1(*  Title:      HOL/Product_Type.thy
2    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
3    Copyright   1992  University of Cambridge
4*)
5
6section \<open>Cartesian products\<close>
7
8theory Product_Type
9  imports Typedef Inductive Fun
10  keywords "inductive_set" "coinductive_set" :: thy_decl
11begin
12
13subsection \<open>@{typ bool} is a datatype\<close>
14
15free_constructors (discs_sels) case_bool for True | False
16  by auto
17
18text \<open>Avoid name clashes by prefixing the output of \<open>old_rep_datatype\<close> with \<open>old\<close>.\<close>
19
20setup \<open>Sign.mandatory_path "old"\<close>
21
22old_rep_datatype True False by (auto intro: bool_induct)
23
24setup \<open>Sign.parent_path\<close>
25
26text \<open>But erase the prefix for properties that are not generated by \<open>free_constructors\<close>.\<close>
27
28setup \<open>Sign.mandatory_path "bool"\<close>
29
30lemmas induct = old.bool.induct
31lemmas inducts = old.bool.inducts
32lemmas rec = old.bool.rec
33lemmas simps = bool.distinct bool.case bool.rec
34
35setup \<open>Sign.parent_path\<close>
36
37declare case_split [cases type: bool]
38  \<comment> \<open>prefer plain propositional version\<close>
39
40lemma [code]: "HOL.equal False P \<longleftrightarrow> \<not> P"
41  and [code]: "HOL.equal True P \<longleftrightarrow> P"
42  and [code]: "HOL.equal P False \<longleftrightarrow> \<not> P"
43  and [code]: "HOL.equal P True \<longleftrightarrow> P"
44  and [code nbe]: "HOL.equal P P \<longleftrightarrow> True"
45  by (simp_all add: equal)
46
47lemma If_case_cert:
48  assumes "CASE \<equiv> (\<lambda>b. If b f g)"
49  shows "(CASE True \<equiv> f) &&& (CASE False \<equiv> g)"
50  using assms by simp_all
51
52setup \<open>Code.declare_case_global @{thm If_case_cert}\<close>
53
54code_printing
55  constant "HOL.equal :: bool \<Rightarrow> bool \<Rightarrow> bool" \<rightharpoonup> (Haskell) infix 4 "=="
56| class_instance "bool" :: "equal" \<rightharpoonup> (Haskell) -
57
58
59subsection \<open>The \<open>unit\<close> type\<close>
60
61typedef unit = "{True}"
62  by auto
63
64definition Unity :: unit  ("'(')")
65  where "() = Abs_unit True"
66
67lemma unit_eq [no_atp]: "u = ()"
68  by (induct u) (simp add: Unity_def)
69
70text \<open>
71  Simplification procedure for @{thm [source] unit_eq}.  Cannot use
72  this rule directly --- it loops!
73\<close>
74
75simproc_setup unit_eq ("x::unit") = \<open>
76  fn _ => fn _ => fn ct =>
77    if HOLogic.is_unit (Thm.term_of ct) then NONE
78    else SOME (mk_meta_eq @{thm unit_eq})
79\<close>
80
81free_constructors case_unit for "()"
82  by auto
83
84text \<open>Avoid name clashes by prefixing the output of \<open>old_rep_datatype\<close> with \<open>old\<close>.\<close>
85
86setup \<open>Sign.mandatory_path "old"\<close>
87
88old_rep_datatype "()" by simp
89
90setup \<open>Sign.parent_path\<close>
91
92text \<open>But erase the prefix for properties that are not generated by \<open>free_constructors\<close>.\<close>
93
94setup \<open>Sign.mandatory_path "unit"\<close>
95
96lemmas induct = old.unit.induct
97lemmas inducts = old.unit.inducts
98lemmas rec = old.unit.rec
99lemmas simps = unit.case unit.rec
100
101setup \<open>Sign.parent_path\<close>
102
103lemma unit_all_eq1: "(\<And>x::unit. PROP P x) \<equiv> PROP P ()"
104  by simp
105
106lemma unit_all_eq2: "(\<And>x::unit. PROP P) \<equiv> PROP P"
107  by (rule triv_forall_equality)
108
109text \<open>
110  This rewrite counters the effect of simproc \<open>unit_eq\<close> on @{term
111  [source] "\<lambda>u::unit. f u"}, replacing it by @{term [source]
112  f} rather than by @{term [source] "\<lambda>u. f ()"}.
113\<close>
114
115lemma unit_abs_eta_conv [simp]: "(\<lambda>u::unit. f ()) = f"
116  by (rule ext) simp
117
118lemma UNIV_unit: "UNIV = {()}"
119  by auto
120
121instantiation unit :: default
122begin
123
124definition "default = ()"
125
126instance ..
127
128end
129
130instantiation unit :: "{complete_boolean_algebra,complete_linorder,wellorder}"
131begin
132
133definition less_eq_unit :: "unit \<Rightarrow> unit \<Rightarrow> bool"
134  where "(_::unit) \<le> _ \<longleftrightarrow> True"
135
136lemma less_eq_unit [iff]: "u \<le> v" for u v :: unit
137  by (simp add: less_eq_unit_def)
138
139definition less_unit :: "unit \<Rightarrow> unit \<Rightarrow> bool"
140  where "(_::unit) < _ \<longleftrightarrow> False"
141
142lemma less_unit [iff]: "\<not> u < v" for u v :: unit
143  by (simp_all add: less_eq_unit_def less_unit_def)
144
145definition bot_unit :: unit
146  where [code_unfold]: "\<bottom> = ()"
147
148definition top_unit :: unit
149  where [code_unfold]: "\<top> = ()"
150
151definition inf_unit :: "unit \<Rightarrow> unit \<Rightarrow> unit"
152  where [simp]: "_ \<sqinter> _ = ()"
153
154definition sup_unit :: "unit \<Rightarrow> unit \<Rightarrow> unit"
155  where [simp]: "_ \<squnion> _ = ()"
156
157definition Inf_unit :: "unit set \<Rightarrow> unit"
158  where [simp]: "\<Sqinter>_ = ()"
159
160definition Sup_unit :: "unit set \<Rightarrow> unit"
161  where [simp]: "\<Squnion>_ = ()"
162
163definition uminus_unit :: "unit \<Rightarrow> unit"
164  where [simp]: "- _ = ()"
165
166declare less_eq_unit_def [abs_def, code_unfold]
167  less_unit_def [abs_def, code_unfold]
168  inf_unit_def [abs_def, code_unfold]
169  sup_unit_def [abs_def, code_unfold]
170  Inf_unit_def [abs_def, code_unfold]
171  Sup_unit_def [abs_def, code_unfold]
172  uminus_unit_def [abs_def, code_unfold]
173
174instance
175  by intro_classes auto
176
177end
178
179lemma [code]: "HOL.equal u v \<longleftrightarrow> True" for u v :: unit
180  unfolding equal unit_eq [of u] unit_eq [of v] by rule+
181
182code_printing
183  type_constructor unit \<rightharpoonup>
184    (SML) "unit"
185    and (OCaml) "unit"
186    and (Haskell) "()"
187    and (Scala) "Unit"
188| constant Unity \<rightharpoonup>
189    (SML) "()"
190    and (OCaml) "()"
191    and (Haskell) "()"
192    and (Scala) "()"
193| class_instance unit :: equal \<rightharpoonup>
194    (Haskell) -
195| constant "HOL.equal :: unit \<Rightarrow> unit \<Rightarrow> bool" \<rightharpoonup>
196    (Haskell) infix 4 "=="
197
198code_reserved SML
199  unit
200
201code_reserved OCaml
202  unit
203
204code_reserved Scala
205  Unit
206
207
208subsection \<open>The product type\<close>
209
210subsubsection \<open>Type definition\<close>
211
212definition Pair_Rep :: "'a \<Rightarrow> 'b \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> bool"
213  where "Pair_Rep a b = (\<lambda>x y. x = a \<and> y = b)"
214
215definition "prod = {f. \<exists>a b. f = Pair_Rep (a::'a) (b::'b)}"
216
217typedef ('a, 'b) prod ("(_ \<times>/ _)" [21, 20] 20) = "prod :: ('a \<Rightarrow> 'b \<Rightarrow> bool) set"
218  unfolding prod_def by auto
219
220type_notation (ASCII)
221  prod  (infixr "*" 20)
222
223definition Pair :: "'a \<Rightarrow> 'b \<Rightarrow> 'a \<times> 'b"
224  where "Pair a b = Abs_prod (Pair_Rep a b)"
225
226lemma prod_cases: "(\<And>a b. P (Pair a b)) \<Longrightarrow> P p"
227  by (cases p) (auto simp add: prod_def Pair_def Pair_Rep_def)
228
229free_constructors case_prod for Pair fst snd
230proof -
231  fix P :: bool and p :: "'a \<times> 'b"
232  show "(\<And>x1 x2. p = Pair x1 x2 \<Longrightarrow> P) \<Longrightarrow> P"
233    by (cases p) (auto simp add: prod_def Pair_def Pair_Rep_def)
234next
235  fix a c :: 'a and b d :: 'b
236  have "Pair_Rep a b = Pair_Rep c d \<longleftrightarrow> a = c \<and> b = d"
237    by (auto simp add: Pair_Rep_def fun_eq_iff)
238  moreover have "Pair_Rep a b \<in> prod" and "Pair_Rep c d \<in> prod"
239    by (auto simp add: prod_def)
240  ultimately show "Pair a b = Pair c d \<longleftrightarrow> a = c \<and> b = d"
241    by (simp add: Pair_def Abs_prod_inject)
242qed
243
244text \<open>Avoid name clashes by prefixing the output of \<open>old_rep_datatype\<close> with \<open>old\<close>.\<close>
245
246setup \<open>Sign.mandatory_path "old"\<close>
247
248old_rep_datatype Pair
249  by (erule prod_cases) (rule prod.inject)
250
251setup \<open>Sign.parent_path\<close>
252
253text \<open>But erase the prefix for properties that are not generated by \<open>free_constructors\<close>.\<close>
254
255setup \<open>Sign.mandatory_path "prod"\<close>
256
257declare old.prod.inject [iff del]
258
259lemmas induct = old.prod.induct
260lemmas inducts = old.prod.inducts
261lemmas rec = old.prod.rec
262lemmas simps = prod.inject prod.case prod.rec
263
264setup \<open>Sign.parent_path\<close>
265
266declare prod.case [nitpick_simp del]
267declare old.prod.case_cong_weak [cong del]
268declare prod.case_eq_if [mono]
269declare prod.split [no_atp]
270declare prod.split_asm [no_atp]
271
272text \<open>
273  @{thm [source] prod.split} could be declared as \<open>[split]\<close>
274  done after the Splitter has been speeded up significantly;
275  precompute the constants involved and don't do anything unless the
276  current goal contains one of those constants.
277\<close>
278
279
280subsubsection \<open>Tuple syntax\<close>
281
282text \<open>
283  Patterns -- extends pre-defined type @{typ pttrn} used in
284  abstractions.
285\<close>
286
287nonterminal tuple_args and patterns
288syntax
289  "_tuple"      :: "'a \<Rightarrow> tuple_args \<Rightarrow> 'a \<times> 'b"        ("(1'(_,/ _'))")
290  "_tuple_arg"  :: "'a \<Rightarrow> tuple_args"                   ("_")
291  "_tuple_args" :: "'a \<Rightarrow> tuple_args \<Rightarrow> tuple_args"     ("_,/ _")
292  "_pattern"    :: "pttrn \<Rightarrow> patterns \<Rightarrow> pttrn"         ("'(_,/ _')")
293  ""            :: "pttrn \<Rightarrow> patterns"                  ("_")
294  "_patterns"   :: "pttrn \<Rightarrow> patterns \<Rightarrow> patterns"      ("_,/ _")
295  "_unit"       :: pttrn                                ("'(')")
296translations
297  "(x, y)" \<rightleftharpoons> "CONST Pair x y"
298  "_pattern x y" \<rightleftharpoons> "CONST Pair x y"
299  "_patterns x y" \<rightleftharpoons> "CONST Pair x y"
300  "_tuple x (_tuple_args y z)" \<rightleftharpoons> "_tuple x (_tuple_arg (_tuple y z))"
301  "\<lambda>(x, y, zs). b" \<rightleftharpoons> "CONST case_prod (\<lambda>x (y, zs). b)"
302  "\<lambda>(x, y). b" \<rightleftharpoons> "CONST case_prod (\<lambda>x y. b)"
303  "_abs (CONST Pair x y) t" \<rightharpoonup> "\<lambda>(x, y). t"
304  \<comment> \<open>This rule accommodates tuples in \<open>case C \<dots> (x, y) \<dots> \<Rightarrow> \<dots>\<close>:
305     The \<open>(x, y)\<close> is parsed as \<open>Pair x y\<close> because it is \<open>logic\<close>,
306     not \<open>pttrn\<close>.\<close>
307  "\<lambda>(). b" \<rightleftharpoons> "CONST case_unit b"
308  "_abs (CONST Unity) t" \<rightharpoonup> "\<lambda>(). t"
309
310text \<open>print @{term "case_prod f"} as @{term "\<lambda>(x, y). f x y"} and
311  @{term "case_prod (\<lambda>x. f x)"} as @{term "\<lambda>(x, y). f x y"}\<close>
312
313typed_print_translation \<open>
314  let
315    fun case_prod_guess_names_tr' T [Abs (x, _, Abs _)] = raise Match
316      | case_prod_guess_names_tr' T [Abs (x, xT, t)] =
317          (case (head_of t) of
318            Const (@{const_syntax case_prod}, _) => raise Match
319          | _ =>
320            let
321              val (_ :: yT :: _) = binder_types (domain_type T) handle Bind => raise Match;
322              val (y, t') = Syntax_Trans.atomic_abs_tr' ("y", yT, incr_boundvars 1 t $ Bound 0);
323              val (x', t'') = Syntax_Trans.atomic_abs_tr' (x, xT, t');
324            in
325              Syntax.const @{syntax_const "_abs"} $
326                (Syntax.const @{syntax_const "_pattern"} $ x' $ y) $ t''
327            end)
328      | case_prod_guess_names_tr' T [t] =
329          (case head_of t of
330            Const (@{const_syntax case_prod}, _) => raise Match
331          | _ =>
332            let
333              val (xT :: yT :: _) = binder_types (domain_type T) handle Bind => raise Match;
334              val (y, t') =
335                Syntax_Trans.atomic_abs_tr' ("y", yT, incr_boundvars 2 t $ Bound 1 $ Bound 0);
336              val (x', t'') = Syntax_Trans.atomic_abs_tr' ("x", xT, t');
337            in
338              Syntax.const @{syntax_const "_abs"} $
339                (Syntax.const @{syntax_const "_pattern"} $ x' $ y) $ t''
340            end)
341      | case_prod_guess_names_tr' _ _ = raise Match;
342  in [(@{const_syntax case_prod}, K case_prod_guess_names_tr')] end
343\<close>
344
345text \<open>Reconstruct pattern from (nested) @{const case_prod}s,
346  avoiding eta-contraction of body; required for enclosing "let",
347  if "let" does not avoid eta-contraction, which has been observed to occur.\<close>
348
349print_translation \<open>
350  let
351    fun case_prod_tr' [Abs (x, T, t as (Abs abs))] =
352          (* case_prod (\<lambda>x y. t) \<Rightarrow> \<lambda>(x, y) t *)
353          let
354            val (y, t') = Syntax_Trans.atomic_abs_tr' abs;
355            val (x', t'') = Syntax_Trans.atomic_abs_tr' (x, T, t');
356          in
357            Syntax.const @{syntax_const "_abs"} $
358              (Syntax.const @{syntax_const "_pattern"} $ x' $ y) $ t''
359          end
360      | case_prod_tr' [Abs (x, T, (s as Const (@{const_syntax case_prod}, _) $ t))] =
361          (* case_prod (\<lambda>x. (case_prod (\<lambda>y z. t))) \<Rightarrow> \<lambda>(x, y, z). t *)
362          let
363            val Const (@{syntax_const "_abs"}, _) $
364              (Const (@{syntax_const "_pattern"}, _) $ y $ z) $ t' =
365                case_prod_tr' [t];
366            val (x', t'') = Syntax_Trans.atomic_abs_tr' (x, T, t');
367          in
368            Syntax.const @{syntax_const "_abs"} $
369              (Syntax.const @{syntax_const "_pattern"} $ x' $
370                (Syntax.const @{syntax_const "_patterns"} $ y $ z)) $ t''
371          end
372      | case_prod_tr' [Const (@{const_syntax case_prod}, _) $ t] =
373          (* case_prod (case_prod (\<lambda>x y z. t)) \<Rightarrow> \<lambda>((x, y), z). t *)
374          case_prod_tr' [(case_prod_tr' [t])]
375            (* inner case_prod_tr' creates next pattern *)
376      | case_prod_tr' [Const (@{syntax_const "_abs"}, _) $ x_y $ Abs abs] =
377          (* case_prod (\<lambda>pttrn z. t) \<Rightarrow> \<lambda>(pttrn, z). t *)
378          let val (z, t) = Syntax_Trans.atomic_abs_tr' abs in
379            Syntax.const @{syntax_const "_abs"} $
380              (Syntax.const @{syntax_const "_pattern"} $ x_y $ z) $ t
381          end
382      | case_prod_tr' _ = raise Match;
383  in [(@{const_syntax case_prod}, K case_prod_tr')] end
384\<close>
385
386
387subsubsection \<open>Code generator setup\<close>
388
389code_printing
390  type_constructor prod \<rightharpoonup>
391    (SML) infix 2 "*"
392    and (OCaml) infix 2 "*"
393    and (Haskell) "!((_),/ (_))"
394    and (Scala) "((_),/ (_))"
395| constant Pair \<rightharpoonup>
396    (SML) "!((_),/ (_))"
397    and (OCaml) "!((_),/ (_))"
398    and (Haskell) "!((_),/ (_))"
399    and (Scala) "!((_),/ (_))"
400| class_instance  prod :: equal \<rightharpoonup>
401    (Haskell) -
402| constant "HOL.equal :: 'a \<times> 'b \<Rightarrow> 'a \<times> 'b \<Rightarrow> bool" \<rightharpoonup>
403    (Haskell) infix 4 "=="
404| constant fst \<rightharpoonup> (Haskell) "fst"
405| constant snd \<rightharpoonup> (Haskell) "snd"
406
407
408subsubsection \<open>Fundamental operations and properties\<close>
409
410lemma Pair_inject: "(a, b) = (a', b') \<Longrightarrow> (a = a' \<Longrightarrow> b = b' \<Longrightarrow> R) \<Longrightarrow> R"
411  by simp
412
413lemma surj_pair [simp]: "\<exists>x y. p = (x, y)"
414  by (cases p) simp
415
416lemma fst_eqD: "fst (x, y) = a \<Longrightarrow> x = a"
417  by simp
418
419lemma snd_eqD: "snd (x, y) = a \<Longrightarrow> y = a"
420  by simp
421
422lemma case_prod_unfold [nitpick_unfold]: "case_prod = (\<lambda>c p. c (fst p) (snd p))"
423  by (simp add: fun_eq_iff split: prod.split)
424
425lemma case_prod_conv [simp, code]: "(case (a, b) of (c, d) \<Rightarrow> f c d) = f a b"
426  by (fact prod.case)
427
428lemmas surjective_pairing = prod.collapse [symmetric]
429
430lemma prod_eq_iff: "s = t \<longleftrightarrow> fst s = fst t \<and> snd s = snd t"
431  by (cases s, cases t) simp
432
433lemma prod_eqI [intro?]: "fst p = fst q \<Longrightarrow> snd p = snd q \<Longrightarrow> p = q"
434  by (simp add: prod_eq_iff)
435
436lemma case_prodI: "f a b \<Longrightarrow> case (a, b) of (c, d) \<Rightarrow> f c d"
437  by (rule prod.case [THEN iffD2])
438
439lemma case_prodD: "(case (a, b) of (c, d) \<Rightarrow> f c d) \<Longrightarrow> f a b"
440  by (rule prod.case [THEN iffD1])
441
442lemma case_prod_Pair [simp]: "case_prod Pair = id"
443  by (simp add: fun_eq_iff split: prod.split)
444
445lemma case_prod_eta: "(\<lambda>(x, y). f (x, y)) = f"
446  \<comment> \<open>Subsumes the old \<open>split_Pair\<close> when @{term f} is the identity function.\<close>
447  by (simp add: fun_eq_iff split: prod.split)
448
449(* This looks like a sensible simp-rule but appears to do more harm than good:
450lemma case_prod_const [simp]: "(\<lambda>(_,_). c) = (\<lambda>_. c)"
451by(rule case_prod_eta)
452*)
453
454lemma case_prod_comp: "(case x of (a, b) \<Rightarrow> (f \<circ> g) a b) = f (g (fst x)) (snd x)"
455  by (cases x) simp
456
457lemma The_case_prod: "The (case_prod P) = (THE xy. P (fst xy) (snd xy))"
458  by (simp add: case_prod_unfold)
459
460lemma cond_case_prod_eta: "(\<And>x y. f x y = g (x, y)) \<Longrightarrow> (\<lambda>(x, y). f x y) = g"
461  by (simp add: case_prod_eta)
462
463lemma split_paired_all [no_atp]: "(\<And>x. PROP P x) \<equiv> (\<And>a b. PROP P (a, b))"
464proof
465  fix a b
466  assume "\<And>x. PROP P x"
467  then show "PROP P (a, b)" .
468next
469  fix x
470  assume "\<And>a b. PROP P (a, b)"
471  from \<open>PROP P (fst x, snd x)\<close> show "PROP P x" by simp
472qed
473
474text \<open>
475  The rule @{thm [source] split_paired_all} does not work with the
476  Simplifier because it also affects premises in congrence rules,
477  where this can lead to premises of the form \<open>\<And>a b. \<dots> = ?P(a, b)\<close>
478  which cannot be solved by reflexivity.
479\<close>
480
481lemmas split_tupled_all = split_paired_all unit_all_eq2
482
483ML \<open>
484  (* replace parameters of product type by individual component parameters *)
485  local (* filtering with exists_paired_all is an essential optimization *)
486    fun exists_paired_all (Const (@{const_name Pure.all}, _) $ Abs (_, T, t)) =
487          can HOLogic.dest_prodT T orelse exists_paired_all t
488      | exists_paired_all (t $ u) = exists_paired_all t orelse exists_paired_all u
489      | exists_paired_all (Abs (_, _, t)) = exists_paired_all t
490      | exists_paired_all _ = false;
491    val ss =
492      simpset_of
493       (put_simpset HOL_basic_ss @{context}
494        addsimps [@{thm split_paired_all}, @{thm unit_all_eq2}, @{thm unit_abs_eta_conv}]
495        addsimprocs [@{simproc unit_eq}]);
496  in
497    fun split_all_tac ctxt = SUBGOAL (fn (t, i) =>
498      if exists_paired_all t then safe_full_simp_tac (put_simpset ss ctxt) i else no_tac);
499
500    fun unsafe_split_all_tac ctxt = SUBGOAL (fn (t, i) =>
501      if exists_paired_all t then full_simp_tac (put_simpset ss ctxt) i else no_tac);
502
503    fun split_all ctxt th =
504      if exists_paired_all (Thm.prop_of th)
505      then full_simplify (put_simpset ss ctxt) th else th;
506  end;
507\<close>
508
509setup \<open>map_theory_claset (fn ctxt => ctxt addSbefore ("split_all_tac", split_all_tac))\<close>
510
511lemma split_paired_All [simp, no_atp]: "(\<forall>x. P x) \<longleftrightarrow> (\<forall>a b. P (a, b))"
512  \<comment> \<open>\<open>[iff]\<close> is not a good idea because it makes \<open>blast\<close> loop\<close>
513  by fast
514
515lemma split_paired_Ex [simp, no_atp]: "(\<exists>x. P x) \<longleftrightarrow> (\<exists>a b. P (a, b))"
516  by fast
517
518lemma split_paired_The [no_atp]: "(THE x. P x) = (THE (a, b). P (a, b))"
519  \<comment> \<open>Can't be added to simpset: loops!\<close>
520  by (simp add: case_prod_eta)
521
522text \<open>
523  Simplification procedure for @{thm [source] cond_case_prod_eta}.  Using
524  @{thm [source] case_prod_eta} as a rewrite rule is not general enough,
525  and using @{thm [source] cond_case_prod_eta} directly would render some
526  existing proofs very inefficient; similarly for \<open>prod.case_eq_if\<close>.
527\<close>
528
529ML \<open>
530local
531  val cond_case_prod_eta_ss =
532    simpset_of (put_simpset HOL_basic_ss @{context} addsimps @{thms cond_case_prod_eta});
533  fun Pair_pat k 0 (Bound m) = (m = k)
534    | Pair_pat k i (Const (@{const_name Pair},  _) $ Bound m $ t) =
535        i > 0 andalso m = k + i andalso Pair_pat k (i - 1) t
536    | Pair_pat _ _ _ = false;
537  fun no_args k i (Abs (_, _, t)) = no_args (k + 1) i t
538    | no_args k i (t $ u) = no_args k i t andalso no_args k i u
539    | no_args k i (Bound m) = m < k orelse m > k + i
540    | no_args _ _ _ = true;
541  fun split_pat tp i (Abs  (_, _, t)) = if tp 0 i t then SOME (i, t) else NONE
542    | split_pat tp i (Const (@{const_name case_prod}, _) $ Abs (_, _, t)) = split_pat tp (i + 1) t
543    | split_pat tp i _ = NONE;
544  fun metaeq ctxt lhs rhs = mk_meta_eq (Goal.prove ctxt [] []
545        (HOLogic.mk_Trueprop (HOLogic.mk_eq (lhs, rhs)))
546        (K (simp_tac (put_simpset cond_case_prod_eta_ss ctxt) 1)));
547
548  fun beta_term_pat k i (Abs (_, _, t)) = beta_term_pat (k + 1) i t
549    | beta_term_pat k i (t $ u) =
550        Pair_pat k i (t $ u) orelse (beta_term_pat k i t andalso beta_term_pat k i u)
551    | beta_term_pat k i t = no_args k i t;
552  fun eta_term_pat k i (f $ arg) = no_args k i f andalso Pair_pat k i arg
553    | eta_term_pat _ _ _ = false;
554  fun subst arg k i (Abs (x, T, t)) = Abs (x, T, subst arg (k+1) i t)
555    | subst arg k i (t $ u) =
556        if Pair_pat k i (t $ u) then incr_boundvars k arg
557        else (subst arg k i t $ subst arg k i u)
558    | subst arg k i t = t;
559in
560  fun beta_proc ctxt (s as Const (@{const_name case_prod}, _) $ Abs (_, _, t) $ arg) =
561        (case split_pat beta_term_pat 1 t of
562          SOME (i, f) => SOME (metaeq ctxt s (subst arg 0 i f))
563        | NONE => NONE)
564    | beta_proc _ _ = NONE;
565  fun eta_proc ctxt (s as Const (@{const_name case_prod}, _) $ Abs (_, _, t)) =
566        (case split_pat eta_term_pat 1 t of
567          SOME (_, ft) => SOME (metaeq ctxt s (let val f $ _ = ft in f end))
568        | NONE => NONE)
569    | eta_proc _ _ = NONE;
570end;
571\<close>
572simproc_setup case_prod_beta ("case_prod f z") =
573  \<open>fn _ => fn ctxt => fn ct => beta_proc ctxt (Thm.term_of ct)\<close>
574simproc_setup case_prod_eta ("case_prod f") =
575  \<open>fn _ => fn ctxt => fn ct => eta_proc ctxt (Thm.term_of ct)\<close>
576
577lemma case_prod_beta': "(\<lambda>(x,y). f x y) = (\<lambda>x. f (fst x) (snd x))"
578  by (auto simp: fun_eq_iff)
579
580text \<open>
581  \<^medskip> @{const case_prod} used as a logical connective or set former.
582
583  \<^medskip> These rules are for use with \<open>blast\<close>; could instead
584  call \<open>simp\<close> using @{thm [source] prod.split} as rewrite.\<close>
585
586lemma case_prodI2:
587  "\<And>p. (\<And>a b. p = (a, b) \<Longrightarrow> c a b) \<Longrightarrow> case p of (a, b) \<Rightarrow> c a b"
588  by (simp add: split_tupled_all)
589
590lemma case_prodI2':
591  "\<And>p. (\<And>a b. (a, b) = p \<Longrightarrow> c a b x) \<Longrightarrow> (case p of (a, b) \<Rightarrow> c a b) x"
592  by (simp add: split_tupled_all)
593
594lemma case_prodE [elim!]:
595  "(case p of (a, b) \<Rightarrow> c a b) \<Longrightarrow> (\<And>x y. p = (x, y) \<Longrightarrow> c x y \<Longrightarrow> Q) \<Longrightarrow> Q"
596  by (induct p) simp
597
598lemma case_prodE' [elim!]:
599  "(case p of (a, b) \<Rightarrow> c a b) z \<Longrightarrow> (\<And>x y. p = (x, y) \<Longrightarrow> c x y z \<Longrightarrow> Q) \<Longrightarrow> Q"
600  by (induct p) simp
601
602lemma case_prodE2:
603  assumes q: "Q (case z of (a, b) \<Rightarrow> P a b)"
604    and r: "\<And>x y. z = (x, y) \<Longrightarrow> Q (P x y) \<Longrightarrow> R"
605  shows R
606proof (rule r)
607  show "z = (fst z, snd z)" by simp
608  then show "Q (P (fst z) (snd z))"
609    using q by (simp add: case_prod_unfold)
610qed
611
612lemma case_prodD': "(case (a, b) of (c, d) \<Rightarrow> R c d) c \<Longrightarrow> R a b c"
613  by simp
614
615lemma mem_case_prodI: "z \<in> c a b \<Longrightarrow> z \<in> (case (a, b) of (d, e) \<Rightarrow> c d e)"
616  by simp
617
618lemma mem_case_prodI2 [intro!]:
619  "\<And>p. (\<And>a b. p = (a, b) \<Longrightarrow> z \<in> c a b) \<Longrightarrow> z \<in> (case p of (a, b) \<Rightarrow> c a b)"
620  by (simp only: split_tupled_all) simp
621
622declare mem_case_prodI [intro!] \<comment> \<open>postponed to maintain traditional declaration order!\<close>
623declare case_prodI2' [intro!] \<comment> \<open>postponed to maintain traditional declaration order!\<close>
624declare case_prodI2 [intro!] \<comment> \<open>postponed to maintain traditional declaration order!\<close>
625declare case_prodI [intro!] \<comment> \<open>postponed to maintain traditional declaration order!\<close>
626
627lemma mem_case_prodE [elim!]:
628  assumes "z \<in> case_prod c p"
629  obtains x y where "p = (x, y)" and "z \<in> c x y"
630  using assms by (rule case_prodE2)
631
632ML \<open>
633local (* filtering with exists_p_split is an essential optimization *)
634  fun exists_p_split (Const (@{const_name case_prod},_) $ _ $ (Const (@{const_name Pair},_)$_$_)) = true
635    | exists_p_split (t $ u) = exists_p_split t orelse exists_p_split u
636    | exists_p_split (Abs (_, _, t)) = exists_p_split t
637    | exists_p_split _ = false;
638in
639  fun split_conv_tac ctxt = SUBGOAL (fn (t, i) =>
640    if exists_p_split t
641    then safe_full_simp_tac (put_simpset HOL_basic_ss ctxt addsimps @{thms case_prod_conv}) i
642    else no_tac);
643end;
644\<close>
645
646(* This prevents applications of splitE for already splitted arguments leading
647   to quite time-consuming computations (in particular for nested tuples) *)
648setup \<open>map_theory_claset (fn ctxt => ctxt addSbefore ("split_conv_tac", split_conv_tac))\<close>
649
650lemma split_eta_SetCompr [simp, no_atp]: "(\<lambda>u. \<exists>x y. u = (x, y) \<and> P (x, y)) = P"
651  by (rule ext) fast
652
653lemma split_eta_SetCompr2 [simp, no_atp]: "(\<lambda>u. \<exists>x y. u = (x, y) \<and> P x y) = case_prod P"
654  by (rule ext) fast
655
656lemma split_part [simp]: "(\<lambda>(a,b). P \<and> Q a b) = (\<lambda>ab. P \<and> case_prod Q ab)"
657  \<comment> \<open>Allows simplifications of nested splits in case of independent predicates.\<close>
658  by (rule ext) blast
659
660(* Do NOT make this a simp rule as it
661   a) only helps in special situations
662   b) can lead to nontermination in the presence of split_def
663*)
664lemma split_comp_eq:
665  fixes f :: "'a \<Rightarrow> 'b \<Rightarrow> 'c"
666    and g :: "'d \<Rightarrow> 'a"
667  shows "(\<lambda>u. f (g (fst u)) (snd u)) = case_prod (\<lambda>x. f (g x))"
668  by (rule ext) auto
669
670lemma pair_imageI [intro]: "(a, b) \<in> A \<Longrightarrow> f a b \<in> (\<lambda>(a, b). f a b) ` A"
671  by (rule image_eqI [where x = "(a, b)"]) auto
672
673lemma Collect_const_case_prod[simp]: "{(a,b). P} = (if P then UNIV else {})"
674by auto
675
676lemma The_split_eq [simp]: "(THE (x',y'). x = x' \<and> y = y') = (x, y)"
677  by blast
678
679(*
680the following  would be slightly more general,
681but cannot be used as rewrite rule:
682### Cannot add premise as rewrite rule because it contains (type) unknowns:
683### ?y = .x
684Goal "[| P y; !!x. P x ==> x = y |] ==> (@(x',y). x = x' & P y) = (x,y)"
685by (rtac some_equality 1)
686by ( Simp_tac 1)
687by (split_all_tac 1)
688by (Asm_full_simp_tac 1)
689qed "The_split_eq";
690*)
691
692lemma case_prod_beta: "case_prod f p = f (fst p) (snd p)"
693  by (fact prod.case_eq_if)
694
695lemma prod_cases3 [cases type]:
696  obtains (fields) a b c where "y = (a, b, c)"
697  by (cases y, case_tac b) blast
698
699lemma prod_induct3 [case_names fields, induct type]:
700  "(\<And>a b c. P (a, b, c)) \<Longrightarrow> P x"
701  by (cases x) blast
702
703lemma prod_cases4 [cases type]:
704  obtains (fields) a b c d where "y = (a, b, c, d)"
705  by (cases y, case_tac c) blast
706
707lemma prod_induct4 [case_names fields, induct type]:
708  "(\<And>a b c d. P (a, b, c, d)) \<Longrightarrow> P x"
709  by (cases x) blast
710
711lemma prod_cases5 [cases type]:
712  obtains (fields) a b c d e where "y = (a, b, c, d, e)"
713  by (cases y, case_tac d) blast
714
715lemma prod_induct5 [case_names fields, induct type]:
716  "(\<And>a b c d e. P (a, b, c, d, e)) \<Longrightarrow> P x"
717  by (cases x) blast
718
719lemma prod_cases6 [cases type]:
720  obtains (fields) a b c d e f where "y = (a, b, c, d, e, f)"
721  by (cases y, case_tac e) blast
722
723lemma prod_induct6 [case_names fields, induct type]:
724  "(\<And>a b c d e f. P (a, b, c, d, e, f)) \<Longrightarrow> P x"
725  by (cases x) blast
726
727lemma prod_cases7 [cases type]:
728  obtains (fields) a b c d e f g where "y = (a, b, c, d, e, f, g)"
729  by (cases y, case_tac f) blast
730
731lemma prod_induct7 [case_names fields, induct type]:
732  "(\<And>a b c d e f g. P (a, b, c, d, e, f, g)) \<Longrightarrow> P x"
733  by (cases x) blast
734
735definition internal_case_prod :: "('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> 'a \<times> 'b \<Rightarrow> 'c"
736  where "internal_case_prod \<equiv> case_prod"
737
738lemma internal_case_prod_conv: "internal_case_prod c (a, b) = c a b"
739  by (simp only: internal_case_prod_def case_prod_conv)
740
741ML_file "Tools/split_rule.ML"
742
743hide_const internal_case_prod
744
745
746subsubsection \<open>Derived operations\<close>
747
748definition curry :: "('a \<times> 'b \<Rightarrow> 'c) \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'c"
749  where "curry = (\<lambda>c x y. c (x, y))"
750
751lemma curry_conv [simp, code]: "curry f a b = f (a, b)"
752  by (simp add: curry_def)
753
754lemma curryI [intro!]: "f (a, b) \<Longrightarrow> curry f a b"
755  by (simp add: curry_def)
756
757lemma curryD [dest!]: "curry f a b \<Longrightarrow> f (a, b)"
758  by (simp add: curry_def)
759
760lemma curryE: "curry f a b \<Longrightarrow> (f (a, b) \<Longrightarrow> Q) \<Longrightarrow> Q"
761  by (simp add: curry_def)
762
763lemma curry_case_prod [simp]: "curry (case_prod f) = f"
764  by (simp add: curry_def case_prod_unfold)
765
766lemma case_prod_curry [simp]: "case_prod (curry f) = f"
767  by (simp add: curry_def case_prod_unfold)
768
769lemma curry_K: "curry (\<lambda>x. c) = (\<lambda>x y. c)"
770  by (simp add: fun_eq_iff)
771
772text \<open>The composition-uncurry combinator.\<close>
773
774notation fcomp (infixl "\<circ>>" 60)
775
776definition scomp :: "('a \<Rightarrow> 'b \<times> 'c) \<Rightarrow> ('b \<Rightarrow> 'c \<Rightarrow> 'd) \<Rightarrow> 'a \<Rightarrow> 'd"  (infixl "\<circ>\<rightarrow>" 60)
777  where "f \<circ>\<rightarrow> g = (\<lambda>x. case_prod g (f x))"
778
779lemma scomp_unfold: "scomp = (\<lambda>f g x. g (fst (f x)) (snd (f x)))"
780  by (simp add: fun_eq_iff scomp_def case_prod_unfold)
781
782lemma scomp_apply [simp]: "(f \<circ>\<rightarrow> g) x = case_prod g (f x)"
783  by (simp add: scomp_unfold case_prod_unfold)
784
785lemma Pair_scomp: "Pair x \<circ>\<rightarrow> f = f x"
786  by (simp add: fun_eq_iff)
787
788lemma scomp_Pair: "x \<circ>\<rightarrow> Pair = x"
789  by (simp add: fun_eq_iff)
790
791lemma scomp_scomp: "(f \<circ>\<rightarrow> g) \<circ>\<rightarrow> h = f \<circ>\<rightarrow> (\<lambda>x. g x \<circ>\<rightarrow> h)"
792  by (simp add: fun_eq_iff scomp_unfold)
793
794lemma scomp_fcomp: "(f \<circ>\<rightarrow> g) \<circ>> h = f \<circ>\<rightarrow> (\<lambda>x. g x \<circ>> h)"
795  by (simp add: fun_eq_iff scomp_unfold fcomp_def)
796
797lemma fcomp_scomp: "(f \<circ>> g) \<circ>\<rightarrow> h = f \<circ>> (g \<circ>\<rightarrow> h)"
798  by (simp add: fun_eq_iff scomp_unfold)
799
800code_printing
801  constant scomp \<rightharpoonup> (Eval) infixl 3 "#->"
802
803no_notation fcomp (infixl "\<circ>>" 60)
804no_notation scomp (infixl "\<circ>\<rightarrow>" 60)
805
806text \<open>
807  @{term map_prod} --- action of the product functor upon functions.
808\<close>
809
810definition map_prod :: "('a \<Rightarrow> 'c) \<Rightarrow> ('b \<Rightarrow> 'd) \<Rightarrow> 'a \<times> 'b \<Rightarrow> 'c \<times> 'd"
811  where "map_prod f g = (\<lambda>(x, y). (f x, g y))"
812
813lemma map_prod_simp [simp, code]: "map_prod f g (a, b) = (f a, g b)"
814  by (simp add: map_prod_def)
815
816functor map_prod: map_prod
817  by (auto simp add: split_paired_all)
818
819lemma fst_map_prod [simp]: "fst (map_prod f g x) = f (fst x)"
820  by (cases x) simp_all
821
822lemma snd_map_prod [simp]: "snd (map_prod f g x) = g (snd x)"
823  by (cases x) simp_all
824
825lemma fst_comp_map_prod [simp]: "fst \<circ> map_prod f g = f \<circ> fst"
826  by (rule ext) simp_all
827
828lemma snd_comp_map_prod [simp]: "snd \<circ> map_prod f g = g \<circ> snd"
829  by (rule ext) simp_all
830
831lemma map_prod_compose: "map_prod (f1 \<circ> f2) (g1 \<circ> g2) = (map_prod f1 g1 \<circ> map_prod f2 g2)"
832  by (rule ext) (simp add: map_prod.compositionality comp_def)
833
834lemma map_prod_ident [simp]: "map_prod (\<lambda>x. x) (\<lambda>y. y) = (\<lambda>z. z)"
835  by (rule ext) (simp add: map_prod.identity)
836
837lemma map_prod_imageI [intro]: "(a, b) \<in> R \<Longrightarrow> (f a, g b) \<in> map_prod f g ` R"
838  by (rule image_eqI) simp_all
839
840lemma prod_fun_imageE [elim!]:
841  assumes major: "c \<in> map_prod f g ` R"
842    and cases: "\<And>x y. c = (f x, g y) \<Longrightarrow> (x, y) \<in> R \<Longrightarrow> P"
843  shows P
844  apply (rule major [THEN imageE])
845  apply (case_tac x)
846  apply (rule cases)
847   apply simp_all
848  done
849
850definition apfst :: "('a \<Rightarrow> 'c) \<Rightarrow> 'a \<times> 'b \<Rightarrow> 'c \<times> 'b"
851  where "apfst f = map_prod f id"
852
853definition apsnd :: "('b \<Rightarrow> 'c) \<Rightarrow> 'a \<times> 'b \<Rightarrow> 'a \<times> 'c"
854  where "apsnd f = map_prod id f"
855
856lemma apfst_conv [simp, code]: "apfst f (x, y) = (f x, y)"
857  by (simp add: apfst_def)
858
859lemma apsnd_conv [simp, code]: "apsnd f (x, y) = (x, f y)"
860  by (simp add: apsnd_def)
861
862lemma fst_apfst [simp]: "fst (apfst f x) = f (fst x)"
863  by (cases x) simp
864
865lemma fst_comp_apfst [simp]: "fst \<circ> apfst f = f \<circ> fst"
866  by (simp add: fun_eq_iff)
867
868lemma fst_apsnd [simp]: "fst (apsnd f x) = fst x"
869  by (cases x) simp
870
871lemma fst_comp_apsnd [simp]: "fst \<circ> apsnd f = fst"
872  by (simp add: fun_eq_iff)
873
874lemma snd_apfst [simp]: "snd (apfst f x) = snd x"
875  by (cases x) simp
876
877lemma snd_comp_apfst [simp]: "snd \<circ> apfst f = snd"
878  by (simp add: fun_eq_iff)
879
880lemma snd_apsnd [simp]: "snd (apsnd f x) = f (snd x)"
881  by (cases x) simp
882
883lemma snd_comp_apsnd [simp]: "snd \<circ> apsnd f = f \<circ> snd"
884  by (simp add: fun_eq_iff)
885
886lemma apfst_compose: "apfst f (apfst g x) = apfst (f \<circ> g) x"
887  by (cases x) simp
888
889lemma apsnd_compose: "apsnd f (apsnd g x) = apsnd (f \<circ> g) x"
890  by (cases x) simp
891
892lemma apfst_apsnd [simp]: "apfst f (apsnd g x) = (f (fst x), g (snd x))"
893  by (cases x) simp
894
895lemma apsnd_apfst [simp]: "apsnd f (apfst g x) = (g (fst x), f (snd x))"
896  by (cases x) simp
897
898lemma apfst_id [simp]: "apfst id = id"
899  by (simp add: fun_eq_iff)
900
901lemma apsnd_id [simp]: "apsnd id = id"
902  by (simp add: fun_eq_iff)
903
904lemma apfst_eq_conv [simp]: "apfst f x = apfst g x \<longleftrightarrow> f (fst x) = g (fst x)"
905  by (cases x) simp
906
907lemma apsnd_eq_conv [simp]: "apsnd f x = apsnd g x \<longleftrightarrow> f (snd x) = g (snd x)"
908  by (cases x) simp
909
910lemma apsnd_apfst_commute: "apsnd f (apfst g p) = apfst g (apsnd f p)"
911  by simp
912
913context
914begin
915
916local_setup \<open>Local_Theory.map_background_naming (Name_Space.mandatory_path "prod")\<close>
917
918definition swap :: "'a \<times> 'b \<Rightarrow> 'b \<times> 'a"
919  where "swap p = (snd p, fst p)"
920
921end
922
923lemma swap_simp [simp]: "prod.swap (x, y) = (y, x)"
924  by (simp add: prod.swap_def)
925
926lemma swap_swap [simp]: "prod.swap (prod.swap p) = p"
927  by (cases p) simp
928
929lemma swap_comp_swap [simp]: "prod.swap \<circ> prod.swap = id"
930  by (simp add: fun_eq_iff)
931
932lemma pair_in_swap_image [simp]: "(y, x) \<in> prod.swap ` A \<longleftrightarrow> (x, y) \<in> A"
933  by (auto intro!: image_eqI)
934
935lemma inj_swap [simp]: "inj_on prod.swap A"
936  by (rule inj_onI) auto
937
938lemma swap_inj_on: "inj_on (\<lambda>(i, j). (j, i)) A"
939  by (rule inj_onI) auto
940
941lemma surj_swap [simp]: "surj prod.swap"
942  by (rule surjI [of _ prod.swap]) simp
943
944lemma bij_swap [simp]: "bij prod.swap"
945  by (simp add: bij_def)
946
947lemma case_swap [simp]: "(case prod.swap p of (y, x) \<Rightarrow> f x y) = (case p of (x, y) \<Rightarrow> f x y)"
948  by (cases p) simp
949
950lemma fst_swap [simp]: "fst (prod.swap x) = snd x"
951  by (cases x) simp
952
953lemma snd_swap [simp]: "snd (prod.swap x) = fst x"
954  by (cases x) simp
955
956text \<open>Disjoint union of a family of sets -- Sigma.\<close>
957
958definition Sigma :: "'a set \<Rightarrow> ('a \<Rightarrow> 'b set) \<Rightarrow> ('a \<times> 'b) set"
959  where "Sigma A B \<equiv> \<Union>x\<in>A. \<Union>y\<in>B x. {Pair x y}"
960
961abbreviation Times :: "'a set \<Rightarrow> 'b set \<Rightarrow> ('a \<times> 'b) set"  (infixr "\<times>" 80)
962  where "A \<times> B \<equiv> Sigma A (\<lambda>_. B)"
963
964hide_const (open) Times
965
966bundle no_Set_Product_syntax begin
967no_notation Product_Type.Times (infixr "\<times>" 80)
968end
969bundle Set_Product_syntax begin
970notation Product_Type.Times (infixr "\<times>" 80)
971end
972
973syntax
974  "_Sigma" :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b set \<Rightarrow> ('a \<times> 'b) set"  ("(3SIGMA _:_./ _)" [0, 0, 10] 10)
975translations
976  "SIGMA x:A. B" \<rightleftharpoons> "CONST Sigma A (\<lambda>x. B)"
977
978lemma SigmaI [intro!]: "a \<in> A \<Longrightarrow> b \<in> B a \<Longrightarrow> (a, b) \<in> Sigma A B"
979  unfolding Sigma_def by blast
980
981lemma SigmaE [elim!]: "c \<in> Sigma A B \<Longrightarrow> (\<And>x y. x \<in> A \<Longrightarrow> y \<in> B x \<Longrightarrow> c = (x, y) \<Longrightarrow> P) \<Longrightarrow> P"
982  \<comment> \<open>The general elimination rule.\<close>
983  unfolding Sigma_def by blast
984
985text \<open>
986  Elimination of @{term "(a, b) \<in> A \<times> B"} -- introduces no
987  eigenvariables.
988\<close>
989
990lemma SigmaD1: "(a, b) \<in> Sigma A B \<Longrightarrow> a \<in> A"
991  by blast
992
993lemma SigmaD2: "(a, b) \<in> Sigma A B \<Longrightarrow> b \<in> B a"
994  by blast
995
996lemma SigmaE2: "(a, b) \<in> Sigma A B \<Longrightarrow> (a \<in> A \<Longrightarrow> b \<in> B a \<Longrightarrow> P) \<Longrightarrow> P"
997  by blast
998
999lemma Sigma_cong: "A = B \<Longrightarrow> (\<And>x. x \<in> B \<Longrightarrow> C x = D x) \<Longrightarrow> (SIGMA x:A. C x) = (SIGMA x:B. D x)"
1000  by auto
1001
1002lemma Sigma_mono: "A \<subseteq> C \<Longrightarrow> (\<And>x. x \<in> A \<Longrightarrow> B x \<subseteq> D x) \<Longrightarrow> Sigma A B \<subseteq> Sigma C D"
1003  by blast
1004
1005lemma Sigma_empty1 [simp]: "Sigma {} B = {}"
1006  by blast
1007
1008lemma Sigma_empty2 [simp]: "A \<times> {} = {}"
1009  by blast
1010
1011lemma UNIV_Times_UNIV [simp]: "UNIV \<times> UNIV = UNIV"
1012  by auto
1013
1014lemma Compl_Times_UNIV1 [simp]: "- (UNIV \<times> A) = UNIV \<times> (-A)"
1015  by auto
1016
1017lemma Compl_Times_UNIV2 [simp]: "- (A \<times> UNIV) = (-A) \<times> UNIV"
1018  by auto
1019
1020lemma mem_Sigma_iff [iff]: "(a, b) \<in> Sigma A B \<longleftrightarrow> a \<in> A \<and> b \<in> B a"
1021  by blast
1022
1023lemma mem_Times_iff: "x \<in> A \<times> B \<longleftrightarrow> fst x \<in> A \<and> snd x \<in> B"
1024  by (induct x) simp
1025
1026lemma Sigma_empty_iff: "(SIGMA i:I. X i) = {} \<longleftrightarrow> (\<forall>i\<in>I. X i = {})"
1027  by auto
1028
1029lemma Times_subset_cancel2: "x \<in> C \<Longrightarrow> A \<times> C \<subseteq> B \<times> C \<longleftrightarrow> A \<subseteq> B"
1030  by blast
1031
1032lemma Times_eq_cancel2: "x \<in> C \<Longrightarrow> A \<times> C = B \<times> C \<longleftrightarrow> A = B"
1033  by (blast elim: equalityE)
1034
1035lemma Collect_case_prod_Sigma: "{(x, y). P x \<and> Q x y} = (SIGMA x:Collect P. Collect (Q x))"
1036  by blast
1037
1038lemma Collect_case_prod [simp]: "{(a, b). P a \<and> Q b} = Collect P \<times> Collect Q "
1039  by (fact Collect_case_prod_Sigma)
1040
1041lemma Collect_case_prodD: "x \<in> Collect (case_prod A) \<Longrightarrow> A (fst x) (snd x)"
1042  by auto
1043
1044lemma Collect_case_prod_mono: "A \<le> B \<Longrightarrow> Collect (case_prod A) \<subseteq> Collect (case_prod B)"
1045  by auto (auto elim!: le_funE)
1046
1047lemma Collect_split_mono_strong:
1048  "X = fst ` A \<Longrightarrow> Y = snd ` A \<Longrightarrow> \<forall>a\<in>X. \<forall>b \<in> Y. P a b \<longrightarrow> Q a b
1049    \<Longrightarrow> A \<subseteq> Collect (case_prod P) \<Longrightarrow> A \<subseteq> Collect (case_prod Q)"
1050  by fastforce
1051
1052lemma UN_Times_distrib: "(\<Union>(a, b)\<in>A \<times> B. E a \<times> F b) = UNION A E \<times> UNION B F"
1053  \<comment> \<open>Suggested by Pierre Chartier\<close>
1054  by blast
1055
1056lemma split_paired_Ball_Sigma [simp, no_atp]: "(\<forall>z\<in>Sigma A B. P z) \<longleftrightarrow> (\<forall>x\<in>A. \<forall>y\<in>B x. P (x, y))"
1057  by blast
1058
1059lemma split_paired_Bex_Sigma [simp, no_atp]: "(\<exists>z\<in>Sigma A B. P z) \<longleftrightarrow> (\<exists>x\<in>A. \<exists>y\<in>B x. P (x, y))"
1060  by blast
1061
1062lemma Sigma_Un_distrib1: "Sigma (I \<union> J) C = Sigma I C \<union> Sigma J C"
1063  by blast
1064
1065lemma Sigma_Un_distrib2: "(SIGMA i:I. A i \<union> B i) = Sigma I A \<union> Sigma I B"
1066  by blast
1067
1068lemma Sigma_Int_distrib1: "Sigma (I \<inter> J) C = Sigma I C \<inter> Sigma J C"
1069  by blast
1070
1071lemma Sigma_Int_distrib2: "(SIGMA i:I. A i \<inter> B i) = Sigma I A \<inter> Sigma I B"
1072  by blast
1073
1074lemma Sigma_Diff_distrib1: "Sigma (I - J) C = Sigma I C - Sigma J C"
1075  by blast
1076
1077lemma Sigma_Diff_distrib2: "(SIGMA i:I. A i - B i) = Sigma I A - Sigma I B"
1078  by blast
1079
1080lemma Sigma_Union: "Sigma (\<Union>X) B = (\<Union>A\<in>X. Sigma A B)"
1081  by blast
1082
1083lemma Pair_vimage_Sigma: "Pair x -` Sigma A f = (if x \<in> A then f x else {})"
1084  by auto
1085
1086text \<open>
1087  Non-dependent versions are needed to avoid the need for higher-order
1088  matching, especially when the rules are re-oriented.
1089\<close>
1090
1091lemma Times_Un_distrib1: "(A \<union> B) \<times> C = A \<times> C \<union> B \<times> C "
1092  by (fact Sigma_Un_distrib1)
1093
1094lemma Times_Int_distrib1: "(A \<inter> B) \<times> C = A \<times> C \<inter> B \<times> C "
1095  by (fact Sigma_Int_distrib1)
1096
1097lemma Times_Diff_distrib1: "(A - B) \<times> C = A \<times> C - B \<times> C "
1098  by (fact Sigma_Diff_distrib1)
1099
1100lemma Times_empty [simp]: "A \<times> B = {} \<longleftrightarrow> A = {} \<or> B = {}"
1101  by auto
1102
1103lemma times_eq_iff: "A \<times> B = C \<times> D \<longleftrightarrow> A = C \<and> B = D \<or> (A = {} \<or> B = {}) \<and> (C = {} \<or> D = {})"
1104  by auto
1105
1106lemma fst_image_times [simp]: "fst ` (A \<times> B) = (if B = {} then {} else A)"
1107  by force
1108
1109lemma snd_image_times [simp]: "snd ` (A \<times> B) = (if A = {} then {} else B)"
1110  by force
1111
1112lemma fst_image_Sigma: "fst ` (Sigma A B) = {x \<in> A. B(x) \<noteq> {}}"
1113  by force
1114
1115lemma snd_image_Sigma: "snd ` (Sigma A B) = (\<Union> x \<in> A. B x)"
1116  by force
1117
1118lemma vimage_fst: "fst -` A = A \<times> UNIV"
1119  by auto
1120
1121lemma vimage_snd: "snd -` A = UNIV \<times> A"
1122  by auto
1123
1124lemma insert_times_insert [simp]:
1125  "insert a A \<times> insert b B = insert (a,b) (A \<times> insert b B \<union> insert a A \<times> B)"
1126  by blast
1127
1128lemma vimage_Times: "f -` (A \<times> B) = (fst \<circ> f) -` A \<inter> (snd \<circ> f) -` B"
1129proof (rule set_eqI)
1130  show "x \<in> f -` (A \<times> B) \<longleftrightarrow> x \<in> (fst \<circ> f) -` A \<inter> (snd \<circ> f) -` B" for x
1131    by (cases "f x") (auto split: prod.split)
1132qed
1133
1134lemma times_Int_times: "A \<times> B \<inter> C \<times> D = (A \<inter> C) \<times> (B \<inter> D)"
1135  by auto
1136
1137lemma product_swap: "prod.swap ` (A \<times> B) = B \<times> A"
1138  by (auto simp add: set_eq_iff)
1139
1140lemma swap_product: "(\<lambda>(i, j). (j, i)) ` (A \<times> B) = B \<times> A"
1141  by (auto simp add: set_eq_iff)
1142
1143lemma image_split_eq_Sigma: "(\<lambda>x. (f x, g x)) ` A = Sigma (f ` A) (\<lambda>x. g ` (f -` {x} \<inter> A))"
1144proof (safe intro!: imageI)
1145  fix a b
1146  assume *: "a \<in> A" "b \<in> A" and eq: "f a = f b"
1147  show "(f b, g a) \<in> (\<lambda>x. (f x, g x)) ` A"
1148    using * eq[symmetric] by auto
1149qed simp_all
1150
1151lemma subset_fst_snd: "A \<subseteq> (fst ` A \<times> snd ` A)"
1152  by force
1153
1154lemma inj_on_apfst [simp]: "inj_on (apfst f) (A \<times> UNIV) \<longleftrightarrow> inj_on f A"
1155  by (auto simp add: inj_on_def)
1156
1157lemma inj_apfst [simp]: "inj (apfst f) \<longleftrightarrow> inj f"
1158  using inj_on_apfst[of f UNIV] by simp
1159
1160lemma inj_on_apsnd [simp]: "inj_on (apsnd f) (UNIV \<times> A) \<longleftrightarrow> inj_on f A"
1161  by (auto simp add: inj_on_def)
1162
1163lemma inj_apsnd [simp]: "inj (apsnd f) \<longleftrightarrow> inj f"
1164  using inj_on_apsnd[of f UNIV] by simp
1165
1166context
1167begin
1168
1169qualified definition product :: "'a set \<Rightarrow> 'b set \<Rightarrow> ('a \<times> 'b) set"
1170  where [code_abbrev]: "product A B = A \<times> B"
1171
1172lemma member_product: "x \<in> Product_Type.product A B \<longleftrightarrow> x \<in> A \<times> B"
1173  by (simp add: product_def)
1174
1175end
1176
1177text \<open>The following @{const map_prod} lemmas are due to Joachim Breitner:\<close>
1178
1179lemma map_prod_inj_on:
1180  assumes "inj_on f A"
1181    and "inj_on g B"
1182  shows "inj_on (map_prod f g) (A \<times> B)"
1183proof (rule inj_onI)
1184  fix x :: "'a \<times> 'c"
1185  fix y :: "'a \<times> 'c"
1186  assume "x \<in> A \<times> B"
1187  then have "fst x \<in> A" and "snd x \<in> B" by auto
1188  assume "y \<in> A \<times> B"
1189  then have "fst y \<in> A" and "snd y \<in> B" by auto
1190  assume "map_prod f g x = map_prod f g y"
1191  then have "fst (map_prod f g x) = fst (map_prod f g y)" by auto
1192  then have "f (fst x) = f (fst y)" by (cases x, cases y) auto
1193  with \<open>inj_on f A\<close> and \<open>fst x \<in> A\<close> and \<open>fst y \<in> A\<close> have "fst x = fst y"
1194    by (auto dest: inj_onD)
1195  moreover from \<open>map_prod f g x = map_prod f g y\<close>
1196  have "snd (map_prod f g x) = snd (map_prod f g y)" by auto
1197  then have "g (snd x) = g (snd y)" by (cases x, cases y) auto
1198  with \<open>inj_on g B\<close> and \<open>snd x \<in> B\<close> and \<open>snd y \<in> B\<close> have "snd x = snd y"
1199    by (auto dest: inj_onD)
1200  ultimately show "x = y" by (rule prod_eqI)
1201qed
1202
1203lemma map_prod_surj:
1204  fixes f :: "'a \<Rightarrow> 'b"
1205    and g :: "'c \<Rightarrow> 'd"
1206  assumes "surj f" and "surj g"
1207  shows "surj (map_prod f g)"
1208  unfolding surj_def
1209proof
1210  fix y :: "'b \<times> 'd"
1211  from \<open>surj f\<close> obtain a where "fst y = f a"
1212    by (auto elim: surjE)
1213  moreover
1214  from \<open>surj g\<close> obtain b where "snd y = g b"
1215    by (auto elim: surjE)
1216  ultimately have "(fst y, snd y) = map_prod f g (a,b)"
1217    by auto
1218  then show "\<exists>x. y = map_prod f g x"
1219    by auto
1220qed
1221
1222lemma map_prod_surj_on:
1223  assumes "f ` A = A'" and "g ` B = B'"
1224  shows "map_prod f g ` (A \<times> B) = A' \<times> B'"
1225  unfolding image_def
1226proof (rule set_eqI, rule iffI)
1227  fix x :: "'a \<times> 'c"
1228  assume "x \<in> {y::'a \<times> 'c. \<exists>x::'b \<times> 'd\<in>A \<times> B. y = map_prod f g x}"
1229  then obtain y where "y \<in> A \<times> B" and "x = map_prod f g y"
1230    by blast
1231  from \<open>image f A = A'\<close> and \<open>y \<in> A \<times> B\<close> have "f (fst y) \<in> A'"
1232    by auto
1233  moreover from \<open>image g B = B'\<close> and \<open>y \<in> A \<times> B\<close> have "g (snd y) \<in> B'"
1234    by auto
1235  ultimately have "(f (fst y), g (snd y)) \<in> (A' \<times> B')"
1236    by auto
1237  with \<open>x = map_prod f g y\<close> show "x \<in> A' \<times> B'"
1238    by (cases y) auto
1239next
1240  fix x :: "'a \<times> 'c"
1241  assume "x \<in> A' \<times> B'"
1242  then have "fst x \<in> A'" and "snd x \<in> B'"
1243    by auto
1244  from \<open>image f A = A'\<close> and \<open>fst x \<in> A'\<close> have "fst x \<in> image f A"
1245    by auto
1246  then obtain a where "a \<in> A" and "fst x = f a"
1247    by (rule imageE)
1248  moreover from \<open>image g B = B'\<close> and \<open>snd x \<in> B'\<close> obtain b where "b \<in> B" and "snd x = g b"
1249    by auto
1250  ultimately have "(fst x, snd x) = map_prod f g (a, b)"
1251    by auto
1252  moreover from \<open>a \<in> A\<close> and  \<open>b \<in> B\<close> have "(a , b) \<in> A \<times> B"
1253    by auto
1254  ultimately have "\<exists>y \<in> A \<times> B. x = map_prod f g y"
1255    by auto
1256  then show "x \<in> {x. \<exists>y \<in> A \<times> B. x = map_prod f g y}"
1257    by auto
1258qed
1259
1260
1261subsection \<open>Simproc for rewriting a set comprehension into a pointfree expression\<close>
1262
1263ML_file "Tools/set_comprehension_pointfree.ML"
1264
1265setup \<open>
1266  Code_Preproc.map_pre (fn ctxt => ctxt addsimprocs
1267    [Simplifier.make_simproc @{context} "set comprehension"
1268      {lhss = [@{term "Collect P"}],
1269       proc = K Set_Comprehension_Pointfree.code_simproc}])
1270\<close>
1271
1272
1273subsection \<open>Inductively defined sets\<close>
1274
1275(* simplify {(x1, ..., xn). (x1, ..., xn) : S} to S *)
1276simproc_setup Collect_mem ("Collect t") = \<open>
1277  fn _ => fn ctxt => fn ct =>
1278    (case Thm.term_of ct of
1279      S as Const (@{const_name Collect}, Type (@{type_name fun}, [_, T])) $ t =>
1280        let val (u, _, ps) = HOLogic.strip_ptupleabs t in
1281          (case u of
1282            (c as Const (@{const_name Set.member}, _)) $ q $ S' =>
1283              (case try (HOLogic.strip_ptuple ps) q of
1284                NONE => NONE
1285              | SOME ts =>
1286                  if not (Term.is_open S') andalso
1287                    ts = map Bound (length ps downto 0)
1288                  then
1289                    let val simp =
1290                      full_simp_tac (put_simpset HOL_basic_ss ctxt
1291                        addsimps [@{thm split_paired_all}, @{thm case_prod_conv}]) 1
1292                    in
1293                      SOME (Goal.prove ctxt [] []
1294                        (Const (@{const_name Pure.eq}, T --> T --> propT) $ S $ S')
1295                        (K (EVERY
1296                          [resolve_tac ctxt [eq_reflection] 1,
1297                           resolve_tac ctxt @{thms subset_antisym} 1,
1298                           resolve_tac ctxt @{thms subsetI} 1,
1299                           dresolve_tac ctxt @{thms CollectD} 1, simp,
1300                           resolve_tac ctxt @{thms subsetI} 1,
1301                           resolve_tac ctxt @{thms CollectI} 1, simp])))
1302                    end
1303                  else NONE)
1304          | _ => NONE)
1305        end
1306    | _ => NONE)
1307\<close>
1308
1309ML_file "Tools/inductive_set.ML"
1310
1311
1312subsection \<open>Legacy theorem bindings and duplicates\<close>
1313
1314lemmas fst_conv = prod.sel(1)
1315lemmas snd_conv = prod.sel(2)
1316lemmas split_def = case_prod_unfold
1317lemmas split_beta' = case_prod_beta'
1318lemmas split_beta = prod.case_eq_if
1319lemmas split_conv = case_prod_conv
1320lemmas split = case_prod_conv
1321
1322hide_const (open) prod
1323
1324end
1325