1section \<open>Simply-typed lambda-calculus with let and tuple patterns\<close>
2
3theory Pattern
4imports "HOL-Nominal.Nominal"
5begin
6
7no_syntax
8  "_Map" :: "maplets => 'a \<rightharpoonup> 'b"  ("(1[_])")
9
10atom_decl name
11
12nominal_datatype ty =
13    Atom nat
14  | Arrow ty ty  (infixr "\<rightarrow>" 200)
15  | TupleT ty ty  (infixr "\<otimes>" 210)
16
17lemma fresh_type [simp]: "(a::name) \<sharp> (T::ty)"
18  by (induct T rule: ty.induct) (simp_all add: fresh_nat)
19
20lemma supp_type [simp]: "supp (T::ty) = ({} :: name set)"
21  by (induct T rule: ty.induct) (simp_all add: ty.supp supp_nat)
22
23lemma perm_type: "(pi::name prm) \<bullet> (T::ty) = T"
24  by (induct T rule: ty.induct) (simp_all add: perm_nat_def)
25
26nominal_datatype trm =
27    Var name
28  | Tuple trm trm  ("(1'\<langle>_,/ _'\<rangle>)")
29  | Abs ty "\<guillemotleft>name\<guillemotright>trm"
30  | App trm trm  (infixl "\<cdot>" 200)
31  | Let ty trm btrm
32and btrm =
33    Base trm
34  | Bind ty "\<guillemotleft>name\<guillemotright>btrm"
35
36abbreviation
37  Abs_syn :: "name \<Rightarrow> ty \<Rightarrow> trm \<Rightarrow> trm"  ("(3\<lambda>_:_./ _)" [0, 0, 10] 10) 
38where
39  "\<lambda>x:T. t \<equiv> Abs T x t"
40
41datatype pat =
42    PVar name ty
43  | PTuple pat pat  ("(1'\<langle>\<langle>_,/ _'\<rangle>\<rangle>)")
44
45(* FIXME: The following should be done automatically by the nominal package *)
46overloading pat_perm \<equiv> "perm :: name prm \<Rightarrow> pat \<Rightarrow> pat" (unchecked)
47begin
48
49primrec pat_perm
50where
51  "pat_perm pi (PVar x ty) = PVar (pi \<bullet> x) (pi \<bullet> ty)"
52| "pat_perm pi \<langle>\<langle>p, q\<rangle>\<rangle> = \<langle>\<langle>pat_perm pi p, pat_perm pi q\<rangle>\<rangle>"
53
54end
55
56declare pat_perm.simps [eqvt]
57
58lemma supp_PVar [simp]: "((supp (PVar x T))::name set) = supp x"
59  by (simp add: supp_def perm_fresh_fresh)
60
61lemma supp_PTuple [simp]: "((supp \<langle>\<langle>p, q\<rangle>\<rangle>)::name set) = supp p \<union> supp q"
62  by (simp add: supp_def Collect_disj_eq del: disj_not1)
63
64instance pat :: pt_name
65proof (standard, goal_cases)
66  case (1 x)
67  show ?case by (induct x) simp_all
68next
69  case (2 _ _ x)
70  show ?case by (induct x) (simp_all add: pt_name2)
71next
72  case (3 _ _ x)
73  then show ?case by (induct x) (simp_all add: pt_name3)
74qed
75
76instance pat :: fs_name
77proof (standard, goal_cases)
78  case (1 x)
79  show ?case by (induct x) (simp_all add: fin_supp)
80qed
81
82(* the following function cannot be defined using nominal_primrec, *)
83(* since variable parameters are currently not allowed.            *)
84primrec abs_pat :: "pat \<Rightarrow> btrm \<Rightarrow> btrm" ("(3\<lambda>[_]./ _)" [0, 10] 10)
85where
86  "(\<lambda>[PVar x T]. t) = Bind T x t"
87| "(\<lambda>[\<langle>\<langle>p, q\<rangle>\<rangle>]. t) = (\<lambda>[p]. \<lambda>[q]. t)"
88
89lemma abs_pat_eqvt [eqvt]:
90  "(pi :: name prm) \<bullet> (\<lambda>[p]. t) = (\<lambda>[pi \<bullet> p]. (pi \<bullet> t))"
91  by (induct p arbitrary: t) simp_all
92
93lemma abs_pat_fresh [simp]:
94  "(x::name) \<sharp> (\<lambda>[p]. t) = (x \<in> supp p \<or> x \<sharp> t)"
95  by (induct p arbitrary: t) (simp_all add: abs_fresh supp_atm)
96
97lemma abs_pat_alpha:
98  assumes fresh: "((pi::name prm) \<bullet> supp p::name set) \<sharp>* t"
99  and pi: "set pi \<subseteq> supp p \<times> pi \<bullet> supp p"
100  shows "(\<lambda>[p]. t) = (\<lambda>[pi \<bullet> p]. pi \<bullet> t)"
101proof -
102  note pt_name_inst at_name_inst pi
103  moreover have "(supp p::name set) \<sharp>* (\<lambda>[p]. t)"
104    by (simp add: fresh_star_def)
105  moreover from fresh
106  have "(pi \<bullet> supp p::name set) \<sharp>* (\<lambda>[p]. t)"
107    by (simp add: fresh_star_def)
108  ultimately have "pi \<bullet> (\<lambda>[p]. t) = (\<lambda>[p]. t)"
109    by (rule pt_freshs_freshs)
110  then show ?thesis by (simp add: eqvts)
111qed
112
113primrec pat_vars :: "pat \<Rightarrow> name list"
114where
115  "pat_vars (PVar x T) = [x]"
116| "pat_vars \<langle>\<langle>p, q\<rangle>\<rangle> = pat_vars q @ pat_vars p"
117
118lemma pat_vars_eqvt [eqvt]:
119  "(pi :: name prm) \<bullet> (pat_vars p) = pat_vars (pi \<bullet> p)"
120  by (induct p rule: pat.induct) (simp_all add: eqvts)
121
122lemma set_pat_vars_supp: "set (pat_vars p) = supp p"
123  by (induct p) (auto simp add: supp_atm)
124
125lemma distinct_eqvt [eqvt]:
126  "(pi :: name prm) \<bullet> (distinct (xs::name list)) = distinct (pi \<bullet> xs)"
127  by (induct xs) (simp_all add: eqvts)
128
129primrec pat_type :: "pat \<Rightarrow> ty"
130where
131  "pat_type (PVar x T) = T"
132| "pat_type \<langle>\<langle>p, q\<rangle>\<rangle> = pat_type p \<otimes> pat_type q"
133
134lemma pat_type_eqvt [eqvt]:
135  "(pi :: name prm) \<bullet> (pat_type p) = pat_type (pi \<bullet> p)"
136  by (induct p) simp_all
137
138lemma pat_type_perm_eq: "pat_type ((pi :: name prm) \<bullet> p) = pat_type p"
139  by (induct p) (simp_all add: perm_type)
140
141type_synonym ctx = "(name \<times> ty) list"
142
143inductive
144  ptyping :: "pat \<Rightarrow> ty \<Rightarrow> ctx \<Rightarrow> bool"  ("\<turnstile> _ : _ \<Rightarrow> _" [60, 60, 60] 60)
145where
146  PVar: "\<turnstile> PVar x T : T \<Rightarrow> [(x, T)]"
147| PTuple: "\<turnstile> p : T \<Rightarrow> \<Delta>\<^sub>1 \<Longrightarrow> \<turnstile> q : U \<Rightarrow> \<Delta>\<^sub>2 \<Longrightarrow> \<turnstile> \<langle>\<langle>p, q\<rangle>\<rangle> : T \<otimes> U \<Rightarrow> \<Delta>\<^sub>2 @ \<Delta>\<^sub>1"
148
149lemma pat_vars_ptyping:
150  assumes "\<turnstile> p : T \<Rightarrow> \<Delta>"
151  shows "pat_vars p = map fst \<Delta>" using assms
152  by induct simp_all
153
154inductive
155  valid :: "ctx \<Rightarrow> bool"
156where
157  Nil [intro!]: "valid []"
158| Cons [intro!]: "valid \<Gamma> \<Longrightarrow> x \<sharp> \<Gamma> \<Longrightarrow> valid ((x, T) # \<Gamma>)"
159
160inductive_cases validE[elim!]: "valid ((x, T) # \<Gamma>)"
161
162lemma fresh_ctxt_set_eq: "((x::name) \<sharp> (\<Gamma>::ctx)) = (x \<notin> fst ` set \<Gamma>)"
163  by (induct \<Gamma>) (auto simp add: fresh_list_nil fresh_list_cons fresh_prod fresh_atm)
164
165lemma valid_distinct: "valid \<Gamma> = distinct (map fst \<Gamma>)"
166  by (induct \<Gamma>) (auto simp add: fresh_ctxt_set_eq [symmetric])
167
168abbreviation
169  "sub_ctx" :: "ctx \<Rightarrow> ctx \<Rightarrow> bool" ("_ \<sqsubseteq> _") 
170where
171  "\<Gamma>\<^sub>1 \<sqsubseteq> \<Gamma>\<^sub>2 \<equiv> \<forall>x. x \<in> set \<Gamma>\<^sub>1 \<longrightarrow> x \<in> set \<Gamma>\<^sub>2"
172
173abbreviation
174  Let_syn :: "pat \<Rightarrow> trm \<Rightarrow> trm \<Rightarrow> trm"  ("(LET (_ =/ _)/ IN (_))" 10)
175where
176  "LET p = t IN u \<equiv> Let (pat_type p) t (\<lambda>[p]. Base u)"
177
178inductive typing :: "ctx \<Rightarrow> trm \<Rightarrow> ty \<Rightarrow> bool" ("_ \<turnstile> _ : _" [60, 60, 60] 60)
179where
180  Var [intro]: "valid \<Gamma> \<Longrightarrow> (x, T) \<in> set \<Gamma> \<Longrightarrow> \<Gamma> \<turnstile> Var x : T"
181| Tuple [intro]: "\<Gamma> \<turnstile> t : T \<Longrightarrow> \<Gamma> \<turnstile> u : U \<Longrightarrow> \<Gamma> \<turnstile> \<langle>t, u\<rangle> : T \<otimes> U"
182| Abs [intro]: "(x, T) # \<Gamma> \<turnstile> t : U \<Longrightarrow> \<Gamma> \<turnstile> (\<lambda>x:T. t) : T \<rightarrow> U"
183| App [intro]: "\<Gamma> \<turnstile> t : T \<rightarrow> U \<Longrightarrow> \<Gamma> \<turnstile> u : T \<Longrightarrow> \<Gamma> \<turnstile> t \<cdot> u : U"
184| Let: "((supp p)::name set) \<sharp>* t \<Longrightarrow>
185    \<Gamma> \<turnstile> t : T \<Longrightarrow> \<turnstile> p : T \<Rightarrow> \<Delta> \<Longrightarrow> \<Delta> @ \<Gamma> \<turnstile> u : U \<Longrightarrow>
186    \<Gamma> \<turnstile> (LET p = t IN u) : U"
187
188equivariance ptyping
189
190equivariance valid
191
192equivariance typing
193
194lemma valid_typing:
195  assumes "\<Gamma> \<turnstile> t : T"
196  shows "valid \<Gamma>" using assms
197  by induct auto
198
199lemma pat_var:
200  assumes "\<turnstile> p : T \<Rightarrow> \<Delta>"
201  shows "(supp p::name set) = supp \<Delta>" using assms
202  by induct (auto simp add: supp_list_nil supp_list_cons supp_prod supp_list_append)
203
204lemma valid_app_fresh:
205  assumes "valid (\<Delta> @ \<Gamma>)" and "(x::name) \<in> supp \<Delta>"
206  shows "x \<sharp> \<Gamma>" using assms
207  by (induct \<Delta>)
208    (auto simp add: supp_list_nil supp_list_cons supp_prod supp_atm fresh_list_append)
209
210lemma pat_freshs:
211  assumes "\<turnstile> p : T \<Rightarrow> \<Delta>"
212  shows "(supp p::name set) \<sharp>* c = (supp \<Delta>::name set) \<sharp>* c" using assms
213  by (auto simp add: fresh_star_def pat_var)
214
215lemma valid_app_mono:
216  assumes "valid (\<Delta> @ \<Gamma>\<^sub>1)" and "(supp \<Delta>::name set) \<sharp>* \<Gamma>\<^sub>2" and "valid \<Gamma>\<^sub>2" and "\<Gamma>\<^sub>1 \<sqsubseteq> \<Gamma>\<^sub>2"
217  shows "valid (\<Delta> @ \<Gamma>\<^sub>2)" using assms
218  by (induct \<Delta>)
219    (auto simp add: supp_list_cons fresh_star_Un_elim supp_prod
220       fresh_list_append supp_atm fresh_star_insert_elim fresh_star_empty_elim)
221
222nominal_inductive2 typing
223avoids
224  Abs: "{x}"
225| Let: "(supp p)::name set"
226  by (auto simp add: fresh_star_def abs_fresh fin_supp pat_var
227    dest!: valid_typing valid_app_fresh)
228
229lemma better_T_Let [intro]:
230  assumes t: "\<Gamma> \<turnstile> t : T" and p: "\<turnstile> p : T \<Rightarrow> \<Delta>" and u: "\<Delta> @ \<Gamma> \<turnstile> u : U"
231  shows "\<Gamma> \<turnstile> (LET p = t IN u) : U"
232proof -
233  obtain pi::"name prm" where pi: "(pi \<bullet> (supp p::name set)) \<sharp>* (t, Base u, \<Gamma>)"
234    and pi': "set pi \<subseteq> supp p \<times> (pi \<bullet> supp p)"
235    by (rule at_set_avoiding [OF at_name_inst fin_supp fin_supp])
236  from p u have p_fresh: "(supp p::name set) \<sharp>* \<Gamma>"
237    by (auto simp add: fresh_star_def pat_var dest!: valid_typing valid_app_fresh)
238  from pi have p_fresh': "(pi \<bullet> (supp p::name set)) \<sharp>* \<Gamma>"
239    by (simp add: fresh_star_prod_elim)
240  from pi have p_fresh'': "(pi \<bullet> (supp p::name set)) \<sharp>* Base u"
241    by (simp add: fresh_star_prod_elim)
242  from pi have "(supp (pi \<bullet> p)::name set) \<sharp>* t"
243    by (simp add: fresh_star_prod_elim eqvts)
244  moreover note t
245  moreover from p have "pi \<bullet> (\<turnstile> p : T \<Rightarrow> \<Delta>)" by (rule perm_boolI)
246  then have "\<turnstile> (pi \<bullet> p) : T \<Rightarrow> (pi \<bullet> \<Delta>)" by (simp add: eqvts perm_type)
247  moreover from u have "pi \<bullet> (\<Delta> @ \<Gamma> \<turnstile> u : U)" by (rule perm_boolI)
248  with pt_freshs_freshs [OF pt_name_inst at_name_inst pi' p_fresh p_fresh']
249  have "(pi \<bullet> \<Delta>) @ \<Gamma> \<turnstile> (pi \<bullet> u) : U" by (simp add: eqvts perm_type)
250  ultimately have "\<Gamma> \<turnstile> (LET (pi \<bullet> p) = t IN (pi \<bullet> u)) : U"
251    by (rule Let)
252  then show ?thesis by (simp add: abs_pat_alpha [OF p_fresh'' pi'] pat_type_perm_eq)
253qed
254
255lemma weakening: 
256  assumes "\<Gamma>\<^sub>1 \<turnstile> t : T" and "valid \<Gamma>\<^sub>2" and "\<Gamma>\<^sub>1 \<sqsubseteq> \<Gamma>\<^sub>2"
257  shows "\<Gamma>\<^sub>2 \<turnstile> t : T" using assms
258  apply (nominal_induct \<Gamma>\<^sub>1 t T avoiding: \<Gamma>\<^sub>2 rule: typing.strong_induct)
259  apply auto
260  apply (drule_tac x="(x, T) # \<Gamma>\<^sub>2" in meta_spec)
261  apply (auto intro: valid_typing)
262  apply (drule_tac x="\<Gamma>\<^sub>2" in meta_spec)
263  apply (drule_tac x="\<Delta> @ \<Gamma>\<^sub>2" in meta_spec)
264  apply (auto intro: valid_typing)
265  apply (rule typing.Let)
266  apply assumption+
267  apply (drule meta_mp)
268  apply (rule valid_app_mono)
269  apply (rule valid_typing)
270  apply assumption
271  apply (auto simp add: pat_freshs)
272  done
273
274inductive
275  match :: "pat \<Rightarrow> trm \<Rightarrow> (name \<times> trm) list \<Rightarrow> bool"  ("\<turnstile> _ \<rhd> _ \<Rightarrow> _" [50, 50, 50] 50)
276where
277  PVar: "\<turnstile> PVar x T \<rhd> t \<Rightarrow> [(x, t)]"
278| PProd: "\<turnstile> p \<rhd> t \<Rightarrow> \<theta> \<Longrightarrow> \<turnstile> q \<rhd> u \<Rightarrow> \<theta>' \<Longrightarrow> \<turnstile> \<langle>\<langle>p, q\<rangle>\<rangle> \<rhd> \<langle>t, u\<rangle> \<Rightarrow> \<theta> @ \<theta>'"
279
280fun
281  lookup :: "(name \<times> trm) list \<Rightarrow> name \<Rightarrow> trm"   
282where
283  "lookup [] x = Var x"
284| "lookup ((y, e) # \<theta>) x = (if x = y then e else lookup \<theta> x)"
285
286lemma lookup_eqvt[eqvt]:
287  fixes pi :: "name prm"
288  and   \<theta> :: "(name \<times> trm) list"
289  and   X :: "name"
290  shows "pi \<bullet> (lookup \<theta> X) = lookup (pi \<bullet> \<theta>) (pi \<bullet> X)"
291  by (induct \<theta>) (auto simp add: eqvts)
292 
293nominal_primrec
294  psubst :: "(name \<times> trm) list \<Rightarrow> trm \<Rightarrow> trm"  ("_\<lparr>_\<rparr>" [95,0] 210)
295  and psubstb :: "(name \<times> trm) list \<Rightarrow> btrm \<Rightarrow> btrm"  ("_\<lparr>_\<rparr>\<^sub>b" [95,0] 210)
296where
297  "\<theta>\<lparr>Var x\<rparr> = (lookup \<theta> x)"
298| "\<theta>\<lparr>t \<cdot> u\<rparr> = \<theta>\<lparr>t\<rparr> \<cdot> \<theta>\<lparr>u\<rparr>"
299| "\<theta>\<lparr>\<langle>t, u\<rangle>\<rparr> = \<langle>\<theta>\<lparr>t\<rparr>, \<theta>\<lparr>u\<rparr>\<rangle>"
300| "\<theta>\<lparr>Let T t u\<rparr> = Let T (\<theta>\<lparr>t\<rparr>) (\<theta>\<lparr>u\<rparr>\<^sub>b)"
301| "x \<sharp> \<theta> \<Longrightarrow> \<theta>\<lparr>\<lambda>x:T. t\<rparr> = (\<lambda>x:T. \<theta>\<lparr>t\<rparr>)"
302| "\<theta>\<lparr>Base t\<rparr>\<^sub>b = Base (\<theta>\<lparr>t\<rparr>)"
303| "x \<sharp> \<theta> \<Longrightarrow> \<theta>\<lparr>Bind T x t\<rparr>\<^sub>b = Bind T x (\<theta>\<lparr>t\<rparr>\<^sub>b)"
304  apply finite_guess+
305  apply (simp add: abs_fresh | fresh_guess)+
306  done
307
308lemma lookup_fresh:
309  "x = y \<longrightarrow> x \<in> set (map fst \<theta>) \<Longrightarrow> \<forall>(y, t)\<in>set \<theta>. x \<sharp> t \<Longrightarrow> x \<sharp> lookup \<theta> y"
310  apply (induct \<theta>)
311  apply (simp_all add: split_paired_all fresh_atm)
312  apply (case_tac "x = y")
313  apply (auto simp add: fresh_atm)
314  done
315
316lemma psubst_fresh:
317  assumes "x \<in> set (map fst \<theta>)" and "\<forall>(y, t)\<in>set \<theta>. x \<sharp> t"
318  shows "x \<sharp> \<theta>\<lparr>t\<rparr>" and "x \<sharp> \<theta>\<lparr>t'\<rparr>\<^sub>b" using assms
319  apply (nominal_induct t and t' avoiding: \<theta> rule: trm_btrm.strong_inducts)
320  apply simp
321  apply (rule lookup_fresh)
322  apply (rule impI)
323  apply (simp_all add: abs_fresh)
324  done
325
326lemma psubst_eqvt[eqvt]:
327  fixes pi :: "name prm" 
328  shows "pi \<bullet> (\<theta>\<lparr>t\<rparr>) = (pi \<bullet> \<theta>)\<lparr>pi \<bullet> t\<rparr>"
329  and "pi \<bullet> (\<theta>\<lparr>t'\<rparr>\<^sub>b) = (pi \<bullet> \<theta>)\<lparr>pi \<bullet> t'\<rparr>\<^sub>b"
330  by (nominal_induct t and t' avoiding: \<theta> rule: trm_btrm.strong_inducts)
331    (simp_all add: eqvts fresh_bij)
332
333abbreviation 
334  subst :: "trm \<Rightarrow> name \<Rightarrow> trm \<Rightarrow> trm" ("_[_\<mapsto>_]" [100,0,0] 100)
335where 
336  "t[x\<mapsto>t'] \<equiv> [(x,t')]\<lparr>t\<rparr>"
337
338abbreviation 
339  substb :: "btrm \<Rightarrow> name \<Rightarrow> trm \<Rightarrow> btrm" ("_[_\<mapsto>_]\<^sub>b" [100,0,0] 100)
340where 
341  "t[x\<mapsto>t']\<^sub>b \<equiv> [(x,t')]\<lparr>t\<rparr>\<^sub>b"
342
343lemma lookup_forget:
344  "(supp (map fst \<theta>)::name set) \<sharp>* x \<Longrightarrow> lookup \<theta> x = Var x"
345  by (induct \<theta>) (auto simp add: split_paired_all fresh_star_def fresh_atm supp_list_cons supp_atm)
346
347lemma supp_fst: "(x::name) \<in> supp (map fst (\<theta>::(name \<times> trm) list)) \<Longrightarrow> x \<in> supp \<theta>"
348  by (induct \<theta>) (auto simp add: supp_list_nil supp_list_cons supp_prod)
349
350lemma psubst_forget:
351  "(supp (map fst \<theta>)::name set) \<sharp>* t \<Longrightarrow> \<theta>\<lparr>t\<rparr> = t"
352  "(supp (map fst \<theta>)::name set) \<sharp>* t' \<Longrightarrow> \<theta>\<lparr>t'\<rparr>\<^sub>b = t'"
353  apply (nominal_induct t and t' avoiding: \<theta> rule: trm_btrm.strong_inducts)
354  apply (auto simp add: fresh_star_def lookup_forget abs_fresh)
355  apply (drule_tac x=\<theta> in meta_spec)
356  apply (drule meta_mp)
357  apply (rule ballI)
358  apply (drule_tac x=x in bspec)
359  apply assumption
360  apply (drule supp_fst)
361  apply (auto simp add: fresh_def)
362  apply (drule_tac x=\<theta> in meta_spec)
363  apply (drule meta_mp)
364  apply (rule ballI)
365  apply (drule_tac x=x in bspec)
366  apply assumption
367  apply (drule supp_fst)
368  apply (auto simp add: fresh_def)
369  done
370
371lemma psubst_nil: "[]\<lparr>t\<rparr> = t" "[]\<lparr>t'\<rparr>\<^sub>b = t'"
372  by (induct t and t' rule: trm_btrm.inducts) (simp_all add: fresh_list_nil)
373
374lemma psubst_cons:
375  assumes "(supp (map fst \<theta>)::name set) \<sharp>* u"
376  shows "((x, u) # \<theta>)\<lparr>t\<rparr> = \<theta>\<lparr>t[x\<mapsto>u]\<rparr>" and "((x, u) # \<theta>)\<lparr>t'\<rparr>\<^sub>b = \<theta>\<lparr>t'[x\<mapsto>u]\<^sub>b\<rparr>\<^sub>b"
377  using assms
378  by (nominal_induct t and t' avoiding: x u \<theta> rule: trm_btrm.strong_inducts)
379    (simp_all add: fresh_list_nil fresh_list_cons psubst_forget)
380
381lemma psubst_append:
382  "(supp (map fst (\<theta>\<^sub>1 @ \<theta>\<^sub>2))::name set) \<sharp>* map snd (\<theta>\<^sub>1 @ \<theta>\<^sub>2) \<Longrightarrow> (\<theta>\<^sub>1 @ \<theta>\<^sub>2)\<lparr>t\<rparr> = \<theta>\<^sub>2\<lparr>\<theta>\<^sub>1\<lparr>t\<rparr>\<rparr>"
383  by (induct \<theta>\<^sub>1 arbitrary: t)
384    (simp_all add: psubst_nil split_paired_all supp_list_cons psubst_cons fresh_star_def
385      fresh_list_cons fresh_list_append supp_list_append)
386
387lemma abs_pat_psubst [simp]:
388  "(supp p::name set) \<sharp>* \<theta> \<Longrightarrow> \<theta>\<lparr>\<lambda>[p]. t\<rparr>\<^sub>b = (\<lambda>[p]. \<theta>\<lparr>t\<rparr>\<^sub>b)"
389  by (induct p arbitrary: t) (auto simp add: fresh_star_def supp_atm)
390
391lemma valid_insert:
392  assumes "valid (\<Delta> @ [(x, T)] @ \<Gamma>)"
393  shows "valid (\<Delta> @ \<Gamma>)" using assms
394  by (induct \<Delta>)
395    (auto simp add: fresh_list_append fresh_list_cons)
396
397lemma fresh_set: 
398  shows "y \<sharp> xs = (\<forall>x\<in>set xs. y \<sharp> x)"
399  by (induct xs) (simp_all add: fresh_list_nil fresh_list_cons)
400
401lemma context_unique:
402  assumes "valid \<Gamma>"
403  and "(x, T) \<in> set \<Gamma>"
404  and "(x, U) \<in> set \<Gamma>"
405  shows "T = U" using assms
406  by induct (auto simp add: fresh_set fresh_prod fresh_atm)
407
408lemma subst_type_aux:
409  assumes a: "\<Delta> @ [(x, U)] @ \<Gamma> \<turnstile> t : T"
410  and b: "\<Gamma> \<turnstile> u : U"
411  shows "\<Delta> @ \<Gamma> \<turnstile> t[x\<mapsto>u] : T" using a b
412proof (nominal_induct \<Gamma>'\<equiv>"\<Delta> @ [(x, U)] @ \<Gamma>" t T avoiding: x u \<Delta> rule: typing.strong_induct)
413  case (Var y T x u \<Delta>)
414  from \<open>valid (\<Delta> @ [(x, U)] @ \<Gamma>)\<close>
415  have valid: "valid (\<Delta> @ \<Gamma>)" by (rule valid_insert)
416  show "\<Delta> @ \<Gamma> \<turnstile> Var y[x\<mapsto>u] : T"
417  proof cases
418    assume eq: "x = y"
419    from Var eq have "T = U" by (auto intro: context_unique)
420    with Var eq valid show "\<Delta> @ \<Gamma> \<turnstile> Var y[x\<mapsto>u] : T" by (auto intro: weakening)
421  next
422    assume ineq: "x \<noteq> y"
423    from Var ineq have "(y, T) \<in> set (\<Delta> @ \<Gamma>)" by simp
424    then show "\<Delta> @ \<Gamma> \<turnstile> Var y[x\<mapsto>u] : T" using ineq valid by auto
425  qed
426next
427  case (Tuple t\<^sub>1 T\<^sub>1 t\<^sub>2 T\<^sub>2)
428  from refl \<open>\<Gamma> \<turnstile> u : U\<close>
429  have "\<Delta> @ \<Gamma> \<turnstile> t\<^sub>1[x\<mapsto>u] : T\<^sub>1" by (rule Tuple)
430  moreover from refl \<open>\<Gamma> \<turnstile> u : U\<close>
431  have "\<Delta> @ \<Gamma> \<turnstile> t\<^sub>2[x\<mapsto>u] : T\<^sub>2" by (rule Tuple)
432  ultimately have "\<Delta> @ \<Gamma> \<turnstile> \<langle>t\<^sub>1[x\<mapsto>u], t\<^sub>2[x\<mapsto>u]\<rangle> : T\<^sub>1 \<otimes> T\<^sub>2" ..
433  then show ?case by simp
434next
435  case (Let p t T \<Delta>' s S)
436  from refl \<open>\<Gamma> \<turnstile> u : U\<close>
437  have "\<Delta> @ \<Gamma> \<turnstile> t[x\<mapsto>u] : T" by (rule Let)
438  moreover note \<open>\<turnstile> p : T \<Rightarrow> \<Delta>'\<close>
439  moreover have "\<Delta>' @ (\<Delta> @ [(x, U)] @ \<Gamma>) = (\<Delta>' @ \<Delta>) @ [(x, U)] @ \<Gamma>" by simp
440  then have "(\<Delta>' @ \<Delta>) @ \<Gamma> \<turnstile> s[x\<mapsto>u] : S" using \<open>\<Gamma> \<turnstile> u : U\<close> by (rule Let)
441  then have "\<Delta>' @ \<Delta> @ \<Gamma> \<turnstile> s[x\<mapsto>u] : S" by simp
442  ultimately have "\<Delta> @ \<Gamma> \<turnstile> (LET p = t[x\<mapsto>u] IN s[x\<mapsto>u]) : S"
443    by (rule better_T_Let)
444  moreover from Let have "(supp p::name set) \<sharp>* [(x, u)]"
445    by (simp add: fresh_star_def fresh_list_nil fresh_list_cons)
446  ultimately show ?case by simp
447next
448  case (Abs y T t S)
449  have "(y, T) # \<Delta> @ [(x, U)] @ \<Gamma> = ((y, T) # \<Delta>) @ [(x, U)] @ \<Gamma>"
450    by simp
451  then have "((y, T) # \<Delta>) @ \<Gamma> \<turnstile> t[x\<mapsto>u] : S" using \<open>\<Gamma> \<turnstile> u : U\<close> by (rule Abs)
452  then have "(y, T) # \<Delta> @ \<Gamma> \<turnstile> t[x\<mapsto>u] : S" by simp
453  then have "\<Delta> @ \<Gamma> \<turnstile> (\<lambda>y:T. t[x\<mapsto>u]) : T \<rightarrow> S"
454    by (rule typing.Abs)
455  moreover from Abs have "y \<sharp> [(x, u)]"
456    by (simp add: fresh_list_nil fresh_list_cons)
457  ultimately show ?case by simp
458next
459  case (App t\<^sub>1 T S t\<^sub>2)
460  from refl \<open>\<Gamma> \<turnstile> u : U\<close>
461  have "\<Delta> @ \<Gamma> \<turnstile> t\<^sub>1[x\<mapsto>u] : T \<rightarrow> S" by (rule App)
462  moreover from refl \<open>\<Gamma> \<turnstile> u : U\<close>
463  have "\<Delta> @ \<Gamma> \<turnstile> t\<^sub>2[x\<mapsto>u] : T" by (rule App)
464  ultimately have "\<Delta> @ \<Gamma> \<turnstile> (t\<^sub>1[x\<mapsto>u]) \<cdot> (t\<^sub>2[x\<mapsto>u]) : S"
465    by (rule typing.App)
466  then show ?case by simp
467qed
468
469lemmas subst_type = subst_type_aux [of "[]", simplified]
470
471lemma match_supp_fst:
472  assumes "\<turnstile> p \<rhd> u \<Rightarrow> \<theta>" shows "(supp (map fst \<theta>)::name set) = supp p" using assms
473  by induct (simp_all add: supp_list_nil supp_list_cons supp_list_append)
474
475lemma match_supp_snd:
476  assumes "\<turnstile> p \<rhd> u \<Rightarrow> \<theta>" shows "(supp (map snd \<theta>)::name set) = supp u" using assms
477  by induct (simp_all add: supp_list_nil supp_list_cons supp_list_append trm.supp)
478
479lemma match_fresh: "\<turnstile> p \<rhd> u \<Rightarrow> \<theta> \<Longrightarrow> (supp p::name set) \<sharp>* u \<Longrightarrow>
480  (supp (map fst \<theta>)::name set) \<sharp>* map snd \<theta>"
481  by (simp add: fresh_star_def fresh_def match_supp_fst match_supp_snd)
482
483lemma match_type_aux:
484  assumes "\<turnstile> p : U \<Rightarrow> \<Delta>"
485  and "\<Gamma>\<^sub>2 \<turnstile> u : U"
486  and "\<Gamma>\<^sub>1 @ \<Delta> @ \<Gamma>\<^sub>2 \<turnstile> t : T"
487  and "\<turnstile> p \<rhd> u \<Rightarrow> \<theta>"
488  and "(supp p::name set) \<sharp>* u"
489  shows "\<Gamma>\<^sub>1 @ \<Gamma>\<^sub>2 \<turnstile> \<theta>\<lparr>t\<rparr> : T" using assms
490proof (induct arbitrary: \<Gamma>\<^sub>1 \<Gamma>\<^sub>2 t u T \<theta>)
491  case (PVar x U)
492  from \<open>\<Gamma>\<^sub>1 @ [(x, U)] @ \<Gamma>\<^sub>2 \<turnstile> t : T\<close> \<open>\<Gamma>\<^sub>2 \<turnstile> u : U\<close>
493  have "\<Gamma>\<^sub>1 @ \<Gamma>\<^sub>2 \<turnstile> t[x\<mapsto>u] : T" by (rule subst_type_aux)
494  moreover from \<open>\<turnstile> PVar x U \<rhd> u \<Rightarrow> \<theta>\<close> have "\<theta> = [(x, u)]"
495    by cases simp_all
496  ultimately show ?case by simp
497next
498  case (PTuple p S \<Delta>\<^sub>1 q U \<Delta>\<^sub>2)
499  from \<open>\<turnstile> \<langle>\<langle>p, q\<rangle>\<rangle> \<rhd> u \<Rightarrow> \<theta>\<close> obtain u\<^sub>1 u\<^sub>2 \<theta>\<^sub>1 \<theta>\<^sub>2
500    where u: "u = \<langle>u\<^sub>1, u\<^sub>2\<rangle>" and \<theta>: "\<theta> = \<theta>\<^sub>1 @ \<theta>\<^sub>2"
501    and p: "\<turnstile> p \<rhd> u\<^sub>1 \<Rightarrow> \<theta>\<^sub>1" and q: "\<turnstile> q \<rhd> u\<^sub>2 \<Rightarrow> \<theta>\<^sub>2"
502    by cases simp_all
503  with PTuple have "\<Gamma>\<^sub>2 \<turnstile> \<langle>u\<^sub>1, u\<^sub>2\<rangle> : S \<otimes> U" by simp
504  then obtain u\<^sub>1: "\<Gamma>\<^sub>2 \<turnstile> u\<^sub>1 : S" and u\<^sub>2: "\<Gamma>\<^sub>2 \<turnstile> u\<^sub>2 : U"
505    by cases (simp_all add: ty.inject trm.inject)
506  note u\<^sub>1
507  moreover from \<open>\<Gamma>\<^sub>1 @ (\<Delta>\<^sub>2 @ \<Delta>\<^sub>1) @ \<Gamma>\<^sub>2 \<turnstile> t : T\<close>
508  have "(\<Gamma>\<^sub>1 @ \<Delta>\<^sub>2) @ \<Delta>\<^sub>1 @ \<Gamma>\<^sub>2 \<turnstile> t : T" by simp
509  moreover note p
510  moreover from \<open>supp \<langle>\<langle>p, q\<rangle>\<rangle> \<sharp>* u\<close> and u
511  have "(supp p::name set) \<sharp>* u\<^sub>1" by (simp add: fresh_star_def)
512  ultimately have \<theta>\<^sub>1: "(\<Gamma>\<^sub>1 @ \<Delta>\<^sub>2) @ \<Gamma>\<^sub>2 \<turnstile> \<theta>\<^sub>1\<lparr>t\<rparr> : T"
513    by (rule PTuple)
514  note u\<^sub>2
515  moreover from \<theta>\<^sub>1
516  have "\<Gamma>\<^sub>1 @ \<Delta>\<^sub>2 @ \<Gamma>\<^sub>2 \<turnstile> \<theta>\<^sub>1\<lparr>t\<rparr> : T" by simp
517  moreover note q
518  moreover from \<open>supp \<langle>\<langle>p, q\<rangle>\<rangle> \<sharp>* u\<close> and u
519  have "(supp q::name set) \<sharp>* u\<^sub>2" by (simp add: fresh_star_def)
520  ultimately have "\<Gamma>\<^sub>1 @ \<Gamma>\<^sub>2 \<turnstile> \<theta>\<^sub>2\<lparr>\<theta>\<^sub>1\<lparr>t\<rparr>\<rparr> : T"
521    by (rule PTuple)
522  moreover from \<open>\<turnstile> \<langle>\<langle>p, q\<rangle>\<rangle> \<rhd> u \<Rightarrow> \<theta>\<close> \<open>supp \<langle>\<langle>p, q\<rangle>\<rangle> \<sharp>* u\<close>
523  have "(supp (map fst \<theta>)::name set) \<sharp>* map snd \<theta>"
524    by (rule match_fresh)
525  ultimately show ?case using \<theta> by (simp add: psubst_append)
526qed
527
528lemmas match_type = match_type_aux [where \<Gamma>\<^sub>1="[]", simplified]
529
530inductive eval :: "trm \<Rightarrow> trm \<Rightarrow> bool" ("_ \<longmapsto> _" [60,60] 60)
531where
532  TupleL: "t \<longmapsto> t' \<Longrightarrow> \<langle>t, u\<rangle> \<longmapsto> \<langle>t', u\<rangle>"
533| TupleR: "u \<longmapsto> u' \<Longrightarrow> \<langle>t, u\<rangle> \<longmapsto> \<langle>t, u'\<rangle>"
534| Abs: "t \<longmapsto> t' \<Longrightarrow> (\<lambda>x:T. t) \<longmapsto> (\<lambda>x:T. t')"
535| AppL: "t \<longmapsto> t' \<Longrightarrow> t \<cdot> u \<longmapsto> t' \<cdot> u"
536| AppR: "u \<longmapsto> u' \<Longrightarrow> t \<cdot> u \<longmapsto> t \<cdot> u'"
537| Beta: "x \<sharp> u \<Longrightarrow> (\<lambda>x:T. t) \<cdot> u \<longmapsto> t[x\<mapsto>u]"
538| Let: "((supp p)::name set) \<sharp>* t \<Longrightarrow> distinct (pat_vars p) \<Longrightarrow>
539    \<turnstile> p \<rhd> t \<Rightarrow> \<theta> \<Longrightarrow> (LET p = t IN u) \<longmapsto> \<theta>\<lparr>u\<rparr>"
540
541equivariance match
542
543equivariance eval
544
545lemma match_vars:
546  assumes "\<turnstile> p \<rhd> t \<Rightarrow> \<theta>" and "x \<in> supp p"
547  shows "x \<in> set (map fst \<theta>)" using assms
548  by induct (auto simp add: supp_atm)
549
550lemma match_fresh_mono:
551  assumes "\<turnstile> p \<rhd> t \<Rightarrow> \<theta>" and "(x::name) \<sharp> t"
552  shows "\<forall>(y, t)\<in>set \<theta>. x \<sharp> t" using assms
553  by induct auto
554
555nominal_inductive2 eval
556avoids
557  Abs: "{x}"
558| Beta: "{x}"
559| Let: "(supp p)::name set"
560  apply (simp_all add: fresh_star_def abs_fresh fin_supp)
561  apply (rule psubst_fresh)
562  apply simp
563  apply simp
564  apply (rule ballI)
565  apply (rule psubst_fresh)
566  apply (rule match_vars)
567  apply assumption+
568  apply (rule match_fresh_mono)
569  apply auto
570  done
571
572lemma typing_case_Abs:
573  assumes ty: "\<Gamma> \<turnstile> (\<lambda>x:T. t) : S"
574  and fresh: "x \<sharp> \<Gamma>"
575  and R: "\<And>U. S = T \<rightarrow> U \<Longrightarrow> (x, T) # \<Gamma> \<turnstile> t : U \<Longrightarrow> P"
576  shows P using ty
577proof cases
578  case (Abs x' T' t' U)
579  obtain y::name where y: "y \<sharp> (x, \<Gamma>, \<lambda>x':T'. t')"
580    by (rule exists_fresh) (auto intro: fin_supp)
581  from \<open>(\<lambda>x:T. t) = (\<lambda>x':T'. t')\<close> [symmetric]
582  have x: "x \<sharp> (\<lambda>x':T'. t')" by (simp add: abs_fresh)
583  have x': "x' \<sharp> (\<lambda>x':T'. t')" by (simp add: abs_fresh)
584  from \<open>(x', T') # \<Gamma> \<turnstile> t' : U\<close> have x'': "x' \<sharp> \<Gamma>"
585    by (auto dest: valid_typing)
586  have "(\<lambda>x:T. t) = (\<lambda>x':T'. t')" by fact
587  also from x x' y have "\<dots> = [(x, y)] \<bullet> [(x', y)] \<bullet> (\<lambda>x':T'. t')"
588    by (simp only: perm_fresh_fresh fresh_prod)
589  also have "\<dots> = (\<lambda>x:T'. [(x, y)] \<bullet> [(x', y)] \<bullet> t')"
590    by (simp add: swap_simps perm_fresh_fresh)
591  finally have "(\<lambda>x:T. t) = (\<lambda>x:T'. [(x, y)] \<bullet> [(x', y)] \<bullet> t')" .
592  then have T: "T = T'" and t: "[(x, y)] \<bullet> [(x', y)] \<bullet> t' = t"
593    by (simp_all add: trm.inject alpha)
594  from Abs T have "S = T \<rightarrow> U" by simp
595  moreover from \<open>(x', T') # \<Gamma> \<turnstile> t' : U\<close>
596  have "[(x, y)] \<bullet> [(x', y)] \<bullet> ((x', T') # \<Gamma> \<turnstile> t' : U)"
597    by (simp add: perm_bool)
598  with T t y x'' fresh have "(x, T) # \<Gamma> \<turnstile> t : U"
599    by (simp add: eqvts swap_simps perm_fresh_fresh fresh_prod)
600  ultimately show ?thesis by (rule R)
601qed simp_all
602
603nominal_primrec ty_size :: "ty \<Rightarrow> nat"
604where
605  "ty_size (Atom n) = 0"
606| "ty_size (T \<rightarrow> U) = ty_size T + ty_size U + 1"
607| "ty_size (T \<otimes> U) = ty_size T + ty_size U + 1"
608  by (rule TrueI)+
609
610lemma bind_tuple_ineq:
611  "ty_size (pat_type p) < ty_size U \<Longrightarrow> Bind U x t \<noteq> (\<lambda>[p]. u)"
612  by (induct p arbitrary: U x t u) (auto simp add: btrm.inject)
613
614lemma valid_appD: assumes "valid (\<Gamma> @ \<Delta>)"
615  shows "valid \<Gamma>" "valid \<Delta>" using assms
616  by (induct \<Gamma>'\<equiv>"\<Gamma> @ \<Delta>" arbitrary: \<Gamma> \<Delta>)
617    (auto simp add: Cons_eq_append_conv fresh_list_append)
618
619lemma valid_app_freshs: assumes "valid (\<Gamma> @ \<Delta>)"
620  shows "(supp \<Gamma>::name set) \<sharp>* \<Delta>" "(supp \<Delta>::name set) \<sharp>* \<Gamma>" using assms
621  by (induct \<Gamma>'\<equiv>"\<Gamma> @ \<Delta>" arbitrary: \<Gamma> \<Delta>)
622    (auto simp add: Cons_eq_append_conv fresh_star_def
623     fresh_list_nil fresh_list_cons supp_list_nil supp_list_cons fresh_list_append
624     supp_prod fresh_prod supp_atm fresh_atm
625     dest: notE [OF iffD1 [OF fresh_def]])
626
627lemma perm_mem_left: "(x::name) \<in> ((pi::name prm) \<bullet> A) \<Longrightarrow> (rev pi \<bullet> x) \<in> A"
628  by (drule perm_boolI [of _ "rev pi"]) (simp add: eqvts perm_pi_simp)
629
630lemma perm_mem_right: "(rev (pi::name prm) \<bullet> (x::name)) \<in> A \<Longrightarrow> x \<in> (pi \<bullet> A)"
631  by (drule perm_boolI [of _ pi]) (simp add: eqvts perm_pi_simp)
632
633lemma perm_cases:
634  assumes pi: "set pi \<subseteq> A \<times> A"
635  shows "((pi::name prm) \<bullet> B) \<subseteq> A \<union> B"
636proof
637  fix x assume "x \<in> pi \<bullet> B"
638  then show "x \<in> A \<union> B" using pi
639    apply (induct pi arbitrary: x B rule: rev_induct)
640    apply simp
641    apply (simp add: split_paired_all supp_eqvt)
642    apply (drule perm_mem_left)
643    apply (simp add: calc_atm split: if_split_asm)
644    apply (auto dest: perm_mem_right)
645    done
646qed
647
648lemma abs_pat_alpha':
649  assumes eq: "(\<lambda>[p]. t) = (\<lambda>[q]. u)"
650  and ty: "pat_type p = pat_type q"
651  and pv: "distinct (pat_vars p)"
652  and qv: "distinct (pat_vars q)"
653  shows "\<exists>pi::name prm. p = pi \<bullet> q \<and> t = pi \<bullet> u \<and>
654    set pi \<subseteq> (supp p \<union> supp q) \<times> (supp p \<union> supp q)"
655  using assms
656proof (induct p arbitrary: q t u)
657  case (PVar x T)
658  note PVar' = this
659  show ?case
660  proof (cases q)
661    case (PVar x' T')
662    with \<open>(\<lambda>[PVar x T]. t) = (\<lambda>[q]. u)\<close>
663    have "x = x' \<and> t = u \<or> x \<noteq> x' \<and> t = [(x, x')] \<bullet> u \<and> x \<sharp> u"
664      by (simp add: btrm.inject alpha)
665    then show ?thesis
666    proof
667      assume "x = x' \<and> t = u"
668      with PVar PVar' have "PVar x T = ([]::name prm) \<bullet> q \<and>
669        t = ([]::name prm) \<bullet> u \<and>
670        set ([]::name prm) \<subseteq> (supp (PVar x T) \<union> supp q) \<times>
671          (supp (PVar x T) \<union> supp q)" by simp
672      then show ?thesis ..
673    next
674      assume "x \<noteq> x' \<and> t = [(x, x')] \<bullet> u \<and> x \<sharp> u"
675      with PVar PVar' have "PVar x T = [(x, x')] \<bullet> q \<and>
676        t = [(x, x')] \<bullet> u \<and>
677        set [(x, x')] \<subseteq> (supp (PVar x T) \<union> supp q) \<times>
678          (supp (PVar x T) \<union> supp q)"
679        by (simp add: perm_swap swap_simps supp_atm perm_type)
680      then show ?thesis ..
681    qed
682  next
683    case (PTuple p\<^sub>1 p\<^sub>2)
684    with PVar have "ty_size (pat_type p\<^sub>1) < ty_size T" by simp
685    then have "Bind T x t \<noteq> (\<lambda>[p\<^sub>1]. \<lambda>[p\<^sub>2]. u)"
686      by (rule bind_tuple_ineq)
687    moreover from PTuple PVar
688    have "Bind T x t = (\<lambda>[p\<^sub>1]. \<lambda>[p\<^sub>2]. u)" by simp
689    ultimately show ?thesis ..
690  qed
691next
692  case (PTuple p\<^sub>1 p\<^sub>2)
693  note PTuple' = this
694  show ?case
695  proof (cases q)
696    case (PVar x T)
697    with PTuple have "ty_size (pat_type p\<^sub>1) < ty_size T" by auto
698    then have "Bind T x u \<noteq> (\<lambda>[p\<^sub>1]. \<lambda>[p\<^sub>2]. t)"
699      by (rule bind_tuple_ineq)
700    moreover from PTuple PVar
701    have "Bind T x u = (\<lambda>[p\<^sub>1]. \<lambda>[p\<^sub>2]. t)" by simp
702    ultimately show ?thesis ..
703  next
704    case (PTuple p\<^sub>1' p\<^sub>2')
705    with PTuple' have "(\<lambda>[p\<^sub>1]. \<lambda>[p\<^sub>2]. t) = (\<lambda>[p\<^sub>1']. \<lambda>[p\<^sub>2']. u)" by simp
706    moreover from PTuple PTuple' have "pat_type p\<^sub>1 = pat_type p\<^sub>1'"
707      by (simp add: ty.inject)
708    moreover from PTuple' have "distinct (pat_vars p\<^sub>1)" by simp
709    moreover from PTuple PTuple' have "distinct (pat_vars p\<^sub>1')" by simp
710    ultimately have "\<exists>pi::name prm. p\<^sub>1 = pi \<bullet> p\<^sub>1' \<and>
711      (\<lambda>[p\<^sub>2]. t) = pi \<bullet> (\<lambda>[p\<^sub>2']. u) \<and>
712      set pi \<subseteq> (supp p\<^sub>1 \<union> supp p\<^sub>1') \<times> (supp p\<^sub>1 \<union> supp p\<^sub>1')"
713      by (rule PTuple')
714    then obtain pi::"name prm" where
715      "p\<^sub>1 = pi \<bullet> p\<^sub>1'" "(\<lambda>[p\<^sub>2]. t) = pi \<bullet> (\<lambda>[p\<^sub>2']. u)" and
716      pi: "set pi \<subseteq> (supp p\<^sub>1 \<union> supp p\<^sub>1') \<times> (supp p\<^sub>1 \<union> supp p\<^sub>1')" by auto
717    from \<open>(\<lambda>[p\<^sub>2]. t) = pi \<bullet> (\<lambda>[p\<^sub>2']. u)\<close>
718    have "(\<lambda>[p\<^sub>2]. t) = (\<lambda>[pi \<bullet> p\<^sub>2']. pi \<bullet> u)"
719      by (simp add: eqvts)
720    moreover from PTuple PTuple' have "pat_type p\<^sub>2 = pat_type (pi \<bullet> p\<^sub>2')"
721      by (simp add: ty.inject pat_type_perm_eq)
722    moreover from PTuple' have "distinct (pat_vars p\<^sub>2)" by simp
723    moreover from PTuple PTuple' have "distinct (pat_vars (pi \<bullet> p\<^sub>2'))"
724      by (simp add: pat_vars_eqvt [symmetric] distinct_eqvt [symmetric])
725    ultimately have "\<exists>pi'::name prm. p\<^sub>2 = pi' \<bullet> pi \<bullet> p\<^sub>2' \<and>
726      t = pi' \<bullet> pi \<bullet> u \<and>
727      set pi' \<subseteq> (supp p\<^sub>2 \<union> supp (pi \<bullet> p\<^sub>2')) \<times> (supp p\<^sub>2 \<union> supp (pi \<bullet> p\<^sub>2'))"
728      by (rule PTuple')
729    then obtain pi'::"name prm" where
730      "p\<^sub>2 = pi' \<bullet> pi \<bullet> p\<^sub>2'" "t = pi' \<bullet> pi \<bullet> u" and
731      pi': "set pi' \<subseteq> (supp p\<^sub>2 \<union> supp (pi \<bullet> p\<^sub>2')) \<times>
732        (supp p\<^sub>2 \<union> supp (pi \<bullet> p\<^sub>2'))" by auto
733    from PTuple PTuple' have "pi \<bullet> distinct (pat_vars \<langle>\<langle>p\<^sub>1', p\<^sub>2'\<rangle>\<rangle>)" by simp
734    then have "distinct (pat_vars \<langle>\<langle>pi \<bullet> p\<^sub>1', pi \<bullet> p\<^sub>2'\<rangle>\<rangle>)" by (simp only: eqvts)
735    with \<open>p\<^sub>1 = pi \<bullet> p\<^sub>1'\<close> PTuple'
736    have fresh: "(supp p\<^sub>2 \<union> supp (pi \<bullet> p\<^sub>2') :: name set) \<sharp>* p\<^sub>1"
737      by (auto simp add: set_pat_vars_supp fresh_star_def fresh_def eqvts)
738    from \<open>p\<^sub>1 = pi \<bullet> p\<^sub>1'\<close> have "pi' \<bullet> (p\<^sub>1 = pi \<bullet> p\<^sub>1')" by (rule perm_boolI)
739    with pt_freshs_freshs [OF pt_name_inst at_name_inst pi' fresh fresh]
740    have "p\<^sub>1 = pi' \<bullet> pi \<bullet> p\<^sub>1'" by (simp add: eqvts)
741    with \<open>p\<^sub>2 = pi' \<bullet> pi \<bullet> p\<^sub>2'\<close> have "\<langle>\<langle>p\<^sub>1, p\<^sub>2\<rangle>\<rangle> = (pi' @ pi) \<bullet> \<langle>\<langle>p\<^sub>1', p\<^sub>2'\<rangle>\<rangle>"
742      by (simp add: pt_name2)
743    moreover
744    have "((supp p\<^sub>2 \<union> (pi \<bullet> supp p\<^sub>2')) \<times> (supp p\<^sub>2 \<union> (pi \<bullet> supp p\<^sub>2'))::(name \<times> name) set) \<subseteq>
745      (supp p\<^sub>2 \<union> (supp p\<^sub>1 \<union> supp p\<^sub>1' \<union> supp p\<^sub>2')) \<times> (supp p\<^sub>2 \<union> (supp p\<^sub>1 \<union> supp p\<^sub>1' \<union> supp p\<^sub>2'))"
746      by (rule subset_refl Sigma_mono Un_mono perm_cases [OF pi])+
747    with pi' have "set pi' \<subseteq> \<dots>" by (simp add: supp_eqvt [symmetric])
748    with pi have "set (pi' @ pi) \<subseteq> (supp \<langle>\<langle>p\<^sub>1, p\<^sub>2\<rangle>\<rangle> \<union> supp \<langle>\<langle>p\<^sub>1', p\<^sub>2'\<rangle>\<rangle>) \<times>
749      (supp \<langle>\<langle>p\<^sub>1, p\<^sub>2\<rangle>\<rangle> \<union> supp \<langle>\<langle>p\<^sub>1', p\<^sub>2'\<rangle>\<rangle>)"
750      by (simp add: Sigma_Un_distrib1 Sigma_Un_distrib2 Un_ac) blast
751    moreover note \<open>t = pi' \<bullet> pi \<bullet> u\<close>
752    ultimately have "\<langle>\<langle>p\<^sub>1, p\<^sub>2\<rangle>\<rangle> = (pi' @ pi) \<bullet> q \<and> t = (pi' @ pi) \<bullet> u \<and>
753      set (pi' @ pi) \<subseteq> (supp \<langle>\<langle>p\<^sub>1, p\<^sub>2\<rangle>\<rangle> \<union> supp q) \<times>
754        (supp \<langle>\<langle>p\<^sub>1, p\<^sub>2\<rangle>\<rangle> \<union> supp q)" using PTuple
755      by (simp add: pt_name2)
756    then show ?thesis ..
757  qed
758qed
759
760lemma typing_case_Let:
761  assumes ty: "\<Gamma> \<turnstile> (LET p = t IN u) : U"
762  and fresh: "(supp p::name set) \<sharp>* \<Gamma>"
763  and distinct: "distinct (pat_vars p)"
764  and R: "\<And>T \<Delta>. \<Gamma> \<turnstile> t : T \<Longrightarrow> \<turnstile> p : T \<Rightarrow> \<Delta> \<Longrightarrow> \<Delta> @ \<Gamma> \<turnstile> u : U \<Longrightarrow> P"
765  shows P using ty
766proof cases
767  case (Let p' t' T \<Delta> u')
768  then have "(supp \<Delta>::name set) \<sharp>* \<Gamma>"
769    by (auto intro: valid_typing valid_app_freshs)
770  with Let have "(supp p'::name set) \<sharp>* \<Gamma>"
771    by (simp add: pat_var)
772  with fresh have fresh': "(supp p \<union> supp p' :: name set) \<sharp>* \<Gamma>"
773    by (auto simp add: fresh_star_def)
774  from Let have "(\<lambda>[p]. Base u) = (\<lambda>[p']. Base u')"
775    by (simp add: trm.inject)
776  moreover from Let have "pat_type p = pat_type p'"
777    by (simp add: trm.inject)
778  moreover note distinct
779  moreover from \<open>\<Delta> @ \<Gamma> \<turnstile> u' : U\<close> have "valid (\<Delta> @ \<Gamma>)"
780    by (rule valid_typing)
781  then have "valid \<Delta>" by (rule valid_appD)
782  with \<open>\<turnstile> p' : T \<Rightarrow> \<Delta>\<close> have "distinct (pat_vars p')"
783    by (simp add: valid_distinct pat_vars_ptyping)
784  ultimately have "\<exists>pi::name prm. p = pi \<bullet> p' \<and> Base u = pi \<bullet> Base u' \<and>
785    set pi \<subseteq> (supp p \<union> supp p') \<times> (supp p \<union> supp p')"
786    by (rule abs_pat_alpha')
787  then obtain pi::"name prm" where pi: "p = pi \<bullet> p'" "u = pi \<bullet> u'"
788    and pi': "set pi \<subseteq> (supp p \<union> supp p') \<times> (supp p \<union> supp p')"
789    by (auto simp add: btrm.inject)
790  from Let have "\<Gamma> \<turnstile> t : T" by (simp add: trm.inject)
791  moreover from \<open>\<turnstile> p' : T \<Rightarrow> \<Delta>\<close> have "\<turnstile> (pi \<bullet> p') : (pi \<bullet> T) \<Rightarrow> (pi \<bullet> \<Delta>)"
792    by (simp add: ptyping.eqvt)
793  with pi have "\<turnstile> p : T \<Rightarrow> (pi \<bullet> \<Delta>)" by (simp add: perm_type)
794  moreover from Let
795  have "(pi \<bullet> \<Delta>) @ (pi \<bullet> \<Gamma>) \<turnstile> (pi \<bullet> u') : (pi \<bullet> U)"
796    by (simp add: append_eqvt [symmetric] typing.eqvt)
797  with pi have "(pi \<bullet> \<Delta>) @ \<Gamma> \<turnstile> u : U"
798    by (simp add: perm_type pt_freshs_freshs
799      [OF pt_name_inst at_name_inst pi' fresh' fresh'])
800  ultimately show ?thesis by (rule R)
801qed simp_all
802
803lemma preservation:
804  assumes "t \<longmapsto> t'" and "\<Gamma> \<turnstile> t : T"
805  shows "\<Gamma> \<turnstile> t' : T" using assms
806proof (nominal_induct avoiding: \<Gamma> T rule: eval.strong_induct)
807  case (TupleL t t' u)
808  from \<open>\<Gamma> \<turnstile> \<langle>t, u\<rangle> : T\<close> obtain T\<^sub>1 T\<^sub>2
809    where "T = T\<^sub>1 \<otimes> T\<^sub>2" "\<Gamma> \<turnstile> t : T\<^sub>1" "\<Gamma> \<turnstile> u : T\<^sub>2"
810    by cases (simp_all add: trm.inject)
811  from \<open>\<Gamma> \<turnstile> t : T\<^sub>1\<close> have "\<Gamma> \<turnstile> t' : T\<^sub>1" by (rule TupleL)
812  then have "\<Gamma> \<turnstile> \<langle>t', u\<rangle> : T\<^sub>1 \<otimes> T\<^sub>2" using \<open>\<Gamma> \<turnstile> u : T\<^sub>2\<close>
813    by (rule Tuple)
814  with \<open>T = T\<^sub>1 \<otimes> T\<^sub>2\<close> show ?case by simp
815next
816  case (TupleR u u' t)
817  from \<open>\<Gamma> \<turnstile> \<langle>t, u\<rangle> : T\<close> obtain T\<^sub>1 T\<^sub>2
818    where "T = T\<^sub>1 \<otimes> T\<^sub>2" "\<Gamma> \<turnstile> t : T\<^sub>1" "\<Gamma> \<turnstile> u : T\<^sub>2"
819    by cases (simp_all add: trm.inject)
820  from \<open>\<Gamma> \<turnstile> u : T\<^sub>2\<close> have "\<Gamma> \<turnstile> u' : T\<^sub>2" by (rule TupleR)
821  with \<open>\<Gamma> \<turnstile> t : T\<^sub>1\<close> have "\<Gamma> \<turnstile> \<langle>t, u'\<rangle> : T\<^sub>1 \<otimes> T\<^sub>2"
822    by (rule Tuple)
823  with \<open>T = T\<^sub>1 \<otimes> T\<^sub>2\<close> show ?case by simp
824next
825  case (Abs t t' x S)
826  from \<open>\<Gamma> \<turnstile> (\<lambda>x:S. t) : T\<close> \<open>x \<sharp> \<Gamma>\<close> obtain U where
827    T: "T = S \<rightarrow> U" and U: "(x, S) # \<Gamma> \<turnstile> t : U"
828    by (rule typing_case_Abs)
829  from U have "(x, S) # \<Gamma> \<turnstile> t' : U" by (rule Abs)
830  then have "\<Gamma> \<turnstile> (\<lambda>x:S. t') : S \<rightarrow> U"
831    by (rule typing.Abs)
832  with T show ?case by simp
833next
834  case (Beta x u S t)
835  from \<open>\<Gamma> \<turnstile> (\<lambda>x:S. t) \<cdot> u : T\<close> \<open>x \<sharp> \<Gamma>\<close>
836  obtain "(x, S) # \<Gamma> \<turnstile> t : T" and "\<Gamma> \<turnstile> u : S"
837    by cases (auto simp add: trm.inject ty.inject elim: typing_case_Abs)
838  then show ?case by (rule subst_type)
839next
840  case (Let p t \<theta> u)
841  from \<open>\<Gamma> \<turnstile> (LET p = t IN u) : T\<close> \<open>supp p \<sharp>* \<Gamma>\<close> \<open>distinct (pat_vars p)\<close>
842  obtain U \<Delta> where "\<turnstile> p : U \<Rightarrow> \<Delta>" "\<Gamma> \<turnstile> t : U" "\<Delta> @ \<Gamma> \<turnstile> u : T"
843    by (rule typing_case_Let)
844  then show ?case using \<open>\<turnstile> p \<rhd> t \<Rightarrow> \<theta>\<close> \<open>supp p \<sharp>* t\<close>
845    by (rule match_type)
846next
847  case (AppL t t' u)
848  from \<open>\<Gamma> \<turnstile> t \<cdot> u : T\<close> obtain U where
849    t: "\<Gamma> \<turnstile> t : U \<rightarrow> T" and u: "\<Gamma> \<turnstile> u : U"
850    by cases (auto simp add: trm.inject)
851  from t have "\<Gamma> \<turnstile> t' : U \<rightarrow> T" by (rule AppL)
852  then show ?case using u by (rule typing.App)
853next
854  case (AppR u u' t)
855  from \<open>\<Gamma> \<turnstile> t \<cdot> u : T\<close> obtain U where
856    t: "\<Gamma> \<turnstile> t : U \<rightarrow> T" and u: "\<Gamma> \<turnstile> u : U"
857    by cases (auto simp add: trm.inject)
858  from u have "\<Gamma> \<turnstile> u' : U" by (rule AppR)
859  with t show ?case by (rule typing.App)
860qed
861
862end
863