1(*  Title:      HOL/Nat.thy
2    Author:     Tobias Nipkow
3    Author:     Lawrence C Paulson
4    Author:     Markus Wenzel
5*)
6
7section \<open>Natural numbers\<close>
8
9theory Nat
10imports Inductive Typedef Fun Rings
11begin
12
13subsection \<open>Type \<open>ind\<close>\<close>
14
15typedecl ind
16
17axiomatization Zero_Rep :: ind and Suc_Rep :: "ind \<Rightarrow> ind"
18  \<comment> \<open>The axiom of infinity in 2 parts:\<close>
19  where Suc_Rep_inject: "Suc_Rep x = Suc_Rep y \<Longrightarrow> x = y"
20    and Suc_Rep_not_Zero_Rep: "Suc_Rep x \<noteq> Zero_Rep"
21
22
23subsection \<open>Type nat\<close>
24
25text \<open>Type definition\<close>
26
27inductive Nat :: "ind \<Rightarrow> bool"
28  where
29    Zero_RepI: "Nat Zero_Rep"
30  | Suc_RepI: "Nat i \<Longrightarrow> Nat (Suc_Rep i)"
31
32typedef nat = "{n. Nat n}"
33  morphisms Rep_Nat Abs_Nat
34  using Nat.Zero_RepI by auto
35
36lemma Nat_Rep_Nat: "Nat (Rep_Nat n)"
37  using Rep_Nat by simp
38
39lemma Nat_Abs_Nat_inverse: "Nat n \<Longrightarrow> Rep_Nat (Abs_Nat n) = n"
40  using Abs_Nat_inverse by simp
41
42lemma Nat_Abs_Nat_inject: "Nat n \<Longrightarrow> Nat m \<Longrightarrow> Abs_Nat n = Abs_Nat m \<longleftrightarrow> n = m"
43  using Abs_Nat_inject by simp
44
45instantiation nat :: zero
46begin
47
48definition Zero_nat_def: "0 = Abs_Nat Zero_Rep"
49
50instance ..
51
52end
53
54definition Suc :: "nat \<Rightarrow> nat"
55  where "Suc n = Abs_Nat (Suc_Rep (Rep_Nat n))"
56
57lemma Suc_not_Zero: "Suc m \<noteq> 0"
58  by (simp add: Zero_nat_def Suc_def Suc_RepI Zero_RepI
59      Nat_Abs_Nat_inject Suc_Rep_not_Zero_Rep Nat_Rep_Nat)
60
61lemma Zero_not_Suc: "0 \<noteq> Suc m"
62  by (rule not_sym) (rule Suc_not_Zero)
63
64lemma Suc_Rep_inject': "Suc_Rep x = Suc_Rep y \<longleftrightarrow> x = y"
65  by (rule iffI, rule Suc_Rep_inject) simp_all
66
67lemma nat_induct0:
68  assumes "P 0"
69    and "\<And>n. P n \<Longrightarrow> P (Suc n)"
70  shows "P n"
71  using assms
72  apply (unfold Zero_nat_def Suc_def)
73  apply (rule Rep_Nat_inverse [THEN subst]) \<comment> \<open>types force good instantiation\<close>
74  apply (erule Nat_Rep_Nat [THEN Nat.induct])
75  apply (iprover elim: Nat_Abs_Nat_inverse [THEN subst])
76  done
77
78free_constructors case_nat for "0 :: nat" | Suc pred
79  where "pred (0 :: nat) = (0 :: nat)"
80    apply atomize_elim
81    apply (rename_tac n, induct_tac n rule: nat_induct0, auto)
82   apply (simp add: Suc_def Nat_Abs_Nat_inject Nat_Rep_Nat Suc_RepI Suc_Rep_inject' Rep_Nat_inject)
83  apply (simp only: Suc_not_Zero)
84  done
85
86\<comment> \<open>Avoid name clashes by prefixing the output of \<open>old_rep_datatype\<close> with \<open>old\<close>.\<close>
87setup \<open>Sign.mandatory_path "old"\<close>
88
89old_rep_datatype "0 :: nat" Suc
90    apply (erule nat_induct0)
91    apply assumption
92   apply (rule nat.inject)
93  apply (rule nat.distinct(1))
94  done
95
96setup \<open>Sign.parent_path\<close>
97
98\<comment> \<open>But erase the prefix for properties that are not generated by \<open>free_constructors\<close>.\<close>
99setup \<open>Sign.mandatory_path "nat"\<close>
100
101declare old.nat.inject[iff del]
102  and old.nat.distinct(1)[simp del, induct_simp del]
103
104lemmas induct = old.nat.induct
105lemmas inducts = old.nat.inducts
106lemmas rec = old.nat.rec
107lemmas simps = nat.inject nat.distinct nat.case nat.rec
108
109setup \<open>Sign.parent_path\<close>
110
111abbreviation rec_nat :: "'a \<Rightarrow> (nat \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> nat \<Rightarrow> 'a"
112  where "rec_nat \<equiv> old.rec_nat"
113
114declare nat.sel[code del]
115
116hide_const (open) Nat.pred \<comment> \<open>hide everything related to the selector\<close>
117hide_fact
118  nat.case_eq_if
119  nat.collapse
120  nat.expand
121  nat.sel
122  nat.exhaust_sel
123  nat.split_sel
124  nat.split_sel_asm
125
126lemma nat_exhaust [case_names 0 Suc, cases type: nat]:
127  "(y = 0 \<Longrightarrow> P) \<Longrightarrow> (\<And>nat. y = Suc nat \<Longrightarrow> P) \<Longrightarrow> P"
128  \<comment> \<open>for backward compatibility -- names of variables differ\<close>
129  by (rule old.nat.exhaust)
130
131lemma nat_induct [case_names 0 Suc, induct type: nat]:
132  fixes n
133  assumes "P 0" and "\<And>n. P n \<Longrightarrow> P (Suc n)"
134  shows "P n"
135  \<comment> \<open>for backward compatibility -- names of variables differ\<close>
136  using assms by (rule nat.induct)
137
138hide_fact
139  nat_exhaust
140  nat_induct0
141
142ML \<open>
143val nat_basic_lfp_sugar =
144  let
145    val ctr_sugar = the (Ctr_Sugar.ctr_sugar_of_global @{theory} @{type_name nat});
146    val recx = Logic.varify_types_global @{term rec_nat};
147    val C = body_type (fastype_of recx);
148  in
149    {T = HOLogic.natT, fp_res_index = 0, C = C, fun_arg_Tsss = [[], [[HOLogic.natT, C]]],
150     ctr_sugar = ctr_sugar, recx = recx, rec_thms = @{thms nat.rec}}
151  end;
152\<close>
153
154setup \<open>
155let
156  fun basic_lfp_sugars_of _ [@{typ nat}] _ _ ctxt =
157      ([], [0], [nat_basic_lfp_sugar], [], [], [], TrueI (*dummy*), [], false, ctxt)
158    | basic_lfp_sugars_of bs arg_Ts callers callssss ctxt =
159      BNF_LFP_Rec_Sugar.default_basic_lfp_sugars_of bs arg_Ts callers callssss ctxt;
160in
161  BNF_LFP_Rec_Sugar.register_lfp_rec_extension
162    {nested_simps = [], special_endgame_tac = K (K (K (K no_tac))), is_new_datatype = K (K true),
163     basic_lfp_sugars_of = basic_lfp_sugars_of, rewrite_nested_rec_call = NONE}
164end
165\<close>
166
167text \<open>Injectiveness and distinctness lemmas\<close>
168
169context cancel_ab_semigroup_add
170begin
171
172lemma inj_on_add [simp]:
173  "inj_on (plus a) A"
174proof (rule inj_onI)
175  fix b c
176  assume "a + b = a + c"
177  then have "a + b - a = a + c - a"
178    by (simp only:)
179  then show "b = c"
180    by simp
181qed
182
183lemma inj_on_add' [simp]:
184  "inj_on (\<lambda>b. b + a) A"
185  using inj_on_add [of a A] by (simp add: add.commute [of _ a])
186
187lemma bij_betw_add [simp]:
188  "bij_betw (plus a) A B \<longleftrightarrow> plus a ` A = B"
189  by (simp add: bij_betw_def)
190
191end
192
193text \<open>Translation lemmas\<close>
194
195context ab_group_add
196begin
197
198lemma surj_plus [simp]: "surj (plus a)"
199  by (auto intro: range_eqI [of b "plus a" "b - a" for b] simp add: algebra_simps)
200
201end
202
203lemma translation_Compl:
204  fixes a :: "'a::ab_group_add"
205  shows "(\<lambda>x. a + x) ` (- t) = - ((\<lambda>x. a + x) ` t)"
206  apply (auto simp: image_iff)
207  apply (rule_tac x="x - a" in bexI, auto)
208  done
209
210lemma translation_UNIV:
211  fixes a :: "'a::ab_group_add"
212  shows "range (\<lambda>x. a + x) = UNIV"
213  by (fact surj_plus)
214
215lemma translation_diff:
216  fixes a :: "'a::ab_group_add"
217  shows "(\<lambda>x. a + x) ` (s - t) = ((\<lambda>x. a + x) ` s) - ((\<lambda>x. a + x) ` t)"
218  by auto
219
220lemma translation_Int:
221  fixes a :: "'a::ab_group_add"
222  shows "(\<lambda>x. a + x) ` (s \<inter> t) = ((\<lambda>x. a + x) ` s) \<inter> ((\<lambda>x. a + x) ` t)"
223  by auto
224
225context semidom_divide
226begin
227
228lemma inj_on_mult:
229  "inj_on (times a) A" if "a \<noteq> 0"
230proof (rule inj_onI)
231  fix b c
232  assume "a * b = a * c"
233  then have "a * b div a = a * c div a"
234    by (simp only:)
235  with that show "b = c"
236    by simp
237qed
238
239end
240
241lemma inj_Suc [simp]:
242  "inj_on Suc N"
243  by (simp add: inj_on_def)
244
245lemma bij_betw_Suc [simp]:
246  "bij_betw Suc M N \<longleftrightarrow> Suc ` M = N"
247  by (simp add: bij_betw_def)
248
249lemma Suc_neq_Zero: "Suc m = 0 \<Longrightarrow> R"
250  by (rule notE) (rule Suc_not_Zero)
251
252lemma Zero_neq_Suc: "0 = Suc m \<Longrightarrow> R"
253  by (rule Suc_neq_Zero) (erule sym)
254
255lemma Suc_inject: "Suc x = Suc y \<Longrightarrow> x = y"
256  by (rule inj_Suc [THEN injD])
257
258lemma n_not_Suc_n: "n \<noteq> Suc n"
259  by (induct n) simp_all
260
261lemma Suc_n_not_n: "Suc n \<noteq> n"
262  by (rule not_sym) (rule n_not_Suc_n)
263
264text \<open>A special form of induction for reasoning about @{term "m < n"} and @{term "m - n"}.\<close>
265lemma diff_induct:
266  assumes "\<And>x. P x 0"
267    and "\<And>y. P 0 (Suc y)"
268    and "\<And>x y. P x y \<Longrightarrow> P (Suc x) (Suc y)"
269  shows "P m n"
270proof (induct n arbitrary: m)
271  case 0
272  show ?case by (rule assms(1))
273next
274  case (Suc n)
275  show ?case
276  proof (induct m)
277    case 0
278    show ?case by (rule assms(2))
279  next
280    case (Suc m)
281    from \<open>P m n\<close> show ?case by (rule assms(3))
282  qed
283qed
284
285
286subsection \<open>Arithmetic operators\<close>
287
288instantiation nat :: comm_monoid_diff
289begin
290
291primrec plus_nat
292  where
293    add_0: "0 + n = (n::nat)"
294  | add_Suc: "Suc m + n = Suc (m + n)"
295
296lemma add_0_right [simp]: "m + 0 = m"
297  for m :: nat
298  by (induct m) simp_all
299
300lemma add_Suc_right [simp]: "m + Suc n = Suc (m + n)"
301  by (induct m) simp_all
302
303declare add_0 [code]
304
305lemma add_Suc_shift [code]: "Suc m + n = m + Suc n"
306  by simp
307
308primrec minus_nat
309  where
310    diff_0 [code]: "m - 0 = (m::nat)"
311  | diff_Suc: "m - Suc n = (case m - n of 0 \<Rightarrow> 0 | Suc k \<Rightarrow> k)"
312
313declare diff_Suc [simp del]
314
315lemma diff_0_eq_0 [simp, code]: "0 - n = 0"
316  for n :: nat
317  by (induct n) (simp_all add: diff_Suc)
318
319lemma diff_Suc_Suc [simp, code]: "Suc m - Suc n = m - n"
320  by (induct n) (simp_all add: diff_Suc)
321
322instance
323proof
324  fix n m q :: nat
325  show "(n + m) + q = n + (m + q)" by (induct n) simp_all
326  show "n + m = m + n" by (induct n) simp_all
327  show "m + n - m = n" by (induct m) simp_all
328  show "n - m - q = n - (m + q)" by (induct q) (simp_all add: diff_Suc)
329  show "0 + n = n" by simp
330  show "0 - n = 0" by simp
331qed
332
333end
334
335hide_fact (open) add_0 add_0_right diff_0
336
337instantiation nat :: comm_semiring_1_cancel
338begin
339
340definition One_nat_def [simp]: "1 = Suc 0"
341
342primrec times_nat
343  where
344    mult_0: "0 * n = (0::nat)"
345  | mult_Suc: "Suc m * n = n + (m * n)"
346
347lemma mult_0_right [simp]: "m * 0 = 0"
348  for m :: nat
349  by (induct m) simp_all
350
351lemma mult_Suc_right [simp]: "m * Suc n = m + (m * n)"
352  by (induct m) (simp_all add: add.left_commute)
353
354lemma add_mult_distrib: "(m + n) * k = (m * k) + (n * k)"
355  for m n k :: nat
356  by (induct m) (simp_all add: add.assoc)
357
358instance
359proof
360  fix k n m q :: nat
361  show "0 \<noteq> (1::nat)"
362    by simp
363  show "1 * n = n"
364    by simp
365  show "n * m = m * n"
366    by (induct n) simp_all
367  show "(n * m) * q = n * (m * q)"
368    by (induct n) (simp_all add: add_mult_distrib)
369  show "(n + m) * q = n * q + m * q"
370    by (rule add_mult_distrib)
371  show "k * (m - n) = (k * m) - (k * n)"
372    by (induct m n rule: diff_induct) simp_all
373qed
374
375end
376
377
378subsubsection \<open>Addition\<close>
379
380text \<open>Reasoning about \<open>m + 0 = 0\<close>, etc.\<close>
381
382lemma add_is_0 [iff]: "m + n = 0 \<longleftrightarrow> m = 0 \<and> n = 0"
383  for m n :: nat
384  by (cases m) simp_all
385
386lemma add_is_1: "m + n = Suc 0 \<longleftrightarrow> m = Suc 0 \<and> n = 0 \<or> m = 0 \<and> n = Suc 0"
387  by (cases m) simp_all
388
389lemma one_is_add: "Suc 0 = m + n \<longleftrightarrow> m = Suc 0 \<and> n = 0 \<or> m = 0 \<and> n = Suc 0"
390  by (rule trans, rule eq_commute, rule add_is_1)
391
392lemma add_eq_self_zero: "m + n = m \<Longrightarrow> n = 0"
393  for m n :: nat
394  by (induct m) simp_all
395
396lemma plus_1_eq_Suc:
397  "plus 1 = Suc"
398  by (simp add: fun_eq_iff)
399
400lemma Suc_eq_plus1: "Suc n = n + 1"
401  by simp
402
403lemma Suc_eq_plus1_left: "Suc n = 1 + n"
404  by simp
405
406
407subsubsection \<open>Difference\<close>
408
409lemma Suc_diff_diff [simp]: "(Suc m - n) - Suc k = m - n - k"
410  by (simp add: diff_diff_add)
411
412lemma diff_Suc_1 [simp]: "Suc n - 1 = n"
413  by simp
414
415
416subsubsection \<open>Multiplication\<close>
417
418lemma mult_is_0 [simp]: "m * n = 0 \<longleftrightarrow> m = 0 \<or> n = 0" for m n :: nat
419  by (induct m) auto
420
421lemma mult_eq_1_iff [simp]: "m * n = Suc 0 \<longleftrightarrow> m = Suc 0 \<and> n = Suc 0"
422proof (induct m)
423  case 0
424  then show ?case by simp
425next
426  case (Suc m)
427  then show ?case by (induct n) auto
428qed
429
430lemma one_eq_mult_iff [simp]: "Suc 0 = m * n \<longleftrightarrow> m = Suc 0 \<and> n = Suc 0"
431  apply (rule trans)
432   apply (rule_tac [2] mult_eq_1_iff)
433  apply fastforce
434  done
435
436lemma nat_mult_eq_1_iff [simp]: "m * n = 1 \<longleftrightarrow> m = 1 \<and> n = 1"
437  for m n :: nat
438  unfolding One_nat_def by (rule mult_eq_1_iff)
439
440lemma nat_1_eq_mult_iff [simp]: "1 = m * n \<longleftrightarrow> m = 1 \<and> n = 1"
441  for m n :: nat
442  unfolding One_nat_def by (rule one_eq_mult_iff)
443
444lemma mult_cancel1 [simp]: "k * m = k * n \<longleftrightarrow> m = n \<or> k = 0"
445  for k m n :: nat
446proof -
447  have "k \<noteq> 0 \<Longrightarrow> k * m = k * n \<Longrightarrow> m = n"
448  proof (induct n arbitrary: m)
449    case 0
450    then show "m = 0" by simp
451  next
452    case (Suc n)
453    then show "m = Suc n"
454      by (cases m) (simp_all add: eq_commute [of 0])
455  qed
456  then show ?thesis by auto
457qed
458
459lemma mult_cancel2 [simp]: "m * k = n * k \<longleftrightarrow> m = n \<or> k = 0"
460  for k m n :: nat
461  by (simp add: mult.commute)
462
463lemma Suc_mult_cancel1: "Suc k * m = Suc k * n \<longleftrightarrow> m = n"
464  by (subst mult_cancel1) simp
465
466
467subsection \<open>Orders on @{typ nat}\<close>
468
469subsubsection \<open>Operation definition\<close>
470
471instantiation nat :: linorder
472begin
473
474primrec less_eq_nat
475  where
476    "(0::nat) \<le> n \<longleftrightarrow> True"
477  | "Suc m \<le> n \<longleftrightarrow> (case n of 0 \<Rightarrow> False | Suc n \<Rightarrow> m \<le> n)"
478
479declare less_eq_nat.simps [simp del]
480
481lemma le0 [iff]: "0 \<le> n" for
482  n :: nat
483  by (simp add: less_eq_nat.simps)
484
485lemma [code]: "0 \<le> n \<longleftrightarrow> True"
486  for n :: nat
487  by simp
488
489definition less_nat
490  where less_eq_Suc_le: "n < m \<longleftrightarrow> Suc n \<le> m"
491
492lemma Suc_le_mono [iff]: "Suc n \<le> Suc m \<longleftrightarrow> n \<le> m"
493  by (simp add: less_eq_nat.simps(2))
494
495lemma Suc_le_eq [code]: "Suc m \<le> n \<longleftrightarrow> m < n"
496  unfolding less_eq_Suc_le ..
497
498lemma le_0_eq [iff]: "n \<le> 0 \<longleftrightarrow> n = 0"
499  for n :: nat
500  by (induct n) (simp_all add: less_eq_nat.simps(2))
501
502lemma not_less0 [iff]: "\<not> n < 0"
503  for n :: nat
504  by (simp add: less_eq_Suc_le)
505
506lemma less_nat_zero_code [code]: "n < 0 \<longleftrightarrow> False"
507  for n :: nat
508  by simp
509
510lemma Suc_less_eq [iff]: "Suc m < Suc n \<longleftrightarrow> m < n"
511  by (simp add: less_eq_Suc_le)
512
513lemma less_Suc_eq_le [code]: "m < Suc n \<longleftrightarrow> m \<le> n"
514  by (simp add: less_eq_Suc_le)
515
516lemma Suc_less_eq2: "Suc n < m \<longleftrightarrow> (\<exists>m'. m = Suc m' \<and> n < m')"
517  by (cases m) auto
518
519lemma le_SucI: "m \<le> n \<Longrightarrow> m \<le> Suc n"
520  by (induct m arbitrary: n) (simp_all add: less_eq_nat.simps(2) split: nat.splits)
521
522lemma Suc_leD: "Suc m \<le> n \<Longrightarrow> m \<le> n"
523  by (cases n) (auto intro: le_SucI)
524
525lemma less_SucI: "m < n \<Longrightarrow> m < Suc n"
526  by (simp add: less_eq_Suc_le) (erule Suc_leD)
527
528lemma Suc_lessD: "Suc m < n \<Longrightarrow> m < n"
529  by (simp add: less_eq_Suc_le) (erule Suc_leD)
530
531instance
532proof
533  fix n m q :: nat
534  show "n < m \<longleftrightarrow> n \<le> m \<and> \<not> m \<le> n"
535  proof (induct n arbitrary: m)
536    case 0
537    then show ?case
538      by (cases m) (simp_all add: less_eq_Suc_le)
539  next
540    case (Suc n)
541    then show ?case
542      by (cases m) (simp_all add: less_eq_Suc_le)
543  qed
544  show "n \<le> n"
545    by (induct n) simp_all
546  then show "n = m" if "n \<le> m" and "m \<le> n"
547    using that by (induct n arbitrary: m)
548      (simp_all add: less_eq_nat.simps(2) split: nat.splits)
549  show "n \<le> q" if "n \<le> m" and "m \<le> q"
550    using that
551  proof (induct n arbitrary: m q)
552    case 0
553    show ?case by simp
554  next
555    case (Suc n)
556    then show ?case
557      by (simp_all (no_asm_use) add: less_eq_nat.simps(2) split: nat.splits, clarify,
558        simp_all (no_asm_use) add: less_eq_nat.simps(2) split: nat.splits, clarify,
559        simp_all (no_asm_use) add: less_eq_nat.simps(2) split: nat.splits)
560  qed
561  show "n \<le> m \<or> m \<le> n"
562    by (induct n arbitrary: m)
563      (simp_all add: less_eq_nat.simps(2) split: nat.splits)
564qed
565
566end
567
568instantiation nat :: order_bot
569begin
570
571definition bot_nat :: nat
572  where "bot_nat = 0"
573
574instance
575  by standard (simp add: bot_nat_def)
576
577end
578
579instance nat :: no_top
580  by standard (auto intro: less_Suc_eq_le [THEN iffD2])
581
582
583subsubsection \<open>Introduction properties\<close>
584
585lemma lessI [iff]: "n < Suc n"
586  by (simp add: less_Suc_eq_le)
587
588lemma zero_less_Suc [iff]: "0 < Suc n"
589  by (simp add: less_Suc_eq_le)
590
591
592subsubsection \<open>Elimination properties\<close>
593
594lemma less_not_refl: "\<not> n < n"
595  for n :: nat
596  by (rule order_less_irrefl)
597
598lemma less_not_refl2: "n < m \<Longrightarrow> m \<noteq> n"
599  for m n :: nat
600  by (rule not_sym) (rule less_imp_neq)
601
602lemma less_not_refl3: "s < t \<Longrightarrow> s \<noteq> t"
603  for s t :: nat
604  by (rule less_imp_neq)
605
606lemma less_irrefl_nat: "n < n \<Longrightarrow> R"
607  for n :: nat
608  by (rule notE, rule less_not_refl)
609
610lemma less_zeroE: "n < 0 \<Longrightarrow> R"
611  for n :: nat
612  by (rule notE) (rule not_less0)
613
614lemma less_Suc_eq: "m < Suc n \<longleftrightarrow> m < n \<or> m = n"
615  unfolding less_Suc_eq_le le_less ..
616
617lemma less_Suc0 [iff]: "(n < Suc 0) = (n = 0)"
618  by (simp add: less_Suc_eq)
619
620lemma less_one [iff]: "n < 1 \<longleftrightarrow> n = 0"
621  for n :: nat
622  unfolding One_nat_def by (rule less_Suc0)
623
624lemma Suc_mono: "m < n \<Longrightarrow> Suc m < Suc n"
625  by simp
626
627text \<open>"Less than" is antisymmetric, sort of.\<close>
628lemma less_antisym: "\<not> n < m \<Longrightarrow> n < Suc m \<Longrightarrow> m = n"
629  unfolding not_less less_Suc_eq_le by (rule antisym)
630
631lemma nat_neq_iff: "m \<noteq> n \<longleftrightarrow> m < n \<or> n < m"
632  for m n :: nat
633  by (rule linorder_neq_iff)
634
635
636subsubsection \<open>Inductive (?) properties\<close>
637
638lemma Suc_lessI: "m < n \<Longrightarrow> Suc m \<noteq> n \<Longrightarrow> Suc m < n"
639  unfolding less_eq_Suc_le [of m] le_less by simp
640
641lemma lessE:
642  assumes major: "i < k"
643    and 1: "k = Suc i \<Longrightarrow> P"
644    and 2: "\<And>j. i < j \<Longrightarrow> k = Suc j \<Longrightarrow> P"
645  shows P
646proof -
647  from major have "\<exists>j. i \<le> j \<and> k = Suc j"
648    unfolding less_eq_Suc_le by (induct k) simp_all
649  then have "(\<exists>j. i < j \<and> k = Suc j) \<or> k = Suc i"
650    by (auto simp add: less_le)
651  with 1 2 show P by auto
652qed
653
654lemma less_SucE:
655  assumes major: "m < Suc n"
656    and less: "m < n \<Longrightarrow> P"
657    and eq: "m = n \<Longrightarrow> P"
658  shows P
659  apply (rule major [THEN lessE])
660   apply (rule eq)
661   apply blast
662  apply (rule less)
663  apply blast
664  done
665
666lemma Suc_lessE:
667  assumes major: "Suc i < k"
668    and minor: "\<And>j. i < j \<Longrightarrow> k = Suc j \<Longrightarrow> P"
669  shows P
670  apply (rule major [THEN lessE])
671   apply (erule lessI [THEN minor])
672  apply (erule Suc_lessD [THEN minor])
673  apply assumption
674  done
675
676lemma Suc_less_SucD: "Suc m < Suc n \<Longrightarrow> m < n"
677  by simp
678
679lemma less_trans_Suc:
680  assumes le: "i < j"
681  shows "j < k \<Longrightarrow> Suc i < k"
682proof (induct k)
683  case 0
684  then show ?case by simp
685next
686  case (Suc k)
687  with le show ?case
688    by simp (auto simp add: less_Suc_eq dest: Suc_lessD)
689qed
690
691text \<open>Can be used with \<open>less_Suc_eq\<close> to get @{prop "n = m \<or> n < m"}.\<close>
692lemma not_less_eq: "\<not> m < n \<longleftrightarrow> n < Suc m"
693  by (simp only: not_less less_Suc_eq_le)
694
695lemma not_less_eq_eq: "\<not> m \<le> n \<longleftrightarrow> Suc n \<le> m"
696  by (simp only: not_le Suc_le_eq)
697
698text \<open>Properties of "less than or equal".\<close>
699
700lemma le_imp_less_Suc: "m \<le> n \<Longrightarrow> m < Suc n"
701  by (simp only: less_Suc_eq_le)
702
703lemma Suc_n_not_le_n: "\<not> Suc n \<le> n"
704  by (simp add: not_le less_Suc_eq_le)
705
706lemma le_Suc_eq: "m \<le> Suc n \<longleftrightarrow> m \<le> n \<or> m = Suc n"
707  by (simp add: less_Suc_eq_le [symmetric] less_Suc_eq)
708
709lemma le_SucE: "m \<le> Suc n \<Longrightarrow> (m \<le> n \<Longrightarrow> R) \<Longrightarrow> (m = Suc n \<Longrightarrow> R) \<Longrightarrow> R"
710  by (drule le_Suc_eq [THEN iffD1], iprover+)
711
712lemma Suc_leI: "m < n \<Longrightarrow> Suc m \<le> n"
713  by (simp only: Suc_le_eq)
714
715text \<open>Stronger version of \<open>Suc_leD\<close>.\<close>
716lemma Suc_le_lessD: "Suc m \<le> n \<Longrightarrow> m < n"
717  by (simp only: Suc_le_eq)
718
719lemma less_imp_le_nat: "m < n \<Longrightarrow> m \<le> n" for m n :: nat
720  unfolding less_eq_Suc_le by (rule Suc_leD)
721
722text \<open>For instance, \<open>(Suc m < Suc n) = (Suc m \<le> n) = (m < n)\<close>\<close>
723lemmas le_simps = less_imp_le_nat less_Suc_eq_le Suc_le_eq
724
725
726text \<open>Equivalence of \<open>m \<le> n\<close> and \<open>m < n \<or> m = n\<close>\<close>
727
728lemma less_or_eq_imp_le: "m < n \<or> m = n \<Longrightarrow> m \<le> n"
729  for m n :: nat
730  unfolding le_less .
731
732lemma le_eq_less_or_eq: "m \<le> n \<longleftrightarrow> m < n \<or> m = n"
733  for m n :: nat
734  by (rule le_less)
735
736text \<open>Useful with \<open>blast\<close>.\<close>
737lemma eq_imp_le: "m = n \<Longrightarrow> m \<le> n"
738  for m n :: nat
739  by auto
740
741lemma le_refl: "n \<le> n"
742  for n :: nat
743  by simp
744
745lemma le_trans: "i \<le> j \<Longrightarrow> j \<le> k \<Longrightarrow> i \<le> k"
746  for i j k :: nat
747  by (rule order_trans)
748
749lemma le_antisym: "m \<le> n \<Longrightarrow> n \<le> m \<Longrightarrow> m = n"
750  for m n :: nat
751  by (rule antisym)
752
753lemma nat_less_le: "m < n \<longleftrightarrow> m \<le> n \<and> m \<noteq> n"
754  for m n :: nat
755  by (rule less_le)
756
757lemma le_neq_implies_less: "m \<le> n \<Longrightarrow> m \<noteq> n \<Longrightarrow> m < n"
758  for m n :: nat
759  unfolding less_le ..
760
761lemma nat_le_linear: "m \<le> n \<or> n \<le> m"
762  for m n :: nat
763  by (rule linear)
764
765lemmas linorder_neqE_nat = linorder_neqE [where 'a = nat]
766
767lemma le_less_Suc_eq: "m \<le> n \<Longrightarrow> n < Suc m \<longleftrightarrow> n = m"
768  unfolding less_Suc_eq_le by auto
769
770lemma not_less_less_Suc_eq: "\<not> n < m \<Longrightarrow> n < Suc m \<longleftrightarrow> n = m"
771  unfolding not_less by (rule le_less_Suc_eq)
772
773lemmas not_less_simps = not_less_less_Suc_eq le_less_Suc_eq
774
775lemma not0_implies_Suc: "n \<noteq> 0 \<Longrightarrow> \<exists>m. n = Suc m"
776  by (cases n) simp_all
777
778lemma gr0_implies_Suc: "n > 0 \<Longrightarrow> \<exists>m. n = Suc m"
779  by (cases n) simp_all
780
781lemma gr_implies_not0: "m < n \<Longrightarrow> n \<noteq> 0"
782  for m n :: nat
783  by (cases n) simp_all
784
785lemma neq0_conv[iff]: "n \<noteq> 0 \<longleftrightarrow> 0 < n"
786  for n :: nat
787  by (cases n) simp_all
788
789text \<open>This theorem is useful with \<open>blast\<close>\<close>
790lemma gr0I: "(n = 0 \<Longrightarrow> False) \<Longrightarrow> 0 < n"
791  for n :: nat
792  by (rule neq0_conv[THEN iffD1]) iprover
793
794lemma gr0_conv_Suc: "0 < n \<longleftrightarrow> (\<exists>m. n = Suc m)"
795  by (fast intro: not0_implies_Suc)
796
797lemma not_gr0 [iff]: "\<not> 0 < n \<longleftrightarrow> n = 0"
798  for n :: nat
799  using neq0_conv by blast
800
801lemma Suc_le_D: "Suc n \<le> m' \<Longrightarrow> \<exists>m. m' = Suc m"
802  by (induct m') simp_all
803
804text \<open>Useful in certain inductive arguments\<close>
805lemma less_Suc_eq_0_disj: "m < Suc n \<longleftrightarrow> m = 0 \<or> (\<exists>j. m = Suc j \<and> j < n)"
806  by (cases m) simp_all
807
808lemma All_less_Suc: "(\<forall>i < Suc n. P i) = (P n \<and> (\<forall>i < n. P i))"
809by (auto simp: less_Suc_eq)
810
811lemma All_less_Suc2: "(\<forall>i < Suc n. P i) = (P 0 \<and> (\<forall>i < n. P(Suc i)))"
812by (auto simp: less_Suc_eq_0_disj)
813
814lemma Ex_less_Suc: "(\<exists>i < Suc n. P i) = (P n \<or> (\<exists>i < n. P i))"
815by (auto simp: less_Suc_eq)
816
817lemma Ex_less_Suc2: "(\<exists>i < Suc n. P i) = (P 0 \<or> (\<exists>i < n. P(Suc i)))"
818by (auto simp: less_Suc_eq_0_disj)
819
820
821subsubsection \<open>Monotonicity of Addition\<close>
822
823lemma Suc_pred [simp]: "n > 0 \<Longrightarrow> Suc (n - Suc 0) = n"
824  by (simp add: diff_Suc split: nat.split)
825
826lemma Suc_diff_1 [simp]: "0 < n \<Longrightarrow> Suc (n - 1) = n"
827  unfolding One_nat_def by (rule Suc_pred)
828
829lemma nat_add_left_cancel_le [simp]: "k + m \<le> k + n \<longleftrightarrow> m \<le> n"
830  for k m n :: nat
831  by (induct k) simp_all
832
833lemma nat_add_left_cancel_less [simp]: "k + m < k + n \<longleftrightarrow> m < n"
834  for k m n :: nat
835  by (induct k) simp_all
836
837lemma add_gr_0 [iff]: "m + n > 0 \<longleftrightarrow> m > 0 \<or> n > 0"
838  for m n :: nat
839  by (auto dest: gr0_implies_Suc)
840
841text \<open>strict, in 1st argument\<close>
842lemma add_less_mono1: "i < j \<Longrightarrow> i + k < j + k"
843  for i j k :: nat
844  by (induct k) simp_all
845
846text \<open>strict, in both arguments\<close>
847lemma add_less_mono: "i < j \<Longrightarrow> k < l \<Longrightarrow> i + k < j + l"
848  for i j k l :: nat
849  apply (rule add_less_mono1 [THEN less_trans], assumption+)
850  apply (induct j)
851   apply simp_all
852  done
853
854text \<open>Deleted \<open>less_natE\<close>; use \<open>less_imp_Suc_add RS exE\<close>\<close>
855lemma less_imp_Suc_add: "m < n \<Longrightarrow> \<exists>k. n = Suc (m + k)"
856proof (induct n)
857  case 0
858  then show ?case by simp
859next
860  case Suc
861  then show ?case
862    by (simp add: order_le_less)
863      (blast elim!: less_SucE intro!: Nat.add_0_right [symmetric] add_Suc_right [symmetric])
864qed
865
866lemma le_Suc_ex: "k \<le> l \<Longrightarrow> (\<exists>n. l = k + n)"
867  for k l :: nat
868  by (auto simp: less_Suc_eq_le[symmetric] dest: less_imp_Suc_add)
869
870text \<open>strict, in 1st argument; proof is by induction on \<open>k > 0\<close>\<close>
871lemma mult_less_mono2:
872  fixes i j :: nat
873  assumes "i < j" and "0 < k"
874  shows "k * i < k * j"
875  using \<open>0 < k\<close>
876proof (induct k)
877  case 0
878  then show ?case by simp
879next
880  case (Suc k)
881  with \<open>i < j\<close> show ?case
882    by (cases k) (simp_all add: add_less_mono)
883qed
884
885text \<open>Addition is the inverse of subtraction:
886  if @{term "n \<le> m"} then @{term "n + (m - n) = m"}.\<close>
887lemma add_diff_inverse_nat: "\<not> m < n \<Longrightarrow> n + (m - n) = m"
888  for m n :: nat
889  by (induct m n rule: diff_induct) simp_all
890
891lemma nat_le_iff_add: "m \<le> n \<longleftrightarrow> (\<exists>k. n = m + k)"
892  for m n :: nat
893  using nat_add_left_cancel_le[of m 0] by (auto dest: le_Suc_ex)
894
895text \<open>The naturals form an ordered \<open>semidom\<close> and a \<open>dioid\<close>.\<close>
896
897instance nat :: linordered_semidom
898proof
899  fix m n q :: nat
900  show "0 < (1::nat)"
901    by simp
902  show "m \<le> n \<Longrightarrow> q + m \<le> q + n"
903    by simp
904  show "m < n \<Longrightarrow> 0 < q \<Longrightarrow> q * m < q * n"
905    by (simp add: mult_less_mono2)
906  show "m \<noteq> 0 \<Longrightarrow> n \<noteq> 0 \<Longrightarrow> m * n \<noteq> 0"
907    by simp
908  show "n \<le> m \<Longrightarrow> (m - n) + n = m"
909    by (simp add: add_diff_inverse_nat add.commute linorder_not_less)
910qed
911
912instance nat :: dioid
913  by standard (rule nat_le_iff_add)
914
915declare le0[simp del] \<comment> \<open>This is now @{thm zero_le}\<close>
916declare le_0_eq[simp del] \<comment> \<open>This is now @{thm le_zero_eq}\<close>
917declare not_less0[simp del] \<comment> \<open>This is now @{thm not_less_zero}\<close>
918declare not_gr0[simp del] \<comment> \<open>This is now @{thm not_gr_zero}\<close>
919
920instance nat :: ordered_cancel_comm_monoid_add ..
921instance nat :: ordered_cancel_comm_monoid_diff ..
922
923
924subsubsection \<open>@{term min} and @{term max}\<close>
925
926lemma mono_Suc: "mono Suc"
927  by (rule monoI) simp
928
929lemma min_0L [simp]: "min 0 n = 0"
930  for n :: nat
931  by (rule min_absorb1) simp
932
933lemma min_0R [simp]: "min n 0 = 0"
934  for n :: nat
935  by (rule min_absorb2) simp
936
937lemma min_Suc_Suc [simp]: "min (Suc m) (Suc n) = Suc (min m n)"
938  by (simp add: mono_Suc min_of_mono)
939
940lemma min_Suc1: "min (Suc n) m = (case m of 0 \<Rightarrow> 0 | Suc m' \<Rightarrow> Suc(min n m'))"
941  by (simp split: nat.split)
942
943lemma min_Suc2: "min m (Suc n) = (case m of 0 \<Rightarrow> 0 | Suc m' \<Rightarrow> Suc(min m' n))"
944  by (simp split: nat.split)
945
946lemma max_0L [simp]: "max 0 n = n"
947  for n :: nat
948  by (rule max_absorb2) simp
949
950lemma max_0R [simp]: "max n 0 = n"
951  for n :: nat
952  by (rule max_absorb1) simp
953
954lemma max_Suc_Suc [simp]: "max (Suc m) (Suc n) = Suc (max m n)"
955  by (simp add: mono_Suc max_of_mono)
956
957lemma max_Suc1: "max (Suc n) m = (case m of 0 \<Rightarrow> Suc n | Suc m' \<Rightarrow> Suc (max n m'))"
958  by (simp split: nat.split)
959
960lemma max_Suc2: "max m (Suc n) = (case m of 0 \<Rightarrow> Suc n | Suc m' \<Rightarrow> Suc (max m' n))"
961  by (simp split: nat.split)
962
963lemma nat_mult_min_left: "min m n * q = min (m * q) (n * q)"
964  for m n q :: nat
965  by (simp add: min_def not_le)
966    (auto dest: mult_right_le_imp_le mult_right_less_imp_less le_less_trans)
967
968lemma nat_mult_min_right: "m * min n q = min (m * n) (m * q)"
969  for m n q :: nat
970  by (simp add: min_def not_le)
971    (auto dest: mult_left_le_imp_le mult_left_less_imp_less le_less_trans)
972
973lemma nat_add_max_left: "max m n + q = max (m + q) (n + q)"
974  for m n q :: nat
975  by (simp add: max_def)
976
977lemma nat_add_max_right: "m + max n q = max (m + n) (m + q)"
978  for m n q :: nat
979  by (simp add: max_def)
980
981lemma nat_mult_max_left: "max m n * q = max (m * q) (n * q)"
982  for m n q :: nat
983  by (simp add: max_def not_le)
984    (auto dest: mult_right_le_imp_le mult_right_less_imp_less le_less_trans)
985
986lemma nat_mult_max_right: "m * max n q = max (m * n) (m * q)"
987  for m n q :: nat
988  by (simp add: max_def not_le)
989    (auto dest: mult_left_le_imp_le mult_left_less_imp_less le_less_trans)
990
991
992subsubsection \<open>Additional theorems about @{term "(\<le>)"}\<close>
993
994text \<open>Complete induction, aka course-of-values induction\<close>
995
996instance nat :: wellorder
997proof
998  fix P and n :: nat
999  assume step: "(\<And>m. m < n \<Longrightarrow> P m) \<Longrightarrow> P n" for n :: nat
1000  have "\<And>q. q \<le> n \<Longrightarrow> P q"
1001  proof (induct n)
1002    case (0 n)
1003    have "P 0" by (rule step) auto
1004    with 0 show ?case by auto
1005  next
1006    case (Suc m n)
1007    then have "n \<le> m \<or> n = Suc m"
1008      by (simp add: le_Suc_eq)
1009    then show ?case
1010    proof
1011      assume "n \<le> m"
1012      then show "P n" by (rule Suc(1))
1013    next
1014      assume n: "n = Suc m"
1015      show "P n" by (rule step) (rule Suc(1), simp add: n le_simps)
1016    qed
1017  qed
1018  then show "P n" by auto
1019qed
1020
1021
1022lemma Least_eq_0[simp]: "P 0 \<Longrightarrow> Least P = 0"
1023  for P :: "nat \<Rightarrow> bool"
1024  by (rule Least_equality[OF _ le0])
1025
1026lemma Least_Suc: "P n \<Longrightarrow> \<not> P 0 \<Longrightarrow> (LEAST n. P n) = Suc (LEAST m. P (Suc m))"
1027  apply (cases n)
1028   apply auto
1029  apply (frule LeastI)
1030  apply (drule_tac P = "\<lambda>x. P (Suc x)" in LeastI)
1031  apply (subgoal_tac " (LEAST x. P x) \<le> Suc (LEAST x. P (Suc x))")
1032   apply (erule_tac [2] Least_le)
1033  apply (cases "LEAST x. P x")
1034   apply auto
1035  apply (drule_tac P = "\<lambda>x. P (Suc x)" in Least_le)
1036  apply (blast intro: order_antisym)
1037  done
1038
1039lemma Least_Suc2: "P n \<Longrightarrow> Q m \<Longrightarrow> \<not> P 0 \<Longrightarrow> \<forall>k. P (Suc k) = Q k \<Longrightarrow> Least P = Suc (Least Q)"
1040  by (erule (1) Least_Suc [THEN ssubst]) simp
1041
1042lemma ex_least_nat_le: "\<not> P 0 \<Longrightarrow> P n \<Longrightarrow> \<exists>k\<le>n. (\<forall>i<k. \<not> P i) \<and> P k"
1043  for P :: "nat \<Rightarrow> bool"
1044  apply (cases n)
1045   apply blast
1046  apply (rule_tac x="LEAST k. P k" in exI)
1047  apply (blast intro: Least_le dest: not_less_Least intro: LeastI_ex)
1048  done
1049
1050lemma ex_least_nat_less: "\<not> P 0 \<Longrightarrow> P n \<Longrightarrow> \<exists>k<n. (\<forall>i\<le>k. \<not> P i) \<and> P (k + 1)"
1051  for P :: "nat \<Rightarrow> bool"
1052  apply (cases n)
1053   apply blast
1054  apply (frule (1) ex_least_nat_le)
1055  apply (erule exE)
1056  apply (case_tac k)
1057   apply simp
1058  apply (rename_tac k1)
1059  apply (rule_tac x=k1 in exI)
1060  apply (auto simp add: less_eq_Suc_le)
1061  done
1062
1063lemma nat_less_induct:
1064  fixes P :: "nat \<Rightarrow> bool"
1065  assumes "\<And>n. \<forall>m. m < n \<longrightarrow> P m \<Longrightarrow> P n"
1066  shows "P n"
1067  using assms less_induct by blast
1068
1069lemma measure_induct_rule [case_names less]:
1070  fixes f :: "'a \<Rightarrow> 'b::wellorder"
1071  assumes step: "\<And>x. (\<And>y. f y < f x \<Longrightarrow> P y) \<Longrightarrow> P x"
1072  shows "P a"
1073  by (induct m \<equiv> "f a" arbitrary: a rule: less_induct) (auto intro: step)
1074
1075text \<open>old style induction rules:\<close>
1076lemma measure_induct:
1077  fixes f :: "'a \<Rightarrow> 'b::wellorder"
1078  shows "(\<And>x. \<forall>y. f y < f x \<longrightarrow> P y \<Longrightarrow> P x) \<Longrightarrow> P a"
1079  by (rule measure_induct_rule [of f P a]) iprover
1080
1081lemma full_nat_induct:
1082  assumes step: "\<And>n. (\<forall>m. Suc m \<le> n \<longrightarrow> P m) \<Longrightarrow> P n"
1083  shows "P n"
1084  by (rule less_induct) (auto intro: step simp:le_simps)
1085
1086text\<open>An induction rule for establishing binary relations\<close>
1087lemma less_Suc_induct [consumes 1]:
1088  assumes less: "i < j"
1089    and step: "\<And>i. P i (Suc i)"
1090    and trans: "\<And>i j k. i < j \<Longrightarrow> j < k \<Longrightarrow> P i j \<Longrightarrow> P j k \<Longrightarrow> P i k"
1091  shows "P i j"
1092proof -
1093  from less obtain k where j: "j = Suc (i + k)"
1094    by (auto dest: less_imp_Suc_add)
1095  have "P i (Suc (i + k))"
1096  proof (induct k)
1097    case 0
1098    show ?case by (simp add: step)
1099  next
1100    case (Suc k)
1101    have "0 + i < Suc k + i" by (rule add_less_mono1) simp
1102    then have "i < Suc (i + k)" by (simp add: add.commute)
1103    from trans[OF this lessI Suc step]
1104    show ?case by simp
1105  qed
1106  then show "P i j" by (simp add: j)
1107qed
1108
1109text \<open>
1110  The method of infinite descent, frequently used in number theory.
1111  Provided by Roelof Oosterhuis.
1112  \<open>P n\<close> is true for all natural numbers if
1113  \<^item> case ``0'': given \<open>n = 0\<close> prove \<open>P n\<close>
1114  \<^item> case ``smaller'': given \<open>n > 0\<close> and \<open>\<not> P n\<close> prove there exists
1115    a smaller natural number \<open>m\<close> such that \<open>\<not> P m\<close>.
1116\<close>
1117
1118lemma infinite_descent: "(\<And>n. \<not> P n \<Longrightarrow> \<exists>m<n. \<not> P m) \<Longrightarrow> P n" for P :: "nat \<Rightarrow> bool"
1119  \<comment> \<open>compact version without explicit base case\<close>
1120  by (induct n rule: less_induct) auto
1121
1122lemma infinite_descent0 [case_names 0 smaller]:
1123  fixes P :: "nat \<Rightarrow> bool"
1124  assumes "P 0"
1125    and "\<And>n. n > 0 \<Longrightarrow> \<not> P n \<Longrightarrow> \<exists>m. m < n \<and> \<not> P m"
1126  shows "P n"
1127  apply (rule infinite_descent)
1128  using assms
1129  apply (case_tac "n > 0")
1130   apply auto
1131  done
1132
1133text \<open>
1134  Infinite descent using a mapping to \<open>nat\<close>:
1135  \<open>P x\<close> is true for all \<open>x \<in> D\<close> if there exists a \<open>V \<in> D \<Rightarrow> nat\<close> and
1136  \<^item> case ``0'': given \<open>V x = 0\<close> prove \<open>P x\<close>
1137  \<^item> ``smaller'': given \<open>V x > 0\<close> and \<open>\<not> P x\<close> prove
1138  there exists a \<open>y \<in> D\<close> such that \<open>V y < V x\<close> and \<open>\<not> P y\<close>.
1139\<close>
1140corollary infinite_descent0_measure [case_names 0 smaller]:
1141  fixes V :: "'a \<Rightarrow> nat"
1142  assumes 1: "\<And>x. V x = 0 \<Longrightarrow> P x"
1143    and 2: "\<And>x. V x > 0 \<Longrightarrow> \<not> P x \<Longrightarrow> \<exists>y. V y < V x \<and> \<not> P y"
1144  shows "P x"
1145proof -
1146  obtain n where "n = V x" by auto
1147  moreover have "\<And>x. V x = n \<Longrightarrow> P x"
1148  proof (induct n rule: infinite_descent0)
1149    case 0
1150    with 1 show "P x" by auto
1151  next
1152    case (smaller n)
1153    then obtain x where *: "V x = n " and "V x > 0 \<and> \<not> P x" by auto
1154    with 2 obtain y where "V y < V x \<and> \<not> P y" by auto
1155    with * obtain m where "m = V y \<and> m < n \<and> \<not> P y" by auto
1156    then show ?case by auto
1157  qed
1158  ultimately show "P x" by auto
1159qed
1160
1161text \<open>Again, without explicit base case:\<close>
1162lemma infinite_descent_measure:
1163  fixes V :: "'a \<Rightarrow> nat"
1164  assumes "\<And>x. \<not> P x \<Longrightarrow> \<exists>y. V y < V x \<and> \<not> P y"
1165  shows "P x"
1166proof -
1167  from assms obtain n where "n = V x" by auto
1168  moreover have "\<And>x. V x = n \<Longrightarrow> P x"
1169  proof (induct n rule: infinite_descent, auto)
1170    show "\<exists>m < V x. \<exists>y. V y = m \<and> \<not> P y" if "\<not> P x" for x
1171      using assms and that by auto
1172  qed
1173  ultimately show "P x" by auto
1174qed
1175
1176text \<open>A (clumsy) way of lifting \<open><\<close> monotonicity to \<open>\<le>\<close> monotonicity\<close>
1177lemma less_mono_imp_le_mono:
1178  fixes f :: "nat \<Rightarrow> nat"
1179    and i j :: nat
1180  assumes "\<And>i j::nat. i < j \<Longrightarrow> f i < f j"
1181    and "i \<le> j"
1182  shows "f i \<le> f j"
1183  using assms by (auto simp add: order_le_less)
1184
1185
1186text \<open>non-strict, in 1st argument\<close>
1187lemma add_le_mono1: "i \<le> j \<Longrightarrow> i + k \<le> j + k"
1188  for i j k :: nat
1189  by (rule add_right_mono)
1190
1191text \<open>non-strict, in both arguments\<close>
1192lemma add_le_mono: "i \<le> j \<Longrightarrow> k \<le> l \<Longrightarrow> i + k \<le> j + l"
1193  for i j k l :: nat
1194  by (rule add_mono)
1195
1196lemma le_add2: "n \<le> m + n"
1197  for m n :: nat
1198  by simp
1199
1200lemma le_add1: "n \<le> n + m"
1201  for m n :: nat
1202  by simp
1203
1204lemma less_add_Suc1: "i < Suc (i + m)"
1205  by (rule le_less_trans, rule le_add1, rule lessI)
1206
1207lemma less_add_Suc2: "i < Suc (m + i)"
1208  by (rule le_less_trans, rule le_add2, rule lessI)
1209
1210lemma less_iff_Suc_add: "m < n \<longleftrightarrow> (\<exists>k. n = Suc (m + k))"
1211  by (iprover intro!: less_add_Suc1 less_imp_Suc_add)
1212
1213lemma trans_le_add1: "i \<le> j \<Longrightarrow> i \<le> j + m"
1214  for i j m :: nat
1215  by (rule le_trans, assumption, rule le_add1)
1216
1217lemma trans_le_add2: "i \<le> j \<Longrightarrow> i \<le> m + j"
1218  for i j m :: nat
1219  by (rule le_trans, assumption, rule le_add2)
1220
1221lemma trans_less_add1: "i < j \<Longrightarrow> i < j + m"
1222  for i j m :: nat
1223  by (rule less_le_trans, assumption, rule le_add1)
1224
1225lemma trans_less_add2: "i < j \<Longrightarrow> i < m + j"
1226  for i j m :: nat
1227  by (rule less_le_trans, assumption, rule le_add2)
1228
1229lemma add_lessD1: "i + j < k \<Longrightarrow> i < k"
1230  for i j k :: nat
1231  by (rule le_less_trans [of _ "i+j"]) (simp_all add: le_add1)
1232
1233lemma not_add_less1 [iff]: "\<not> i + j < i"
1234  for i j :: nat
1235  apply (rule notI)
1236  apply (drule add_lessD1)
1237  apply (erule less_irrefl [THEN notE])
1238  done
1239
1240lemma not_add_less2 [iff]: "\<not> j + i < i"
1241  for i j :: nat
1242  by (simp add: add.commute)
1243
1244lemma add_leD1: "m + k \<le> n \<Longrightarrow> m \<le> n"
1245  for k m n :: nat
1246  by (rule order_trans [of _ "m + k"]) (simp_all add: le_add1)
1247
1248lemma add_leD2: "m + k \<le> n \<Longrightarrow> k \<le> n"
1249  for k m n :: nat
1250  apply (simp add: add.commute)
1251  apply (erule add_leD1)
1252  done
1253
1254lemma add_leE: "m + k \<le> n \<Longrightarrow> (m \<le> n \<Longrightarrow> k \<le> n \<Longrightarrow> R) \<Longrightarrow> R"
1255  for k m n :: nat
1256  by (blast dest: add_leD1 add_leD2)
1257
1258text \<open>needs \<open>\<And>k\<close> for \<open>ac_simps\<close> to work\<close>
1259lemma less_add_eq_less: "\<And>k. k < l \<Longrightarrow> m + l = k + n \<Longrightarrow> m < n"
1260  for l m n :: nat
1261  by (force simp del: add_Suc_right simp add: less_iff_Suc_add add_Suc_right [symmetric] ac_simps)
1262
1263
1264subsubsection \<open>More results about difference\<close>
1265
1266lemma Suc_diff_le: "n \<le> m \<Longrightarrow> Suc m - n = Suc (m - n)"
1267  by (induct m n rule: diff_induct) simp_all
1268
1269lemma diff_less_Suc: "m - n < Suc m"
1270  apply (induct m n rule: diff_induct)
1271    apply (erule_tac [3] less_SucE)
1272     apply (simp_all add: less_Suc_eq)
1273  done
1274
1275lemma diff_le_self [simp]: "m - n \<le> m"
1276  for m n :: nat
1277  by (induct m n rule: diff_induct) (simp_all add: le_SucI)
1278
1279lemma less_imp_diff_less: "j < k \<Longrightarrow> j - n < k"
1280  for j k n :: nat
1281  by (rule le_less_trans, rule diff_le_self)
1282
1283lemma diff_Suc_less [simp]: "0 < n \<Longrightarrow> n - Suc i < n"
1284  by (cases n) (auto simp add: le_simps)
1285
1286lemma diff_add_assoc: "k \<le> j \<Longrightarrow> (i + j) - k = i + (j - k)"
1287  for i j k :: nat
1288  by (induct j k rule: diff_induct) simp_all
1289
1290lemma add_diff_assoc [simp]: "k \<le> j \<Longrightarrow> i + (j - k) = i + j - k"
1291  for i j k :: nat
1292  by (fact diff_add_assoc [symmetric])
1293
1294lemma diff_add_assoc2: "k \<le> j \<Longrightarrow> (j + i) - k = (j - k) + i"
1295  for i j k :: nat
1296  by (simp add: ac_simps)
1297
1298lemma add_diff_assoc2 [simp]: "k \<le> j \<Longrightarrow> j - k + i = j + i - k"
1299  for i j k :: nat
1300  by (fact diff_add_assoc2 [symmetric])
1301
1302lemma le_imp_diff_is_add: "i \<le> j \<Longrightarrow> (j - i = k) = (j = k + i)"
1303  for i j k :: nat
1304  by auto
1305
1306lemma diff_is_0_eq [simp]: "m - n = 0 \<longleftrightarrow> m \<le> n"
1307  for m n :: nat
1308  by (induct m n rule: diff_induct) simp_all
1309
1310lemma diff_is_0_eq' [simp]: "m \<le> n \<Longrightarrow> m - n = 0"
1311  for m n :: nat
1312  by (rule iffD2, rule diff_is_0_eq)
1313
1314lemma zero_less_diff [simp]: "0 < n - m \<longleftrightarrow> m < n"
1315  for m n :: nat
1316  by (induct m n rule: diff_induct) simp_all
1317
1318lemma less_imp_add_positive:
1319  assumes "i < j"
1320  shows "\<exists>k::nat. 0 < k \<and> i + k = j"
1321proof
1322  from assms show "0 < j - i \<and> i + (j - i) = j"
1323    by (simp add: order_less_imp_le)
1324qed
1325
1326text \<open>a nice rewrite for bounded subtraction\<close>
1327lemma nat_minus_add_max: "n - m + m = max n m"
1328  for m n :: nat
1329  by (simp add: max_def not_le order_less_imp_le)
1330
1331lemma nat_diff_split: "P (a - b) \<longleftrightarrow> (a < b \<longrightarrow> P 0) \<and> (\<forall>d. a = b + d \<longrightarrow> P d)"
1332  for a b :: nat
1333  \<comment> \<open>elimination of \<open>-\<close> on \<open>nat\<close>\<close>
1334  by (cases "a < b") (auto simp add: not_less le_less dest!: add_eq_self_zero [OF sym])
1335
1336lemma nat_diff_split_asm: "P (a - b) \<longleftrightarrow> \<not> (a < b \<and> \<not> P 0 \<or> (\<exists>d. a = b + d \<and> \<not> P d))"
1337  for a b :: nat
1338  \<comment> \<open>elimination of \<open>-\<close> on \<open>nat\<close> in assumptions\<close>
1339  by (auto split: nat_diff_split)
1340
1341lemma Suc_pred': "0 < n \<Longrightarrow> n = Suc(n - 1)"
1342  by simp
1343
1344lemma add_eq_if: "m + n = (if m = 0 then n else Suc ((m - 1) + n))"
1345  unfolding One_nat_def by (cases m) simp_all
1346
1347lemma mult_eq_if: "m * n = (if m = 0 then 0 else n + ((m - 1) * n))"
1348  for m n :: nat
1349  by (cases m) simp_all
1350
1351lemma Suc_diff_eq_diff_pred: "0 < n \<Longrightarrow> Suc m - n = m - (n - 1)"
1352  by (cases n) simp_all
1353
1354lemma diff_Suc_eq_diff_pred: "m - Suc n = (m - 1) - n"
1355  by (cases m) simp_all
1356
1357lemma Let_Suc [simp]: "Let (Suc n) f \<equiv> f (Suc n)"
1358  by (fact Let_def)
1359
1360
1361subsubsection \<open>Monotonicity of multiplication\<close>
1362
1363lemma mult_le_mono1: "i \<le> j \<Longrightarrow> i * k \<le> j * k"
1364  for i j k :: nat
1365  by (simp add: mult_right_mono)
1366
1367lemma mult_le_mono2: "i \<le> j \<Longrightarrow> k * i \<le> k * j"
1368  for i j k :: nat
1369  by (simp add: mult_left_mono)
1370
1371text \<open>\<open>\<le>\<close> monotonicity, BOTH arguments\<close>
1372lemma mult_le_mono: "i \<le> j \<Longrightarrow> k \<le> l \<Longrightarrow> i * k \<le> j * l"
1373  for i j k l :: nat
1374  by (simp add: mult_mono)
1375
1376lemma mult_less_mono1: "i < j \<Longrightarrow> 0 < k \<Longrightarrow> i * k < j * k"
1377  for i j k :: nat
1378  by (simp add: mult_strict_right_mono)
1379
1380text \<open>Differs from the standard \<open>zero_less_mult_iff\<close> in that there are no negative numbers.\<close>
1381lemma nat_0_less_mult_iff [simp]: "0 < m * n \<longleftrightarrow> 0 < m \<and> 0 < n"
1382  for m n :: nat
1383proof (induct m)
1384  case 0
1385  then show ?case by simp
1386next
1387  case (Suc m)
1388  then show ?case by (cases n) simp_all
1389qed
1390
1391lemma one_le_mult_iff [simp]: "Suc 0 \<le> m * n \<longleftrightarrow> Suc 0 \<le> m \<and> Suc 0 \<le> n"
1392proof (induct m)
1393  case 0
1394  then show ?case by simp
1395next
1396  case (Suc m)
1397  then show ?case by (cases n) simp_all
1398qed
1399
1400lemma mult_less_cancel2 [simp]: "m * k < n * k \<longleftrightarrow> 0 < k \<and> m < n"
1401  for k m n :: nat
1402  apply (safe intro!: mult_less_mono1)
1403   apply (cases k)
1404    apply auto
1405  apply (simp add: linorder_not_le [symmetric])
1406  apply (blast intro: mult_le_mono1)
1407  done
1408
1409lemma mult_less_cancel1 [simp]: "k * m < k * n \<longleftrightarrow> 0 < k \<and> m < n"
1410  for k m n :: nat
1411  by (simp add: mult.commute [of k])
1412
1413lemma mult_le_cancel1 [simp]: "k * m \<le> k * n \<longleftrightarrow> (0 < k \<longrightarrow> m \<le> n)"
1414  for k m n :: nat
1415  by (simp add: linorder_not_less [symmetric], auto)
1416
1417lemma mult_le_cancel2 [simp]: "m * k \<le> n * k \<longleftrightarrow> (0 < k \<longrightarrow> m \<le> n)"
1418  for k m n :: nat
1419  by (simp add: linorder_not_less [symmetric], auto)
1420
1421lemma Suc_mult_less_cancel1: "Suc k * m < Suc k * n \<longleftrightarrow> m < n"
1422  by (subst mult_less_cancel1) simp
1423
1424lemma Suc_mult_le_cancel1: "Suc k * m \<le> Suc k * n \<longleftrightarrow> m \<le> n"
1425  by (subst mult_le_cancel1) simp
1426
1427lemma le_square: "m \<le> m * m"
1428  for m :: nat
1429  by (cases m) (auto intro: le_add1)
1430
1431lemma le_cube: "m \<le> m * (m * m)"
1432  for m :: nat
1433  by (cases m) (auto intro: le_add1)
1434
1435text \<open>Lemma for \<open>gcd\<close>\<close>
1436lemma mult_eq_self_implies_10: "m = m * n \<Longrightarrow> n = 1 \<or> m = 0"
1437  for m n :: nat
1438  apply (drule sym)
1439  apply (rule disjCI)
1440  apply (rule linorder_cases)
1441    defer
1442    apply assumption
1443   apply (drule mult_less_mono2)
1444    apply auto
1445  done
1446
1447lemma mono_times_nat:
1448  fixes n :: nat
1449  assumes "n > 0"
1450  shows "mono (times n)"
1451proof
1452  fix m q :: nat
1453  assume "m \<le> q"
1454  with assms show "n * m \<le> n * q" by simp
1455qed
1456
1457text \<open>The lattice order on @{typ nat}.\<close>
1458
1459instantiation nat :: distrib_lattice
1460begin
1461
1462definition "(inf :: nat \<Rightarrow> nat \<Rightarrow> nat) = min"
1463
1464definition "(sup :: nat \<Rightarrow> nat \<Rightarrow> nat) = max"
1465
1466instance
1467  by intro_classes
1468    (auto simp add: inf_nat_def sup_nat_def max_def not_le min_def
1469      intro: order_less_imp_le antisym elim!: order_trans order_less_trans)
1470
1471end
1472
1473
1474subsection \<open>Natural operation of natural numbers on functions\<close>
1475
1476text \<open>
1477  We use the same logical constant for the power operations on
1478  functions and relations, in order to share the same syntax.
1479\<close>
1480
1481consts compow :: "nat \<Rightarrow> 'a \<Rightarrow> 'a"
1482
1483abbreviation compower :: "'a \<Rightarrow> nat \<Rightarrow> 'a" (infixr "^^" 80)
1484  where "f ^^ n \<equiv> compow n f"
1485
1486notation (latex output)
1487  compower ("(_\<^bsup>_\<^esup>)" [1000] 1000)
1488
1489text \<open>\<open>f ^^ n = f \<circ> \<dots> \<circ> f\<close>, the \<open>n\<close>-fold composition of \<open>f\<close>\<close>
1490
1491overloading
1492  funpow \<equiv> "compow :: nat \<Rightarrow> ('a \<Rightarrow> 'a) \<Rightarrow> ('a \<Rightarrow> 'a)"
1493begin
1494
1495primrec funpow :: "nat \<Rightarrow> ('a \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a"
1496  where
1497    "funpow 0 f = id"
1498  | "funpow (Suc n) f = f \<circ> funpow n f"
1499
1500end
1501
1502lemma funpow_0 [simp]: "(f ^^ 0) x = x"
1503  by simp
1504
1505lemma funpow_Suc_right: "f ^^ Suc n = f ^^ n \<circ> f"
1506proof (induct n)
1507  case 0
1508  then show ?case by simp
1509next
1510  fix n
1511  assume "f ^^ Suc n = f ^^ n \<circ> f"
1512  then show "f ^^ Suc (Suc n) = f ^^ Suc n \<circ> f"
1513    by (simp add: o_assoc)
1514qed
1515
1516lemmas funpow_simps_right = funpow.simps(1) funpow_Suc_right
1517
1518text \<open>For code generation.\<close>
1519
1520definition funpow :: "nat \<Rightarrow> ('a \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a"
1521  where funpow_code_def [code_abbrev]: "funpow = compow"
1522
1523lemma [code]:
1524  "funpow (Suc n) f = f \<circ> funpow n f"
1525  "funpow 0 f = id"
1526  by (simp_all add: funpow_code_def)
1527
1528hide_const (open) funpow
1529
1530lemma funpow_add: "f ^^ (m + n) = f ^^ m \<circ> f ^^ n"
1531  by (induct m) simp_all
1532
1533lemma funpow_mult: "(f ^^ m) ^^ n = f ^^ (m * n)"
1534  for f :: "'a \<Rightarrow> 'a"
1535  by (induct n) (simp_all add: funpow_add)
1536
1537lemma funpow_swap1: "f ((f ^^ n) x) = (f ^^ n) (f x)"
1538proof -
1539  have "f ((f ^^ n) x) = (f ^^ (n + 1)) x" by simp
1540  also have "\<dots>  = (f ^^ n \<circ> f ^^ 1) x" by (simp only: funpow_add)
1541  also have "\<dots> = (f ^^ n) (f x)" by simp
1542  finally show ?thesis .
1543qed
1544
1545lemma comp_funpow: "comp f ^^ n = comp (f ^^ n)"
1546  for f :: "'a \<Rightarrow> 'a"
1547  by (induct n) simp_all
1548
1549lemma Suc_funpow[simp]: "Suc ^^ n = ((+) n)"
1550  by (induct n) simp_all
1551
1552lemma id_funpow[simp]: "id ^^ n = id"
1553  by (induct n) simp_all
1554
1555lemma funpow_mono: "mono f \<Longrightarrow> A \<le> B \<Longrightarrow> (f ^^ n) A \<le> (f ^^ n) B"
1556  for f :: "'a \<Rightarrow> ('a::order)"
1557  by (induct n arbitrary: A B)
1558     (auto simp del: funpow.simps(2) simp add: funpow_Suc_right mono_def)
1559
1560lemma funpow_mono2:
1561  assumes "mono f"
1562    and "i \<le> j"
1563    and "x \<le> y"
1564    and "x \<le> f x"
1565  shows "(f ^^ i) x \<le> (f ^^ j) y"
1566  using assms(2,3)
1567proof (induct j arbitrary: y)
1568  case 0
1569  then show ?case by simp
1570next
1571  case (Suc j)
1572  show ?case
1573  proof(cases "i = Suc j")
1574    case True
1575    with assms(1) Suc show ?thesis
1576      by (simp del: funpow.simps add: funpow_simps_right monoD funpow_mono)
1577  next
1578    case False
1579    with assms(1,4) Suc show ?thesis
1580      by (simp del: funpow.simps add: funpow_simps_right le_eq_less_or_eq less_Suc_eq_le)
1581        (simp add: Suc.hyps monoD order_subst1)
1582  qed
1583qed
1584
1585lemma inj_fn[simp]:
1586  fixes f::"'a \<Rightarrow> 'a"
1587  assumes "inj f"
1588  shows "inj (f^^n)"
1589proof (induction n)
1590  case Suc thus ?case using inj_comp[OF assms Suc.IH] by (simp del: comp_apply)
1591qed simp
1592
1593lemma surj_fn[simp]:
1594  fixes f::"'a \<Rightarrow> 'a"
1595  assumes "surj f"
1596  shows "surj (f^^n)"
1597proof (induction n)
1598  case Suc thus ?case by (simp add: comp_surj[OF Suc.IH assms] del: comp_apply)
1599qed simp
1600
1601lemma bij_fn[simp]:
1602  fixes f::"'a \<Rightarrow> 'a"
1603  assumes "bij f"
1604  shows "bij (f^^n)"
1605by (rule bijI[OF inj_fn[OF bij_is_inj[OF assms]] surj_fn[OF bij_is_surj[OF assms]]])
1606
1607
1608subsection \<open>Kleene iteration\<close>
1609
1610lemma Kleene_iter_lpfp:
1611  fixes f :: "'a::order_bot \<Rightarrow> 'a"
1612  assumes "mono f"
1613    and "f p \<le> p"
1614  shows "(f ^^ k) bot \<le> p"
1615proof (induct k)
1616  case 0
1617  show ?case by simp
1618next
1619  case Suc
1620  show ?case
1621    using monoD[OF assms(1) Suc] assms(2) by simp
1622qed
1623
1624lemma lfp_Kleene_iter:
1625  assumes "mono f"
1626    and "(f ^^ Suc k) bot = (f ^^ k) bot"
1627  shows "lfp f = (f ^^ k) bot"
1628proof (rule antisym)
1629  show "lfp f \<le> (f ^^ k) bot"
1630  proof (rule lfp_lowerbound)
1631    show "f ((f ^^ k) bot) \<le> (f ^^ k) bot"
1632      using assms(2) by simp
1633  qed
1634  show "(f ^^ k) bot \<le> lfp f"
1635    using Kleene_iter_lpfp[OF assms(1)] lfp_unfold[OF assms(1)] by simp
1636qed
1637
1638lemma mono_pow: "mono f \<Longrightarrow> mono (f ^^ n)"
1639  for f :: "'a \<Rightarrow> 'a::complete_lattice"
1640  by (induct n) (auto simp: mono_def)
1641
1642lemma lfp_funpow:
1643  assumes f: "mono f"
1644  shows "lfp (f ^^ Suc n) = lfp f"
1645proof (rule antisym)
1646  show "lfp f \<le> lfp (f ^^ Suc n)"
1647  proof (rule lfp_lowerbound)
1648    have "f (lfp (f ^^ Suc n)) = lfp (\<lambda>x. f ((f ^^ n) x))"
1649      unfolding funpow_Suc_right by (simp add: lfp_rolling f mono_pow comp_def)
1650    then show "f (lfp (f ^^ Suc n)) \<le> lfp (f ^^ Suc n)"
1651      by (simp add: comp_def)
1652  qed
1653  have "(f ^^ n) (lfp f) = lfp f" for n
1654    by (induct n) (auto intro: f lfp_fixpoint)
1655  then show "lfp (f ^^ Suc n) \<le> lfp f"
1656    by (intro lfp_lowerbound) (simp del: funpow.simps)
1657qed
1658
1659lemma gfp_funpow:
1660  assumes f: "mono f"
1661  shows "gfp (f ^^ Suc n) = gfp f"
1662proof (rule antisym)
1663  show "gfp f \<ge> gfp (f ^^ Suc n)"
1664  proof (rule gfp_upperbound)
1665    have "f (gfp (f ^^ Suc n)) = gfp (\<lambda>x. f ((f ^^ n) x))"
1666      unfolding funpow_Suc_right by (simp add: gfp_rolling f mono_pow comp_def)
1667    then show "f (gfp (f ^^ Suc n)) \<ge> gfp (f ^^ Suc n)"
1668      by (simp add: comp_def)
1669  qed
1670  have "(f ^^ n) (gfp f) = gfp f" for n
1671    by (induct n) (auto intro: f gfp_fixpoint)
1672  then show "gfp (f ^^ Suc n) \<ge> gfp f"
1673    by (intro gfp_upperbound) (simp del: funpow.simps)
1674qed
1675
1676lemma Kleene_iter_gpfp:
1677  fixes f :: "'a::order_top \<Rightarrow> 'a"
1678  assumes "mono f"
1679    and "p \<le> f p"
1680  shows "p \<le> (f ^^ k) top"
1681proof (induct k)
1682  case 0
1683  show ?case by simp
1684next
1685  case Suc
1686  show ?case
1687    using monoD[OF assms(1) Suc] assms(2) by simp
1688qed
1689
1690lemma gfp_Kleene_iter:
1691  assumes "mono f"
1692    and "(f ^^ Suc k) top = (f ^^ k) top"
1693  shows "gfp f = (f ^^ k) top"
1694    (is "?lhs = ?rhs")
1695proof (rule antisym)
1696  have "?rhs \<le> f ?rhs"
1697    using assms(2) by simp
1698  then show "?rhs \<le> ?lhs"
1699    by (rule gfp_upperbound)
1700  show "?lhs \<le> ?rhs"
1701    using Kleene_iter_gpfp[OF assms(1)] gfp_unfold[OF assms(1)] by simp
1702qed
1703
1704
1705subsection \<open>Embedding of the naturals into any \<open>semiring_1\<close>: @{term of_nat}\<close>
1706
1707context semiring_1
1708begin
1709
1710definition of_nat :: "nat \<Rightarrow> 'a"
1711  where "of_nat n = (plus 1 ^^ n) 0"
1712
1713lemma of_nat_simps [simp]:
1714  shows of_nat_0: "of_nat 0 = 0"
1715    and of_nat_Suc: "of_nat (Suc m) = 1 + of_nat m"
1716  by (simp_all add: of_nat_def)
1717
1718lemma of_nat_1 [simp]: "of_nat 1 = 1"
1719  by (simp add: of_nat_def)
1720
1721lemma of_nat_add [simp]: "of_nat (m + n) = of_nat m + of_nat n"
1722  by (induct m) (simp_all add: ac_simps)
1723
1724lemma of_nat_mult [simp]: "of_nat (m * n) = of_nat m * of_nat n"
1725  by (induct m) (simp_all add: ac_simps distrib_right)
1726
1727lemma mult_of_nat_commute: "of_nat x * y = y * of_nat x"
1728  by (induct x) (simp_all add: algebra_simps)
1729
1730primrec of_nat_aux :: "('a \<Rightarrow> 'a) \<Rightarrow> nat \<Rightarrow> 'a \<Rightarrow> 'a"
1731  where
1732    "of_nat_aux inc 0 i = i"
1733  | "of_nat_aux inc (Suc n) i = of_nat_aux inc n (inc i)" \<comment> \<open>tail recursive\<close>
1734
1735lemma of_nat_code: "of_nat n = of_nat_aux (\<lambda>i. i + 1) n 0"
1736proof (induct n)
1737  case 0
1738  then show ?case by simp
1739next
1740  case (Suc n)
1741  have "\<And>i. of_nat_aux (\<lambda>i. i + 1) n (i + 1) = of_nat_aux (\<lambda>i. i + 1) n i + 1"
1742    by (induct n) simp_all
1743  from this [of 0] have "of_nat_aux (\<lambda>i. i + 1) n 1 = of_nat_aux (\<lambda>i. i + 1) n 0 + 1"
1744    by simp
1745  with Suc show ?case
1746    by (simp add: add.commute)
1747qed
1748
1749lemma of_nat_of_bool [simp]:
1750  "of_nat (of_bool P) = of_bool P"
1751  by auto
1752
1753end
1754
1755declare of_nat_code [code]
1756
1757context ring_1
1758begin
1759
1760lemma of_nat_diff: "n \<le> m \<Longrightarrow> of_nat (m - n) = of_nat m - of_nat n"
1761  by (simp add: algebra_simps of_nat_add [symmetric])
1762
1763end
1764
1765text \<open>Class for unital semirings with characteristic zero.
1766 Includes non-ordered rings like the complex numbers.\<close>
1767
1768class semiring_char_0 = semiring_1 +
1769  assumes inj_of_nat: "inj of_nat"
1770begin
1771
1772lemma of_nat_eq_iff [simp]: "of_nat m = of_nat n \<longleftrightarrow> m = n"
1773  by (auto intro: inj_of_nat injD)
1774
1775text \<open>Special cases where either operand is zero\<close>
1776
1777lemma of_nat_0_eq_iff [simp]: "0 = of_nat n \<longleftrightarrow> 0 = n"
1778  by (fact of_nat_eq_iff [of 0 n, unfolded of_nat_0])
1779
1780lemma of_nat_eq_0_iff [simp]: "of_nat m = 0 \<longleftrightarrow> m = 0"
1781  by (fact of_nat_eq_iff [of m 0, unfolded of_nat_0])
1782
1783lemma of_nat_1_eq_iff [simp]: "1 = of_nat n \<longleftrightarrow> n=1"
1784  using of_nat_eq_iff by fastforce
1785
1786lemma of_nat_eq_1_iff [simp]: "of_nat n = 1 \<longleftrightarrow> n=1"
1787  using of_nat_eq_iff by fastforce
1788
1789lemma of_nat_neq_0 [simp]: "of_nat (Suc n) \<noteq> 0"
1790  unfolding of_nat_eq_0_iff by simp
1791
1792lemma of_nat_0_neq [simp]: "0 \<noteq> of_nat (Suc n)"
1793  unfolding of_nat_0_eq_iff by simp
1794
1795end
1796
1797class ring_char_0 = ring_1 + semiring_char_0
1798
1799context linordered_nonzero_semiring
1800begin
1801
1802lemma of_nat_0_le_iff [simp]: "0 \<le> of_nat n"
1803  by (induct n) simp_all
1804
1805lemma of_nat_less_0_iff [simp]: "\<not> of_nat m < 0"
1806  by (simp add: not_less)
1807
1808lemma of_nat_mono[simp]: "i \<le> j \<Longrightarrow> of_nat i \<le> of_nat j"
1809  by (auto simp: le_iff_add intro!: add_increasing2)
1810
1811lemma of_nat_less_iff [simp]: "of_nat m < of_nat n \<longleftrightarrow> m < n"
1812proof(induct m n rule: diff_induct)
1813  case (1 m) then show ?case
1814    by auto
1815next
1816  case (2 n) then show ?case
1817    by (simp add: add_pos_nonneg)
1818next
1819  case (3 m n)
1820  then show ?case
1821    by (auto simp: add_commute [of 1] add_mono1 not_less add_right_mono leD)
1822qed
1823
1824lemma of_nat_le_iff [simp]: "of_nat m \<le> of_nat n \<longleftrightarrow> m \<le> n"
1825  by (simp add: not_less [symmetric] linorder_not_less [symmetric])
1826
1827lemma less_imp_of_nat_less: "m < n \<Longrightarrow> of_nat m < of_nat n"
1828  by simp
1829
1830lemma of_nat_less_imp_less: "of_nat m < of_nat n \<Longrightarrow> m < n"
1831  by simp
1832
1833text \<open>Every \<open>linordered_nonzero_semiring\<close> has characteristic zero.\<close>
1834
1835subclass semiring_char_0
1836  by standard (auto intro!: injI simp add: eq_iff)
1837
1838text \<open>Special cases where either operand is zero\<close>
1839
1840lemma of_nat_le_0_iff [simp]: "of_nat m \<le> 0 \<longleftrightarrow> m = 0"
1841  by (rule of_nat_le_iff [of _ 0, simplified])
1842
1843lemma of_nat_0_less_iff [simp]: "0 < of_nat n \<longleftrightarrow> 0 < n"
1844  by (rule of_nat_less_iff [of 0, simplified])
1845
1846end
1847
1848
1849context linordered_semidom
1850begin
1851subclass linordered_nonzero_semiring ..
1852subclass semiring_char_0 ..
1853end
1854
1855
1856context linordered_idom
1857begin
1858
1859lemma abs_of_nat [simp]: "\<bar>of_nat n\<bar> = of_nat n"
1860  unfolding abs_if by auto
1861
1862lemma sgn_of_nat [simp]:
1863  "sgn (of_nat n) = of_bool (n > 0)"
1864  by simp
1865
1866end
1867
1868lemma of_nat_id [simp]: "of_nat n = n"
1869  by (induct n) simp_all
1870
1871lemma of_nat_eq_id [simp]: "of_nat = id"
1872  by (auto simp add: fun_eq_iff)
1873
1874
1875subsection \<open>The set of natural numbers\<close>
1876
1877context semiring_1
1878begin
1879
1880definition Nats :: "'a set"  ("\<nat>")
1881  where "\<nat> = range of_nat"
1882
1883lemma of_nat_in_Nats [simp]: "of_nat n \<in> \<nat>"
1884  by (simp add: Nats_def)
1885
1886lemma Nats_0 [simp]: "0 \<in> \<nat>"
1887  apply (simp add: Nats_def)
1888  apply (rule range_eqI)
1889  apply (rule of_nat_0 [symmetric])
1890  done
1891
1892lemma Nats_1 [simp]: "1 \<in> \<nat>"
1893  apply (simp add: Nats_def)
1894  apply (rule range_eqI)
1895  apply (rule of_nat_1 [symmetric])
1896  done
1897
1898lemma Nats_add [simp]: "a \<in> \<nat> \<Longrightarrow> b \<in> \<nat> \<Longrightarrow> a + b \<in> \<nat>"
1899  apply (auto simp add: Nats_def)
1900  apply (rule range_eqI)
1901  apply (rule of_nat_add [symmetric])
1902  done
1903
1904lemma Nats_mult [simp]: "a \<in> \<nat> \<Longrightarrow> b \<in> \<nat> \<Longrightarrow> a * b \<in> \<nat>"
1905  apply (auto simp add: Nats_def)
1906  apply (rule range_eqI)
1907  apply (rule of_nat_mult [symmetric])
1908  done
1909
1910lemma Nats_cases [cases set: Nats]:
1911  assumes "x \<in> \<nat>"
1912  obtains (of_nat) n where "x = of_nat n"
1913  unfolding Nats_def
1914proof -
1915  from \<open>x \<in> \<nat>\<close> have "x \<in> range of_nat" unfolding Nats_def .
1916  then obtain n where "x = of_nat n" ..
1917  then show thesis ..
1918qed
1919
1920lemma Nats_induct [case_names of_nat, induct set: Nats]: "x \<in> \<nat> \<Longrightarrow> (\<And>n. P (of_nat n)) \<Longrightarrow> P x"
1921  by (rule Nats_cases) auto
1922
1923end
1924
1925
1926subsection \<open>Further arithmetic facts concerning the natural numbers\<close>
1927
1928lemma subst_equals:
1929  assumes "t = s" and "u = t"
1930  shows "u = s"
1931  using assms(2,1) by (rule trans)
1932
1933ML_file "Tools/nat_arith.ML"
1934
1935simproc_setup nateq_cancel_sums
1936  ("(l::nat) + m = n" | "(l::nat) = m + n" | "Suc m = n" | "m = Suc n") =
1937  \<open>fn phi => try o Nat_Arith.cancel_eq_conv\<close>
1938
1939simproc_setup natless_cancel_sums
1940  ("(l::nat) + m < n" | "(l::nat) < m + n" | "Suc m < n" | "m < Suc n") =
1941  \<open>fn phi => try o Nat_Arith.cancel_less_conv\<close>
1942
1943simproc_setup natle_cancel_sums
1944  ("(l::nat) + m \<le> n" | "(l::nat) \<le> m + n" | "Suc m \<le> n" | "m \<le> Suc n") =
1945  \<open>fn phi => try o Nat_Arith.cancel_le_conv\<close>
1946
1947simproc_setup natdiff_cancel_sums
1948  ("(l::nat) + m - n" | "(l::nat) - (m + n)" | "Suc m - n" | "m - Suc n") =
1949  \<open>fn phi => try o Nat_Arith.cancel_diff_conv\<close>
1950
1951context order
1952begin
1953
1954lemma lift_Suc_mono_le:
1955  assumes mono: "\<And>n. f n \<le> f (Suc n)"
1956    and "n \<le> n'"
1957  shows "f n \<le> f n'"
1958proof (cases "n < n'")
1959  case True
1960  then show ?thesis
1961    by (induct n n' rule: less_Suc_induct) (auto intro: mono)
1962next
1963  case False
1964  with \<open>n \<le> n'\<close> show ?thesis by auto
1965qed
1966
1967lemma lift_Suc_antimono_le:
1968  assumes mono: "\<And>n. f n \<ge> f (Suc n)"
1969    and "n \<le> n'"
1970  shows "f n \<ge> f n'"
1971proof (cases "n < n'")
1972  case True
1973  then show ?thesis
1974    by (induct n n' rule: less_Suc_induct) (auto intro: mono)
1975next
1976  case False
1977  with \<open>n \<le> n'\<close> show ?thesis by auto
1978qed
1979
1980lemma lift_Suc_mono_less:
1981  assumes mono: "\<And>n. f n < f (Suc n)"
1982    and "n < n'"
1983  shows "f n < f n'"
1984  using \<open>n < n'\<close> by (induct n n' rule: less_Suc_induct) (auto intro: mono)
1985
1986lemma lift_Suc_mono_less_iff: "(\<And>n. f n < f (Suc n)) \<Longrightarrow> f n < f m \<longleftrightarrow> n < m"
1987  by (blast intro: less_asym' lift_Suc_mono_less [of f]
1988    dest: linorder_not_less[THEN iffD1] le_eq_less_or_eq [THEN iffD1])
1989
1990end
1991
1992lemma mono_iff_le_Suc: "mono f \<longleftrightarrow> (\<forall>n. f n \<le> f (Suc n))"
1993  unfolding mono_def by (auto intro: lift_Suc_mono_le [of f])
1994
1995lemma antimono_iff_le_Suc: "antimono f \<longleftrightarrow> (\<forall>n. f (Suc n) \<le> f n)"
1996  unfolding antimono_def by (auto intro: lift_Suc_antimono_le [of f])
1997
1998lemma mono_nat_linear_lb:
1999  fixes f :: "nat \<Rightarrow> nat"
2000  assumes "\<And>m n. m < n \<Longrightarrow> f m < f n"
2001  shows "f m + k \<le> f (m + k)"
2002proof (induct k)
2003  case 0
2004  then show ?case by simp
2005next
2006  case (Suc k)
2007  then have "Suc (f m + k) \<le> Suc (f (m + k))" by simp
2008  also from assms [of "m + k" "Suc (m + k)"] have "Suc (f (m + k)) \<le> f (Suc (m + k))"
2009    by (simp add: Suc_le_eq)
2010  finally show ?case by simp
2011qed
2012
2013
2014text \<open>Subtraction laws, mostly by Clemens Ballarin\<close>
2015
2016lemma diff_less_mono:
2017  fixes a b c :: nat
2018  assumes "a < b" and "c \<le> a"
2019  shows "a - c < b - c"
2020proof -
2021  from assms obtain d e where "b = c + (d + e)" and "a = c + e" and "d > 0"
2022    by (auto dest!: le_Suc_ex less_imp_Suc_add simp add: ac_simps)
2023  then show ?thesis by simp
2024qed
2025
2026lemma less_diff_conv: "i < j - k \<longleftrightarrow> i + k < j"
2027  for i j k :: nat
2028  by (cases "k \<le> j") (auto simp add: not_le dest: less_imp_Suc_add le_Suc_ex)
2029
2030lemma less_diff_conv2: "k \<le> j \<Longrightarrow> j - k < i \<longleftrightarrow> j < i + k"
2031  for j k i :: nat
2032  by (auto dest: le_Suc_ex)
2033
2034lemma le_diff_conv: "j - k \<le> i \<longleftrightarrow> j \<le> i + k"
2035  for j k i :: nat
2036  by (cases "k \<le> j") (auto simp add: not_le dest!: less_imp_Suc_add le_Suc_ex)
2037
2038lemma diff_diff_cancel [simp]: "i \<le> n \<Longrightarrow> n - (n - i) = i"
2039  for i n :: nat
2040  by (auto dest: le_Suc_ex)
2041
2042lemma diff_less [simp]: "0 < n \<Longrightarrow> 0 < m \<Longrightarrow> m - n < m"
2043  for i n :: nat
2044  by (auto dest: less_imp_Suc_add)
2045
2046text \<open>Simplification of relational expressions involving subtraction\<close>
2047
2048lemma diff_diff_eq: "k \<le> m \<Longrightarrow> k \<le> n \<Longrightarrow> m - k - (n - k) = m - n"
2049  for m n k :: nat
2050  by (auto dest!: le_Suc_ex)
2051
2052hide_fact (open) diff_diff_eq
2053
2054lemma eq_diff_iff: "k \<le> m \<Longrightarrow> k \<le> n \<Longrightarrow> m - k = n - k \<longleftrightarrow> m = n"
2055  for m n k :: nat
2056  by (auto dest: le_Suc_ex)
2057
2058lemma less_diff_iff: "k \<le> m \<Longrightarrow> k \<le> n \<Longrightarrow> m - k < n - k \<longleftrightarrow> m < n"
2059  for m n k :: nat
2060  by (auto dest!: le_Suc_ex)
2061
2062lemma le_diff_iff: "k \<le> m \<Longrightarrow> k \<le> n \<Longrightarrow> m - k \<le> n - k \<longleftrightarrow> m \<le> n"
2063  for m n k :: nat
2064  by (auto dest!: le_Suc_ex)
2065
2066lemma le_diff_iff': "a \<le> c \<Longrightarrow> b \<le> c \<Longrightarrow> c - a \<le> c - b \<longleftrightarrow> b \<le> a"
2067  for a b c :: nat
2068  by (force dest: le_Suc_ex)
2069
2070
2071text \<open>(Anti)Monotonicity of subtraction -- by Stephan Merz\<close>
2072
2073lemma diff_le_mono: "m \<le> n \<Longrightarrow> m - l \<le> n - l"
2074  for m n l :: nat
2075  by (auto dest: less_imp_le less_imp_Suc_add split: nat_diff_split)
2076
2077lemma diff_le_mono2: "m \<le> n \<Longrightarrow> l - n \<le> l - m"
2078  for m n l :: nat
2079  by (auto dest: less_imp_le le_Suc_ex less_imp_Suc_add less_le_trans split: nat_diff_split)
2080
2081lemma diff_less_mono2: "m < n \<Longrightarrow> m < l \<Longrightarrow> l - n < l - m"
2082  for m n l :: nat
2083  by (auto dest: less_imp_Suc_add split: nat_diff_split)
2084
2085lemma diffs0_imp_equal: "m - n = 0 \<Longrightarrow> n - m = 0 \<Longrightarrow> m = n"
2086  for m n :: nat
2087  by (simp split: nat_diff_split)
2088
2089lemma min_diff: "min (m - i) (n - i) = min m n - i"
2090  for m n i :: nat
2091  by (cases m n rule: le_cases)
2092    (auto simp add: not_le min.absorb1 min.absorb2 min.absorb_iff1 [symmetric] diff_le_mono)
2093
2094lemma inj_on_diff_nat:
2095  fixes k :: nat
2096  assumes "\<And>n. n \<in> N \<Longrightarrow> k \<le> n"
2097  shows "inj_on (\<lambda>n. n - k) N"
2098proof (rule inj_onI)
2099  fix x y
2100  assume a: "x \<in> N" "y \<in> N" "x - k = y - k"
2101  with assms have "x - k + k = y - k + k" by auto
2102  with a assms show "x = y" by (auto simp add: eq_diff_iff)
2103qed
2104
2105text \<open>Rewriting to pull differences out\<close>
2106
2107lemma diff_diff_right [simp]: "k \<le> j \<Longrightarrow> i - (j - k) = i + k - j"
2108  for i j k :: nat
2109  by (fact diff_diff_right)
2110
2111lemma diff_Suc_diff_eq1 [simp]:
2112  assumes "k \<le> j"
2113  shows "i - Suc (j - k) = i + k - Suc j"
2114proof -
2115  from assms have *: "Suc (j - k) = Suc j - k"
2116    by (simp add: Suc_diff_le)
2117  from assms have "k \<le> Suc j"
2118    by (rule order_trans) simp
2119  with diff_diff_right [of k "Suc j" i] * show ?thesis
2120    by simp
2121qed
2122
2123lemma diff_Suc_diff_eq2 [simp]:
2124  assumes "k \<le> j"
2125  shows "Suc (j - k) - i = Suc j - (k + i)"
2126proof -
2127  from assms obtain n where "j = k + n"
2128    by (auto dest: le_Suc_ex)
2129  moreover have "Suc n - i = (k + Suc n) - (k + i)"
2130    using add_diff_cancel_left [of k "Suc n" i] by simp
2131  ultimately show ?thesis by simp
2132qed
2133
2134lemma Suc_diff_Suc:
2135  assumes "n < m"
2136  shows "Suc (m - Suc n) = m - n"
2137proof -
2138  from assms obtain q where "m = n + Suc q"
2139    by (auto dest: less_imp_Suc_add)
2140  moreover define r where "r = Suc q"
2141  ultimately have "Suc (m - Suc n) = r" and "m = n + r"
2142    by simp_all
2143  then show ?thesis by simp
2144qed
2145
2146lemma one_less_mult: "Suc 0 < n \<Longrightarrow> Suc 0 < m \<Longrightarrow> Suc 0 < m * n"
2147  using less_1_mult [of n m] by (simp add: ac_simps)
2148
2149lemma n_less_m_mult_n: "0 < n \<Longrightarrow> Suc 0 < m \<Longrightarrow> n < m * n"
2150  using mult_strict_right_mono [of 1 m n] by simp
2151
2152lemma n_less_n_mult_m: "0 < n \<Longrightarrow> Suc 0 < m \<Longrightarrow> n < n * m"
2153  using mult_strict_left_mono [of 1 m n] by simp
2154
2155
2156text \<open>Induction starting beyond zero\<close>
2157
2158lemma nat_induct_at_least [consumes 1, case_names base Suc]:
2159  "P n" if "n \<ge> m" "P m" "\<And>n. n \<ge> m \<Longrightarrow> P n \<Longrightarrow> P (Suc n)"
2160proof -
2161  define q where "q = n - m"
2162  with \<open>n \<ge> m\<close> have "n = m + q"
2163    by simp
2164  moreover have "P (m + q)"
2165    by (induction q) (use that in simp_all)
2166  ultimately show "P n"
2167    by simp
2168qed
2169
2170lemma nat_induct_non_zero [consumes 1, case_names 1 Suc]:
2171  "P n" if "n > 0" "P 1" "\<And>n. n > 0 \<Longrightarrow> P n \<Longrightarrow> P (Suc n)"
2172proof -
2173  from \<open>n > 0\<close> have "n \<ge> 1"
2174    by (cases n) simp_all
2175  moreover note \<open>P 1\<close>
2176  moreover have "\<And>n. n \<ge> 1 \<Longrightarrow> P n \<Longrightarrow> P (Suc n)"
2177    using \<open>\<And>n. n > 0 \<Longrightarrow> P n \<Longrightarrow> P (Suc n)\<close>
2178    by (simp add: Suc_le_eq)
2179  ultimately show "P n"
2180    by (rule nat_induct_at_least)
2181qed
2182
2183
2184text \<open>Specialized induction principles that work "backwards":\<close>
2185
2186lemma inc_induct [consumes 1, case_names base step]:
2187  assumes less: "i \<le> j"
2188    and base: "P j"
2189    and step: "\<And>n. i \<le> n \<Longrightarrow> n < j \<Longrightarrow> P (Suc n) \<Longrightarrow> P n"
2190  shows "P i"
2191  using less step
2192proof (induct "j - i" arbitrary: i)
2193  case (0 i)
2194  then have "i = j" by simp
2195  with base show ?case by simp
2196next
2197  case (Suc d n)
2198  from Suc.hyps have "n \<noteq> j" by auto
2199  with Suc have "n < j" by (simp add: less_le)
2200  from \<open>Suc d = j - n\<close> have "d + 1 = j - n" by simp
2201  then have "d + 1 - 1 = j - n - 1" by simp
2202  then have "d = j - n - 1" by simp
2203  then have "d = j - (n + 1)" by (simp add: diff_diff_eq)
2204  then have "d = j - Suc n" by simp
2205  moreover from \<open>n < j\<close> have "Suc n \<le> j" by (simp add: Suc_le_eq)
2206  ultimately have "P (Suc n)"
2207  proof (rule Suc.hyps)
2208    fix q
2209    assume "Suc n \<le> q"
2210    then have "n \<le> q" by (simp add: Suc_le_eq less_imp_le)
2211    moreover assume "q < j"
2212    moreover assume "P (Suc q)"
2213    ultimately show "P q" by (rule Suc.prems)
2214  qed
2215  with order_refl \<open>n < j\<close> show "P n" by (rule Suc.prems)
2216qed
2217
2218lemma strict_inc_induct [consumes 1, case_names base step]:
2219  assumes less: "i < j"
2220    and base: "\<And>i. j = Suc i \<Longrightarrow> P i"
2221    and step: "\<And>i. i < j \<Longrightarrow> P (Suc i) \<Longrightarrow> P i"
2222  shows "P i"
2223using less proof (induct "j - i - 1" arbitrary: i)
2224  case (0 i)
2225  from \<open>i < j\<close> obtain n where "j = i + n" and "n > 0"
2226    by (auto dest!: less_imp_Suc_add)
2227  with 0 have "j = Suc i"
2228    by (auto intro: order_antisym simp add: Suc_le_eq)
2229  with base show ?case by simp
2230next
2231  case (Suc d i)
2232  from \<open>Suc d = j - i - 1\<close> have *: "Suc d = j - Suc i"
2233    by (simp add: diff_diff_add)
2234  then have "Suc d - 1 = j - Suc i - 1" by simp
2235  then have "d = j - Suc i - 1" by simp
2236  moreover from * have "j - Suc i \<noteq> 0" by auto
2237  then have "Suc i < j" by (simp add: not_le)
2238  ultimately have "P (Suc i)" by (rule Suc.hyps)
2239  with \<open>i < j\<close> show "P i" by (rule step)
2240qed
2241
2242lemma zero_induct_lemma: "P k \<Longrightarrow> (\<And>n. P (Suc n) \<Longrightarrow> P n) \<Longrightarrow> P (k - i)"
2243  using inc_induct[of "k - i" k P, simplified] by blast
2244
2245lemma zero_induct: "P k \<Longrightarrow> (\<And>n. P (Suc n) \<Longrightarrow> P n) \<Longrightarrow> P 0"
2246  using inc_induct[of 0 k P] by blast
2247
2248text \<open>Further induction rule similar to @{thm inc_induct}.\<close>
2249
2250lemma dec_induct [consumes 1, case_names base step]:
2251  "i \<le> j \<Longrightarrow> P i \<Longrightarrow> (\<And>n. i \<le> n \<Longrightarrow> n < j \<Longrightarrow> P n \<Longrightarrow> P (Suc n)) \<Longrightarrow> P j"
2252proof (induct j arbitrary: i)
2253  case 0
2254  then show ?case by simp
2255next
2256  case (Suc j)
2257  from Suc.prems consider "i \<le> j" | "i = Suc j"
2258    by (auto simp add: le_Suc_eq)
2259  then show ?case
2260  proof cases
2261    case 1
2262    moreover have "j < Suc j" by simp
2263    moreover have "P j" using \<open>i \<le> j\<close> \<open>P i\<close>
2264    proof (rule Suc.hyps)
2265      fix q
2266      assume "i \<le> q"
2267      moreover assume "q < j" then have "q < Suc j"
2268        by (simp add: less_Suc_eq)
2269      moreover assume "P q"
2270      ultimately show "P (Suc q)" by (rule Suc.prems)
2271    qed
2272    ultimately show "P (Suc j)" by (rule Suc.prems)
2273  next
2274    case 2
2275    with \<open>P i\<close> show "P (Suc j)" by simp
2276  qed
2277qed
2278
2279lemma transitive_stepwise_le:
2280  assumes "m \<le> n" "\<And>x. R x x" "\<And>x y z. R x y \<Longrightarrow> R y z \<Longrightarrow> R x z" and "\<And>n. R n (Suc n)"
2281  shows "R m n"
2282using \<open>m \<le> n\<close>  
2283  by (induction rule: dec_induct) (use assms in blast)+
2284
2285
2286subsubsection \<open>Greatest operator\<close>
2287
2288lemma ex_has_greatest_nat:
2289  "P (k::nat) \<Longrightarrow> \<forall>y. P y \<longrightarrow> y \<le> b \<Longrightarrow> \<exists>x. P x \<and> (\<forall>y. P y \<longrightarrow> y \<le> x)"
2290proof (induction "b-k" arbitrary: b k rule: less_induct)
2291  case less
2292  show ?case
2293  proof cases
2294    assume "\<exists>n>k. P n"
2295    then obtain n where "n>k" "P n" by blast
2296    have "n \<le> b" using \<open>P n\<close> less.prems(2) by auto
2297    hence "b-n < b-k"
2298      by(rule diff_less_mono2[OF \<open>k<n\<close> less_le_trans[OF \<open>k<n\<close>]])
2299    from less.hyps[OF this \<open>P n\<close> less.prems(2)]
2300    show ?thesis .
2301  next
2302    assume "\<not> (\<exists>n>k. P n)"
2303    hence "\<forall>y. P y \<longrightarrow> y \<le> k" by (auto simp: not_less)
2304    thus ?thesis using less.prems(1) by auto
2305  qed
2306qed
2307
2308lemma GreatestI_nat:
2309  "\<lbrakk> P(k::nat); \<forall>y. P y \<longrightarrow> y \<le> b \<rbrakk> \<Longrightarrow> P (Greatest P)"
2310apply(drule (1) ex_has_greatest_nat)
2311using GreatestI2_order by auto
2312
2313lemma Greatest_le_nat:
2314  "\<lbrakk> P(k::nat);  \<forall>y. P y \<longrightarrow> y \<le> b \<rbrakk> \<Longrightarrow> k \<le> (Greatest P)"
2315apply(frule (1) ex_has_greatest_nat)
2316using GreatestI2_order[where P=P and Q=\<open>\<lambda>x. k \<le> x\<close>] by auto
2317
2318lemma GreatestI_ex_nat:
2319  "\<lbrakk> \<exists>k::nat. P k;  \<forall>y. P y \<longrightarrow> y \<le> b \<rbrakk> \<Longrightarrow> P (Greatest P)"
2320apply (erule exE)
2321apply (erule (1) GreatestI_nat)
2322done
2323
2324
2325subsection \<open>Monotonicity of \<open>funpow\<close>\<close>
2326
2327lemma funpow_increasing: "m \<le> n \<Longrightarrow> mono f \<Longrightarrow> (f ^^ n) \<top> \<le> (f ^^ m) \<top>"
2328  for f :: "'a::{lattice,order_top} \<Rightarrow> 'a"
2329  by (induct rule: inc_induct)
2330    (auto simp del: funpow.simps(2) simp add: funpow_Suc_right
2331      intro: order_trans[OF _ funpow_mono])
2332
2333lemma funpow_decreasing: "m \<le> n \<Longrightarrow> mono f \<Longrightarrow> (f ^^ m) \<bottom> \<le> (f ^^ n) \<bottom>"
2334  for f :: "'a::{lattice,order_bot} \<Rightarrow> 'a"
2335  by (induct rule: dec_induct)
2336    (auto simp del: funpow.simps(2) simp add: funpow_Suc_right
2337      intro: order_trans[OF _ funpow_mono])
2338
2339lemma mono_funpow: "mono Q \<Longrightarrow> mono (\<lambda>i. (Q ^^ i) \<bottom>)"
2340  for Q :: "'a::{lattice,order_bot} \<Rightarrow> 'a"
2341  by (auto intro!: funpow_decreasing simp: mono_def)
2342
2343lemma antimono_funpow: "mono Q \<Longrightarrow> antimono (\<lambda>i. (Q ^^ i) \<top>)"
2344  for Q :: "'a::{lattice,order_top} \<Rightarrow> 'a"
2345  by (auto intro!: funpow_increasing simp: antimono_def)
2346
2347
2348subsection \<open>The divides relation on @{typ nat}\<close>
2349
2350lemma dvd_1_left [iff]: "Suc 0 dvd k"
2351  by (simp add: dvd_def)
2352
2353lemma dvd_1_iff_1 [simp]: "m dvd Suc 0 \<longleftrightarrow> m = Suc 0"
2354  by (simp add: dvd_def)
2355
2356lemma nat_dvd_1_iff_1 [simp]: "m dvd 1 \<longleftrightarrow> m = 1"
2357  for m :: nat
2358  by (simp add: dvd_def)
2359
2360lemma dvd_antisym: "m dvd n \<Longrightarrow> n dvd m \<Longrightarrow> m = n"
2361  for m n :: nat
2362  unfolding dvd_def by (force dest: mult_eq_self_implies_10 simp add: mult.assoc)
2363
2364lemma dvd_diff_nat [simp]: "k dvd m \<Longrightarrow> k dvd n \<Longrightarrow> k dvd (m - n)"
2365  for k m n :: nat
2366  unfolding dvd_def by (blast intro: right_diff_distrib' [symmetric])
2367
2368lemma dvd_diffD: "k dvd m - n \<Longrightarrow> k dvd n \<Longrightarrow> n \<le> m \<Longrightarrow> k dvd m"
2369  for k m n :: nat
2370  apply (erule linorder_not_less [THEN iffD2, THEN add_diff_inverse, THEN subst])
2371  apply (blast intro: dvd_add)
2372  done
2373
2374lemma dvd_diffD1: "k dvd m - n \<Longrightarrow> k dvd m \<Longrightarrow> n \<le> m \<Longrightarrow> k dvd n"
2375  for k m n :: nat
2376  by (drule_tac m = m in dvd_diff_nat) auto
2377
2378lemma dvd_mult_cancel:
2379  fixes m n k :: nat
2380  assumes "k * m dvd k * n" and "0 < k"
2381  shows "m dvd n"
2382proof -
2383  from assms(1) obtain q where "k * n = (k * m) * q" ..
2384  then have "k * n = k * (m * q)" by (simp add: ac_simps)
2385  with \<open>0 < k\<close> have "n = m * q" by (auto simp add: mult_left_cancel)
2386  then show ?thesis ..
2387qed
2388
2389lemma dvd_mult_cancel1: "0 < m \<Longrightarrow> m * n dvd m \<longleftrightarrow> n = 1"
2390  for m n :: nat
2391  apply auto
2392  apply (subgoal_tac "m * n dvd m * 1")
2393   apply (drule dvd_mult_cancel)
2394    apply auto
2395  done
2396
2397lemma dvd_mult_cancel2: "0 < m \<Longrightarrow> n * m dvd m \<longleftrightarrow> n = 1"
2398  for m n :: nat
2399  using dvd_mult_cancel1 [of m n] by (simp add: ac_simps)
2400
2401lemma dvd_imp_le: "k dvd n \<Longrightarrow> 0 < n \<Longrightarrow> k \<le> n"
2402  for k n :: nat
2403  by (auto elim!: dvdE) (auto simp add: gr0_conv_Suc)
2404
2405lemma nat_dvd_not_less: "0 < m \<Longrightarrow> m < n \<Longrightarrow> \<not> n dvd m"
2406  for m n :: nat
2407  by (auto elim!: dvdE) (auto simp add: gr0_conv_Suc)
2408
2409lemma less_eq_dvd_minus:
2410  fixes m n :: nat
2411  assumes "m \<le> n"
2412  shows "m dvd n \<longleftrightarrow> m dvd n - m"
2413proof -
2414  from assms have "n = m + (n - m)" by simp
2415  then obtain q where "n = m + q" ..
2416  then show ?thesis by (simp add: add.commute [of m])
2417qed
2418
2419lemma dvd_minus_self: "m dvd n - m \<longleftrightarrow> n < m \<or> m dvd n"
2420  for m n :: nat
2421  by (cases "n < m") (auto elim!: dvdE simp add: not_less le_imp_diff_is_add dest: less_imp_le)
2422
2423lemma dvd_minus_add:
2424  fixes m n q r :: nat
2425  assumes "q \<le> n" "q \<le> r * m"
2426  shows "m dvd n - q \<longleftrightarrow> m dvd n + (r * m - q)"
2427proof -
2428  have "m dvd n - q \<longleftrightarrow> m dvd r * m + (n - q)"
2429    using dvd_add_times_triv_left_iff [of m r] by simp
2430  also from assms have "\<dots> \<longleftrightarrow> m dvd r * m + n - q" by simp
2431  also from assms have "\<dots> \<longleftrightarrow> m dvd (r * m - q) + n" by simp
2432  also have "\<dots> \<longleftrightarrow> m dvd n + (r * m - q)" by (simp add: add.commute)
2433  finally show ?thesis .
2434qed
2435
2436
2437subsection \<open>Aliasses\<close>
2438
2439lemma nat_mult_1: "1 * n = n"
2440  for n :: nat
2441  by (fact mult_1_left)
2442
2443lemma nat_mult_1_right: "n * 1 = n"
2444  for n :: nat
2445  by (fact mult_1_right)
2446
2447lemma nat_add_left_cancel: "k + m = k + n \<longleftrightarrow> m = n"
2448  for k m n :: nat
2449  by (fact add_left_cancel)
2450
2451lemma nat_add_right_cancel: "m + k = n + k \<longleftrightarrow> m = n"
2452  for k m n :: nat
2453  by (fact add_right_cancel)
2454
2455lemma diff_mult_distrib: "(m - n) * k = (m * k) - (n * k)"
2456  for k m n :: nat
2457  by (fact left_diff_distrib')
2458
2459lemma diff_mult_distrib2: "k * (m - n) = (k * m) - (k * n)"
2460  for k m n :: nat
2461  by (fact right_diff_distrib')
2462
2463lemma le_add_diff: "k \<le> n \<Longrightarrow> m \<le> n + m - k"
2464  for k m n :: nat
2465  by (fact le_add_diff)  (* FIXME delete *)
2466
2467lemma le_diff_conv2: "k \<le> j \<Longrightarrow> (i \<le> j - k) = (i + k \<le> j)"
2468  for i j k :: nat
2469  by (fact le_diff_conv2) (* FIXME delete *)
2470
2471lemma diff_self_eq_0 [simp]: "m - m = 0"
2472  for m :: nat
2473  by (fact diff_cancel)
2474
2475lemma diff_diff_left [simp]: "i - j - k = i - (j + k)"
2476  for i j k :: nat
2477  by (fact diff_diff_add)
2478
2479lemma diff_commute: "i - j - k = i - k - j"
2480  for i j k :: nat
2481  by (fact diff_right_commute)
2482
2483lemma diff_add_inverse: "(n + m) - n = m"
2484  for m n :: nat
2485  by (fact add_diff_cancel_left')
2486
2487lemma diff_add_inverse2: "(m + n) - n = m"
2488  for m n :: nat
2489  by (fact add_diff_cancel_right')
2490
2491lemma diff_cancel: "(k + m) - (k + n) = m - n"
2492  for k m n :: nat
2493  by (fact add_diff_cancel_left)
2494
2495lemma diff_cancel2: "(m + k) - (n + k) = m - n"
2496  for k m n :: nat
2497  by (fact add_diff_cancel_right)
2498
2499lemma diff_add_0: "n - (n + m) = 0"
2500  for m n :: nat
2501  by (fact diff_add_zero)
2502
2503lemma add_mult_distrib2: "k * (m + n) = (k * m) + (k * n)"
2504  for k m n :: nat
2505  by (fact distrib_left)
2506
2507lemmas nat_distrib =
2508  add_mult_distrib distrib_left diff_mult_distrib diff_mult_distrib2
2509
2510
2511subsection \<open>Size of a datatype value\<close>
2512
2513class size =
2514  fixes size :: "'a \<Rightarrow> nat" \<comment> \<open>see further theory \<open>Wellfounded\<close>\<close>
2515
2516instantiation nat :: size
2517begin
2518
2519definition size_nat where [simp, code]: "size (n::nat) = n"
2520
2521instance ..
2522
2523end
2524
2525lemmas size_nat = size_nat_def
2526
2527
2528subsection \<open>Code module namespace\<close>
2529
2530code_identifier
2531  code_module Nat \<rightharpoonup> (SML) Arith and (OCaml) Arith and (Haskell) Arith
2532
2533hide_const (open) of_nat_aux
2534
2535end
2536