1(*  Title:      ZF/UNITY/WFair.thy
2    Author:     Sidi Ehmety, Computer Laboratory
3    Copyright   1998  University of Cambridge
4*)
5
6section\<open>Progress under Weak Fairness\<close>
7
8theory WFair
9imports UNITY ZFC
10begin
11
12text\<open>This theory defines the operators transient, ensures and leadsTo,
13assuming weak fairness. From Misra, "A Logic for Concurrent Programming",
141994.\<close>
15
16definition
17  (* This definition specifies weak fairness.  The rest of the theory
18    is generic to all forms of fairness.*)
19  transient :: "i=>i"  where
20  "transient(A) =={F \<in> program. (\<exists>act\<in>Acts(F). A<=domain(act) &
21                               act``A \<subseteq> state-A) & st_set(A)}"
22
23definition
24  ensures :: "[i,i] => i"       (infixl "ensures" 60)  where
25  "A ensures B == ((A-B) co (A \<union> B)) \<inter> transient(A-B)"
26
27consts
28
29  (*LEADS-TO constant for the inductive definition*)
30  leads :: "[i, i]=>i"
31
32inductive
33  domains
34     "leads(D, F)" \<subseteq> "Pow(D)*Pow(D)"
35  intros
36    Basis:  "[| F \<in> A ensures B;  A \<in> Pow(D); B \<in> Pow(D) |] ==> <A,B>:leads(D, F)"
37    Trans:  "[| <A,B> \<in> leads(D, F); <B,C> \<in> leads(D, F) |] ==>  <A,C>:leads(D, F)"
38    Union:   "[| S \<in> Pow({A \<in> S. <A, B>:leads(D, F)}); B \<in> Pow(D); S \<in> Pow(Pow(D)) |] ==>
39              <\<Union>(S),B>:leads(D, F)"
40
41  monos        Pow_mono
42  type_intros  Union_Pow_iff [THEN iffD2] UnionI PowI
43
44definition
45  (* The Visible version of the LEADS-TO relation*)
46  leadsTo :: "[i, i] => i"       (infixl "\<longmapsto>" 60)  where
47  "A \<longmapsto> B == {F \<in> program. <A,B>:leads(state, F)}"
48
49definition
50  (* wlt(F, B) is the largest set that leads to B*)
51  wlt :: "[i, i] => i"  where
52    "wlt(F, B) == \<Union>({A \<in> Pow(state). F \<in> A \<longmapsto> B})"
53
54(** Ad-hoc set-theory rules **)
55
56lemma Int_Union_Union: "\<Union>(B) \<inter> A = (\<Union>b \<in> B. b \<inter> A)"
57by auto
58
59lemma Int_Union_Union2: "A \<inter> \<Union>(B) = (\<Union>b \<in> B. A \<inter> b)"
60by auto
61
62(*** transient ***)
63
64lemma transient_type: "transient(A)<=program"
65by (unfold transient_def, auto)
66
67lemma transientD2:
68"F \<in> transient(A) ==> F \<in> program & st_set(A)"
69apply (unfold transient_def, auto)
70done
71
72lemma stable_transient_empty: "[| F \<in> stable(A); F \<in> transient(A) |] ==> A = 0"
73by (simp add: stable_def constrains_def transient_def, fast)
74
75lemma transient_strengthen: "[|F \<in> transient(A); B<=A|] ==> F \<in> transient(B)"
76apply (simp add: transient_def st_set_def, clarify)
77apply (blast intro!: rev_bexI)
78done
79
80lemma transientI:
81"[|act \<in> Acts(F); A \<subseteq> domain(act); act``A \<subseteq> state-A;
82    F \<in> program; st_set(A)|] ==> F \<in> transient(A)"
83by (simp add: transient_def, blast)
84
85lemma transientE:
86     "[| F \<in> transient(A);
87         !!act. [| act \<in> Acts(F);  A \<subseteq> domain(act); act``A \<subseteq> state-A|]==>P|]
88      ==>P"
89by (simp add: transient_def, blast)
90
91lemma transient_state: "transient(state) = 0"
92apply (simp add: transient_def)
93apply (rule equalityI, auto)
94apply (cut_tac F = x in Acts_type)
95apply (simp add: Diff_cancel)
96apply (auto intro: st0_in_state)
97done
98
99lemma transient_state2: "state<=B ==> transient(B) = 0"
100apply (simp add: transient_def st_set_def)
101apply (rule equalityI, auto)
102apply (cut_tac F = x in Acts_type)
103apply (subgoal_tac "B=state")
104apply (auto intro: st0_in_state)
105done
106
107lemma transient_empty: "transient(0) = program"
108by (auto simp add: transient_def)
109
110declare transient_empty [simp] transient_state [simp] transient_state2 [simp]
111
112(*** ensures ***)
113
114lemma ensures_type: "A ensures B <=program"
115by (simp add: ensures_def constrains_def, auto)
116
117lemma ensuresI:
118"[|F:(A-B) co (A \<union> B); F \<in> transient(A-B)|]==>F \<in> A ensures B"
119apply (unfold ensures_def)
120apply (auto simp add: transient_type [THEN subsetD])
121done
122
123(* Added by Sidi, from Misra's notes, Progress chapter, exercise 4 *)
124lemma ensuresI2: "[| F \<in> A co A \<union> B; F \<in> transient(A) |] ==> F \<in> A ensures B"
125apply (drule_tac B = "A-B" in constrains_weaken_L)
126apply (drule_tac [2] B = "A-B" in transient_strengthen)
127apply (auto simp add: ensures_def transient_type [THEN subsetD])
128done
129
130lemma ensuresD: "F \<in> A ensures B ==> F:(A-B) co (A \<union> B) & F \<in> transient (A-B)"
131by (unfold ensures_def, auto)
132
133lemma ensures_weaken_R: "[|F \<in> A ensures A'; A'<=B' |] ==> F \<in> A ensures B'"
134apply (unfold ensures_def)
135apply (blast intro: transient_strengthen constrains_weaken)
136done
137
138(*The L-version (precondition strengthening) fails, but we have this*)
139lemma stable_ensures_Int:
140     "[| F \<in> stable(C);  F \<in> A ensures B |] ==> F:(C \<inter> A) ensures (C \<inter> B)"
141
142apply (unfold ensures_def)
143apply (simp (no_asm) add: Int_Un_distrib [symmetric] Diff_Int_distrib [symmetric])
144apply (blast intro: transient_strengthen stable_constrains_Int constrains_weaken)
145done
146
147lemma stable_transient_ensures: "[|F \<in> stable(A);  F \<in> transient(C); A<=B \<union> C|] ==> F \<in> A ensures B"
148apply (frule stable_type [THEN subsetD])
149apply (simp add: ensures_def stable_def)
150apply (blast intro: transient_strengthen constrains_weaken)
151done
152
153lemma ensures_eq: "(A ensures B) = (A unless B) \<inter> transient (A-B)"
154by (auto simp add: ensures_def unless_def)
155
156lemma subset_imp_ensures: "[| F \<in> program; A<=B  |] ==> F \<in> A ensures B"
157by (auto simp add: ensures_def constrains_def transient_def st_set_def)
158
159(*** leadsTo ***)
160lemmas leads_left = leads.dom_subset [THEN subsetD, THEN SigmaD1]
161lemmas leads_right = leads.dom_subset [THEN subsetD, THEN SigmaD2]
162
163lemma leadsTo_type: "A \<longmapsto> B \<subseteq> program"
164by (unfold leadsTo_def, auto)
165
166lemma leadsToD2:
167"F \<in> A \<longmapsto> B ==> F \<in> program & st_set(A) & st_set(B)"
168apply (unfold leadsTo_def st_set_def)
169apply (blast dest: leads_left leads_right)
170done
171
172lemma leadsTo_Basis:
173    "[|F \<in> A ensures B; st_set(A); st_set(B)|] ==> F \<in> A \<longmapsto> B"
174apply (unfold leadsTo_def st_set_def)
175apply (cut_tac ensures_type)
176apply (auto intro: leads.Basis)
177done
178declare leadsTo_Basis [intro]
179
180(* Added by Sidi, from Misra's notes, Progress chapter, exercise number 4 *)
181(* [| F \<in> program; A<=B;  st_set(A); st_set(B) |] ==> A \<longmapsto> B *)
182lemmas subset_imp_leadsTo = subset_imp_ensures [THEN leadsTo_Basis]
183
184lemma leadsTo_Trans: "[|F \<in> A \<longmapsto> B;  F \<in> B \<longmapsto> C |]==>F \<in> A \<longmapsto> C"
185apply (unfold leadsTo_def)
186apply (auto intro: leads.Trans)
187done
188
189(* Better when used in association with leadsTo_weaken_R *)
190lemma transient_imp_leadsTo: "F \<in> transient(A) ==> F \<in> A \<longmapsto> (state-A)"
191apply (unfold transient_def)
192apply (blast intro: ensuresI [THEN leadsTo_Basis] constrains_weaken transientI)
193done
194
195(*Useful with cancellation, disjunction*)
196lemma leadsTo_Un_duplicate: "F \<in> A \<longmapsto> (A' \<union> A') ==> F \<in> A \<longmapsto> A'"
197by simp
198
199lemma leadsTo_Un_duplicate2:
200     "F \<in> A \<longmapsto> (A' \<union> C \<union> C) ==> F \<in> A \<longmapsto> (A' \<union> C)"
201by (simp add: Un_ac)
202
203(*The Union introduction rule as we should have liked to state it*)
204lemma leadsTo_Union:
205    "[|!!A. A \<in> S ==> F \<in> A \<longmapsto> B; F \<in> program; st_set(B)|]
206     ==> F \<in> \<Union>(S) \<longmapsto> B"
207apply (unfold leadsTo_def st_set_def)
208apply (blast intro: leads.Union dest: leads_left)
209done
210
211lemma leadsTo_Union_Int:
212    "[|!!A. A \<in> S ==>F \<in> (A \<inter> C) \<longmapsto> B; F \<in> program; st_set(B)|]
213     ==> F \<in> (\<Union>(S)Int C)\<longmapsto> B"
214apply (unfold leadsTo_def st_set_def)
215apply (simp only: Int_Union_Union)
216apply (blast dest: leads_left intro: leads.Union)
217done
218
219lemma leadsTo_UN:
220    "[| !!i. i \<in> I ==> F \<in> A(i) \<longmapsto> B; F \<in> program; st_set(B)|]
221     ==> F:(\<Union>i \<in> I. A(i)) \<longmapsto> B"
222apply (simp add: Int_Union_Union leadsTo_def st_set_def)
223apply (blast dest: leads_left intro: leads.Union)
224done
225
226(* Binary union introduction rule *)
227lemma leadsTo_Un:
228     "[| F \<in> A \<longmapsto> C; F \<in> B \<longmapsto> C |] ==> F \<in> (A \<union> B) \<longmapsto> C"
229apply (subst Un_eq_Union)
230apply (blast intro: leadsTo_Union dest: leadsToD2)
231done
232
233lemma single_leadsTo_I:
234    "[|!!x. x \<in> A==> F:{x} \<longmapsto> B; F \<in> program; st_set(B) |]
235     ==> F \<in> A \<longmapsto> B"
236apply (rule_tac b = A in UN_singleton [THEN subst])
237apply (rule leadsTo_UN, auto)
238done
239
240lemma leadsTo_refl: "[| F \<in> program; st_set(A) |] ==> F \<in> A \<longmapsto> A"
241by (blast intro: subset_imp_leadsTo)
242
243lemma leadsTo_refl_iff: "F \<in> A \<longmapsto> A \<longleftrightarrow> F \<in> program & st_set(A)"
244by (auto intro: leadsTo_refl dest: leadsToD2)
245
246lemma empty_leadsTo: "F \<in> 0 \<longmapsto> B \<longleftrightarrow> (F \<in> program & st_set(B))"
247by (auto intro: subset_imp_leadsTo dest: leadsToD2)
248declare empty_leadsTo [iff]
249
250lemma leadsTo_state: "F \<in> A \<longmapsto> state \<longleftrightarrow> (F \<in> program & st_set(A))"
251by (auto intro: subset_imp_leadsTo dest: leadsToD2 st_setD)
252declare leadsTo_state [iff]
253
254lemma leadsTo_weaken_R: "[| F \<in> A \<longmapsto> A'; A'<=B'; st_set(B') |] ==> F \<in> A \<longmapsto> B'"
255by (blast dest: leadsToD2 intro: subset_imp_leadsTo leadsTo_Trans)
256
257lemma leadsTo_weaken_L: "[| F \<in> A \<longmapsto> A'; B<=A |] ==> F \<in> B \<longmapsto> A'"
258apply (frule leadsToD2)
259apply (blast intro: leadsTo_Trans subset_imp_leadsTo st_set_subset)
260done
261
262lemma leadsTo_weaken: "[| F \<in> A \<longmapsto> A'; B<=A; A'<=B'; st_set(B')|]==> F \<in> B \<longmapsto> B'"
263apply (frule leadsToD2)
264apply (blast intro: leadsTo_weaken_R leadsTo_weaken_L leadsTo_Trans leadsTo_refl)
265done
266
267(* This rule has a nicer conclusion *)
268lemma transient_imp_leadsTo2: "[| F \<in> transient(A); state-A<=B; st_set(B)|] ==> F \<in> A \<longmapsto> B"
269apply (frule transientD2)
270apply (rule leadsTo_weaken_R)
271apply (auto simp add: transient_imp_leadsTo)
272done
273
274(*Distributes over binary unions*)
275lemma leadsTo_Un_distrib: "F:(A \<union> B) \<longmapsto> C  \<longleftrightarrow>  (F \<in> A \<longmapsto> C & F \<in> B \<longmapsto> C)"
276by (blast intro: leadsTo_Un leadsTo_weaken_L)
277
278lemma leadsTo_UN_distrib:
279"(F:(\<Union>i \<in> I. A(i)) \<longmapsto> B)\<longleftrightarrow> ((\<forall>i \<in> I. F \<in> A(i) \<longmapsto> B) & F \<in> program & st_set(B))"
280apply (blast dest: leadsToD2 intro: leadsTo_UN leadsTo_weaken_L)
281done
282
283lemma leadsTo_Union_distrib: "(F \<in> \<Union>(S) \<longmapsto> B) \<longleftrightarrow>  (\<forall>A \<in> S. F \<in> A \<longmapsto> B) & F \<in> program & st_set(B)"
284by (blast dest: leadsToD2 intro: leadsTo_Union leadsTo_weaken_L)
285
286text\<open>Set difference: maybe combine with \<open>leadsTo_weaken_L\<close>??\<close>
287lemma leadsTo_Diff:
288     "[| F: (A-B) \<longmapsto> C; F \<in> B \<longmapsto> C; st_set(C) |]
289      ==> F \<in> A \<longmapsto> C"
290by (blast intro: leadsTo_Un leadsTo_weaken dest: leadsToD2)
291
292lemma leadsTo_UN_UN:
293    "[|!!i. i \<in> I ==> F \<in> A(i) \<longmapsto> A'(i); F \<in> program |]
294     ==> F: (\<Union>i \<in> I. A(i)) \<longmapsto> (\<Union>i \<in> I. A'(i))"
295apply (rule leadsTo_Union)
296apply (auto intro: leadsTo_weaken_R dest: leadsToD2)
297done
298
299(*Binary union version*)
300lemma leadsTo_Un_Un: "[| F \<in> A \<longmapsto> A'; F \<in> B \<longmapsto> B' |] ==> F \<in> (A \<union> B) \<longmapsto> (A' \<union> B')"
301apply (subgoal_tac "st_set (A) & st_set (A') & st_set (B) & st_set (B') ")
302prefer 2 apply (blast dest: leadsToD2)
303apply (blast intro: leadsTo_Un leadsTo_weaken_R)
304done
305
306(** The cancellation law **)
307lemma leadsTo_cancel2: "[|F \<in> A \<longmapsto> (A' \<union> B); F \<in> B \<longmapsto> B'|] ==> F \<in> A \<longmapsto> (A' \<union> B')"
308apply (subgoal_tac "st_set (A) & st_set (A') & st_set (B) & st_set (B') &F \<in> program")
309prefer 2 apply (blast dest: leadsToD2)
310apply (blast intro: leadsTo_Trans leadsTo_Un_Un leadsTo_refl)
311done
312
313lemma leadsTo_cancel_Diff2: "[|F \<in> A \<longmapsto> (A' \<union> B); F \<in> (B-A') \<longmapsto> B'|]==> F \<in> A \<longmapsto> (A' \<union> B')"
314apply (rule leadsTo_cancel2)
315prefer 2 apply assumption
316apply (blast dest: leadsToD2 intro: leadsTo_weaken_R)
317done
318
319
320lemma leadsTo_cancel1: "[| F \<in> A \<longmapsto> (B \<union> A'); F \<in> B \<longmapsto> B' |] ==> F \<in> A \<longmapsto> (B' \<union> A')"
321apply (simp add: Un_commute)
322apply (blast intro!: leadsTo_cancel2)
323done
324
325lemma leadsTo_cancel_Diff1:
326     "[|F \<in> A \<longmapsto> (B \<union> A'); F: (B-A') \<longmapsto> B'|]==> F \<in> A \<longmapsto> (B' \<union> A')"
327apply (rule leadsTo_cancel1)
328prefer 2 apply assumption
329apply (blast intro: leadsTo_weaken_R dest: leadsToD2)
330done
331
332(*The INDUCTION rule as we should have liked to state it*)
333lemma leadsTo_induct:
334  assumes major: "F \<in> za \<longmapsto> zb"
335      and basis: "!!A B. [|F \<in> A ensures B; st_set(A); st_set(B)|] ==> P(A,B)"
336      and trans: "!!A B C. [| F \<in> A \<longmapsto> B; P(A, B);
337                              F \<in> B \<longmapsto> C; P(B, C) |] ==> P(A,C)"
338      and union: "!!B S. [| \<forall>A \<in> S. F \<in> A \<longmapsto> B; \<forall>A \<in> S. P(A,B);
339                           st_set(B); \<forall>A \<in> S. st_set(A)|] ==> P(\<Union>(S), B)"
340  shows "P(za, zb)"
341apply (cut_tac major)
342apply (unfold leadsTo_def, clarify)
343apply (erule leads.induct)
344  apply (blast intro: basis [unfolded st_set_def])
345 apply (blast intro: trans [unfolded leadsTo_def])
346apply (force intro: union [unfolded st_set_def leadsTo_def])
347done
348
349
350(* Added by Sidi, an induction rule without ensures *)
351lemma leadsTo_induct2:
352  assumes major: "F \<in> za \<longmapsto> zb"
353      and basis1: "!!A B. [| A<=B; st_set(B) |] ==> P(A, B)"
354      and basis2: "!!A B. [| F \<in> A co A \<union> B; F \<in> transient(A); st_set(B) |]
355                          ==> P(A, B)"
356      and trans: "!!A B C. [| F \<in> A \<longmapsto> B; P(A, B);
357                              F \<in> B \<longmapsto> C; P(B, C) |] ==> P(A,C)"
358      and union: "!!B S. [| \<forall>A \<in> S. F \<in> A \<longmapsto> B; \<forall>A \<in> S. P(A,B);
359                           st_set(B); \<forall>A \<in> S. st_set(A)|] ==> P(\<Union>(S), B)"
360  shows "P(za, zb)"
361apply (cut_tac major)
362apply (erule leadsTo_induct)
363apply (auto intro: trans union)
364apply (simp add: ensures_def, clarify)
365apply (frule constrainsD2)
366apply (drule_tac B' = " (A-B) \<union> B" in constrains_weaken_R)
367apply blast
368apply (frule ensuresI2 [THEN leadsTo_Basis])
369apply (drule_tac [4] basis2, simp_all)
370apply (frule_tac A1 = A and B = B in Int_lower2 [THEN basis1])
371apply (subgoal_tac "A=\<Union>({A - B, A \<inter> B}) ")
372prefer 2 apply blast
373apply (erule ssubst)
374apply (rule union)
375apply (auto intro: subset_imp_leadsTo)
376done
377
378
379(** Variant induction rule: on the preconditions for B **)
380(*Lemma is the weak version: can't see how to do it in one step*)
381lemma leadsTo_induct_pre_aux:
382  "[| F \<in> za \<longmapsto> zb;
383      P(zb);
384      !!A B. [| F \<in> A ensures B;  P(B); st_set(A); st_set(B) |] ==> P(A);
385      !!S. [| \<forall>A \<in> S. P(A); \<forall>A \<in> S. st_set(A) |] ==> P(\<Union>(S))
386   |] ==> P(za)"
387txt\<open>by induction on this formula\<close>
388apply (subgoal_tac "P (zb) \<longrightarrow> P (za) ")
389txt\<open>now solve first subgoal: this formula is sufficient\<close>
390apply (blast intro: leadsTo_refl)
391apply (erule leadsTo_induct)
392apply (blast+)
393done
394
395
396lemma leadsTo_induct_pre:
397  "[| F \<in> za \<longmapsto> zb;
398      P(zb);
399      !!A B. [| F \<in> A ensures B;  F \<in> B \<longmapsto> zb;  P(B); st_set(A) |] ==> P(A);
400      !!S. \<forall>A \<in> S. F \<in> A \<longmapsto> zb & P(A) & st_set(A) ==> P(\<Union>(S))
401   |] ==> P(za)"
402apply (subgoal_tac " (F \<in> za \<longmapsto> zb) & P (za) ")
403apply (erule conjunct2)
404apply (frule leadsToD2)
405apply (erule leadsTo_induct_pre_aux)
406prefer 3 apply (blast dest: leadsToD2 intro: leadsTo_Union)
407prefer 2 apply (blast intro: leadsTo_Trans leadsTo_Basis)
408apply (blast intro: leadsTo_refl)
409done
410
411(** The impossibility law **)
412lemma leadsTo_empty:
413   "F \<in> A \<longmapsto> 0 ==> A=0"
414apply (erule leadsTo_induct_pre)
415apply (auto simp add: ensures_def constrains_def transient_def st_set_def)
416apply (drule bspec, assumption)+
417apply blast
418done
419declare leadsTo_empty [simp]
420
421subsection\<open>PSP: Progress-Safety-Progress\<close>
422
423text\<open>Special case of PSP: Misra's "stable conjunction"\<close>
424
425lemma psp_stable:
426   "[| F \<in> A \<longmapsto> A'; F \<in> stable(B) |] ==> F:(A \<inter> B) \<longmapsto> (A' \<inter> B)"
427apply (unfold stable_def)
428apply (frule leadsToD2)
429apply (erule leadsTo_induct)
430prefer 3 apply (blast intro: leadsTo_Union_Int)
431prefer 2 apply (blast intro: leadsTo_Trans)
432apply (rule leadsTo_Basis)
433apply (simp add: ensures_def Diff_Int_distrib2 [symmetric] Int_Un_distrib2 [symmetric])
434apply (auto intro: transient_strengthen constrains_Int)
435done
436
437
438lemma psp_stable2: "[|F \<in> A \<longmapsto> A'; F \<in> stable(B) |]==>F: (B \<inter> A) \<longmapsto> (B \<inter> A')"
439apply (simp (no_asm_simp) add: psp_stable Int_ac)
440done
441
442lemma psp_ensures:
443"[| F \<in> A ensures A'; F \<in> B co B' |]==> F: (A \<inter> B') ensures ((A' \<inter> B) \<union> (B' - B))"
444apply (unfold ensures_def constrains_def st_set_def)
445(*speeds up the proof*)
446apply clarify
447apply (blast intro: transient_strengthen)
448done
449
450lemma psp:
451"[|F \<in> A \<longmapsto> A'; F \<in> B co B'; st_set(B')|]==> F:(A \<inter> B') \<longmapsto> ((A' \<inter> B) \<union> (B' - B))"
452apply (subgoal_tac "F \<in> program & st_set (A) & st_set (A') & st_set (B) ")
453prefer 2 apply (blast dest!: constrainsD2 leadsToD2)
454apply (erule leadsTo_induct)
455prefer 3 apply (blast intro: leadsTo_Union_Int)
456 txt\<open>Basis case\<close>
457 apply (blast intro: psp_ensures leadsTo_Basis)
458txt\<open>Transitivity case has a delicate argument involving "cancellation"\<close>
459apply (rule leadsTo_Un_duplicate2)
460apply (erule leadsTo_cancel_Diff1)
461apply (simp add: Int_Diff Diff_triv)
462apply (blast intro: leadsTo_weaken_L dest: constrains_imp_subset)
463done
464
465
466lemma psp2: "[| F \<in> A \<longmapsto> A'; F \<in> B co B'; st_set(B') |]
467    ==> F \<in> (B' \<inter> A) \<longmapsto> ((B \<inter> A') \<union> (B' - B))"
468by (simp (no_asm_simp) add: psp Int_ac)
469
470lemma psp_unless:
471   "[| F \<in> A \<longmapsto> A';  F \<in> B unless B'; st_set(B); st_set(B') |]
472    ==> F \<in> (A \<inter> B) \<longmapsto> ((A' \<inter> B) \<union> B')"
473apply (unfold unless_def)
474apply (subgoal_tac "st_set (A) &st_set (A') ")
475prefer 2 apply (blast dest: leadsToD2)
476apply (drule psp, assumption, blast)
477apply (blast intro: leadsTo_weaken)
478done
479
480
481subsection\<open>Proving the induction rules\<close>
482
483(** The most general rule \<in> r is any wf relation; f is any variant function **)
484lemma leadsTo_wf_induct_aux: "[| wf(r);
485         m \<in> I;
486         field(r)<=I;
487         F \<in> program; st_set(B);
488         \<forall>m \<in> I. F \<in> (A \<inter> f-``{m}) \<longmapsto>
489                    ((A \<inter> f-``(converse(r)``{m})) \<union> B) |]
490      ==> F \<in> (A \<inter> f-``{m}) \<longmapsto> B"
491apply (erule_tac a = m in wf_induct2, simp_all)
492apply (subgoal_tac "F \<in> (A \<inter> (f-`` (converse (r) ``{x}))) \<longmapsto> B")
493 apply (blast intro: leadsTo_cancel1 leadsTo_Un_duplicate)
494apply (subst vimage_eq_UN)
495apply (simp del: UN_simps add: Int_UN_distrib)
496apply (auto intro: leadsTo_UN simp del: UN_simps simp add: Int_UN_distrib)
497done
498
499(** Meta or object quantifier ? **)
500lemma leadsTo_wf_induct: "[| wf(r);
501         field(r)<=I;
502         A<=f-``I;
503         F \<in> program; st_set(A); st_set(B);
504         \<forall>m \<in> I. F \<in> (A \<inter> f-``{m}) \<longmapsto>
505                    ((A \<inter> f-``(converse(r)``{m})) \<union> B) |]
506      ==> F \<in> A \<longmapsto> B"
507apply (rule_tac b = A in subst)
508 defer 1
509 apply (rule_tac I = I in leadsTo_UN)
510 apply (erule_tac I = I in leadsTo_wf_induct_aux, assumption+, best)
511done
512
513lemma nat_measure_field: "field(measure(nat, %x. x)) = nat"
514apply (unfold field_def)
515apply (simp add: measure_def)
516apply (rule equalityI, force, clarify)
517apply (erule_tac V = "x\<notin>range (y)" for y in thin_rl)
518apply (erule nat_induct)
519apply (rule_tac [2] b = "succ (succ (xa))" in domainI)
520apply (rule_tac b = "succ (0) " in domainI)
521apply simp_all
522done
523
524
525lemma Image_inverse_lessThan: "k<A ==> measure(A, %x. x) -`` {k} = k"
526apply (rule equalityI)
527apply (auto simp add: measure_def)
528apply (blast intro: ltD)
529apply (rule vimageI)
530prefer 2 apply blast
531apply (simp add: lt_Ord lt_Ord2 Ord_mem_iff_lt)
532apply (blast intro: lt_trans)
533done
534
535(*Alternative proof is via the lemma F \<in> (A \<inter> f-`(lessThan m)) \<longmapsto> B*)
536lemma lessThan_induct:
537 "[| A<=f-``nat;
538     F \<in> program; st_set(A); st_set(B);
539     \<forall>m \<in> nat. F:(A \<inter> f-``{m}) \<longmapsto> ((A \<inter> f -`` m) \<union> B) |]
540      ==> F \<in> A \<longmapsto> B"
541apply (rule_tac A1 = nat and f1 = "%x. x" in wf_measure [THEN leadsTo_wf_induct])
542apply (simp_all add: nat_measure_field)
543apply (simp add: ltI Image_inverse_lessThan vimage_def [symmetric])
544done
545
546
547(*** wlt ****)
548
549(*Misra's property W3*)
550lemma wlt_type: "wlt(F,B) <=state"
551by (unfold wlt_def, auto)
552
553lemma wlt_st_set: "st_set(wlt(F, B))"
554apply (unfold st_set_def)
555apply (rule wlt_type)
556done
557declare wlt_st_set [iff]
558
559lemma wlt_leadsTo_iff: "F \<in> wlt(F, B) \<longmapsto> B \<longleftrightarrow> (F \<in> program & st_set(B))"
560apply (unfold wlt_def)
561apply (blast dest: leadsToD2 intro!: leadsTo_Union)
562done
563
564(* [| F \<in> program;  st_set(B) |] ==> F \<in> wlt(F, B) \<longmapsto> B  *)
565lemmas wlt_leadsTo = conjI [THEN wlt_leadsTo_iff [THEN iffD2]]
566
567lemma leadsTo_subset: "F \<in> A \<longmapsto> B ==> A \<subseteq> wlt(F, B)"
568apply (unfold wlt_def)
569apply (frule leadsToD2)
570apply (auto simp add: st_set_def)
571done
572
573(*Misra's property W2*)
574lemma leadsTo_eq_subset_wlt: "F \<in> A \<longmapsto> B \<longleftrightarrow> (A \<subseteq> wlt(F,B) & F \<in> program & st_set(B))"
575apply auto
576apply (blast dest: leadsToD2 leadsTo_subset intro: leadsTo_weaken_L wlt_leadsTo)+
577done
578
579(*Misra's property W4*)
580lemma wlt_increasing: "[| F \<in> program; st_set(B) |] ==> B \<subseteq> wlt(F,B)"
581apply (rule leadsTo_subset)
582apply (simp (no_asm_simp) add: leadsTo_eq_subset_wlt [THEN iff_sym] subset_imp_leadsTo)
583done
584
585(*Used in the Trans case below*)
586lemma leadsTo_123_aux:
587   "[| B \<subseteq> A2;
588       F \<in> (A1 - B) co (A1 \<union> B);
589       F \<in> (A2 - C) co (A2 \<union> C) |]
590    ==> F \<in> (A1 \<union> A2 - C) co (A1 \<union> A2 \<union> C)"
591apply (unfold constrains_def st_set_def, blast)
592done
593
594(*Lemma (1,2,3) of Misra's draft book, Chapter 4, "Progress"*)
595(* slightly different from the HOL one \<in> B here is bounded *)
596lemma leadsTo_123: "F \<in> A \<longmapsto> A'
597      ==> \<exists>B \<in> Pow(state). A<=B & F \<in> B \<longmapsto> A' & F \<in> (B-A') co (B \<union> A')"
598apply (frule leadsToD2)
599apply (erule leadsTo_induct)
600  txt\<open>Basis\<close>
601  apply (blast dest: ensuresD constrainsD2 st_setD)
602 txt\<open>Trans\<close>
603 apply clarify
604 apply (rule_tac x = "Ba \<union> Bb" in bexI)
605 apply (blast intro: leadsTo_123_aux leadsTo_Un_Un leadsTo_cancel1 leadsTo_Un_duplicate, blast)
606txt\<open>Union\<close>
607apply (clarify dest!: ball_conj_distrib [THEN iffD1])
608apply (subgoal_tac "\<exists>y. y \<in> Pi (S, %A. {Ba \<in> Pow (state) . A<=Ba & F \<in> Ba \<longmapsto> B & F \<in> Ba - B co Ba \<union> B}) ")
609defer 1
610apply (rule AC_ball_Pi, safe)
611apply (rotate_tac 1)
612apply (drule_tac x = x in bspec, blast, blast)
613apply (rule_tac x = "\<Union>A \<in> S. y`A" in bexI, safe)
614apply (rule_tac [3] I1 = S in constrains_UN [THEN constrains_weaken])
615apply (rule_tac [2] leadsTo_Union)
616prefer 5 apply (blast dest!: apply_type, simp_all)
617apply (force dest!: apply_type)+
618done
619
620
621(*Misra's property W5*)
622lemma wlt_constrains_wlt: "[| F \<in> program; st_set(B) |] ==>F \<in> (wlt(F, B) - B) co (wlt(F,B))"
623apply (cut_tac F = F in wlt_leadsTo [THEN leadsTo_123], assumption, blast)
624apply clarify
625apply (subgoal_tac "Ba = wlt (F,B) ")
626prefer 2 apply (blast dest: leadsTo_eq_subset_wlt [THEN iffD1], clarify)
627apply (simp add: wlt_increasing [THEN subset_Un_iff2 [THEN iffD1]])
628done
629
630
631subsection\<open>Completion: Binary and General Finite versions\<close>
632
633lemma completion_aux: "[| W = wlt(F, (B' \<union> C));
634       F \<in> A \<longmapsto> (A' \<union> C);  F \<in> A' co (A' \<union> C);
635       F \<in> B \<longmapsto> (B' \<union> C);  F \<in> B' co (B' \<union> C) |]
636    ==> F \<in> (A \<inter> B) \<longmapsto> ((A' \<inter> B') \<union> C)"
637apply (subgoal_tac "st_set (C) &st_set (W) &st_set (W-C) &st_set (A') &st_set (A) & st_set (B) & st_set (B') & F \<in> program")
638 prefer 2
639 apply simp
640 apply (blast dest!: leadsToD2)
641apply (subgoal_tac "F \<in> (W-C) co (W \<union> B' \<union> C) ")
642 prefer 2
643 apply (blast intro!: constrains_weaken [OF constrains_Un [OF _ wlt_constrains_wlt]])
644apply (subgoal_tac "F \<in> (W-C) co W")
645 prefer 2
646 apply (simp add: wlt_increasing [THEN subset_Un_iff2 [THEN iffD1]] Un_assoc)
647apply (subgoal_tac "F \<in> (A \<inter> W - C) \<longmapsto> (A' \<inter> W \<union> C) ")
648 prefer 2 apply (blast intro: wlt_leadsTo psp [THEN leadsTo_weaken])
649(** step 13 **)
650apply (subgoal_tac "F \<in> (A' \<inter> W \<union> C) \<longmapsto> (A' \<inter> B' \<union> C) ")
651apply (drule leadsTo_Diff)
652apply (blast intro: subset_imp_leadsTo dest: leadsToD2 constrainsD2)
653apply (force simp add: st_set_def)
654apply (subgoal_tac "A \<inter> B \<subseteq> A \<inter> W")
655prefer 2 apply (blast dest!: leadsTo_subset intro!: subset_refl [THEN Int_mono])
656apply (blast intro: leadsTo_Trans subset_imp_leadsTo)
657txt\<open>last subgoal\<close>
658apply (rule_tac leadsTo_Un_duplicate2)
659apply (rule_tac leadsTo_Un_Un)
660 prefer 2 apply (blast intro: leadsTo_refl)
661apply (rule_tac A'1 = "B' \<union> C" in wlt_leadsTo[THEN psp2, THEN leadsTo_weaken])
662apply blast+
663done
664
665lemmas completion = refl [THEN completion_aux]
666
667lemma finite_completion_aux:
668     "[| I \<in> Fin(X); F \<in> program; st_set(C) |] ==>
669       (\<forall>i \<in> I. F \<in> (A(i)) \<longmapsto> (A'(i) \<union> C)) \<longrightarrow>
670                     (\<forall>i \<in> I. F \<in> (A'(i)) co (A'(i) \<union> C)) \<longrightarrow>
671                   F \<in> (\<Inter>i \<in> I. A(i)) \<longmapsto> ((\<Inter>i \<in> I. A'(i)) \<union> C)"
672apply (erule Fin_induct)
673apply (auto simp add: Inter_0)
674apply (rule completion)
675apply (auto simp del: INT_simps simp add: INT_extend_simps)
676apply (blast intro: constrains_INT)
677done
678
679lemma finite_completion:
680     "[| I \<in> Fin(X);
681         !!i. i \<in> I ==> F \<in> A(i) \<longmapsto> (A'(i) \<union> C);
682         !!i. i \<in> I ==> F \<in> A'(i) co (A'(i) \<union> C); F \<in> program; st_set(C)|]
683      ==> F \<in> (\<Inter>i \<in> I. A(i)) \<longmapsto> ((\<Inter>i \<in> I. A'(i)) \<union> C)"
684by (blast intro: finite_completion_aux [THEN mp, THEN mp])
685
686lemma stable_completion:
687     "[| F \<in> A \<longmapsto> A';  F \<in> stable(A');
688         F \<in> B \<longmapsto> B';  F \<in> stable(B') |]
689    ==> F \<in> (A \<inter> B) \<longmapsto> (A' \<inter> B')"
690apply (unfold stable_def)
691apply (rule_tac C1 = 0 in completion [THEN leadsTo_weaken_R], simp+)
692apply (blast dest: leadsToD2)
693done
694
695
696lemma finite_stable_completion:
697     "[| I \<in> Fin(X);
698         (!!i. i \<in> I ==> F \<in> A(i) \<longmapsto> A'(i));
699         (!!i. i \<in> I ==> F \<in> stable(A'(i)));  F \<in> program |]
700      ==> F \<in> (\<Inter>i \<in> I. A(i)) \<longmapsto> (\<Inter>i \<in> I. A'(i))"
701apply (unfold stable_def)
702apply (subgoal_tac "st_set (\<Inter>i \<in> I. A' (i))")
703prefer 2 apply (blast dest: leadsToD2)
704apply (rule_tac C1 = 0 in finite_completion [THEN leadsTo_weaken_R], auto)
705done
706
707end
708