1
2(* Author: Lukas Bulwahn, TU Muenchen *)
3
4section \<open>Depth-Limited Sequences with failure element\<close>
5
6theory Limited_Sequence
7imports Lazy_Sequence
8begin
9
10subsection \<open>Depth-Limited Sequence\<close>
11
12type_synonym 'a dseq = "natural \<Rightarrow> bool \<Rightarrow> 'a lazy_sequence option"
13
14definition empty :: "'a dseq"
15where
16  "empty = (\<lambda>_ _. Some Lazy_Sequence.empty)"
17
18definition single :: "'a \<Rightarrow> 'a dseq"
19where
20  "single x = (\<lambda>_ _. Some (Lazy_Sequence.single x))"
21
22definition eval :: "'a dseq \<Rightarrow> natural \<Rightarrow> bool \<Rightarrow> 'a lazy_sequence option"
23where
24  [simp]: "eval f i pol = f i pol"
25
26definition yield :: "'a dseq \<Rightarrow> natural \<Rightarrow> bool \<Rightarrow> ('a \<times> 'a dseq) option" 
27where
28  "yield f i pol = (case eval f i pol of
29    None \<Rightarrow> None
30  | Some s \<Rightarrow> (map_option \<circ> apsnd) (\<lambda>r _ _. Some r) (Lazy_Sequence.yield s))"
31
32definition map_seq :: "('a \<Rightarrow> 'b dseq) \<Rightarrow> 'a lazy_sequence \<Rightarrow> 'b dseq"
33where
34  "map_seq f xq i pol = map_option Lazy_Sequence.flat
35    (Lazy_Sequence.those (Lazy_Sequence.map (\<lambda>x. f x i pol) xq))"
36
37lemma map_seq_code [code]:
38  "map_seq f xq i pol = (case Lazy_Sequence.yield xq of
39    None \<Rightarrow> Some Lazy_Sequence.empty
40  | Some (x, xq') \<Rightarrow> (case eval (f x) i pol of
41      None \<Rightarrow> None
42    | Some yq \<Rightarrow> (case map_seq f xq' i pol of
43        None \<Rightarrow> None
44      | Some zq \<Rightarrow> Some (Lazy_Sequence.append yq zq))))"
45  by (cases xq)
46    (auto simp add: map_seq_def Lazy_Sequence.those_def lazy_sequence_eq_iff split: list.splits option.splits)
47
48definition bind :: "'a dseq \<Rightarrow> ('a \<Rightarrow> 'b dseq) \<Rightarrow> 'b dseq"
49where
50  "bind x f = (\<lambda>i pol. 
51     if i = 0 then
52       (if pol then Some Lazy_Sequence.empty else None)
53     else
54       (case x (i - 1) pol of
55         None \<Rightarrow> None
56       | Some xq \<Rightarrow> map_seq f xq i pol))"
57
58definition union :: "'a dseq \<Rightarrow> 'a dseq \<Rightarrow> 'a dseq"
59where
60  "union x y = (\<lambda>i pol. case (x i pol, y i pol) of
61      (Some xq, Some yq) \<Rightarrow> Some (Lazy_Sequence.append xq yq)
62    | _ \<Rightarrow> None)"
63
64definition if_seq :: "bool \<Rightarrow> unit dseq"
65where
66  "if_seq b = (if b then single () else empty)"
67
68definition not_seq :: "unit dseq \<Rightarrow> unit dseq"
69where
70  "not_seq x = (\<lambda>i pol. case x i (\<not> pol) of
71    None \<Rightarrow> Some Lazy_Sequence.empty
72  | Some xq \<Rightarrow> (case Lazy_Sequence.yield xq of
73      None \<Rightarrow> Some (Lazy_Sequence.single ())
74    | Some _ \<Rightarrow> Some (Lazy_Sequence.empty)))"
75
76definition map :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a dseq \<Rightarrow> 'b dseq"
77where
78  "map f g = (\<lambda>i pol. case g i pol of
79     None \<Rightarrow> None
80   | Some xq \<Rightarrow> Some (Lazy_Sequence.map f xq))"
81
82
83subsection \<open>Positive Depth-Limited Sequence\<close>
84
85type_synonym 'a pos_dseq = "natural \<Rightarrow> 'a Lazy_Sequence.lazy_sequence"
86
87definition pos_empty :: "'a pos_dseq"
88where
89  "pos_empty = (\<lambda>i. Lazy_Sequence.empty)"
90
91definition pos_single :: "'a \<Rightarrow> 'a pos_dseq"
92where
93  "pos_single x = (\<lambda>i. Lazy_Sequence.single x)"
94
95definition pos_bind :: "'a pos_dseq \<Rightarrow> ('a \<Rightarrow> 'b pos_dseq) \<Rightarrow> 'b pos_dseq"
96where
97  "pos_bind x f = (\<lambda>i. Lazy_Sequence.bind (x i) (\<lambda>a. f a i))"
98
99definition pos_decr_bind :: "'a pos_dseq \<Rightarrow> ('a \<Rightarrow> 'b pos_dseq) \<Rightarrow> 'b pos_dseq"
100where
101  "pos_decr_bind x f = (\<lambda>i. 
102     if i = 0 then
103       Lazy_Sequence.empty
104     else
105       Lazy_Sequence.bind (x (i - 1)) (\<lambda>a. f a i))"
106
107definition pos_union :: "'a pos_dseq \<Rightarrow> 'a pos_dseq \<Rightarrow> 'a pos_dseq"
108where
109  "pos_union xq yq = (\<lambda>i. Lazy_Sequence.append (xq i) (yq i))"
110
111definition pos_if_seq :: "bool \<Rightarrow> unit pos_dseq"
112where
113  "pos_if_seq b = (if b then pos_single () else pos_empty)"
114
115definition pos_iterate_upto :: "(natural \<Rightarrow> 'a) \<Rightarrow> natural \<Rightarrow> natural \<Rightarrow> 'a pos_dseq"
116where
117  "pos_iterate_upto f n m = (\<lambda>i. Lazy_Sequence.iterate_upto f n m)"
118 
119definition pos_map :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a pos_dseq \<Rightarrow> 'b pos_dseq"
120where
121  "pos_map f xq = (\<lambda>i. Lazy_Sequence.map f (xq i))"
122
123
124subsection \<open>Negative Depth-Limited Sequence\<close>
125
126type_synonym 'a neg_dseq = "natural \<Rightarrow> 'a Lazy_Sequence.hit_bound_lazy_sequence"
127
128definition neg_empty :: "'a neg_dseq"
129where
130  "neg_empty = (\<lambda>i. Lazy_Sequence.empty)"
131
132definition neg_single :: "'a \<Rightarrow> 'a neg_dseq"
133where
134  "neg_single x = (\<lambda>i. Lazy_Sequence.hb_single x)"
135
136definition neg_bind :: "'a neg_dseq \<Rightarrow> ('a \<Rightarrow> 'b neg_dseq) \<Rightarrow> 'b neg_dseq"
137where
138  "neg_bind x f = (\<lambda>i. hb_bind (x i) (\<lambda>a. f a i))"
139
140definition neg_decr_bind :: "'a neg_dseq \<Rightarrow> ('a \<Rightarrow> 'b neg_dseq) \<Rightarrow> 'b neg_dseq"
141where
142  "neg_decr_bind x f = (\<lambda>i. 
143     if i = 0 then
144       Lazy_Sequence.hit_bound
145     else
146       hb_bind (x (i - 1)) (\<lambda>a. f a i))"
147
148definition neg_union :: "'a neg_dseq \<Rightarrow> 'a neg_dseq \<Rightarrow> 'a neg_dseq"
149where
150  "neg_union x y = (\<lambda>i. Lazy_Sequence.append (x i) (y i))"
151
152definition neg_if_seq :: "bool \<Rightarrow> unit neg_dseq"
153where
154  "neg_if_seq b = (if b then neg_single () else neg_empty)"
155
156definition neg_iterate_upto 
157where
158  "neg_iterate_upto f n m = (\<lambda>i. Lazy_Sequence.iterate_upto (\<lambda>i. Some (f i)) n m)"
159
160definition neg_map :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a neg_dseq \<Rightarrow> 'b neg_dseq"
161where
162  "neg_map f xq = (\<lambda>i. Lazy_Sequence.hb_map f (xq i))"
163
164
165subsection \<open>Negation\<close>
166
167definition pos_not_seq :: "unit neg_dseq \<Rightarrow> unit pos_dseq"
168where
169  "pos_not_seq xq = (\<lambda>i. Lazy_Sequence.hb_not_seq (xq (3 * i)))"
170
171definition neg_not_seq :: "unit pos_dseq \<Rightarrow> unit neg_dseq"
172where
173  "neg_not_seq x = (\<lambda>i. case Lazy_Sequence.yield (x i) of
174    None \<Rightarrow> Lazy_Sequence.hb_single ()
175  | Some ((), xq) \<Rightarrow> Lazy_Sequence.empty)"
176
177
178ML \<open>
179signature LIMITED_SEQUENCE =
180sig
181  type 'a dseq = Code_Numeral.natural -> bool -> 'a Lazy_Sequence.lazy_sequence option
182  val map : ('a -> 'b) -> 'a dseq -> 'b dseq
183  val yield : 'a dseq -> Code_Numeral.natural -> bool -> ('a * 'a dseq) option
184  val yieldn : int -> 'a dseq -> Code_Numeral.natural -> bool -> 'a list * 'a dseq
185end;
186
187structure Limited_Sequence : LIMITED_SEQUENCE =
188struct
189
190type 'a dseq = Code_Numeral.natural -> bool -> 'a Lazy_Sequence.lazy_sequence option
191
192fun map f = @{code Limited_Sequence.map} f;
193
194fun yield f = @{code Limited_Sequence.yield} f;
195
196fun yieldn n f i pol = (case f i pol of
197    NONE => ([], fn _ => fn _ => NONE)
198  | SOME s => let val (xs, s') = Lazy_Sequence.yieldn n s in (xs, fn _ => fn _ => SOME s') end);
199
200end;
201\<close>
202
203code_reserved Eval Limited_Sequence
204
205
206hide_const (open) yield empty single eval map_seq bind union if_seq not_seq map
207  pos_empty pos_single pos_bind pos_decr_bind pos_union pos_if_seq pos_iterate_upto pos_not_seq pos_map
208  neg_empty neg_single neg_bind neg_decr_bind neg_union neg_if_seq neg_iterate_upto neg_not_seq neg_map
209
210hide_fact (open) yield_def empty_def single_def eval_def map_seq_def bind_def union_def
211  if_seq_def not_seq_def map_def
212  pos_empty_def pos_single_def pos_bind_def pos_union_def pos_if_seq_def pos_iterate_upto_def pos_not_seq_def pos_map_def
213  neg_empty_def neg_single_def neg_bind_def neg_union_def neg_if_seq_def neg_iterate_upto_def neg_not_seq_def neg_map_def
214
215end
216
217