1(*  Title:      HOL/Transitive_Closure.thy
2    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
3    Copyright   1992  University of Cambridge
4*)
5
6section \<open>Reflexive and Transitive closure of a relation\<close>
7
8theory Transitive_Closure
9  imports Relation
10  abbrevs "^*" = "\<^sup>*" "\<^sup>*\<^sup>*"
11    and "^+" = "\<^sup>+" "\<^sup>+\<^sup>+"
12    and "^=" = "\<^sup>=" "\<^sup>=\<^sup>="
13begin
14
15ML_file "~~/src/Provers/trancl.ML"
16
17text \<open>
18  \<open>rtrancl\<close> is reflexive/transitive closure,
19  \<open>trancl\<close> is transitive closure,
20  \<open>reflcl\<close> is reflexive closure.
21
22  These postfix operators have \<^emph>\<open>maximum priority\<close>, forcing their
23  operands to be atomic.
24\<close>
25
26context notes [[inductive_internals]]
27begin
28
29inductive_set rtrancl :: "('a \<times> 'a) set \<Rightarrow> ('a \<times> 'a) set"  ("(_\<^sup>*)" [1000] 999)
30  for r :: "('a \<times> 'a) set"
31  where
32    rtrancl_refl [intro!, Pure.intro!, simp]: "(a, a) \<in> r\<^sup>*"
33  | rtrancl_into_rtrancl [Pure.intro]: "(a, b) \<in> r\<^sup>* \<Longrightarrow> (b, c) \<in> r \<Longrightarrow> (a, c) \<in> r\<^sup>*"
34
35inductive_set trancl :: "('a \<times> 'a) set \<Rightarrow> ('a \<times> 'a) set"  ("(_\<^sup>+)" [1000] 999)
36  for r :: "('a \<times> 'a) set"
37  where
38    r_into_trancl [intro, Pure.intro]: "(a, b) \<in> r \<Longrightarrow> (a, b) \<in> r\<^sup>+"
39  | trancl_into_trancl [Pure.intro]: "(a, b) \<in> r\<^sup>+ \<Longrightarrow> (b, c) \<in> r \<Longrightarrow> (a, c) \<in> r\<^sup>+"
40
41notation
42  rtranclp  ("(_\<^sup>*\<^sup>*)" [1000] 1000) and
43  tranclp  ("(_\<^sup>+\<^sup>+)" [1000] 1000)
44
45declare
46  rtrancl_def [nitpick_unfold del]
47  rtranclp_def [nitpick_unfold del]
48  trancl_def [nitpick_unfold del]
49  tranclp_def [nitpick_unfold del]
50
51end
52
53abbreviation reflcl :: "('a \<times> 'a) set \<Rightarrow> ('a \<times> 'a) set"  ("(_\<^sup>=)" [1000] 999)
54  where "r\<^sup>= \<equiv> r \<union> Id"
55
56abbreviation reflclp :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> bool"  ("(_\<^sup>=\<^sup>=)" [1000] 1000)
57  where "r\<^sup>=\<^sup>= \<equiv> sup r (=)"
58
59notation (ASCII)
60  rtrancl  ("(_^*)" [1000] 999) and
61  trancl  ("(_^+)" [1000] 999) and
62  reflcl  ("(_^=)" [1000] 999) and
63  rtranclp  ("(_^**)" [1000] 1000) and
64  tranclp  ("(_^++)" [1000] 1000) and
65  reflclp  ("(_^==)" [1000] 1000)
66
67
68subsection \<open>Reflexive closure\<close>
69
70lemma refl_reflcl[simp]: "refl (r\<^sup>=)"
71  by (simp add: refl_on_def)
72
73lemma antisym_reflcl[simp]: "antisym (r\<^sup>=) = antisym r"
74  by (simp add: antisym_def)
75
76lemma trans_reflclI[simp]: "trans r \<Longrightarrow> trans (r\<^sup>=)"
77  unfolding trans_def by blast
78
79lemma reflclp_idemp [simp]: "(P\<^sup>=\<^sup>=)\<^sup>=\<^sup>= = P\<^sup>=\<^sup>="
80  by blast
81
82
83subsection \<open>Reflexive-transitive closure\<close>
84
85lemma reflcl_set_eq [pred_set_conv]: "(sup (\<lambda>x y. (x, y) \<in> r) (=)) = (\<lambda>x y. (x, y) \<in> r \<union> Id)"
86  by (auto simp: fun_eq_iff)
87
88lemma r_into_rtrancl [intro]: "\<And>p. p \<in> r \<Longrightarrow> p \<in> r\<^sup>*"
89  \<comment> \<open>\<open>rtrancl\<close> of \<open>r\<close> contains \<open>r\<close>\<close>
90  apply (simp only: split_tupled_all)
91  apply (erule rtrancl_refl [THEN rtrancl_into_rtrancl])
92  done
93
94lemma r_into_rtranclp [intro]: "r x y \<Longrightarrow> r\<^sup>*\<^sup>* x y"
95  \<comment> \<open>\<open>rtrancl\<close> of \<open>r\<close> contains \<open>r\<close>\<close>
96  by (erule rtranclp.rtrancl_refl [THEN rtranclp.rtrancl_into_rtrancl])
97
98lemma rtranclp_mono: "r \<le> s \<Longrightarrow> r\<^sup>*\<^sup>* \<le> s\<^sup>*\<^sup>*"
99  \<comment> \<open>monotonicity of \<open>rtrancl\<close>\<close>
100  apply (rule predicate2I)
101  apply (erule rtranclp.induct)
102   apply (rule_tac [2] rtranclp.rtrancl_into_rtrancl, blast+)
103  done
104
105lemma mono_rtranclp[mono]: "(\<And>a b. x a b \<longrightarrow> y a b) \<Longrightarrow> x\<^sup>*\<^sup>* a b \<longrightarrow> y\<^sup>*\<^sup>* a b"
106   using rtranclp_mono[of x y] by auto
107
108lemmas rtrancl_mono = rtranclp_mono [to_set]
109
110theorem rtranclp_induct [consumes 1, case_names base step, induct set: rtranclp]:
111  assumes a: "r\<^sup>*\<^sup>* a b"
112    and cases: "P a" "\<And>y z. r\<^sup>*\<^sup>* a y \<Longrightarrow> r y z \<Longrightarrow> P y \<Longrightarrow> P z"
113  shows "P b"
114  using a by (induct x\<equiv>a b) (rule cases)+
115
116lemmas rtrancl_induct [induct set: rtrancl] = rtranclp_induct [to_set]
117
118lemmas rtranclp_induct2 =
119  rtranclp_induct[of _ "(ax,ay)" "(bx,by)", split_rule, consumes 1, case_names refl step]
120
121lemmas rtrancl_induct2 =
122  rtrancl_induct[of "(ax,ay)" "(bx,by)", split_format (complete), consumes 1, case_names refl step]
123
124lemma refl_rtrancl: "refl (r\<^sup>*)"
125  unfolding refl_on_def by fast
126
127text \<open>Transitivity of transitive closure.\<close>
128lemma trans_rtrancl: "trans (r\<^sup>*)"
129proof (rule transI)
130  fix x y z
131  assume "(x, y) \<in> r\<^sup>*"
132  assume "(y, z) \<in> r\<^sup>*"
133  then show "(x, z) \<in> r\<^sup>*"
134  proof induct
135    case base
136    show "(x, y) \<in> r\<^sup>*" by fact
137  next
138    case (step u v)
139    from \<open>(x, u) \<in> r\<^sup>*\<close> and \<open>(u, v) \<in> r\<close>
140    show "(x, v) \<in> r\<^sup>*" ..
141  qed
142qed
143
144lemmas rtrancl_trans = trans_rtrancl [THEN transD]
145
146lemma rtranclp_trans:
147  assumes "r\<^sup>*\<^sup>* x y"
148    and "r\<^sup>*\<^sup>* y z"
149  shows "r\<^sup>*\<^sup>* x z"
150  using assms(2,1) by induct iprover+
151
152lemma rtranclE [cases set: rtrancl]:
153  fixes a b :: 'a
154  assumes major: "(a, b) \<in> r\<^sup>*"
155  obtains
156    (base) "a = b"
157  | (step) y where "(a, y) \<in> r\<^sup>*" and "(y, b) \<in> r"
158  \<comment> \<open>elimination of \<open>rtrancl\<close> -- by induction on a special formula\<close>
159proof -
160  have "a = b \<or> (\<exists>y. (a, y) \<in> r\<^sup>* \<and> (y, b) \<in> r)"
161    by (rule major [THEN rtrancl_induct]) blast+
162  then show ?thesis
163    by (auto intro: base step)
164qed
165
166lemma rtrancl_Int_subset: "Id \<subseteq> s \<Longrightarrow> (r\<^sup>* \<inter> s) O r \<subseteq> s \<Longrightarrow> r\<^sup>* \<subseteq> s"
167  apply clarify
168  apply (erule rtrancl_induct, auto)
169  done
170
171lemma converse_rtranclp_into_rtranclp: "r a b \<Longrightarrow> r\<^sup>*\<^sup>* b c \<Longrightarrow> r\<^sup>*\<^sup>* a c"
172  by (rule rtranclp_trans) iprover+
173
174lemmas converse_rtrancl_into_rtrancl = converse_rtranclp_into_rtranclp [to_set]
175
176text \<open>\<^medskip> More @{term "r\<^sup>*"} equations and inclusions.\<close>
177
178lemma rtranclp_idemp [simp]: "(r\<^sup>*\<^sup>*)\<^sup>*\<^sup>* = r\<^sup>*\<^sup>*"
179  apply (auto intro!: order_antisym)
180  apply (erule rtranclp_induct)
181   apply (rule rtranclp.rtrancl_refl)
182  apply (blast intro: rtranclp_trans)
183  done
184
185lemmas rtrancl_idemp [simp] = rtranclp_idemp [to_set]
186
187lemma rtrancl_idemp_self_comp [simp]: "R\<^sup>* O R\<^sup>* = R\<^sup>*"
188  apply (rule set_eqI)
189  apply (simp only: split_tupled_all)
190  apply (blast intro: rtrancl_trans)
191  done
192
193lemma rtrancl_subset_rtrancl: "r \<subseteq> s\<^sup>* \<Longrightarrow> r\<^sup>* \<subseteq> s\<^sup>*"
194by (drule rtrancl_mono, simp)
195
196lemma rtranclp_subset: "R \<le> S \<Longrightarrow> S \<le> R\<^sup>*\<^sup>* \<Longrightarrow> S\<^sup>*\<^sup>* = R\<^sup>*\<^sup>*"
197  apply (drule rtranclp_mono)
198  apply (drule rtranclp_mono, simp)
199  done
200
201lemmas rtrancl_subset = rtranclp_subset [to_set]
202
203lemma rtranclp_sup_rtranclp: "(sup (R\<^sup>*\<^sup>*) (S\<^sup>*\<^sup>*))\<^sup>*\<^sup>* = (sup R S)\<^sup>*\<^sup>*"
204  by (blast intro!: rtranclp_subset intro: rtranclp_mono [THEN predicate2D])
205
206lemmas rtrancl_Un_rtrancl = rtranclp_sup_rtranclp [to_set]
207
208lemma rtranclp_reflclp [simp]: "(R\<^sup>=\<^sup>=)\<^sup>*\<^sup>* = R\<^sup>*\<^sup>*"
209  by (blast intro!: rtranclp_subset)
210
211lemmas rtrancl_reflcl [simp] = rtranclp_reflclp [to_set]
212
213lemma rtrancl_r_diff_Id: "(r - Id)\<^sup>* = r\<^sup>*"
214  by (rule rtrancl_subset [symmetric]) auto
215
216lemma rtranclp_r_diff_Id: "(inf r (\<noteq>))\<^sup>*\<^sup>* = r\<^sup>*\<^sup>*"
217  by (rule rtranclp_subset [symmetric]) auto
218
219theorem rtranclp_converseD:
220  assumes "(r\<inverse>\<inverse>)\<^sup>*\<^sup>* x y"
221  shows "r\<^sup>*\<^sup>* y x"
222  using assms by induct (iprover intro: rtranclp_trans dest!: conversepD)+
223
224lemmas rtrancl_converseD = rtranclp_converseD [to_set]
225
226theorem rtranclp_converseI:
227  assumes "r\<^sup>*\<^sup>* y x"
228  shows "(r\<inverse>\<inverse>)\<^sup>*\<^sup>* x y"
229  using assms by induct (iprover intro: rtranclp_trans conversepI)+
230
231lemmas rtrancl_converseI = rtranclp_converseI [to_set]
232
233lemma rtrancl_converse: "(r\<inverse>)\<^sup>* = (r\<^sup>*)\<inverse>"
234  by (fast dest!: rtrancl_converseD intro!: rtrancl_converseI)
235
236lemma sym_rtrancl: "sym r \<Longrightarrow> sym (r\<^sup>*)"
237  by (simp only: sym_conv_converse_eq rtrancl_converse [symmetric])
238
239theorem converse_rtranclp_induct [consumes 1, case_names base step]:
240  assumes major: "r\<^sup>*\<^sup>* a b"
241    and cases: "P b" "\<And>y z. r y z \<Longrightarrow> r\<^sup>*\<^sup>* z b \<Longrightarrow> P z \<Longrightarrow> P y"
242  shows "P a"
243  using rtranclp_converseI [OF major]
244  by induct (iprover intro: cases dest!: conversepD rtranclp_converseD)+
245
246lemmas converse_rtrancl_induct = converse_rtranclp_induct [to_set]
247
248lemmas converse_rtranclp_induct2 =
249  converse_rtranclp_induct [of _ "(ax, ay)" "(bx, by)", split_rule, consumes 1, case_names refl step]
250
251lemmas converse_rtrancl_induct2 =
252  converse_rtrancl_induct [of "(ax, ay)" "(bx, by)", split_format (complete),
253    consumes 1, case_names refl step]
254
255lemma converse_rtranclpE [consumes 1, case_names base step]:
256  assumes major: "r\<^sup>*\<^sup>* x z"
257    and cases: "x = z \<Longrightarrow> P" "\<And>y. r x y \<Longrightarrow> r\<^sup>*\<^sup>* y z \<Longrightarrow> P"
258  shows P
259proof -
260  have "x = z \<or> (\<exists>y. r x y \<and> r\<^sup>*\<^sup>* y z)"
261    by (rule_tac major [THEN converse_rtranclp_induct]) iprover+
262  then show ?thesis
263    by (auto intro: cases)
264qed
265
266lemmas converse_rtranclE = converse_rtranclpE [to_set]
267
268lemmas converse_rtranclpE2 = converse_rtranclpE [of _ "(xa,xb)" "(za,zb)", split_rule]
269
270lemmas converse_rtranclE2 = converse_rtranclE [of "(xa,xb)" "(za,zb)", split_rule]
271
272lemma r_comp_rtrancl_eq: "r O r\<^sup>* = r\<^sup>* O r"
273  by (blast elim: rtranclE converse_rtranclE
274      intro: rtrancl_into_rtrancl converse_rtrancl_into_rtrancl)
275
276lemma rtrancl_unfold: "r\<^sup>* = Id \<union> r\<^sup>* O r"
277  by (auto intro: rtrancl_into_rtrancl elim: rtranclE)
278
279lemma rtrancl_Un_separatorE:
280  "(a, b) \<in> (P \<union> Q)\<^sup>* \<Longrightarrow> \<forall>x y. (a, x) \<in> P\<^sup>* \<longrightarrow> (x, y) \<in> Q \<longrightarrow> x = y \<Longrightarrow> (a, b) \<in> P\<^sup>*"
281proof (induct rule: rtrancl.induct)
282  case rtrancl_refl
283  then show ?case by blast
284next
285  case rtrancl_into_rtrancl
286  then show ?case by (blast intro: rtrancl_trans)
287qed
288
289lemma rtrancl_Un_separator_converseE:
290  "(a, b) \<in> (P \<union> Q)\<^sup>* \<Longrightarrow> \<forall>x y. (x, b) \<in> P\<^sup>* \<longrightarrow> (y, x) \<in> Q \<longrightarrow> y = x \<Longrightarrow> (a, b) \<in> P\<^sup>*"
291proof (induct rule: converse_rtrancl_induct)
292  case base
293  then show ?case by blast
294next
295  case step
296  then show ?case by (blast intro: rtrancl_trans)
297qed
298
299lemma Image_closed_trancl:
300  assumes "r `` X \<subseteq> X"
301  shows "r\<^sup>* `` X = X"
302proof -
303  from assms have **: "{y. \<exists>x\<in>X. (x, y) \<in> r} \<subseteq> X"
304    by auto
305  have "x \<in> X" if 1: "(y, x) \<in> r\<^sup>*" and 2: "y \<in> X" for x y
306  proof -
307    from 1 show "x \<in> X"
308    proof induct
309      case base
310      show ?case by (fact 2)
311    next
312      case step
313      with ** show ?case by auto
314    qed
315  qed
316  then show ?thesis by auto
317qed
318
319
320subsection \<open>Transitive closure\<close>
321
322lemma trancl_mono: "\<And>p. p \<in> r\<^sup>+ \<Longrightarrow> r \<subseteq> s \<Longrightarrow> p \<in> s\<^sup>+"
323  apply (simp add: split_tupled_all)
324  apply (erule trancl.induct)
325   apply (iprover dest: subsetD)+
326  done
327
328lemma r_into_trancl': "\<And>p. p \<in> r \<Longrightarrow> p \<in> r\<^sup>+"
329  by (simp only: split_tupled_all) (erule r_into_trancl)
330
331text \<open>\<^medskip> Conversions between \<open>trancl\<close> and \<open>rtrancl\<close>.\<close>
332
333lemma tranclp_into_rtranclp: "r\<^sup>+\<^sup>+ a b \<Longrightarrow> r\<^sup>*\<^sup>* a b"
334  by (erule tranclp.induct) iprover+
335
336lemmas trancl_into_rtrancl = tranclp_into_rtranclp [to_set]
337
338lemma rtranclp_into_tranclp1:
339  assumes "r\<^sup>*\<^sup>* a b"
340  shows "r b c \<Longrightarrow> r\<^sup>+\<^sup>+ a c"
341  using assms by (induct arbitrary: c) iprover+
342
343lemmas rtrancl_into_trancl1 = rtranclp_into_tranclp1 [to_set]
344
345lemma rtranclp_into_tranclp2: "r a b \<Longrightarrow> r\<^sup>*\<^sup>* b c \<Longrightarrow> r\<^sup>+\<^sup>+ a c"
346  \<comment> \<open>intro rule from \<open>r\<close> and \<open>rtrancl\<close>\<close>
347  apply (erule rtranclp.cases, iprover)
348  apply (rule rtranclp_trans [THEN rtranclp_into_tranclp1])
349    apply (simp | rule r_into_rtranclp)+
350  done
351
352lemmas rtrancl_into_trancl2 = rtranclp_into_tranclp2 [to_set]
353
354text \<open>Nice induction rule for \<open>trancl\<close>\<close>
355lemma tranclp_induct [consumes 1, case_names base step, induct pred: tranclp]:
356  assumes a: "r\<^sup>+\<^sup>+ a b"
357    and cases: "\<And>y. r a y \<Longrightarrow> P y" "\<And>y z. r\<^sup>+\<^sup>+ a y \<Longrightarrow> r y z \<Longrightarrow> P y \<Longrightarrow> P z"
358  shows "P b"
359  using a by (induct x\<equiv>a b) (iprover intro: cases)+
360
361lemmas trancl_induct [induct set: trancl] = tranclp_induct [to_set]
362
363lemmas tranclp_induct2 =
364  tranclp_induct [of _ "(ax, ay)" "(bx, by)", split_rule, consumes 1, case_names base step]
365
366lemmas trancl_induct2 =
367  trancl_induct [of "(ax, ay)" "(bx, by)", split_format (complete),
368    consumes 1, case_names base step]
369
370lemma tranclp_trans_induct:
371  assumes major: "r\<^sup>+\<^sup>+ x y"
372    and cases: "\<And>x y. r x y \<Longrightarrow> P x y" "\<And>x y z. r\<^sup>+\<^sup>+ x y \<Longrightarrow> P x y \<Longrightarrow> r\<^sup>+\<^sup>+ y z \<Longrightarrow> P y z \<Longrightarrow> P x z"
373  shows "P x y"
374  \<comment> \<open>Another induction rule for trancl, incorporating transitivity\<close>
375  by (iprover intro: major [THEN tranclp_induct] cases)
376
377lemmas trancl_trans_induct = tranclp_trans_induct [to_set]
378
379lemma tranclE [cases set: trancl]:
380  assumes "(a, b) \<in> r\<^sup>+"
381  obtains
382    (base) "(a, b) \<in> r"
383  | (step) c where "(a, c) \<in> r\<^sup>+" and "(c, b) \<in> r"
384  using assms by cases simp_all
385
386lemma trancl_Int_subset: "r \<subseteq> s \<Longrightarrow> (r\<^sup>+ \<inter> s) O r \<subseteq> s \<Longrightarrow> r\<^sup>+ \<subseteq> s"
387  apply clarify
388  apply (erule trancl_induct, auto)
389  done
390
391lemma trancl_unfold: "r\<^sup>+ = r \<union> r\<^sup>+ O r"
392  by (auto intro: trancl_into_trancl elim: tranclE)
393
394text \<open>Transitivity of @{term "r\<^sup>+"}\<close>
395lemma trans_trancl [simp]: "trans (r\<^sup>+)"
396proof (rule transI)
397  fix x y z
398  assume "(x, y) \<in> r\<^sup>+"
399  assume "(y, z) \<in> r\<^sup>+"
400  then show "(x, z) \<in> r\<^sup>+"
401  proof induct
402    case (base u)
403    from \<open>(x, y) \<in> r\<^sup>+\<close> and \<open>(y, u) \<in> r\<close>
404    show "(x, u) \<in> r\<^sup>+" ..
405  next
406    case (step u v)
407    from \<open>(x, u) \<in> r\<^sup>+\<close> and \<open>(u, v) \<in> r\<close>
408    show "(x, v) \<in> r\<^sup>+" ..
409  qed
410qed
411
412lemmas trancl_trans = trans_trancl [THEN transD]
413
414lemma tranclp_trans:
415  assumes "r\<^sup>+\<^sup>+ x y"
416    and "r\<^sup>+\<^sup>+ y z"
417  shows "r\<^sup>+\<^sup>+ x z"
418  using assms(2,1) by induct iprover+
419
420lemma trancl_id [simp]: "trans r \<Longrightarrow> r\<^sup>+ = r"
421  apply auto
422  apply (erule trancl_induct, assumption)
423  apply (unfold trans_def, blast)
424  done
425
426lemma rtranclp_tranclp_tranclp:
427  assumes "r\<^sup>*\<^sup>* x y"
428  shows "\<And>z. r\<^sup>+\<^sup>+ y z \<Longrightarrow> r\<^sup>+\<^sup>+ x z"
429  using assms by induct (iprover intro: tranclp_trans)+
430
431lemmas rtrancl_trancl_trancl = rtranclp_tranclp_tranclp [to_set]
432
433lemma tranclp_into_tranclp2: "r a b \<Longrightarrow> r\<^sup>+\<^sup>+ b c \<Longrightarrow> r\<^sup>+\<^sup>+ a c"
434  by (erule tranclp_trans [OF tranclp.r_into_trancl])
435
436lemmas trancl_into_trancl2 = tranclp_into_tranclp2 [to_set]
437
438lemma tranclp_converseI: "(r\<^sup>+\<^sup>+)\<inverse>\<inverse> x y \<Longrightarrow> (r\<inverse>\<inverse>)\<^sup>+\<^sup>+ x y"
439  apply (drule conversepD)
440  apply (erule tranclp_induct)
441   apply (iprover intro: conversepI tranclp_trans)+
442  done
443
444lemmas trancl_converseI = tranclp_converseI [to_set]
445
446lemma tranclp_converseD: "(r\<inverse>\<inverse>)\<^sup>+\<^sup>+ x y \<Longrightarrow> (r\<^sup>+\<^sup>+)\<inverse>\<inverse> x y"
447  apply (rule conversepI)
448  apply (erule tranclp_induct)
449   apply (iprover dest: conversepD intro: tranclp_trans)+
450  done
451
452lemmas trancl_converseD = tranclp_converseD [to_set]
453
454lemma tranclp_converse: "(r\<inverse>\<inverse>)\<^sup>+\<^sup>+ = (r\<^sup>+\<^sup>+)\<inverse>\<inverse>"
455  by (fastforce simp add: fun_eq_iff intro!: tranclp_converseI dest!: tranclp_converseD)
456
457lemmas trancl_converse = tranclp_converse [to_set]
458
459lemma sym_trancl: "sym r \<Longrightarrow> sym (r\<^sup>+)"
460  by (simp only: sym_conv_converse_eq trancl_converse [symmetric])
461
462lemma converse_tranclp_induct [consumes 1, case_names base step]:
463  assumes major: "r\<^sup>+\<^sup>+ a b"
464    and cases: "\<And>y. r y b \<Longrightarrow> P y" "\<And>y z. r y z \<Longrightarrow> r\<^sup>+\<^sup>+ z b \<Longrightarrow> P z \<Longrightarrow> P y"
465  shows "P a"
466  apply (rule tranclp_induct [OF tranclp_converseI, OF conversepI, OF major])
467   apply (blast intro: cases)
468  apply (blast intro: assms dest!: tranclp_converseD)
469  done
470
471lemmas converse_trancl_induct = converse_tranclp_induct [to_set]
472
473lemma tranclpD: "R\<^sup>+\<^sup>+ x y \<Longrightarrow> \<exists>z. R x z \<and> R\<^sup>*\<^sup>* z y"
474  apply (erule converse_tranclp_induct, auto)
475  apply (blast intro: rtranclp_trans)
476  done
477
478lemmas tranclD = tranclpD [to_set]
479
480lemma converse_tranclpE:
481  assumes major: "tranclp r x z"
482    and base: "r x z \<Longrightarrow> P"
483    and step: "\<And>y. r x y \<Longrightarrow> tranclp r y z \<Longrightarrow> P"
484  shows P
485proof -
486  from tranclpD [OF major] obtain y where "r x y" and "rtranclp r y z"
487    by iprover
488  from this(2) show P
489  proof (cases rule: rtranclp.cases)
490    case rtrancl_refl
491    with \<open>r x y\<close> base show P
492      by iprover
493  next
494    case rtrancl_into_rtrancl
495    from this have "tranclp r y z"
496      by (iprover intro: rtranclp_into_tranclp1)
497    with \<open>r x y\<close> step show P
498      by iprover
499  qed
500qed
501
502lemmas converse_tranclE = converse_tranclpE [to_set]
503
504lemma tranclD2: "(x, y) \<in> R\<^sup>+ \<Longrightarrow> \<exists>z. (x, z) \<in> R\<^sup>* \<and> (z, y) \<in> R"
505  by (blast elim: tranclE intro: trancl_into_rtrancl)
506
507lemma irrefl_tranclI: "r\<inverse> \<inter> r\<^sup>* = {} \<Longrightarrow> (x, x) \<notin> r\<^sup>+"
508  by (blast elim: tranclE dest: trancl_into_rtrancl)
509
510lemma irrefl_trancl_rD: "\<forall>x. (x, x) \<notin> r\<^sup>+ \<Longrightarrow> (x, y) \<in> r \<Longrightarrow> x \<noteq> y"
511  by (blast dest: r_into_trancl)
512
513lemma trancl_subset_Sigma_aux: "(a, b) \<in> r\<^sup>* \<Longrightarrow> r \<subseteq> A \<times> A \<Longrightarrow> a = b \<or> a \<in> A"
514  by (induct rule: rtrancl_induct) auto
515
516lemma trancl_subset_Sigma: "r \<subseteq> A \<times> A \<Longrightarrow> r\<^sup>+ \<subseteq> A \<times> A"
517  apply (clarsimp simp:)
518  apply (erule tranclE)
519   apply (blast dest!: trancl_into_rtrancl trancl_subset_Sigma_aux)+
520  done
521
522lemma reflclp_tranclp [simp]: "(r\<^sup>+\<^sup>+)\<^sup>=\<^sup>= = r\<^sup>*\<^sup>*"
523  apply (safe intro!: order_antisym)
524   apply (erule tranclp_into_rtranclp)
525  apply (blast elim: rtranclp.cases dest: rtranclp_into_tranclp1)
526  done
527
528lemmas reflcl_trancl [simp] = reflclp_tranclp [to_set]
529
530lemma trancl_reflcl [simp]: "(r\<^sup>=)\<^sup>+ = r\<^sup>*"
531proof -
532  have "(a, b) \<in> (r\<^sup>=)\<^sup>+ \<Longrightarrow> (a, b) \<in> r\<^sup>*" for a b
533    by (force dest: trancl_into_rtrancl)
534  moreover have "(a, b) \<in> (r\<^sup>=)\<^sup>+" if "(a, b) \<in> r\<^sup>*" for a b
535    using that
536  proof (cases a b rule: rtranclE)
537    case step
538    show ?thesis
539      by (rule rtrancl_into_trancl1) (use step in auto)
540  qed auto
541  ultimately show ?thesis 
542    by auto
543qed
544
545lemma rtrancl_trancl_reflcl [code]: "r\<^sup>* = (r\<^sup>+)\<^sup>="
546  by simp
547
548lemma trancl_empty [simp]: "{}\<^sup>+ = {}"
549  by (auto elim: trancl_induct)
550
551lemma rtrancl_empty [simp]: "{}\<^sup>* = Id"
552  by (rule subst [OF reflcl_trancl]) simp
553
554lemma rtranclpD: "R\<^sup>*\<^sup>* a b \<Longrightarrow> a = b \<or> a \<noteq> b \<and> R\<^sup>+\<^sup>+ a b"
555  by (force simp: reflclp_tranclp [symmetric] simp del: reflclp_tranclp)
556
557lemmas rtranclD = rtranclpD [to_set]
558
559lemma rtrancl_eq_or_trancl: "(x,y) \<in> R\<^sup>* \<longleftrightarrow> x = y \<or> x \<noteq> y \<and> (x, y) \<in> R\<^sup>+"
560  by (fast elim: trancl_into_rtrancl dest: rtranclD)
561
562lemma trancl_unfold_right: "r\<^sup>+ = r\<^sup>* O r"
563  by (auto dest: tranclD2 intro: rtrancl_into_trancl1)
564
565lemma trancl_unfold_left: "r\<^sup>+ = r O r\<^sup>*"
566  by (auto dest: tranclD intro: rtrancl_into_trancl2)
567
568lemma trancl_insert: "(insert (y, x) r)\<^sup>+ = r\<^sup>+ \<union> {(a, b). (a, y) \<in> r\<^sup>* \<and> (x, b) \<in> r\<^sup>*}"
569  \<comment> \<open>primitive recursion for \<open>trancl\<close> over finite relations\<close>
570proof -
571  have "\<And>a b. (a, b) \<in> (insert (y, x) r)\<^sup>+ \<Longrightarrow>
572           (a, b) \<in> r\<^sup>+ \<union> {(a, b). (a, y) \<in> r\<^sup>* \<and> (x, b) \<in> r\<^sup>*}"
573    by (erule trancl_induct) (blast intro: rtrancl_into_trancl1 trancl_into_rtrancl trancl_trans)+
574  moreover have "r\<^sup>+ \<union> {(a, b). (a, y) \<in> r\<^sup>* \<and> (x, b) \<in> r\<^sup>*}  \<subseteq> (insert (y, x) r)\<^sup>+"
575    by (blast intro: trancl_mono rtrancl_mono [THEN [2] rev_subsetD]
576                     rtrancl_trancl_trancl rtrancl_into_trancl2)
577  ultimately show ?thesis
578    by auto
579qed
580
581lemma trancl_insert2:
582  "(insert (a, b) r)\<^sup>+ = r\<^sup>+ \<union> {(x, y). ((x, a) \<in> r\<^sup>+ \<or> x = a) \<and> ((b, y) \<in> r\<^sup>+ \<or> y = b)}"
583  by (auto simp: trancl_insert rtrancl_eq_or_trancl)
584
585lemma rtrancl_insert: "(insert (a,b) r)\<^sup>* = r\<^sup>* \<union> {(x, y). (x, a) \<in> r\<^sup>* \<and> (b, y) \<in> r\<^sup>*}"
586  using trancl_insert[of a b r]
587  by (simp add: rtrancl_trancl_reflcl del: reflcl_trancl) blast
588
589
590text \<open>Simplifying nested closures\<close>
591
592lemma rtrancl_trancl_absorb[simp]: "(R\<^sup>*)\<^sup>+ = R\<^sup>*"
593  by (simp add: trans_rtrancl)
594
595lemma trancl_rtrancl_absorb[simp]: "(R\<^sup>+)\<^sup>* = R\<^sup>*"
596  by (subst reflcl_trancl[symmetric]) simp
597
598lemma rtrancl_reflcl_absorb[simp]: "(R\<^sup>*)\<^sup>= = R\<^sup>*"
599  by auto
600
601
602text \<open>\<open>Domain\<close> and \<open>Range\<close>\<close>
603
604lemma Domain_rtrancl [simp]: "Domain (R\<^sup>*) = UNIV"
605  by blast
606
607lemma Range_rtrancl [simp]: "Range (R\<^sup>*) = UNIV"
608  by blast
609
610lemma rtrancl_Un_subset: "(R\<^sup>* \<union> S\<^sup>*) \<subseteq> (R \<union> S)\<^sup>*"
611  by (rule rtrancl_Un_rtrancl [THEN subst]) fast
612
613lemma in_rtrancl_UnI: "x \<in> R\<^sup>* \<or> x \<in> S\<^sup>* \<Longrightarrow> x \<in> (R \<union> S)\<^sup>*"
614  by (blast intro: subsetD [OF rtrancl_Un_subset])
615
616lemma trancl_domain [simp]: "Domain (r\<^sup>+) = Domain r"
617  by (unfold Domain_unfold) (blast dest: tranclD)
618
619lemma trancl_range [simp]: "Range (r\<^sup>+) = Range r"
620  unfolding Domain_converse [symmetric] by (simp add: trancl_converse [symmetric])
621
622lemma Not_Domain_rtrancl: 
623  assumes "x \<notin> Domain R" shows "(x, y) \<in> R\<^sup>* \<longleftrightarrow> x = y"
624proof -
625have "(x, y) \<in> R\<^sup>* \<Longrightarrow> x = y"
626  by (erule rtrancl_induct) (use assms in auto)
627  then show ?thesis
628    by auto
629qed
630
631lemma trancl_subset_Field2: "r\<^sup>+ \<subseteq> Field r \<times> Field r"
632  apply clarify
633  apply (erule trancl_induct)
634   apply (auto simp: Field_def)
635  done
636
637lemma finite_trancl[simp]: "finite (r\<^sup>+) = finite r"
638proof
639  show "finite (r\<^sup>+) \<Longrightarrow> finite r"
640    by (blast intro: r_into_trancl' finite_subset)
641  show "finite r \<Longrightarrow> finite (r\<^sup>+)"
642   apply (rule trancl_subset_Field2 [THEN finite_subset])
643   apply (auto simp: finite_Field)
644  done
645qed
646
647lemma finite_rtrancl_Image[simp]: assumes "finite R" "finite A" shows "finite (R\<^sup>* `` A)"
648proof (rule ccontr)
649  assume "infinite (R\<^sup>* `` A)"
650  with assms show False
651    by(simp add: rtrancl_trancl_reflcl Un_Image del: reflcl_trancl)
652qed
653
654text \<open>More about converse \<open>rtrancl\<close> and \<open>trancl\<close>, should
655  be merged with main body.\<close>
656
657lemma single_valued_confluent:
658  assumes "single_valued r" and xy: "(x, y) \<in> r\<^sup>*" and xz: "(x, z) \<in> r\<^sup>*"
659  shows "(y, z) \<in> r\<^sup>* \<or> (z, y) \<in> r\<^sup>*"
660  using xy
661proof (induction rule: rtrancl_induct)
662  case base
663  show ?case
664    by (simp add: assms)   
665next
666  case (step y z)
667  with xz \<open>single_valued r\<close> show ?case
668    apply (auto simp: elim: converse_rtranclE dest: single_valuedD)
669    apply (blast intro: rtrancl_trans)
670    done
671qed
672
673lemma r_r_into_trancl: "(a, b) \<in> R \<Longrightarrow> (b, c) \<in> R \<Longrightarrow> (a, c) \<in> R\<^sup>+"
674  by (fast intro: trancl_trans)
675
676lemma trancl_into_trancl: "(a, b) \<in> r\<^sup>+ \<Longrightarrow> (b, c) \<in> r \<Longrightarrow> (a, c) \<in> r\<^sup>+"
677  by (induct rule: trancl_induct) (fast intro: r_r_into_trancl trancl_trans)+
678
679lemma tranclp_rtranclp_tranclp: "r\<^sup>+\<^sup>+ a b \<Longrightarrow> r\<^sup>*\<^sup>* b c \<Longrightarrow> r\<^sup>+\<^sup>+ a c"
680  apply (drule tranclpD)
681  apply (elim exE conjE)
682  apply (drule rtranclp_trans, assumption)
683  apply (drule (2) rtranclp_into_tranclp2)
684  done
685
686lemmas trancl_rtrancl_trancl = tranclp_rtranclp_tranclp [to_set]
687
688lemmas transitive_closure_trans [trans] =
689  r_r_into_trancl trancl_trans rtrancl_trans
690  trancl.trancl_into_trancl trancl_into_trancl2
691  rtrancl.rtrancl_into_rtrancl converse_rtrancl_into_rtrancl
692  rtrancl_trancl_trancl trancl_rtrancl_trancl
693
694lemmas transitive_closurep_trans' [trans] =
695  tranclp_trans rtranclp_trans
696  tranclp.trancl_into_trancl tranclp_into_tranclp2
697  rtranclp.rtrancl_into_rtrancl converse_rtranclp_into_rtranclp
698  rtranclp_tranclp_tranclp tranclp_rtranclp_tranclp
699
700declare trancl_into_rtrancl [elim]
701
702
703subsection \<open>The power operation on relations\<close>
704
705text \<open>\<open>R ^^ n = R O \<dots> O R\<close>, the n-fold composition of \<open>R\<close>\<close>
706
707overloading
708  relpow \<equiv> "compow :: nat \<Rightarrow> ('a \<times> 'a) set \<Rightarrow> ('a \<times> 'a) set"
709  relpowp \<equiv> "compow :: nat \<Rightarrow> ('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'a \<Rightarrow> bool)"
710begin
711
712primrec relpow :: "nat \<Rightarrow> ('a \<times> 'a) set \<Rightarrow> ('a \<times> 'a) set"
713  where
714    "relpow 0 R = Id"
715  | "relpow (Suc n) R = (R ^^ n) O R"
716
717primrec relpowp :: "nat \<Rightarrow> ('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'a \<Rightarrow> bool)"
718  where
719    "relpowp 0 R = HOL.eq"
720  | "relpowp (Suc n) R = (R ^^ n) OO R"
721
722end
723
724lemma relpowp_relpow_eq [pred_set_conv]:
725  "(\<lambda>x y. (x, y) \<in> R) ^^ n = (\<lambda>x y. (x, y) \<in> R ^^ n)" for R :: "'a rel"
726  by (induct n) (simp_all add: relcompp_relcomp_eq)
727
728text \<open>For code generation:\<close>
729
730definition relpow :: "nat \<Rightarrow> ('a \<times> 'a) set \<Rightarrow> ('a \<times> 'a) set"
731  where relpow_code_def [code_abbrev]: "relpow = compow"
732
733definition relpowp :: "nat \<Rightarrow> ('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'a \<Rightarrow> bool)"
734  where relpowp_code_def [code_abbrev]: "relpowp = compow"
735
736lemma [code]:
737  "relpow (Suc n) R = (relpow n R) O R"
738  "relpow 0 R = Id"
739  by (simp_all add: relpow_code_def)
740
741lemma [code]:
742  "relpowp (Suc n) R = (R ^^ n) OO R"
743  "relpowp 0 R = HOL.eq"
744  by (simp_all add: relpowp_code_def)
745
746hide_const (open) relpow
747hide_const (open) relpowp
748
749lemma relpow_1 [simp]: "R ^^ 1 = R"
750  for R :: "('a \<times> 'a) set"
751  by simp
752
753lemma relpowp_1 [simp]: "P ^^ 1 = P"
754  for P :: "'a \<Rightarrow> 'a \<Rightarrow> bool"
755  by (fact relpow_1 [to_pred])
756
757lemma relpow_0_I: "(x, x) \<in> R ^^ 0"
758  by simp
759
760lemma relpowp_0_I: "(P ^^ 0) x x"
761  by (fact relpow_0_I [to_pred])
762
763lemma relpow_Suc_I: "(x, y) \<in>  R ^^ n \<Longrightarrow> (y, z) \<in> R \<Longrightarrow> (x, z) \<in> R ^^ Suc n"
764  by auto
765
766lemma relpowp_Suc_I: "(P ^^ n) x y \<Longrightarrow> P y z \<Longrightarrow> (P ^^ Suc n) x z"
767  by (fact relpow_Suc_I [to_pred])
768
769lemma relpow_Suc_I2: "(x, y) \<in> R \<Longrightarrow> (y, z) \<in> R ^^ n \<Longrightarrow> (x, z) \<in> R ^^ Suc n"
770  by (induct n arbitrary: z) (simp, fastforce)
771
772lemma relpowp_Suc_I2: "P x y \<Longrightarrow> (P ^^ n) y z \<Longrightarrow> (P ^^ Suc n) x z"
773  by (fact relpow_Suc_I2 [to_pred])
774
775lemma relpow_0_E: "(x, y) \<in> R ^^ 0 \<Longrightarrow> (x = y \<Longrightarrow> P) \<Longrightarrow> P"
776  by simp
777
778lemma relpowp_0_E: "(P ^^ 0) x y \<Longrightarrow> (x = y \<Longrightarrow> Q) \<Longrightarrow> Q"
779  by (fact relpow_0_E [to_pred])
780
781lemma relpow_Suc_E: "(x, z) \<in> R ^^ Suc n \<Longrightarrow> (\<And>y. (x, y) \<in> R ^^ n \<Longrightarrow> (y, z) \<in> R \<Longrightarrow> P) \<Longrightarrow> P"
782  by auto
783
784lemma relpowp_Suc_E: "(P ^^ Suc n) x z \<Longrightarrow> (\<And>y. (P ^^ n) x y \<Longrightarrow> P y z \<Longrightarrow> Q) \<Longrightarrow> Q"
785  by (fact relpow_Suc_E [to_pred])
786
787lemma relpow_E:
788  "(x, z) \<in>  R ^^ n \<Longrightarrow>
789    (n = 0 \<Longrightarrow> x = z \<Longrightarrow> P) \<Longrightarrow>
790    (\<And>y m. n = Suc m \<Longrightarrow> (x, y) \<in>  R ^^ m \<Longrightarrow> (y, z) \<in> R \<Longrightarrow> P) \<Longrightarrow> P"
791  by (cases n) auto
792
793lemma relpowp_E:
794  "(P ^^ n) x z \<Longrightarrow>
795    (n = 0 \<Longrightarrow> x = z \<Longrightarrow> Q) \<Longrightarrow>
796    (\<And>y m. n = Suc m \<Longrightarrow> (P ^^ m) x y \<Longrightarrow> P y z \<Longrightarrow> Q) \<Longrightarrow> Q"
797  by (fact relpow_E [to_pred])
798
799lemma relpow_Suc_D2: "(x, z) \<in> R ^^ Suc n \<Longrightarrow> (\<exists>y. (x, y) \<in> R \<and> (y, z) \<in> R ^^ n)"
800  by (induct n arbitrary: x z)
801    (blast intro: relpow_0_I relpow_Suc_I elim: relpow_0_E relpow_Suc_E)+
802
803lemma relpowp_Suc_D2: "(P ^^ Suc n) x z \<Longrightarrow> \<exists>y. P x y \<and> (P ^^ n) y z"
804  by (fact relpow_Suc_D2 [to_pred])
805
806lemma relpow_Suc_E2: "(x, z) \<in> R ^^ Suc n \<Longrightarrow> (\<And>y. (x, y) \<in> R \<Longrightarrow> (y, z) \<in> R ^^ n \<Longrightarrow> P) \<Longrightarrow> P"
807  by (blast dest: relpow_Suc_D2)
808
809lemma relpowp_Suc_E2: "(P ^^ Suc n) x z \<Longrightarrow> (\<And>y. P x y \<Longrightarrow> (P ^^ n) y z \<Longrightarrow> Q) \<Longrightarrow> Q"
810  by (fact relpow_Suc_E2 [to_pred])
811
812lemma relpow_Suc_D2': "\<forall>x y z. (x, y) \<in> R ^^ n \<and> (y, z) \<in> R \<longrightarrow> (\<exists>w. (x, w) \<in> R \<and> (w, z) \<in> R ^^ n)"
813  by (induct n) (simp_all, blast)
814
815lemma relpowp_Suc_D2': "\<forall>x y z. (P ^^ n) x y \<and> P y z \<longrightarrow> (\<exists>w. P x w \<and> (P ^^ n) w z)"
816  by (fact relpow_Suc_D2' [to_pred])
817
818lemma relpow_E2:
819  assumes "(x, z) \<in> R ^^ n" "n = 0 \<Longrightarrow> x = z \<Longrightarrow> P"
820          "\<And>y m. n = Suc m \<Longrightarrow> (x, y) \<in> R \<Longrightarrow> (y, z) \<in> R ^^ m \<Longrightarrow> P"
821      shows "P"
822proof (cases n)
823  case 0
824  with assms show ?thesis
825    by simp
826next
827  case (Suc m)
828  with assms relpow_Suc_D2' [of m R] show ?thesis
829    by force
830qed
831
832lemma relpowp_E2:
833  "(P ^^ n) x z \<Longrightarrow>
834    (n = 0 \<Longrightarrow> x = z \<Longrightarrow> Q) \<Longrightarrow>
835    (\<And>y m. n = Suc m \<Longrightarrow> P x y \<Longrightarrow> (P ^^ m) y z \<Longrightarrow> Q) \<Longrightarrow> Q"
836  by (fact relpow_E2 [to_pred])
837
838lemma relpow_add: "R ^^ (m + n) = R^^m O R^^n"
839  by (induct n) auto
840
841lemma relpowp_add: "P ^^ (m + n) = P ^^ m OO P ^^ n"
842  by (fact relpow_add [to_pred])
843
844lemma relpow_commute: "R O R ^^ n = R ^^ n O R"
845  by (induct n) (simp_all add: O_assoc [symmetric])
846
847lemma relpowp_commute: "P OO P ^^ n = P ^^ n OO P"
848  by (fact relpow_commute [to_pred])
849
850lemma relpow_empty: "0 < n \<Longrightarrow> ({} :: ('a \<times> 'a) set) ^^ n = {}"
851  by (cases n) auto
852
853lemma relpowp_bot: "0 < n \<Longrightarrow> (\<bottom> :: 'a \<Rightarrow> 'a \<Rightarrow> bool) ^^ n = \<bottom>"
854  by (fact relpow_empty [to_pred])
855
856lemma rtrancl_imp_UN_relpow:
857  assumes "p \<in> R\<^sup>*"
858  shows "p \<in> (\<Union>n. R ^^ n)"
859proof (cases p)
860  case (Pair x y)
861  with assms have "(x, y) \<in> R\<^sup>*" by simp
862  then have "(x, y) \<in> (\<Union>n. R ^^ n)"
863  proof induct
864    case base
865    show ?case by (blast intro: relpow_0_I)
866  next
867    case step
868    then show ?case by (blast intro: relpow_Suc_I)
869  qed
870  with Pair show ?thesis by simp
871qed
872
873lemma rtranclp_imp_Sup_relpowp:
874  assumes "(P\<^sup>*\<^sup>*) x y"
875  shows "(\<Squnion>n. P ^^ n) x y"
876  using assms and rtrancl_imp_UN_relpow [of "(x, y)", to_pred] by simp
877
878lemma relpow_imp_rtrancl:
879  assumes "p \<in> R ^^ n"
880  shows "p \<in> R\<^sup>*"
881proof (cases p)
882  case (Pair x y)
883  with assms have "(x, y) \<in> R ^^ n" by simp
884  then have "(x, y) \<in> R\<^sup>*"
885  proof (induct n arbitrary: x y)
886    case 0
887    then show ?case by simp
888  next
889    case Suc
890    then show ?case
891      by (blast elim: relpow_Suc_E intro: rtrancl_into_rtrancl)
892  qed
893  with Pair show ?thesis by simp
894qed
895
896lemma relpowp_imp_rtranclp: "(P ^^ n) x y \<Longrightarrow> (P\<^sup>*\<^sup>*) x y"
897  using relpow_imp_rtrancl [of "(x, y)", to_pred] by simp
898
899lemma rtrancl_is_UN_relpow: "R\<^sup>* = (\<Union>n. R ^^ n)"
900  by (blast intro: rtrancl_imp_UN_relpow relpow_imp_rtrancl)
901
902lemma rtranclp_is_Sup_relpowp: "P\<^sup>*\<^sup>* = (\<Squnion>n. P ^^ n)"
903  using rtrancl_is_UN_relpow [to_pred, of P] by auto
904
905lemma rtrancl_power: "p \<in> R\<^sup>* \<longleftrightarrow> (\<exists>n. p \<in> R ^^ n)"
906  by (simp add: rtrancl_is_UN_relpow)
907
908lemma rtranclp_power: "(P\<^sup>*\<^sup>*) x y \<longleftrightarrow> (\<exists>n. (P ^^ n) x y)"
909  by (simp add: rtranclp_is_Sup_relpowp)
910
911lemma trancl_power: "p \<in> R\<^sup>+ \<longleftrightarrow> (\<exists>n > 0. p \<in> R ^^ n)"
912proof -
913  have "((a, b) \<in> R\<^sup>+) = (\<exists>n>0. (a, b) \<in> R ^^ n)" for a b
914  proof safe
915    show "(a, b) \<in> R\<^sup>+ \<Longrightarrow> \<exists>n>0. (a, b) \<in> R ^^ n"
916      apply (drule tranclD2)
917      apply (fastforce simp: rtrancl_is_UN_relpow relcomp_unfold)
918      done
919    show "(a, b) \<in> R\<^sup>+" if "n > 0" "(a, b) \<in> R ^^ n" for n
920    proof (cases n)
921      case (Suc m)
922      with that show ?thesis
923        by (auto simp: dest: relpow_imp_rtrancl rtrancl_into_trancl1)
924    qed (use that in auto)
925  qed
926  then show ?thesis
927    by (cases p) auto
928qed
929
930lemma tranclp_power: "(P\<^sup>+\<^sup>+) x y \<longleftrightarrow> (\<exists>n > 0. (P ^^ n) x y)"
931  using trancl_power [to_pred, of P "(x, y)"] by simp
932
933lemma rtrancl_imp_relpow: "p \<in> R\<^sup>* \<Longrightarrow> \<exists>n. p \<in> R ^^ n"
934  by (auto dest: rtrancl_imp_UN_relpow)
935
936lemma rtranclp_imp_relpowp: "(P\<^sup>*\<^sup>*) x y \<Longrightarrow> \<exists>n. (P ^^ n) x y"
937  by (auto dest: rtranclp_imp_Sup_relpowp)
938
939text \<open>By Sternagel/Thiemann:\<close>
940lemma relpow_fun_conv: "(a, b) \<in> R ^^ n \<longleftrightarrow> (\<exists>f. f 0 = a \<and> f n = b \<and> (\<forall>i<n. (f i, f (Suc i)) \<in> R))"
941proof (induct n arbitrary: b)
942  case 0
943  show ?case by auto
944next
945  case (Suc n)
946  show ?case
947  proof (simp add: relcomp_unfold Suc)
948    show "(\<exists>y. (\<exists>f. f 0 = a \<and> f n = y \<and> (\<forall>i<n. (f i,f(Suc i)) \<in> R)) \<and> (y,b) \<in> R) \<longleftrightarrow>
949      (\<exists>f. f 0 = a \<and> f(Suc n) = b \<and> (\<forall>i<Suc n. (f i, f (Suc i)) \<in> R))"
950    (is "?l = ?r")
951    proof
952      assume ?l
953      then obtain c f
954        where 1: "f 0 = a"  "f n = c"  "\<And>i. i < n \<Longrightarrow> (f i, f (Suc i)) \<in> R"  "(c,b) \<in> R"
955        by auto
956      let ?g = "\<lambda> m. if m = Suc n then b else f m"
957      show ?r by (rule exI[of _ ?g]) (simp add: 1)
958    next
959      assume ?r
960      then obtain f where 1: "f 0 = a"  "b = f (Suc n)"  "\<And>i. i < Suc n \<Longrightarrow> (f i, f (Suc i)) \<in> R"
961        by auto
962      show ?l by (rule exI[of _ "f n"], rule conjI, rule exI[of _ f], insert 1, auto)
963    qed
964  qed
965qed
966
967lemma relpowp_fun_conv: "(P ^^ n) x y \<longleftrightarrow> (\<exists>f. f 0 = x \<and> f n = y \<and> (\<forall>i<n. P (f i) (f (Suc i))))"
968  by (fact relpow_fun_conv [to_pred])
969
970lemma relpow_finite_bounded1:
971  fixes R :: "('a \<times> 'a) set"
972  assumes "finite R" and "k > 0"
973  shows "R^^k \<subseteq> (\<Union>n\<in>{n. 0 < n \<and> n \<le> card R}. R^^n)"
974    (is "_ \<subseteq> ?r")
975proof -
976  have "(a, b) \<in> R^^(Suc k) \<Longrightarrow> \<exists>n. 0 < n \<and> n \<le> card R \<and> (a, b) \<in> R^^n" for a b k
977  proof (induct k arbitrary: b)
978    case 0
979    then have "R \<noteq> {}" by auto
980    with card_0_eq[OF \<open>finite R\<close>] have "card R \<ge> Suc 0" by auto
981    then show ?case using 0 by force
982  next
983    case (Suc k)
984    then obtain a' where "(a, a') \<in> R^^(Suc k)" and "(a', b) \<in> R"
985      by auto
986    from Suc(1)[OF \<open>(a, a') \<in> R^^(Suc k)\<close>] obtain n where "n \<le> card R" and "(a, a') \<in> R ^^ n"
987      by auto
988    have "(a, b) \<in> R^^(Suc n)"
989      using \<open>(a, a') \<in> R^^n\<close> and \<open>(a', b)\<in> R\<close> by auto
990    from \<open>n \<le> card R\<close> consider "n < card R" | "n = card R" by force
991    then show ?case
992    proof cases
993      case 1
994      then show ?thesis
995        using \<open>(a, b) \<in> R^^(Suc n)\<close> Suc_leI[OF \<open>n < card R\<close>] by blast
996    next
997      case 2
998      from \<open>(a, b) \<in> R ^^ (Suc n)\<close> [unfolded relpow_fun_conv]
999      obtain f where "f 0 = a" and "f (Suc n) = b"
1000        and steps: "\<And>i. i \<le> n \<Longrightarrow> (f i, f (Suc i)) \<in> R" by auto
1001      let ?p = "\<lambda>i. (f i, f(Suc i))"
1002      let ?N = "{i. i \<le> n}"
1003      have "?p ` ?N \<subseteq> R"
1004        using steps by auto
1005      from card_mono[OF assms(1) this] have "card (?p ` ?N) \<le> card R" .
1006      also have "\<dots> < card ?N"
1007        using \<open>n = card R\<close> by simp
1008      finally have "\<not> inj_on ?p ?N"
1009        by (rule pigeonhole)
1010      then obtain i j where i: "i \<le> n" and j: "j \<le> n" and ij: "i \<noteq> j" and pij: "?p i = ?p j"
1011        by (auto simp: inj_on_def)
1012      let ?i = "min i j"
1013      let ?j = "max i j"
1014      have i: "?i \<le> n" and j: "?j \<le> n" and pij: "?p ?i = ?p ?j" and ij: "?i < ?j"
1015        using i j ij pij unfolding min_def max_def by auto
1016      from i j pij ij obtain i j where i: "i \<le> n" and j: "j \<le> n" and ij: "i < j"
1017        and pij: "?p i = ?p j"
1018        by blast
1019      let ?g = "\<lambda>l. if l \<le> i then f l else f (l + (j - i))"
1020      let ?n = "Suc (n - (j - i))"
1021      have abl: "(a, b) \<in> R ^^ ?n"
1022        unfolding relpow_fun_conv
1023      proof (rule exI[of _ ?g], intro conjI impI allI)
1024        show "?g ?n = b"
1025          using \<open>f(Suc n) = b\<close> j ij by auto
1026      next
1027        fix k
1028        assume "k < ?n"
1029        show "(?g k, ?g (Suc k)) \<in> R"
1030        proof (cases "k < i")
1031          case True
1032          with i have "k \<le> n"
1033            by auto
1034          from steps[OF this] show ?thesis
1035            using True by simp
1036        next
1037          case False
1038          then have "i \<le> k" by auto
1039          show ?thesis
1040          proof (cases "k = i")
1041            case True
1042            then show ?thesis
1043              using ij pij steps[OF i] by simp
1044          next
1045            case False
1046            with \<open>i \<le> k\<close> have "i < k" by auto
1047            then have small: "k + (j - i) \<le> n"
1048              using \<open>k<?n\<close> by arith
1049            show ?thesis
1050              using steps[OF small] \<open>i<k\<close> by auto
1051          qed
1052        qed
1053      qed (simp add: \<open>f 0 = a\<close>)
1054      moreover have "?n \<le> n"
1055        using i j ij by arith
1056      ultimately show ?thesis
1057        using \<open>n = card R\<close> by blast
1058    qed
1059  qed
1060  then show ?thesis
1061    using gr0_implies_Suc[OF \<open>k > 0\<close>] by auto
1062qed
1063
1064lemma relpow_finite_bounded:
1065  fixes R :: "('a \<times> 'a) set"
1066  assumes "finite R"
1067  shows "R^^k \<subseteq> (UN n:{n. n \<le> card R}. R^^n)"
1068  apply (cases k, force)
1069  apply (use relpow_finite_bounded1[OF assms, of k] in auto)
1070  done
1071
1072lemma rtrancl_finite_eq_relpow: "finite R \<Longrightarrow> R\<^sup>* = (\<Union>n\<in>{n. n \<le> card R}. R^^n)"
1073  by (fastforce simp: rtrancl_power dest: relpow_finite_bounded)
1074
1075lemma trancl_finite_eq_relpow: "finite R \<Longrightarrow> R\<^sup>+ = (\<Union>n\<in>{n. 0 < n \<and> n \<le> card R}. R^^n)"
1076  apply (auto simp: trancl_power)
1077  apply (auto dest: relpow_finite_bounded1)
1078  done
1079
1080lemma finite_relcomp[simp,intro]:
1081  assumes "finite R" and "finite S"
1082  shows "finite (R O S)"
1083proof-
1084  have "R O S = (\<Union>(x, y)\<in>R. \<Union>(u, v)\<in>S. if u = y then {(x, v)} else {})"
1085    by (force simp: split_def image_constant_conv split: if_splits)
1086  then show ?thesis
1087    using assms by clarsimp
1088qed
1089
1090lemma finite_relpow [simp, intro]:
1091  fixes R :: "('a \<times> 'a) set"
1092  assumes "finite R"
1093  shows "n > 0 \<Longrightarrow> finite (R^^n)"
1094proof (induct n)
1095  case 0
1096  then show ?case by simp
1097next
1098  case (Suc n)
1099  then show ?case by (cases n) (use assms in simp_all)
1100qed
1101
1102lemma single_valued_relpow:
1103  fixes R :: "('a \<times> 'a) set"
1104  shows "single_valued R \<Longrightarrow> single_valued (R ^^ n)"
1105proof (induct n arbitrary: R)
1106  case 0
1107  then show ?case by simp
1108next
1109  case (Suc n)
1110  show ?case
1111    by (rule single_valuedI)
1112      (use Suc in \<open>fast dest: single_valuedD elim: relpow_Suc_E\<close>)
1113qed
1114
1115
1116subsection \<open>Bounded transitive closure\<close>
1117
1118definition ntrancl :: "nat \<Rightarrow> ('a \<times> 'a) set \<Rightarrow> ('a \<times> 'a) set"
1119  where "ntrancl n R = (\<Union>i\<in>{i. 0 < i \<and> i \<le> Suc n}. R ^^ i)"
1120
1121lemma ntrancl_Zero [simp, code]: "ntrancl 0 R = R"
1122proof
1123  show "R \<subseteq> ntrancl 0 R"
1124    unfolding ntrancl_def by fastforce
1125  have "0 < i \<and> i \<le> Suc 0 \<longleftrightarrow> i = 1" for i
1126    by auto
1127  then show "ntrancl 0 R \<le> R"
1128    unfolding ntrancl_def by auto
1129qed
1130
1131lemma ntrancl_Suc [simp]: "ntrancl (Suc n) R = ntrancl n R O (Id \<union> R)"
1132proof
1133  have "(a, b) \<in> ntrancl n R O (Id \<union> R)" if "(a, b) \<in> ntrancl (Suc n) R" for a b
1134  proof -
1135    from that obtain i where "0 < i" "i \<le> Suc (Suc n)" "(a, b) \<in> R ^^ i"
1136      unfolding ntrancl_def by auto
1137    show ?thesis
1138    proof (cases "i = 1")
1139      case True
1140      from this \<open>(a, b) \<in> R ^^ i\<close> show ?thesis
1141        by (auto simp: ntrancl_def)
1142    next
1143      case False
1144      with \<open>0 < i\<close> obtain j where j: "i = Suc j" "0 < j"
1145        by (cases i) auto
1146      with \<open>(a, b) \<in> R ^^ i\<close> obtain c where c1: "(a, c) \<in> R ^^ j" and c2: "(c, b) \<in> R"
1147        by auto
1148      from c1 j \<open>i \<le> Suc (Suc n)\<close> have "(a, c) \<in> ntrancl n R"
1149        by (fastforce simp: ntrancl_def)
1150      with c2 show ?thesis by fastforce
1151    qed
1152  qed
1153  then show "ntrancl (Suc n) R \<subseteq> ntrancl n R O (Id \<union> R)"
1154    by auto
1155  show "ntrancl n R O (Id \<union> R) \<subseteq> ntrancl (Suc n) R"
1156    by (fastforce simp: ntrancl_def)
1157qed
1158
1159lemma [code]: "ntrancl (Suc n) r = (let r' = ntrancl n r in r' \<union> r' O r)"
1160  by (auto simp: Let_def)
1161
1162lemma finite_trancl_ntranl: "finite R \<Longrightarrow> trancl R = ntrancl (card R - 1) R"
1163  by (cases "card R") (auto simp: trancl_finite_eq_relpow relpow_empty ntrancl_def)
1164
1165
1166subsection \<open>Acyclic relations\<close>
1167
1168definition acyclic :: "('a \<times> 'a) set \<Rightarrow> bool"
1169  where "acyclic r \<longleftrightarrow> (\<forall>x. (x,x) \<notin> r\<^sup>+)"
1170
1171abbreviation acyclicP :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> bool"
1172  where "acyclicP r \<equiv> acyclic {(x, y). r x y}"
1173
1174lemma acyclic_irrefl [code]: "acyclic r \<longleftrightarrow> irrefl (r\<^sup>+)"
1175  by (simp add: acyclic_def irrefl_def)
1176
1177lemma acyclicI: "\<forall>x. (x, x) \<notin> r\<^sup>+ \<Longrightarrow> acyclic r"
1178  by (simp add: acyclic_def)
1179
1180lemma (in order) acyclicI_order:
1181  assumes *: "\<And>a b. (a, b) \<in> r \<Longrightarrow> f b < f a"
1182  shows "acyclic r"
1183proof -
1184  have "f b < f a" if "(a, b) \<in> r\<^sup>+" for a b
1185    using that by induct (auto intro: * less_trans)
1186  then show ?thesis
1187    by (auto intro!: acyclicI)
1188qed
1189
1190lemma acyclic_insert [iff]: "acyclic (insert (y, x) r) \<longleftrightarrow> acyclic r \<and> (x, y) \<notin> r\<^sup>*"
1191  by (simp add: acyclic_def trancl_insert) (blast intro: rtrancl_trans)
1192
1193lemma acyclic_converse [iff]: "acyclic (r\<inverse>) \<longleftrightarrow> acyclic r"
1194  by (simp add: acyclic_def trancl_converse)
1195
1196lemmas acyclicP_converse [iff] = acyclic_converse [to_pred]
1197
1198lemma acyclic_impl_antisym_rtrancl: "acyclic r \<Longrightarrow> antisym (r\<^sup>*)"
1199  by (simp add: acyclic_def antisym_def)
1200    (blast elim: rtranclE intro: rtrancl_into_trancl1 rtrancl_trancl_trancl)
1201
1202(* Other direction:
1203acyclic = no loops
1204antisym = only self loops
1205Goalw [acyclic_def,antisym_def] "antisym( r\<^sup>* ) \<Longrightarrow> acyclic(r - Id)
1206\<Longrightarrow> antisym( r\<^sup>* ) = acyclic(r - Id)";
1207*)
1208
1209lemma acyclic_subset: "acyclic s \<Longrightarrow> r \<subseteq> s \<Longrightarrow> acyclic r"
1210  unfolding acyclic_def by (blast intro: trancl_mono)
1211
1212
1213subsection \<open>Setup of transitivity reasoner\<close>
1214
1215ML \<open>
1216structure Trancl_Tac = Trancl_Tac
1217(
1218  val r_into_trancl = @{thm trancl.r_into_trancl};
1219  val trancl_trans  = @{thm trancl_trans};
1220  val rtrancl_refl = @{thm rtrancl.rtrancl_refl};
1221  val r_into_rtrancl = @{thm r_into_rtrancl};
1222  val trancl_into_rtrancl = @{thm trancl_into_rtrancl};
1223  val rtrancl_trancl_trancl = @{thm rtrancl_trancl_trancl};
1224  val trancl_rtrancl_trancl = @{thm trancl_rtrancl_trancl};
1225  val rtrancl_trans = @{thm rtrancl_trans};
1226
1227  fun decomp (@{const Trueprop} $ t) =
1228        let
1229          fun dec (Const (@{const_name Set.member}, _) $ (Const (@{const_name Pair}, _) $ a $ b) $ rel) =
1230              let
1231                fun decr (Const (@{const_name rtrancl}, _ ) $ r) = (r,"r*")
1232                  | decr (Const (@{const_name trancl}, _ ) $ r)  = (r,"r+")
1233                  | decr r = (r,"r");
1234                val (rel,r) = decr (Envir.beta_eta_contract rel);
1235              in SOME (a,b,rel,r) end
1236          | dec _ =  NONE
1237        in dec t end
1238    | decomp _ = NONE;
1239);
1240
1241structure Tranclp_Tac = Trancl_Tac
1242(
1243  val r_into_trancl = @{thm tranclp.r_into_trancl};
1244  val trancl_trans  = @{thm tranclp_trans};
1245  val rtrancl_refl = @{thm rtranclp.rtrancl_refl};
1246  val r_into_rtrancl = @{thm r_into_rtranclp};
1247  val trancl_into_rtrancl = @{thm tranclp_into_rtranclp};
1248  val rtrancl_trancl_trancl = @{thm rtranclp_tranclp_tranclp};
1249  val trancl_rtrancl_trancl = @{thm tranclp_rtranclp_tranclp};
1250  val rtrancl_trans = @{thm rtranclp_trans};
1251
1252  fun decomp (@{const Trueprop} $ t) =
1253        let
1254          fun dec (rel $ a $ b) =
1255            let
1256              fun decr (Const (@{const_name rtranclp}, _ ) $ r) = (r,"r*")
1257                | decr (Const (@{const_name tranclp}, _ ) $ r)  = (r,"r+")
1258                | decr r = (r,"r");
1259              val (rel,r) = decr rel;
1260            in SOME (a, b, rel, r) end
1261          | dec _ =  NONE
1262        in dec t end
1263    | decomp _ = NONE;
1264);
1265\<close>
1266
1267setup \<open>
1268  map_theory_simpset (fn ctxt => ctxt
1269    addSolver (mk_solver "Trancl" Trancl_Tac.trancl_tac)
1270    addSolver (mk_solver "Rtrancl" Trancl_Tac.rtrancl_tac)
1271    addSolver (mk_solver "Tranclp" Tranclp_Tac.trancl_tac)
1272    addSolver (mk_solver "Rtranclp" Tranclp_Tac.rtrancl_tac))
1273\<close>
1274
1275
1276text \<open>Optional methods.\<close>
1277
1278method_setup trancl =
1279  \<open>Scan.succeed (SIMPLE_METHOD' o Trancl_Tac.trancl_tac)\<close>
1280  \<open>simple transitivity reasoner\<close>
1281method_setup rtrancl =
1282  \<open>Scan.succeed (SIMPLE_METHOD' o Trancl_Tac.rtrancl_tac)\<close>
1283  \<open>simple transitivity reasoner\<close>
1284method_setup tranclp =
1285  \<open>Scan.succeed (SIMPLE_METHOD' o Tranclp_Tac.trancl_tac)\<close>
1286  \<open>simple transitivity reasoner (predicate version)\<close>
1287method_setup rtranclp =
1288  \<open>Scan.succeed (SIMPLE_METHOD' o Tranclp_Tac.rtrancl_tac)\<close>
1289  \<open>simple transitivity reasoner (predicate version)\<close>
1290
1291end
1292