1(* Author: Lukas Bulwahn, TU Muenchen *)
2
3section \<open>Counterexample generator performing narrowing-based testing\<close>
4
5theory Quickcheck_Narrowing
6imports Quickcheck_Random
7keywords "find_unused_assms" :: diag
8begin
9
10subsection \<open>Counterexample generator\<close>
11
12subsubsection \<open>Code generation setup\<close>
13
14setup \<open>Code_Target.add_derived_target ("Haskell_Quickcheck", [(Code_Haskell.target, I)])\<close>
15
16code_printing
17  code_module Typerep \<rightharpoonup> (Haskell_Quickcheck) \<open>
18module Typerep(Typerep(..)) where
19
20data Typerep = Typerep String [Typerep]
21\<close> for type_constructor typerep constant Typerep.Typerep
22| type_constructor typerep \<rightharpoonup> (Haskell_Quickcheck) "Typerep.Typerep"
23| constant Typerep.Typerep \<rightharpoonup> (Haskell_Quickcheck) "Typerep.Typerep"
24
25code_reserved Haskell_Quickcheck Typerep
26
27code_printing
28  type_constructor integer \<rightharpoonup> (Haskell_Quickcheck) "Prelude.Int"
29| constant "0::integer" \<rightharpoonup>
30    (Haskell_Quickcheck) "!(0/ ::/ Prelude.Int)"
31
32setup \<open>
33  let
34    val target = "Haskell_Quickcheck";
35    fun print _ = Code_Haskell.print_numeral "Prelude.Int";
36  in
37    Numeral.add_code \<^const_name>\<open>Code_Numeral.Pos\<close> I print target
38    #> Numeral.add_code \<^const_name>\<open>Code_Numeral.Neg\<close> (~) print target
39  end
40\<close>
41
42
43subsubsection \<open>Narrowing's deep representation of types and terms\<close>
44
45datatype (plugins only: code extraction) narrowing_type =
46  Narrowing_sum_of_products "narrowing_type list list"
47
48datatype (plugins only: code extraction) narrowing_term =
49  Narrowing_variable "integer list" narrowing_type
50| Narrowing_constructor integer "narrowing_term list"
51
52datatype (plugins only: code extraction) (dead 'a) narrowing_cons =
53  Narrowing_cons narrowing_type "(narrowing_term list \<Rightarrow> 'a) list"
54
55primrec map_cons :: "('a => 'b) => 'a narrowing_cons => 'b narrowing_cons"
56where
57  "map_cons f (Narrowing_cons ty cs) = Narrowing_cons ty (map (\<lambda>c. f \<circ> c) cs)"
58
59subsubsection \<open>From narrowing's deep representation of terms to \<^theory>\<open>HOL.Code_Evaluation\<close>'s terms\<close>
60
61class partial_term_of = typerep +
62  fixes partial_term_of :: "'a itself => narrowing_term => Code_Evaluation.term"
63
64lemma partial_term_of_anything: "partial_term_of x nt \<equiv> t"
65  by (rule eq_reflection) (cases "partial_term_of x nt", cases t, simp)
66 
67subsubsection \<open>Auxilary functions for Narrowing\<close>
68
69consts nth :: "'a list => integer => 'a"
70
71code_printing constant nth \<rightharpoonup> (Haskell_Quickcheck) infixl 9 "!!"
72
73consts error :: "char list => 'a"
74
75code_printing constant error \<rightharpoonup> (Haskell_Quickcheck) "error"
76
77consts toEnum :: "integer => char"
78
79code_printing constant toEnum \<rightharpoonup> (Haskell_Quickcheck) "Prelude.toEnum"
80
81consts marker :: "char"
82
83code_printing constant marker \<rightharpoonup> (Haskell_Quickcheck) "''\\0'"
84
85subsubsection \<open>Narrowing's basic operations\<close>
86
87type_synonym 'a narrowing = "integer => 'a narrowing_cons"
88
89definition cons :: "'a => 'a narrowing"
90where
91  "cons a d = (Narrowing_cons (Narrowing_sum_of_products [[]]) [(\<lambda>_. a)])"
92
93fun conv :: "(narrowing_term list => 'a) list => narrowing_term => 'a"
94where
95  "conv cs (Narrowing_variable p _) = error (marker # map toEnum p)"
96| "conv cs (Narrowing_constructor i xs) = (nth cs i) xs"
97
98fun non_empty :: "narrowing_type => bool"
99where
100  "non_empty (Narrowing_sum_of_products ps) = (\<not> (List.null ps))"
101
102definition "apply" :: "('a => 'b) narrowing => 'a narrowing => 'b narrowing"
103where
104  "apply f a d = (if d > 0 then
105     (case f d of Narrowing_cons (Narrowing_sum_of_products ps) cfs \<Rightarrow>
106       case a (d - 1) of Narrowing_cons ta cas \<Rightarrow>
107       let
108         shallow = non_empty ta;
109         cs = [(\<lambda>(x # xs) \<Rightarrow> cf xs (conv cas x)). shallow, cf \<leftarrow> cfs]
110       in Narrowing_cons (Narrowing_sum_of_products [ta # p. shallow, p \<leftarrow> ps]) cs)
111     else Narrowing_cons (Narrowing_sum_of_products []) [])"
112
113definition sum :: "'a narrowing => 'a narrowing => 'a narrowing"
114where
115  "sum a b d =
116    (case a d of Narrowing_cons (Narrowing_sum_of_products ssa) ca \<Rightarrow>
117      case b d of Narrowing_cons (Narrowing_sum_of_products ssb) cb \<Rightarrow>
118      Narrowing_cons (Narrowing_sum_of_products (ssa @ ssb)) (ca @ cb))"
119
120lemma [fundef_cong]:
121  assumes "a d = a' d" "b d = b' d" "d = d'"
122  shows "sum a b d = sum a' b' d'"
123using assms unfolding sum_def by (auto split: narrowing_cons.split narrowing_type.split)
124
125lemma [fundef_cong]:
126  assumes "f d = f' d" "(\<And>d'. 0 \<le> d' \<and> d' < d \<Longrightarrow> a d' = a' d')"
127  assumes "d = d'"
128  shows "apply f a d = apply f' a' d'"
129proof -
130  note assms
131  moreover have "0 < d' \<Longrightarrow> 0 \<le> d' - 1"
132    by (simp add: less_integer_def less_eq_integer_def)
133  ultimately show ?thesis
134    by (auto simp add: apply_def Let_def
135      split: narrowing_cons.split narrowing_type.split)
136qed
137
138subsubsection \<open>Narrowing generator type class\<close>
139
140class narrowing =
141  fixes narrowing :: "integer => 'a narrowing_cons"
142
143datatype (plugins only: code extraction) property =
144  Universal narrowing_type "(narrowing_term => property)" "narrowing_term => Code_Evaluation.term"
145| Existential narrowing_type "(narrowing_term => property)" "narrowing_term => Code_Evaluation.term"
146| Property bool
147
148(* FIXME: hard-wired maximal depth of 100 here *)
149definition exists :: "('a :: {narrowing, partial_term_of} => property) => property"
150where
151  "exists f = (case narrowing (100 :: integer) of Narrowing_cons ty cs \<Rightarrow> Existential ty (\<lambda> t. f (conv cs t)) (partial_term_of (TYPE('a))))"
152
153definition "all" :: "('a :: {narrowing, partial_term_of} => property) => property"
154where
155  "all f = (case narrowing (100 :: integer) of Narrowing_cons ty cs \<Rightarrow> Universal ty (\<lambda>t. f (conv cs t)) (partial_term_of (TYPE('a))))"
156
157subsubsection \<open>class \<open>is_testable\<close>\<close>
158
159text \<open>The class \<open>is_testable\<close> ensures that all necessary type instances are generated.\<close>
160
161class is_testable
162
163instance bool :: is_testable ..
164
165instance "fun" :: ("{term_of, narrowing, partial_term_of}", is_testable) is_testable ..
166
167definition ensure_testable :: "'a :: is_testable => 'a :: is_testable"
168where
169  "ensure_testable f = f"
170
171
172subsubsection \<open>Defining a simple datatype to represent functions in an incomplete and redundant way\<close>
173
174datatype (plugins only: code quickcheck_narrowing extraction) (dead 'a, dead 'b) ffun =
175  Constant 'b
176| Update 'a 'b "('a, 'b) ffun"
177
178primrec eval_ffun :: "('a, 'b) ffun => 'a => 'b"
179where
180  "eval_ffun (Constant c) x = c"
181| "eval_ffun (Update x' y f) x = (if x = x' then y else eval_ffun f x)"
182
183hide_type (open) ffun
184hide_const (open) Constant Update eval_ffun
185
186datatype (plugins only: code quickcheck_narrowing extraction) (dead 'b) cfun = Constant 'b
187
188primrec eval_cfun :: "'b cfun => 'a => 'b"
189where
190  "eval_cfun (Constant c) y = c"
191
192hide_type (open) cfun
193hide_const (open) Constant eval_cfun Abs_cfun Rep_cfun
194
195subsubsection \<open>Setting up the counterexample generator\<close>
196
197external_file \<open>~~/src/HOL/Tools/Quickcheck/Narrowing_Engine.hs\<close>
198external_file \<open>~~/src/HOL/Tools/Quickcheck/PNF_Narrowing_Engine.hs\<close>
199ML_file \<open>Tools/Quickcheck/narrowing_generators.ML\<close>
200
201definition narrowing_dummy_partial_term_of :: "('a :: partial_term_of) itself => narrowing_term => term"
202where
203  "narrowing_dummy_partial_term_of = partial_term_of"
204
205definition narrowing_dummy_narrowing :: "integer => ('a :: narrowing) narrowing_cons"
206where
207  "narrowing_dummy_narrowing = narrowing"
208
209lemma [code]:
210  "ensure_testable f =
211    (let
212      x = narrowing_dummy_narrowing :: integer => bool narrowing_cons;
213      y = narrowing_dummy_partial_term_of :: bool itself => narrowing_term => term;
214      z = (conv :: _ => _ => unit)  in f)"
215unfolding Let_def ensure_testable_def ..
216
217subsection \<open>Narrowing for sets\<close>
218
219instantiation set :: (narrowing) narrowing
220begin
221
222definition "narrowing_set = Quickcheck_Narrowing.apply (Quickcheck_Narrowing.cons set) narrowing"
223
224instance ..
225
226end
227  
228subsection \<open>Narrowing for integers\<close>
229
230
231definition drawn_from :: "'a list \<Rightarrow> 'a narrowing_cons"
232where
233  "drawn_from xs =
234    Narrowing_cons (Narrowing_sum_of_products (map (\<lambda>_. []) xs)) (map (\<lambda>x _. x) xs)"
235
236function around_zero :: "int \<Rightarrow> int list"
237where
238  "around_zero i = (if i < 0 then [] else (if i = 0 then [0] else around_zero (i - 1) @ [i, -i]))"
239  by pat_completeness auto
240termination by (relation "measure nat") auto
241
242declare around_zero.simps [simp del]
243
244lemma length_around_zero:
245  assumes "i >= 0" 
246  shows "length (around_zero i) = 2 * nat i + 1"
247proof (induct rule: int_ge_induct [OF assms])
248  case 1
249  from 1 show ?case by (simp add: around_zero.simps)
250next
251  case (2 i)
252  from 2 show ?case
253    by (simp add: around_zero.simps [of "i + 1"])
254qed
255
256instantiation int :: narrowing
257begin
258
259definition
260  "narrowing_int d = (let (u :: _ \<Rightarrow> _ \<Rightarrow> unit) = conv; i = int_of_integer d
261    in drawn_from (around_zero i))"
262
263instance ..
264
265end
266
267declare [[code drop: "partial_term_of :: int itself \<Rightarrow> _"]]
268
269lemma [code]:
270  "partial_term_of (ty :: int itself) (Narrowing_variable p t) \<equiv>
271    Code_Evaluation.Free (STR ''_'') (Typerep.Typerep (STR ''Int.int'') [])"
272  "partial_term_of (ty :: int itself) (Narrowing_constructor i []) \<equiv>
273    (if i mod 2 = 0
274     then Code_Evaluation.term_of (- (int_of_integer i) div 2)
275     else Code_Evaluation.term_of ((int_of_integer i + 1) div 2))"
276  by (rule partial_term_of_anything)+
277
278instantiation integer :: narrowing
279begin
280
281definition
282  "narrowing_integer d = (let (u :: _ \<Rightarrow> _ \<Rightarrow> unit) = conv; i = int_of_integer d
283    in drawn_from (map integer_of_int (around_zero i)))"
284
285instance ..
286
287end
288
289declare [[code drop: "partial_term_of :: integer itself \<Rightarrow> _"]]  
290
291lemma [code]:
292  "partial_term_of (ty :: integer itself) (Narrowing_variable p t) \<equiv>
293    Code_Evaluation.Free (STR ''_'') (Typerep.Typerep (STR ''Code_Numeral.integer'') [])"
294  "partial_term_of (ty :: integer itself) (Narrowing_constructor i []) \<equiv>
295    (if i mod 2 = 0
296     then Code_Evaluation.term_of (- i div 2)
297     else Code_Evaluation.term_of ((i + 1) div 2))"
298  by (rule partial_term_of_anything)+
299
300code_printing constant "Code_Evaluation.term_of :: integer \<Rightarrow> term" \<rightharpoonup> (Haskell_Quickcheck) 
301  "(let { t = Typerep.Typerep \"Code'_Numeral.integer\" [];
302     mkFunT s t = Typerep.Typerep \"fun\" [s, t];
303     numT = Typerep.Typerep \"Num.num\" [];
304     mkBit 0 = Generated'_Code.Const \"Num.num.Bit0\" (mkFunT numT numT);
305     mkBit 1 = Generated'_Code.Const \"Num.num.Bit1\" (mkFunT numT numT);
306     mkNumeral 1 = Generated'_Code.Const \"Num.num.One\" numT;
307     mkNumeral i = let { q = i `Prelude.div` 2; r = i `Prelude.mod` 2 }
308       in Generated'_Code.App (mkBit r) (mkNumeral q);
309     mkNumber 0 = Generated'_Code.Const \"Groups.zero'_class.zero\" t;
310     mkNumber 1 = Generated'_Code.Const \"Groups.one'_class.one\" t;
311     mkNumber i = if i > 0 then
312         Generated'_Code.App
313           (Generated'_Code.Const \"Num.numeral'_class.numeral\"
314              (mkFunT numT t))
315           (mkNumeral i)
316       else
317         Generated'_Code.App
318           (Generated'_Code.Const \"Groups.uminus'_class.uminus\" (mkFunT t t))
319           (mkNumber (- i)); } in mkNumber)"
320
321subsection \<open>The \<open>find_unused_assms\<close> command\<close>
322
323ML_file \<open>Tools/Quickcheck/find_unused_assms.ML\<close>
324
325subsection \<open>Closing up\<close>
326
327hide_type narrowing_type narrowing_term narrowing_cons property
328hide_const map_cons nth error toEnum marker empty Narrowing_cons conv non_empty ensure_testable all exists drawn_from around_zero
329hide_const (open) Narrowing_variable Narrowing_constructor "apply" sum cons
330hide_fact empty_def cons_def conv.simps non_empty.simps apply_def sum_def ensure_testable_def all_def exists_def
331
332end
333