by (simp add: power_commutes algebra_simps)
1024    show ?lhs if ?rhs
1025      using summable_mult2[OF that, of "inverse z"]
1026      by (cases "z \<noteq> 0", subst (asm) power_Suc2) (simp_all add: algebra_simps)
1027  qed
1028  also have "\<dots> \<longleftrightarrow> summable (\<lambda>n. f n * z ^ n)" by (rule summable_Suc_iff)
1029  finally show ?thesis .
1030qed
1031
1032lemma summable_powser_ignore_initial_segment:
1033  fixes f :: "nat \<Rightarrow> 'a :: real_normed_div_algebra"
1034  shows "summable (\<lambda>n. f (n + m) * z ^ n) \<longleftrightarrow> summable (\<lambda>n. f n * z ^ n)"
1035proof (induction m)
1036  case (Suc m)
1037  have "summable (\<lambda>n. f (n + Suc m) * z ^ n) = summable (\<lambda>n. f (Suc n + m) * z ^ n)"
1038    by simp
1039  also have "\<dots> = summable (\<lambda>n. f (n + m) * z ^ n)"
1040    by (rule summable_powser_split_head)
1041  also have "\<dots> = summable (\<lambda>n. f n * z ^ n)"
1042    by (rule Suc.IH)
1043  finally show ?case .
1044qed simp_all
1045
1046lemma powser_split_head:
1047  fixes f :: "nat \<Rightarrow> 'a::{real_normed_div_algebra,banach}"
1048  assumes "summable (\<lambda>n. f n * z ^ n)"
1049  shows "suminf (\<lambda>n. f n * z ^ n) = f 0 + suminf (\<lambda>n. f (Suc n) * z ^ n) * z"
1050    and "suminf (\<lambda>n. f (Suc n) * z ^ n) * z = suminf (\<lambda>n. f n * z ^ n) - f 0"
1051    and "summable (\<lambda>n. f (Suc n) * z ^ n)"
1052proof -
1053  from assms show "summable (\<lambda>n. f (Suc n) * z ^ n)"
1054    by (subst summable_powser_split_head)
1055  from suminf_mult2[OF this, of z]
1056    have "(\<Sum>n. f (Suc n) * z ^ n) * z = (\<Sum>n. f (Suc n) * z ^ Suc n)"
1057    by (simp add: power_commutes algebra_simps)
1058  also from assms have "\<dots> = suminf (\<lambda>n. f n * z ^ n) - f 0"
1059    by (subst suminf_split_head) simp_all
1060  finally show "suminf (\<lambda>n. f n * z ^ n) = f 0 + suminf (\<lambda>n. f (Suc n) * z ^ n) * z"
1061    by simp
1062  then show "suminf (\<lambda>n. f (Suc n) * z ^ n) * z = suminf (\<lambda>n. f n * z ^ n) - f 0"
1063    by simp
1064qed
1065
1066lemma summable_partial_sum_bound:
1067  fixes f :: "nat \<Rightarrow> 'a :: banach"
1068    and e :: real
1069  assumes summable: "summable f"
1070    and e: "e > 0"
1071  obtains N where "\<And>m n. m \<ge> N \<Longrightarrow> norm (\<Sum>k=m..n. f k) < e"
1072proof -
1073  from summable have "Cauchy (\<lambda>n. \<Sum>k<n. f k)"
1074    by (simp add: Cauchy_convergent_iff summable_iff_convergent)
1075  from CauchyD [OF this e] obtain N
1076    where N: "\<And>m n. m \<ge> N \<Longrightarrow> n \<ge> N \<Longrightarrow> norm ((\<Sum>k<m. f k) - (\<Sum>k<n. f k)) < e"
1077    by blast
1078  have "norm (\<Sum>k=m..n. f k) < e" if m: "m \<ge> N" for m n
1079  proof (cases "n \<ge> m")
1080    case True
1081    with m have "norm ((\<Sum>k<Suc n. f k) - (\<Sum>k<m. f k)) < e"
1082      by (intro N) simp_all
1083    also from True have "(\<Sum>k<Suc n. f k) - (\<Sum>k<m. f k) = (\<Sum>k=m..n. f k)"
1084      by (subst sum_diff [symmetric]) (simp_all add: sum.last_plus)
1085    finally show ?thesis .
1086  next
1087    case False
1088    with e show ?thesis by simp_all
1089  qed
1090  then show ?thesis by (rule that)
1091qed
1092
1093lemma powser_sums_if:
1094  "(\<lambda>n. (if n = m then (1 :: 'a::{ring_1,topological_space}) else 0) * z^n) sums z^m"
1095proof -
1096  have "(\<lambda>n. (if n = m then 1 else 0) * z^n) = (\<lambda>n. if n = m then z^n else 0)"
1097    by (intro ext) auto
1098  then show ?thesis
1099    by (simp add: sums_single)
1100qed
1101
1102lemma
1103  fixes f :: "nat \<Rightarrow> real"
1104  assumes "summable f"
1105    and "inj g"
1106    and pos: "\<And>x. 0 \<le> f x"
1107  shows summable_reindex: "summable (f \<circ> g)"
1108    and suminf_reindex_mono: "suminf (f \<circ> g) \<le> suminf f"
1109    and suminf_reindex: "(\<And>x. x \<notin> range g \<Longrightarrow> f x = 0) \<Longrightarrow> suminf (f \<circ> g) = suminf f"
1110proof -
1111  from \<open>inj g\<close> have [simp]: "\<And>A. inj_on g A"
1112    by (rule subset_inj_on) simp
1113
1114  have smaller: "\<forall>n. (\<Sum>i<n. (f \<circ> g) i) \<le> suminf f"
1115  proof
1116    fix n
1117    have "\<forall> n' \<in> (g ` {..<n}). n' < Suc (Max (g ` {..<n}))"
1118      by (metis Max_ge finite_imageI finite_lessThan not_le not_less_eq)
1119    then obtain m where n: "\<And>n'. n' < n \<Longrightarrow> g n' < m"
1120      by blast
1121
1122    have "(\<Sum>i<n. f (g i)) = sum f (g ` {..<n})"
1123      by (simp add: sum.reindex)
1124    also have "\<dots> \<le> (\<Sum>i<m. f i)"
1125      by (rule sum_mono2) (auto simp add: pos n[rule_format])
1126    also have "\<dots> \<le> suminf f"
1127      using \<open>summable f\<close>
1128      by (rule sum_le_suminf) (simp_all add: pos)
1129    finally show "(\<Sum>i<n. (f \<circ>  g) i) \<le> suminf f"
1130      by simp
1131  qed
1132
1133  have "incseq (\<lambda>n. \<Sum>i<n. (f \<circ> g) i)"
1134    by (rule incseq_SucI) (auto simp add: pos)
1135  then obtain  L where L: "(\<lambda> n. \<Sum>i<n. (f \<circ> g) i) \<longlonglongrightarrow> L"
1136    using smaller by(rule incseq_convergent)
1137  then have "(f \<circ> g) sums L"
1138    by (simp add: sums_def)
1139  then show "summable (f \<circ> g)"
1140    by (auto simp add: sums_iff)
1141
1142  then have "(\<lambda>n. \<Sum>i<n. (f \<circ> g) i) \<longlonglongrightarrow> suminf (f \<circ> g)"
1143    by (rule summable_LIMSEQ)
1144  then show le: "suminf (f \<circ> g) \<le> suminf f"
1145    by(rule LIMSEQ_le_const2)(blast intro: smaller[rule_format])
1146
1147  assume f: "\<And>x. x \<notin> range g \<Longrightarrow> f x = 0"
1148
1149  from \<open>summable f\<close> have "suminf f \<le> suminf (f \<circ> g)"
1150  proof (rule suminf_le_const)
1151    fix n
1152    have "\<forall> n' \<in> (g -` {..<n}). n' < Suc (Max (g -` {..<n}))"
1153      by(auto intro: Max_ge simp add: finite_vimageI less_Suc_eq_le)
1154    then obtain m where n: "\<And>n'. g n' < n \<Longrightarrow> n' < m"
1155      by blast
1156    have "(\<Sum>i<n. f i) = (\<Sum>i\<in>{..<n} \<inter> range g. f i)"
1157      using f by(auto intro: sum.mono_neutral_cong_right)
1158    also have "\<dots> = (\<Sum>i\<in>g -` {..<n}. (f \<circ> g) i)"
1159      by (rule sum.reindex_cong[where l=g])(auto)
1160    also have "\<dots> \<le> (\<Sum>i<m. (f \<circ> g) i)"
1161      by (rule sum_mono2)(auto simp add: pos n)
1162    also have "\<dots> \<le> suminf (f \<circ> g)"
1163      using \<open>summable (f \<circ> g)\<close> by (rule sum_le_suminf) (simp_all add: pos)
1164    finally show "sum f {..<n} \<le> suminf (f \<circ> g)" .
1165  qed
1166  with le show "suminf (f \<circ> g) = suminf f"
1167    by (rule antisym)
1168qed
1169
1170lemma sums_mono_reindex:
1171  assumes subseq: "strict_mono g"
1172    and zero: "\<And>n. n \<notin> range g \<Longrightarrow> f n = 0"
1173  shows "(\<lambda>n. f (g n)) sums c \<longleftrightarrow> f sums c"
1174  unfolding sums_def
1175proof
1176  assume lim: "(\<lambda>n. \<Sum>k<n. f k) \<longlonglongrightarrow> c"
1177  have "(\<lambda>n. \<Sum>k<n. f (g k)) = (\<lambda>n. \<Sum>k<g n. f k)"
1178  proof
1179    fix n :: nat
1180    from subseq have "(\<Sum>k<n. f (g k)) = (\<Sum>k\<in>g`{..<n}. f k)"
1181      by (subst sum.reindex) (auto intro: strict_mono_imp_inj_on)
1182    also from subseq have "\<dots> = (\<Sum>k<g n. f k)"
1183      by (intro sum.mono_neutral_left ballI zero)
1184        (auto simp: strict_mono_less strict_mono_less_eq)
1185    finally show "(\<Sum>k<n. f (g k)) = (\<Sum>k<g n. f k)" .
1186  qed
1187  also from LIMSEQ_subseq_LIMSEQ[OF lim subseq] have "\<dots> \<longlonglongrightarrow> c"
1188    by (simp only: o_def)
1189  finally show "(\<lambda>n. \<Sum>k<n. f (g k)) \<longlonglongrightarrow> c" .
1190next
1191  assume lim: "(\<lambda>n. \<Sum>k<n. f (g k)) \<longlonglongrightarrow> c"
1192  define g_inv where "g_inv n = (LEAST m. g m \<ge> n)" for n
1193  from filterlim_subseq[OF subseq] have g_inv_ex: "\<exists>m. g m \<ge> n" for n
1194    by (auto simp: filterlim_at_top eventually_at_top_linorder)
1195  then have g_inv: "g (g_inv n) \<ge> n" for n
1196    unfolding g_inv_def by (rule LeastI_ex)
1197  have g_inv_least: "m \<ge> g_inv n" if "g m \<ge> n" for m n
1198    using that unfolding g_inv_def by (rule Least_le)
1199  have g_inv_least': "g m < n" if "m < g_inv n" for m n
1200    using that g_inv_least[of n m] by linarith
1201  have "(\<lambda>n. \<Sum>k<n. f k) = (\<lambda>n. \<Sum>k<g_inv n. f (g k))"
1202  proof
1203    fix n :: nat
1204    {
1205      fix k
1206      assume k: "k \<in> {..<n} - g`{..<g_inv n}"
1207      have "k \<notin> range g"
1208      proof (rule notI, elim imageE)
1209        fix l
1210        assume l: "k = g l"
1211        have "g l < g (g_inv n)"
1212          by (rule less_le_trans[OF _ g_inv]) (use k l in simp_all)
1213        with subseq have "l < g_inv n"
1214          by (simp add: strict_mono_less)
1215        with k l show False
1216          by simp
1217      qed
1218      then have "f k = 0"
1219        by (rule zero)
1220    }
1221    with g_inv_least' g_inv have "(\<Sum>k<n. f k) = (\<Sum>k\<in>g`{..<g_inv n}. f k)"
1222      by (intro sum.mono_neutral_right) auto
1223    also from subseq have "\<dots> = (\<Sum>k<g_inv n. f (g k))"
1224      using strict_mono_imp_inj_on by (subst sum.reindex) simp_all
1225    finally show "(\<Sum>k<n. f k) = (\<Sum>k<g_inv n. f (g k))" .
1226  qed
1227  also {
1228    fix K n :: nat
1229    assume "g K \<le> n"
1230    also have "n \<le> g (g_inv n)"
1231      by (rule g_inv)
1232    finally have "K \<le> g_inv n"
1233      using subseq by (simp add: strict_mono_less_eq)
1234  }
1235  then have "filterlim g_inv at_top sequentially"
1236    by (auto simp: filterlim_at_top eventually_at_top_linorder)
1237  with lim have "(\<lambda>n. \<Sum>k<g_inv n. f (g k)) \<longlonglongrightarrow> c"
1238    by (rule filterlim_compose)
1239  finally show "(\<lambda>n. \<Sum>k<n. f k) \<longlonglongrightarrow> c" .
1240qed
1241
1242lemma summable_mono_reindex:
1243  assumes subseq: "strict_mono g"
1244    and zero: "\<And>n. n \<notin> range g \<Longrightarrow> f n = 0"
1245  shows "summable (\<lambda>n. f (g n)) \<longleftrightarrow> summable f"
1246  using sums_mono_reindex[of g f, OF assms] by (simp add: summable_def)
1247
1248lemma suminf_mono_reindex:
1249  fixes f :: "nat \<Rightarrow> 'a::{t2_space,comm_monoid_add}"
1250  assumes "strict_mono g" "\<And>n. n \<notin> range g \<Longrightarrow> f n = 0"
1251  shows   "suminf (\<lambda>n. f (g n)) = suminf f"
1252proof (cases "summable f")
1253  case True
1254  with sums_mono_reindex [of g f, OF assms]
1255    and summable_mono_reindex [of g f, OF assms]
1256  show ?thesis
1257    by (simp add: sums_iff)
1258next
1259  case False
1260  then have "\<not>(\<exists>c. f sums c)"
1261    unfolding summable_def by blast
1262  then have "suminf f = The (\<lambda>_. False)"
1263    by (simp add: suminf_def)
1264  moreover from False have "\<not> summable (\<lambda>n. f (g n))"
1265    using summable_mono_reindex[of g f, OF assms] by simp
1266  then have "\<not>(\<exists>c. (\<lambda>n. f (g n)) sums c)"
1267    unfolding summable_def by blast
1268  then have "suminf (\<lambda>n. f (g n)) = The (\<lambda>_. False)"
1269    by (simp add: suminf_def)
1270  ultimately show ?thesis by simp
1271qed
1272
1273lemma summable_bounded_partials:
1274  fixes f :: "nat \<Rightarrow> 'a :: {real_normed_vector,complete_space}"
1275  assumes bound: "eventually (\<lambda>x0. \<forall>a\<ge>x0. \<forall>b>a. norm (sum f {a<..b}) \<le> g a) sequentially"
1276  assumes g: "g \<longlonglongrightarrow> 0"
1277  shows   "summable f" unfolding summable_iff_convergent'
1278proof (intro Cauchy_convergent CauchyI', goal_cases)
1279  case (1 \<epsilon>)
1280  with g have "eventually (\<lambda>x. \<bar>g x\<bar> < \<epsilon>) sequentially"
1281    by (auto simp: tendsto_iff)
1282  from eventually_conj[OF this bound] obtain x0 where x0:
1283    "\<And>x. x \<ge> x0 \<Longrightarrow> \<bar>g x\<bar> < \<epsilon>" "\<And>a b. x0 \<le> a \<Longrightarrow> a < b \<Longrightarrow> norm (sum f {a<..b}) \<le> g a" 
1284    unfolding eventually_at_top_linorder by auto
1285
1286  show ?case
1287  proof (intro exI[of _ x0] allI impI)
1288    fix m n assume mn: "x0 \<le> m" "m < n"
1289    have "dist (sum f {..m}) (sum f {..n}) = norm (sum f {..n} - sum f {..m})"
1290      by (simp add: dist_norm norm_minus_commute)
1291    also have "sum f {..n} - sum f {..m} = sum f ({..n} - {..m})"
1292      using mn by (intro Groups_Big.sum_diff [symmetric]) auto
1293    also have "{..n} - {..m} = {m<..n}" using mn by auto
1294    also have "norm (sum f {m<..n}) \<le> g m" using mn by (intro x0) auto
1295    also have "\<dots> \<le> \<bar>g m\<bar>" by simp
1296    also have "\<dots> < \<epsilon>" using mn by (intro x0) auto
1297    finally show "dist (sum f {..m}) (sum f {..n}) < \<epsilon>" .
1298  qed
1299qed
1300
1301end
1302