1(*  Title:      HOL/Int.thy
2    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
3    Author:     Tobias Nipkow, Florian Haftmann, TU Muenchen
4*)
5
6section \<open>The Integers as Equivalence Classes over Pairs of Natural Numbers\<close>
7
8theory Int
9  imports Equiv_Relations Power Quotient Fun_Def
10begin
11
12subsection \<open>Definition of integers as a quotient type\<close>
13
14definition intrel :: "(nat \<times> nat) \<Rightarrow> (nat \<times> nat) \<Rightarrow> bool"
15  where "intrel = (\<lambda>(x, y) (u, v). x + v = u + y)"
16
17lemma intrel_iff [simp]: "intrel (x, y) (u, v) \<longleftrightarrow> x + v = u + y"
18  by (simp add: intrel_def)
19
20quotient_type int = "nat \<times> nat" / "intrel"
21  morphisms Rep_Integ Abs_Integ
22proof (rule equivpI)
23  show "reflp intrel" by (auto simp: reflp_def)
24  show "symp intrel" by (auto simp: symp_def)
25  show "transp intrel" by (auto simp: transp_def)
26qed
27
28lemma eq_Abs_Integ [case_names Abs_Integ, cases type: int]:
29  "(\<And>x y. z = Abs_Integ (x, y) \<Longrightarrow> P) \<Longrightarrow> P"
30  by (induct z) auto
31
32
33subsection \<open>Integers form a commutative ring\<close>
34
35instantiation int :: comm_ring_1
36begin
37
38lift_definition zero_int :: "int" is "(0, 0)" .
39
40lift_definition one_int :: "int" is "(1, 0)" .
41
42lift_definition plus_int :: "int \<Rightarrow> int \<Rightarrow> int"
43  is "\<lambda>(x, y) (u, v). (x + u, y + v)"
44  by clarsimp
45
46lift_definition uminus_int :: "int \<Rightarrow> int"
47  is "\<lambda>(x, y). (y, x)"
48  by clarsimp
49
50lift_definition minus_int :: "int \<Rightarrow> int \<Rightarrow> int"
51  is "\<lambda>(x, y) (u, v). (x + v, y + u)"
52  by clarsimp
53
54lift_definition times_int :: "int \<Rightarrow> int \<Rightarrow> int"
55  is "\<lambda>(x, y) (u, v). (x*u + y*v, x*v + y*u)"
56proof (clarsimp)
57  fix s t u v w x y z :: nat
58  assume "s + v = u + t" and "w + z = y + x"
59  then have "(s + v) * w + (u + t) * x + u * (w + z) + v * (y + x) =
60    (u + t) * w + (s + v) * x + u * (y + x) + v * (w + z)"
61    by simp
62  then show "(s * w + t * x) + (u * z + v * y) = (u * y + v * z) + (s * x + t * w)"
63    by (simp add: algebra_simps)
64qed
65
66instance
67  by standard (transfer; clarsimp simp: algebra_simps)+
68
69end
70
71abbreviation int :: "nat \<Rightarrow> int"
72  where "int \<equiv> of_nat"
73
74lemma int_def: "int n = Abs_Integ (n, 0)"
75  by (induct n) (simp add: zero_int.abs_eq, simp add: one_int.abs_eq plus_int.abs_eq)
76
77lemma int_transfer [transfer_rule]: "(rel_fun (=) pcr_int) (\<lambda>n. (n, 0)) int"
78  by (simp add: rel_fun_def int.pcr_cr_eq cr_int_def int_def)
79
80lemma int_diff_cases: obtains (diff) m n where "z = int m - int n"
81  by transfer clarsimp
82
83
84subsection \<open>Integers are totally ordered\<close>
85
86instantiation int :: linorder
87begin
88
89lift_definition less_eq_int :: "int \<Rightarrow> int \<Rightarrow> bool"
90  is "\<lambda>(x, y) (u, v). x + v \<le> u + y"
91  by auto
92
93lift_definition less_int :: "int \<Rightarrow> int \<Rightarrow> bool"
94  is "\<lambda>(x, y) (u, v). x + v < u + y"
95  by auto
96
97instance
98  by standard (transfer, force)+
99
100end
101
102instantiation int :: distrib_lattice
103begin
104
105definition "(inf :: int \<Rightarrow> int \<Rightarrow> int) = min"
106
107definition "(sup :: int \<Rightarrow> int \<Rightarrow> int) = max"
108
109instance
110  by standard (auto simp add: inf_int_def sup_int_def max_min_distrib2)
111
112end
113
114subsection \<open>Ordering properties of arithmetic operations\<close>
115
116instance int :: ordered_cancel_ab_semigroup_add
117proof
118  fix i j k :: int
119  show "i \<le> j \<Longrightarrow> k + i \<le> k + j"
120    by transfer clarsimp
121qed
122
123text \<open>Strict Monotonicity of Multiplication.\<close>
124
125text \<open>Strict, in 1st argument; proof is by induction on \<open>k > 0\<close>.\<close>
126lemma zmult_zless_mono2_lemma: "i < j \<Longrightarrow> 0 < k \<Longrightarrow> int k * i < int k * j"
127  for i j :: int
128proof (induct k)
129  case 0
130  then show ?case by simp
131next
132  case (Suc k)
133  then show ?case
134    by (cases "k = 0") (simp_all add: distrib_right add_strict_mono)
135qed
136
137lemma zero_le_imp_eq_int: "0 \<le> k \<Longrightarrow> \<exists>n. k = int n"
138  for k :: int
139  apply transfer
140  apply clarsimp
141  apply (rule_tac x="a - b" in exI)
142  apply simp
143  done
144
145lemma zero_less_imp_eq_int: "0 < k \<Longrightarrow> \<exists>n>0. k = int n"
146  for k :: int
147  apply transfer
148  apply clarsimp
149  apply (rule_tac x="a - b" in exI)
150  apply simp
151  done
152
153lemma zmult_zless_mono2: "i < j \<Longrightarrow> 0 < k \<Longrightarrow> k * i < k * j"
154  for i j k :: int
155  by (drule zero_less_imp_eq_int) (auto simp add: zmult_zless_mono2_lemma)
156
157
158text \<open>The integers form an ordered integral domain.\<close>
159
160instantiation int :: linordered_idom
161begin
162
163definition zabs_def: "\<bar>i::int\<bar> = (if i < 0 then - i else i)"
164
165definition zsgn_def: "sgn (i::int) = (if i = 0 then 0 else if 0 < i then 1 else - 1)"
166
167instance
168proof
169  fix i j k :: int
170  show "i < j \<Longrightarrow> 0 < k \<Longrightarrow> k * i < k * j"
171    by (rule zmult_zless_mono2)
172  show "\<bar>i\<bar> = (if i < 0 then -i else i)"
173    by (simp only: zabs_def)
174  show "sgn (i::int) = (if i=0 then 0 else if 0<i then 1 else - 1)"
175    by (simp only: zsgn_def)
176qed
177
178end
179
180lemma zless_imp_add1_zle: "w < z \<Longrightarrow> w + 1 \<le> z"
181  for w z :: int
182  by transfer clarsimp
183
184lemma zless_iff_Suc_zadd: "w < z \<longleftrightarrow> (\<exists>n. z = w + int (Suc n))"
185  for w z :: int
186  apply transfer
187  apply auto
188  apply (rename_tac a b c d)
189  apply (rule_tac x="c+b - Suc(a+d)" in exI)
190  apply arith
191  done
192
193lemma zabs_less_one_iff [simp]: "\<bar>z\<bar> < 1 \<longleftrightarrow> z = 0" (is "?lhs \<longleftrightarrow> ?rhs")
194  for z :: int
195proof
196  assume ?rhs
197  then show ?lhs by simp
198next
199  assume ?lhs
200  with zless_imp_add1_zle [of "\<bar>z\<bar>" 1] have "\<bar>z\<bar> + 1 \<le> 1" by simp
201  then have "\<bar>z\<bar> \<le> 0" by simp
202  then show ?rhs by simp
203qed
204
205
206subsection \<open>Embedding of the Integers into any \<open>ring_1\<close>: \<open>of_int\<close>\<close>
207
208context ring_1
209begin
210
211lift_definition of_int :: "int \<Rightarrow> 'a"
212  is "\<lambda>(i, j). of_nat i - of_nat j"
213  by (clarsimp simp add: diff_eq_eq eq_diff_eq diff_add_eq
214      of_nat_add [symmetric] simp del: of_nat_add)
215
216lemma of_int_0 [simp]: "of_int 0 = 0"
217  by transfer simp
218
219lemma of_int_1 [simp]: "of_int 1 = 1"
220  by transfer simp
221
222lemma of_int_add [simp]: "of_int (w + z) = of_int w + of_int z"
223  by transfer (clarsimp simp add: algebra_simps)
224
225lemma of_int_minus [simp]: "of_int (- z) = - (of_int z)"
226  by (transfer fixing: uminus) clarsimp
227
228lemma of_int_diff [simp]: "of_int (w - z) = of_int w - of_int z"
229  using of_int_add [of w "- z"] by simp
230
231lemma of_int_mult [simp]: "of_int (w*z) = of_int w * of_int z"
232  by (transfer fixing: times) (clarsimp simp add: algebra_simps)
233
234lemma mult_of_int_commute: "of_int x * y = y * of_int x"
235  by (transfer fixing: times) (auto simp: algebra_simps mult_of_nat_commute)
236
237text \<open>Collapse nested embeddings.\<close>
238lemma of_int_of_nat_eq [simp]: "of_int (int n) = of_nat n"
239  by (induct n) auto
240
241lemma of_int_numeral [simp, code_post]: "of_int (numeral k) = numeral k"
242  by (simp add: of_nat_numeral [symmetric] of_int_of_nat_eq [symmetric])
243
244lemma of_int_neg_numeral [code_post]: "of_int (- numeral k) = - numeral k"
245  by simp
246
247lemma of_int_power [simp]: "of_int (z ^ n) = of_int z ^ n"
248  by (induct n) simp_all
249
250lemma of_int_of_bool [simp]:
251  "of_int (of_bool P) = of_bool P"
252  by auto
253
254end
255
256context ring_char_0
257begin
258
259lemma of_int_eq_iff [simp]: "of_int w = of_int z \<longleftrightarrow> w = z"
260  by transfer (clarsimp simp add: algebra_simps of_nat_add [symmetric] simp del: of_nat_add)
261
262text \<open>Special cases where either operand is zero.\<close>
263lemma of_int_eq_0_iff [simp]: "of_int z = 0 \<longleftrightarrow> z = 0"
264  using of_int_eq_iff [of z 0] by simp
265
266lemma of_int_0_eq_iff [simp]: "0 = of_int z \<longleftrightarrow> z = 0"
267  using of_int_eq_iff [of 0 z] by simp
268
269lemma of_int_eq_1_iff [iff]: "of_int z = 1 \<longleftrightarrow> z = 1"
270  using of_int_eq_iff [of z 1] by simp
271
272lemma numeral_power_eq_of_int_cancel_iff [simp]:
273  "numeral x ^ n = of_int y \<longleftrightarrow> numeral x ^ n = y"
274  using of_int_eq_iff[of "numeral x ^ n" y, unfolded of_int_numeral of_int_power] .
275
276lemma of_int_eq_numeral_power_cancel_iff [simp]:
277  "of_int y = numeral x ^ n \<longleftrightarrow> y = numeral x ^ n"
278  using numeral_power_eq_of_int_cancel_iff [of x n y] by (metis (mono_tags))
279
280lemma neg_numeral_power_eq_of_int_cancel_iff [simp]:
281  "(- numeral x) ^ n = of_int y \<longleftrightarrow> (- numeral x) ^ n = y"
282  using of_int_eq_iff[of "(- numeral x) ^ n" y]
283  by simp
284
285lemma of_int_eq_neg_numeral_power_cancel_iff [simp]:
286  "of_int y = (- numeral x) ^ n \<longleftrightarrow> y = (- numeral x) ^ n"
287  using neg_numeral_power_eq_of_int_cancel_iff[of x n y] by (metis (mono_tags))
288
289lemma of_int_eq_of_int_power_cancel_iff[simp]: "(of_int b) ^ w = of_int x \<longleftrightarrow> b ^ w = x"
290  by (metis of_int_power of_int_eq_iff)
291
292lemma of_int_power_eq_of_int_cancel_iff[simp]: "of_int x = (of_int b) ^ w \<longleftrightarrow> x = b ^ w"
293  by (metis of_int_eq_of_int_power_cancel_iff)
294
295end
296
297context linordered_idom
298begin
299
300text \<open>Every \<open>linordered_idom\<close> has characteristic zero.\<close>
301subclass ring_char_0 ..
302
303lemma of_int_le_iff [simp]: "of_int w \<le> of_int z \<longleftrightarrow> w \<le> z"
304  by (transfer fixing: less_eq)
305    (clarsimp simp add: algebra_simps of_nat_add [symmetric] simp del: of_nat_add)
306
307lemma of_int_less_iff [simp]: "of_int w < of_int z \<longleftrightarrow> w < z"
308  by (simp add: less_le order_less_le)
309
310lemma of_int_0_le_iff [simp]: "0 \<le> of_int z \<longleftrightarrow> 0 \<le> z"
311  using of_int_le_iff [of 0 z] by simp
312
313lemma of_int_le_0_iff [simp]: "of_int z \<le> 0 \<longleftrightarrow> z \<le> 0"
314  using of_int_le_iff [of z 0] by simp
315
316lemma of_int_0_less_iff [simp]: "0 < of_int z \<longleftrightarrow> 0 < z"
317  using of_int_less_iff [of 0 z] by simp
318
319lemma of_int_less_0_iff [simp]: "of_int z < 0 \<longleftrightarrow> z < 0"
320  using of_int_less_iff [of z 0] by simp
321
322lemma of_int_1_le_iff [simp]: "1 \<le> of_int z \<longleftrightarrow> 1 \<le> z"
323  using of_int_le_iff [of 1 z] by simp
324
325lemma of_int_le_1_iff [simp]: "of_int z \<le> 1 \<longleftrightarrow> z \<le> 1"
326  using of_int_le_iff [of z 1] by simp
327
328lemma of_int_1_less_iff [simp]: "1 < of_int z \<longleftrightarrow> 1 < z"
329  using of_int_less_iff [of 1 z] by simp
330
331lemma of_int_less_1_iff [simp]: "of_int z < 1 \<longleftrightarrow> z < 1"
332  using of_int_less_iff [of z 1] by simp
333
334lemma of_int_pos: "z > 0 \<Longrightarrow> of_int z > 0"
335  by simp
336
337lemma of_int_nonneg: "z \<ge> 0 \<Longrightarrow> of_int z \<ge> 0"
338  by simp
339
340lemma of_int_abs [simp]: "of_int \<bar>x\<bar> = \<bar>of_int x\<bar>"
341  by (auto simp add: abs_if)
342
343lemma of_int_lessD:
344  assumes "\<bar>of_int n\<bar> < x"
345  shows "n = 0 \<or> x > 1"
346proof (cases "n = 0")
347  case True
348  then show ?thesis by simp
349next
350  case False
351  then have "\<bar>n\<bar> \<noteq> 0" by simp
352  then have "\<bar>n\<bar> > 0" by simp
353  then have "\<bar>n\<bar> \<ge> 1"
354    using zless_imp_add1_zle [of 0 "\<bar>n\<bar>"] by simp
355  then have "\<bar>of_int n\<bar> \<ge> 1"
356    unfolding of_int_1_le_iff [of "\<bar>n\<bar>", symmetric] by simp
357  then have "1 < x" using assms by (rule le_less_trans)
358  then show ?thesis ..
359qed
360
361lemma of_int_leD:
362  assumes "\<bar>of_int n\<bar> \<le> x"
363  shows "n = 0 \<or> 1 \<le> x"
364proof (cases "n = 0")
365  case True
366  then show ?thesis by simp
367next
368  case False
369  then have "\<bar>n\<bar> \<noteq> 0" by simp
370  then have "\<bar>n\<bar> > 0" by simp
371  then have "\<bar>n\<bar> \<ge> 1"
372    using zless_imp_add1_zle [of 0 "\<bar>n\<bar>"] by simp
373  then have "\<bar>of_int n\<bar> \<ge> 1"
374    unfolding of_int_1_le_iff [of "\<bar>n\<bar>", symmetric] by simp
375  then have "1 \<le> x" using assms by (rule order_trans)
376  then show ?thesis ..
377qed
378
379lemma numeral_power_le_of_int_cancel_iff [simp]:
380  "numeral x ^ n \<le> of_int a \<longleftrightarrow> numeral x ^ n \<le> a"
381  by (metis (mono_tags) local.of_int_eq_numeral_power_cancel_iff of_int_le_iff)
382
383lemma of_int_le_numeral_power_cancel_iff [simp]:
384  "of_int a \<le> numeral x ^ n \<longleftrightarrow> a \<le> numeral x ^ n"
385  by (metis (mono_tags) local.numeral_power_eq_of_int_cancel_iff of_int_le_iff)
386
387lemma numeral_power_less_of_int_cancel_iff [simp]:
388  "numeral x ^ n < of_int a \<longleftrightarrow> numeral x ^ n < a"
389  by (metis (mono_tags) local.of_int_eq_numeral_power_cancel_iff of_int_less_iff)
390
391lemma of_int_less_numeral_power_cancel_iff [simp]:
392  "of_int a < numeral x ^ n \<longleftrightarrow> a < numeral x ^ n"
393  by (metis (mono_tags) local.of_int_eq_numeral_power_cancel_iff of_int_less_iff)
394
395lemma neg_numeral_power_le_of_int_cancel_iff [simp]:
396  "(- numeral x) ^ n \<le> of_int a \<longleftrightarrow> (- numeral x) ^ n \<le> a"
397  by (metis (mono_tags) of_int_le_iff of_int_neg_numeral of_int_power)
398
399lemma of_int_le_neg_numeral_power_cancel_iff [simp]:
400  "of_int a \<le> (- numeral x) ^ n \<longleftrightarrow> a \<le> (- numeral x) ^ n"
401  by (metis (mono_tags) of_int_le_iff of_int_neg_numeral of_int_power)
402
403lemma neg_numeral_power_less_of_int_cancel_iff [simp]:
404  "(- numeral x) ^ n < of_int a \<longleftrightarrow> (- numeral x) ^ n < a"
405  using of_int_less_iff[of "(- numeral x) ^ n" a]
406  by simp
407
408lemma of_int_less_neg_numeral_power_cancel_iff [simp]:
409  "of_int a < (- numeral x) ^ n \<longleftrightarrow> a < (- numeral x::int) ^ n"
410  using of_int_less_iff[of a "(- numeral x) ^ n"]
411  by simp
412
413lemma of_int_le_of_int_power_cancel_iff[simp]: "(of_int b) ^ w \<le> of_int x \<longleftrightarrow> b ^ w \<le> x"
414  by (metis (mono_tags) of_int_le_iff of_int_power)
415
416lemma of_int_power_le_of_int_cancel_iff[simp]: "of_int x \<le> (of_int b) ^ w\<longleftrightarrow> x \<le> b ^ w"
417  by (metis (mono_tags) of_int_le_iff of_int_power)
418
419lemma of_int_less_of_int_power_cancel_iff[simp]: "(of_int b) ^ w < of_int x \<longleftrightarrow> b ^ w < x"
420  by (metis (mono_tags) of_int_less_iff of_int_power)
421
422lemma of_int_power_less_of_int_cancel_iff[simp]: "of_int x < (of_int b) ^ w\<longleftrightarrow> x < b ^ w"
423  by (metis (mono_tags) of_int_less_iff of_int_power)
424
425lemma of_int_max: "of_int (max x y) = max (of_int x) (of_int y)"
426  by (auto simp: max_def)
427
428lemma of_int_min: "of_int (min x y) = min (of_int x) (of_int y)"
429  by (auto simp: min_def)
430
431end
432
433text \<open>Comparisons involving @{term of_int}.\<close>
434
435lemma of_int_eq_numeral_iff [iff]: "of_int z = (numeral n :: 'a::ring_char_0) \<longleftrightarrow> z = numeral n"
436  using of_int_eq_iff by fastforce
437
438lemma of_int_le_numeral_iff [simp]:
439  "of_int z \<le> (numeral n :: 'a::linordered_idom) \<longleftrightarrow> z \<le> numeral n"
440  using of_int_le_iff [of z "numeral n"] by simp
441
442lemma of_int_numeral_le_iff [simp]:
443  "(numeral n :: 'a::linordered_idom) \<le> of_int z \<longleftrightarrow> numeral n \<le> z"
444  using of_int_le_iff [of "numeral n"] by simp
445
446lemma of_int_less_numeral_iff [simp]:
447  "of_int z < (numeral n :: 'a::linordered_idom) \<longleftrightarrow> z < numeral n"
448  using of_int_less_iff [of z "numeral n"] by simp
449
450lemma of_int_numeral_less_iff [simp]:
451  "(numeral n :: 'a::linordered_idom) < of_int z \<longleftrightarrow> numeral n < z"
452  using of_int_less_iff [of "numeral n" z] by simp
453
454lemma of_nat_less_of_int_iff: "(of_nat n::'a::linordered_idom) < of_int x \<longleftrightarrow> int n < x"
455  by (metis of_int_of_nat_eq of_int_less_iff)
456
457lemma of_int_eq_id [simp]: "of_int = id"
458proof
459  show "of_int z = id z" for z
460    by (cases z rule: int_diff_cases) simp
461qed
462
463instance int :: no_top
464  apply standard
465  apply (rule_tac x="x + 1" in exI)
466  apply simp
467  done
468
469instance int :: no_bot
470  apply standard
471  apply (rule_tac x="x - 1" in exI)
472  apply simp
473  done
474
475
476subsection \<open>Magnitude of an Integer, as a Natural Number: \<open>nat\<close>\<close>
477
478lift_definition nat :: "int \<Rightarrow> nat" is "\<lambda>(x, y). x - y"
479  by auto
480
481lemma nat_int [simp]: "nat (int n) = n"
482  by transfer simp
483
484lemma int_nat_eq [simp]: "int (nat z) = (if 0 \<le> z then z else 0)"
485  by transfer clarsimp
486
487lemma nat_0_le: "0 \<le> z \<Longrightarrow> int (nat z) = z"
488  by simp
489
490lemma nat_le_0 [simp]: "z \<le> 0 \<Longrightarrow> nat z = 0"
491  by transfer clarsimp
492
493lemma nat_le_eq_zle: "0 < w \<or> 0 \<le> z \<Longrightarrow> nat w \<le> nat z \<longleftrightarrow> w \<le> z"
494  by transfer (clarsimp, arith)
495
496text \<open>An alternative condition is @{term "0 \<le> w"}.\<close>
497lemma nat_mono_iff: "0 < z \<Longrightarrow> nat w < nat z \<longleftrightarrow> w < z"
498  by (simp add: nat_le_eq_zle linorder_not_le [symmetric])
499
500lemma nat_less_eq_zless: "0 \<le> w \<Longrightarrow> nat w < nat z \<longleftrightarrow> w < z"
501  by (simp add: nat_le_eq_zle linorder_not_le [symmetric])
502
503lemma zless_nat_conj [simp]: "nat w < nat z \<longleftrightarrow> 0 < z \<and> w < z"
504  by transfer (clarsimp, arith)
505
506lemma nonneg_int_cases:
507  assumes "0 \<le> k"
508  obtains n where "k = int n"
509proof -
510  from assms have "k = int (nat k)"
511    by simp
512  then show thesis
513    by (rule that)
514qed
515
516lemma pos_int_cases:
517  assumes "0 < k"
518  obtains n where "k = int n" and "n > 0"
519proof -
520  from assms have "0 \<le> k"
521    by simp
522  then obtain n where "k = int n"
523    by (rule nonneg_int_cases)
524  moreover have "n > 0"
525    using \<open>k = int n\<close> assms by simp
526  ultimately show thesis
527    by (rule that)
528qed
529
530lemma nonpos_int_cases:
531  assumes "k \<le> 0"
532  obtains n where "k = - int n"
533proof -
534  from assms have "- k \<ge> 0"
535    by simp
536  then obtain n where "- k = int n"
537    by (rule nonneg_int_cases)
538  then have "k = - int n"
539    by simp
540  then show thesis
541    by (rule that)
542qed
543
544lemma neg_int_cases:
545  assumes "k < 0"
546  obtains n where "k = - int n" and "n > 0"
547proof -
548  from assms have "- k > 0"
549    by simp
550  then obtain n where "- k = int n" and "- k > 0"
551    by (blast elim: pos_int_cases)
552  then have "k = - int n" and "n > 0"
553    by simp_all
554  then show thesis
555    by (rule that)
556qed
557
558lemma nat_eq_iff: "nat w = m \<longleftrightarrow> (if 0 \<le> w then w = int m else m = 0)"
559  by transfer (clarsimp simp add: le_imp_diff_is_add)
560
561lemma nat_eq_iff2: "m = nat w \<longleftrightarrow> (if 0 \<le> w then w = int m else m = 0)"
562  using nat_eq_iff [of w m] by auto
563
564lemma nat_0 [simp]: "nat 0 = 0"
565  by (simp add: nat_eq_iff)
566
567lemma nat_1 [simp]: "nat 1 = Suc 0"
568  by (simp add: nat_eq_iff)
569
570lemma nat_numeral [simp]: "nat (numeral k) = numeral k"
571  by (simp add: nat_eq_iff)
572
573lemma nat_neg_numeral [simp]: "nat (- numeral k) = 0"
574  by simp
575
576lemma nat_2: "nat 2 = Suc (Suc 0)"
577  by simp
578
579lemma nat_less_iff: "0 \<le> w \<Longrightarrow> nat w < m \<longleftrightarrow> w < of_nat m"
580  by transfer (clarsimp, arith)
581
582lemma nat_le_iff: "nat x \<le> n \<longleftrightarrow> x \<le> int n"
583  by transfer (clarsimp simp add: le_diff_conv)
584
585lemma nat_mono: "x \<le> y \<Longrightarrow> nat x \<le> nat y"
586  by transfer auto
587
588lemma nat_0_iff[simp]: "nat i = 0 \<longleftrightarrow> i \<le> 0"
589  for i :: int
590  by transfer clarsimp
591
592lemma int_eq_iff: "of_nat m = z \<longleftrightarrow> m = nat z \<and> 0 \<le> z"
593  by (auto simp add: nat_eq_iff2)
594
595lemma zero_less_nat_eq [simp]: "0 < nat z \<longleftrightarrow> 0 < z"
596  using zless_nat_conj [of 0] by auto
597
598lemma nat_add_distrib: "0 \<le> z \<Longrightarrow> 0 \<le> z' \<Longrightarrow> nat (z + z') = nat z + nat z'"
599  by transfer clarsimp
600
601lemma nat_diff_distrib': "0 \<le> x \<Longrightarrow> 0 \<le> y \<Longrightarrow> nat (x - y) = nat x - nat y"
602  by transfer clarsimp
603
604lemma nat_diff_distrib: "0 \<le> z' \<Longrightarrow> z' \<le> z \<Longrightarrow> nat (z - z') = nat z - nat z'"
605  by (rule nat_diff_distrib') auto
606
607lemma nat_zminus_int [simp]: "nat (- int n) = 0"
608  by transfer simp
609
610lemma le_nat_iff: "k \<ge> 0 \<Longrightarrow> n \<le> nat k \<longleftrightarrow> int n \<le> k"
611  by transfer auto
612
613lemma zless_nat_eq_int_zless: "m < nat z \<longleftrightarrow> int m < z"
614  by transfer (clarsimp simp add: less_diff_conv)
615
616lemma (in ring_1) of_nat_nat [simp]: "0 \<le> z \<Longrightarrow> of_nat (nat z) = of_int z"
617  by transfer (clarsimp simp add: of_nat_diff)
618
619lemma diff_nat_numeral [simp]: "(numeral v :: nat) - numeral v' = nat (numeral v - numeral v')"
620  by (simp only: nat_diff_distrib' zero_le_numeral nat_numeral)
621
622lemma nat_abs_triangle_ineq:
623  "nat \<bar>k + l\<bar> \<le> nat \<bar>k\<bar> + nat \<bar>l\<bar>"
624  by (simp add: nat_add_distrib [symmetric] nat_le_eq_zle abs_triangle_ineq)
625
626lemma nat_of_bool [simp]:
627  "nat (of_bool P) = of_bool P"
628  by auto
629
630lemma split_nat [arith_split]: "P (nat i) \<longleftrightarrow> ((\<forall>n. i = int n \<longrightarrow> P n) \<and> (i < 0 \<longrightarrow> P 0))"
631  (is "?P = (?L \<and> ?R)")
632  for i :: int
633proof (cases "i < 0")
634  case True
635  then show ?thesis
636    by auto
637next
638  case False
639  have "?P = ?L"
640  proof
641    assume ?P
642    then show ?L using False by auto
643  next
644    assume ?L
645    moreover from False have "int (nat i) = i"
646      by (simp add: not_less)
647    ultimately show ?P
648      by simp
649  qed
650  with False show ?thesis by simp
651qed
652
653lemma all_nat: "(\<forall>x. P x) \<longleftrightarrow> (\<forall>x\<ge>0. P (nat x))"
654  by (auto split: split_nat)
655
656lemma ex_nat: "(\<exists>x. P x) \<longleftrightarrow> (\<exists>x. 0 \<le> x \<and> P (nat x))"
657proof
658  assume "\<exists>x. P x"
659  then obtain x where "P x" ..
660  then have "int x \<ge> 0 \<and> P (nat (int x))" by simp
661  then show "\<exists>x\<ge>0. P (nat x)" ..
662next
663  assume "\<exists>x\<ge>0. P (nat x)"
664  then show "\<exists>x. P x" by auto
665qed
666
667
668text \<open>For termination proofs:\<close>
669lemma measure_function_int[measure_function]: "is_measure (nat \<circ> abs)" ..
670
671
672subsection \<open>Lemmas about the Function @{term of_nat} and Orderings\<close>
673
674lemma negative_zless_0: "- (int (Suc n)) < (0 :: int)"
675  by (simp add: order_less_le del: of_nat_Suc)
676
677lemma negative_zless [iff]: "- (int (Suc n)) < int m"
678  by (rule negative_zless_0 [THEN order_less_le_trans], simp)
679
680lemma negative_zle_0: "- int n \<le> 0"
681  by (simp add: minus_le_iff)
682
683lemma negative_zle [iff]: "- int n \<le> int m"
684  by (rule order_trans [OF negative_zle_0 of_nat_0_le_iff])
685
686lemma not_zle_0_negative [simp]: "\<not> 0 \<le> - int (Suc n)"
687  by (subst le_minus_iff) (simp del: of_nat_Suc)
688
689lemma int_zle_neg: "int n \<le> - int m \<longleftrightarrow> n = 0 \<and> m = 0"
690  by transfer simp
691
692lemma not_int_zless_negative [simp]: "\<not> int n < - int m"
693  by (simp add: linorder_not_less)
694
695lemma negative_eq_positive [simp]: "- int n = of_nat m \<longleftrightarrow> n = 0 \<and> m = 0"
696  by (force simp add: order_eq_iff [of "- of_nat n"] int_zle_neg)
697
698lemma zle_iff_zadd: "w \<le> z \<longleftrightarrow> (\<exists>n. z = w + int n)"
699  (is "?lhs \<longleftrightarrow> ?rhs")
700proof
701  assume ?rhs
702  then show ?lhs by auto
703next
704  assume ?lhs
705  then have "0 \<le> z - w" by simp
706  then obtain n where "z - w = int n"
707    using zero_le_imp_eq_int [of "z - w"] by blast
708  then have "z = w + int n" by simp
709  then show ?rhs ..
710qed
711
712lemma zadd_int_left: "int m + (int n + z) = int (m + n) + z"
713  by simp
714
715text \<open>
716  This version is proved for all ordered rings, not just integers!
717  It is proved here because attribute \<open>arith_split\<close> is not available
718  in theory \<open>Rings\<close>.
719  But is it really better than just rewriting with \<open>abs_if\<close>?
720\<close>
721lemma abs_split [arith_split, no_atp]: "P \<bar>a\<bar> \<longleftrightarrow> (0 \<le> a \<longrightarrow> P a) \<and> (a < 0 \<longrightarrow> P (- a))"
722  for a :: "'a::linordered_idom"
723  by (force dest: order_less_le_trans simp add: abs_if linorder_not_less)
724
725lemma negD: "x < 0 \<Longrightarrow> \<exists>n. x = - (int (Suc n))"
726  apply transfer
727  apply clarsimp
728  apply (rule_tac x="b - Suc a" in exI)
729  apply arith
730  done
731
732
733subsection \<open>Cases and induction\<close>
734
735text \<open>
736  Now we replace the case analysis rule by a more conventional one:
737  whether an integer is negative or not.
738\<close>
739
740text \<open>This version is symmetric in the two subgoals.\<close>
741lemma int_cases2 [case_names nonneg nonpos, cases type: int]:
742  "(\<And>n. z = int n \<Longrightarrow> P) \<Longrightarrow> (\<And>n. z = - (int n) \<Longrightarrow> P) \<Longrightarrow> P"
743  by (cases "z < 0") (auto simp add: linorder_not_less dest!: negD nat_0_le [THEN sym])
744
745text \<open>This is the default, with a negative case.\<close>
746lemma int_cases [case_names nonneg neg, cases type: int]:
747  "(\<And>n. z = int n \<Longrightarrow> P) \<Longrightarrow> (\<And>n. z = - (int (Suc n)) \<Longrightarrow> P) \<Longrightarrow> P"
748  apply (cases "z < 0")
749   apply (blast dest!: negD)
750  apply (simp add: linorder_not_less del: of_nat_Suc)
751  apply auto
752  apply (blast dest: nat_0_le [THEN sym])
753  done
754
755lemma int_cases3 [case_names zero pos neg]:
756  fixes k :: int
757  assumes "k = 0 \<Longrightarrow> P" and "\<And>n. k = int n \<Longrightarrow> n > 0 \<Longrightarrow> P"
758    and "\<And>n. k = - int n \<Longrightarrow> n > 0 \<Longrightarrow> P"
759  shows "P"
760proof (cases k "0::int" rule: linorder_cases)
761  case equal
762  with assms(1) show P by simp
763next
764  case greater
765  then have *: "nat k > 0" by simp
766  moreover from * have "k = int (nat k)" by auto
767  ultimately show P using assms(2) by blast
768next
769  case less
770  then have *: "nat (- k) > 0" by simp
771  moreover from * have "k = - int (nat (- k))" by auto
772  ultimately show P using assms(3) by blast
773qed
774
775lemma int_of_nat_induct [case_names nonneg neg, induct type: int]:
776  "(\<And>n. P (int n)) \<Longrightarrow> (\<And>n. P (- (int (Suc n)))) \<Longrightarrow> P z"
777  by (cases z) auto
778
779lemma sgn_mult_dvd_iff [simp]:
780  "sgn r * l dvd k \<longleftrightarrow> l dvd k \<and> (r = 0 \<longrightarrow> k = 0)" for k l r :: int
781  by (cases r rule: int_cases3) auto
782
783lemma mult_sgn_dvd_iff [simp]:
784  "l * sgn r dvd k \<longleftrightarrow> l dvd k \<and> (r = 0 \<longrightarrow> k = 0)" for k l r :: int
785  using sgn_mult_dvd_iff [of r l k] by (simp add: ac_simps)
786
787lemma dvd_sgn_mult_iff [simp]:
788  "l dvd sgn r * k \<longleftrightarrow> l dvd k \<or> r = 0" for k l r :: int
789  by (cases r rule: int_cases3) simp_all
790
791lemma dvd_mult_sgn_iff [simp]:
792  "l dvd k * sgn r \<longleftrightarrow> l dvd k \<or> r = 0" for k l r :: int
793  using dvd_sgn_mult_iff [of l r k] by (simp add: ac_simps)
794
795lemma int_sgnE:
796  fixes k :: int
797  obtains n and l where "k = sgn l * int n"
798proof -
799  have "k = sgn k * int (nat \<bar>k\<bar>)"
800    by (simp add: sgn_mult_abs)
801  then show ?thesis ..
802qed
803
804
805subsubsection \<open>Binary comparisons\<close>
806
807text \<open>Preliminaries\<close>
808
809lemma le_imp_0_less:
810  fixes z :: int
811  assumes le: "0 \<le> z"
812  shows "0 < 1 + z"
813proof -
814  have "0 \<le> z" by fact
815  also have "\<dots> < z + 1" by (rule less_add_one)
816  also have "\<dots> = 1 + z" by (simp add: ac_simps)
817  finally show "0 < 1 + z" .
818qed
819
820lemma odd_less_0_iff: "1 + z + z < 0 \<longleftrightarrow> z < 0"
821  for z :: int
822proof (cases z)
823  case (nonneg n)
824  then show ?thesis
825    by (simp add: linorder_not_less add.assoc add_increasing le_imp_0_less [THEN order_less_imp_le])
826next
827  case (neg n)
828  then show ?thesis
829    by (simp del: of_nat_Suc of_nat_add of_nat_1
830        add: algebra_simps of_nat_1 [where 'a=int, symmetric] of_nat_add [symmetric])
831qed
832
833
834subsubsection \<open>Comparisons, for Ordered Rings\<close>
835
836lemma odd_nonzero: "1 + z + z \<noteq> 0"
837  for z :: int
838proof (cases z)
839  case (nonneg n)
840  have le: "0 \<le> z + z"
841    by (simp add: nonneg add_increasing)
842  then show ?thesis
843    using le_imp_0_less [OF le] by (auto simp: ac_simps)
844next
845  case (neg n)
846  show ?thesis
847  proof
848    assume eq: "1 + z + z = 0"
849    have "0 < 1 + (int n + int n)"
850      by (simp add: le_imp_0_less add_increasing)
851    also have "\<dots> = - (1 + z + z)"
852      by (simp add: neg add.assoc [symmetric])
853    also have "\<dots> = 0" by (simp add: eq)
854    finally have "0<0" ..
855    then show False by blast
856  qed
857qed
858
859
860subsection \<open>The Set of Integers\<close>
861
862context ring_1
863begin
864
865definition Ints :: "'a set"  ("\<int>")
866  where "\<int> = range of_int"
867
868lemma Ints_of_int [simp]: "of_int z \<in> \<int>"
869  by (simp add: Ints_def)
870
871lemma Ints_of_nat [simp]: "of_nat n \<in> \<int>"
872  using Ints_of_int [of "of_nat n"] by simp
873
874lemma Ints_0 [simp]: "0 \<in> \<int>"
875  using Ints_of_int [of "0"] by simp
876
877lemma Ints_1 [simp]: "1 \<in> \<int>"
878  using Ints_of_int [of "1"] by simp
879
880lemma Ints_numeral [simp]: "numeral n \<in> \<int>"
881  by (subst of_nat_numeral [symmetric], rule Ints_of_nat)
882
883lemma Ints_add [simp]: "a \<in> \<int> \<Longrightarrow> b \<in> \<int> \<Longrightarrow> a + b \<in> \<int>"
884  apply (auto simp add: Ints_def)
885  apply (rule range_eqI)
886  apply (rule of_int_add [symmetric])
887  done
888
889lemma Ints_minus [simp]: "a \<in> \<int> \<Longrightarrow> -a \<in> \<int>"
890  apply (auto simp add: Ints_def)
891  apply (rule range_eqI)
892  apply (rule of_int_minus [symmetric])
893  done
894
895lemma Ints_diff [simp]: "a \<in> \<int> \<Longrightarrow> b \<in> \<int> \<Longrightarrow> a - b \<in> \<int>"
896  apply (auto simp add: Ints_def)
897  apply (rule range_eqI)
898  apply (rule of_int_diff [symmetric])
899  done
900
901lemma Ints_mult [simp]: "a \<in> \<int> \<Longrightarrow> b \<in> \<int> \<Longrightarrow> a * b \<in> \<int>"
902  apply (auto simp add: Ints_def)
903  apply (rule range_eqI)
904  apply (rule of_int_mult [symmetric])
905  done
906
907lemma Ints_power [simp]: "a \<in> \<int> \<Longrightarrow> a ^ n \<in> \<int>"
908  by (induct n) simp_all
909
910lemma Ints_cases [cases set: Ints]:
911  assumes "q \<in> \<int>"
912  obtains (of_int) z where "q = of_int z"
913  unfolding Ints_def
914proof -
915  from \<open>q \<in> \<int>\<close> have "q \<in> range of_int" unfolding Ints_def .
916  then obtain z where "q = of_int z" ..
917  then show thesis ..
918qed
919
920lemma Ints_induct [case_names of_int, induct set: Ints]:
921  "q \<in> \<int> \<Longrightarrow> (\<And>z. P (of_int z)) \<Longrightarrow> P q"
922  by (rule Ints_cases) auto
923
924lemma Nats_subset_Ints: "\<nat> \<subseteq> \<int>"
925  unfolding Nats_def Ints_def
926  by (rule subsetI, elim imageE, hypsubst, subst of_int_of_nat_eq[symmetric], rule imageI) simp_all
927
928lemma Nats_altdef1: "\<nat> = {of_int n |n. n \<ge> 0}"
929proof (intro subsetI equalityI)
930  fix x :: 'a
931  assume "x \<in> {of_int n |n. n \<ge> 0}"
932  then obtain n where "x = of_int n" "n \<ge> 0"
933    by (auto elim!: Ints_cases)
934  then have "x = of_nat (nat n)"
935    by (subst of_nat_nat) simp_all
936  then show "x \<in> \<nat>"
937    by simp
938next
939  fix x :: 'a
940  assume "x \<in> \<nat>"
941  then obtain n where "x = of_nat n"
942    by (auto elim!: Nats_cases)
943  then have "x = of_int (int n)" by simp
944  also have "int n \<ge> 0" by simp
945  then have "of_int (int n) \<in> {of_int n |n. n \<ge> 0}" by blast
946  finally show "x \<in> {of_int n |n. n \<ge> 0}" .
947qed
948
949end
950
951lemma (in linordered_idom) Ints_abs [simp]:
952  shows "a \<in> \<int> \<Longrightarrow> abs a \<in> \<int>"
953  by (auto simp: abs_if)
954
955lemma (in linordered_idom) Nats_altdef2: "\<nat> = {n \<in> \<int>. n \<ge> 0}"
956proof (intro subsetI equalityI)
957  fix x :: 'a
958  assume "x \<in> {n \<in> \<int>. n \<ge> 0}"
959  then obtain n where "x = of_int n" "n \<ge> 0"
960    by (auto elim!: Ints_cases)
961  then have "x = of_nat (nat n)"
962    by (subst of_nat_nat) simp_all
963  then show "x \<in> \<nat>"
964    by simp
965qed (auto elim!: Nats_cases)
966
967lemma (in idom_divide) of_int_divide_in_Ints: 
968  "of_int a div of_int b \<in> \<int>" if "b dvd a"
969proof -
970  from that obtain c where "a = b * c" ..
971  then show ?thesis
972    by (cases "of_int b = 0") simp_all
973qed
974
975text \<open>The premise involving @{term Ints} prevents @{term "a = 1/2"}.\<close>
976
977lemma Ints_double_eq_0_iff:
978  fixes a :: "'a::ring_char_0"
979  assumes in_Ints: "a \<in> \<int>"
980  shows "a + a = 0 \<longleftrightarrow> a = 0"
981    (is "?lhs \<longleftrightarrow> ?rhs")
982proof -
983  from in_Ints have "a \<in> range of_int"
984    unfolding Ints_def [symmetric] .
985  then obtain z where a: "a = of_int z" ..
986  show ?thesis
987  proof
988    assume ?rhs
989    then show ?lhs by simp
990  next
991    assume ?lhs
992    with a have "of_int (z + z) = (of_int 0 :: 'a)" by simp
993    then have "z + z = 0" by (simp only: of_int_eq_iff)
994    then have "z = 0" by (simp only: double_zero)
995    with a show ?rhs by simp
996  qed
997qed
998
999lemma Ints_odd_nonzero:
1000  fixes a :: "'a::ring_char_0"
1001  assumes in_Ints: "a \<in> \<int>"
1002  shows "1 + a + a \<noteq> 0"
1003proof -
1004  from in_Ints have "a \<in> range of_int"
1005    unfolding Ints_def [symmetric] .
1006  then obtain z where a: "a = of_int z" ..
1007  show ?thesis
1008  proof
1009    assume "1 + a + a = 0"
1010    with a have "of_int (1 + z + z) = (of_int 0 :: 'a)" by simp
1011    then have "1 + z + z = 0" by (simp only: of_int_eq_iff)
1012    with odd_nonzero show False by blast
1013  qed
1014qed
1015
1016lemma Nats_numeral [simp]: "numeral w \<in> \<nat>"
1017  using of_nat_in_Nats [of "numeral w"] by simp
1018
1019lemma Ints_odd_less_0:
1020  fixes a :: "'a::linordered_idom"
1021  assumes in_Ints: "a \<in> \<int>"
1022  shows "1 + a + a < 0 \<longleftrightarrow> a < 0"
1023proof -
1024  from in_Ints have "a \<in> range of_int"
1025    unfolding Ints_def [symmetric] .
1026  then obtain z where a: "a = of_int z" ..
1027  with a have "1 + a + a < 0 \<longleftrightarrow> of_int (1 + z + z) < (of_int 0 :: 'a)"
1028    by simp
1029  also have "\<dots> \<longleftrightarrow> z < 0"
1030    by (simp only: of_int_less_iff odd_less_0_iff)
1031  also have "\<dots> \<longleftrightarrow> a < 0"
1032    by (simp add: a)
1033  finally show ?thesis .
1034qed
1035
1036
1037subsection \<open>@{term sum} and @{term prod}\<close>
1038
1039lemma of_nat_sum [simp]: "of_nat (sum f A) = (\<Sum>x\<in>A. of_nat(f x))"
1040  by (induct A rule: infinite_finite_induct) auto
1041
1042lemma of_int_sum [simp]: "of_int (sum f A) = (\<Sum>x\<in>A. of_int(f x))"
1043  by (induct A rule: infinite_finite_induct) auto
1044
1045lemma of_nat_prod [simp]: "of_nat (prod f A) = (\<Prod>x\<in>A. of_nat(f x))"
1046  by (induct A rule: infinite_finite_induct) auto
1047
1048lemma of_int_prod [simp]: "of_int (prod f A) = (\<Prod>x\<in>A. of_int(f x))"
1049  by (induct A rule: infinite_finite_induct) auto
1050
1051
1052subsection \<open>Setting up simplification procedures\<close>
1053
1054lemmas of_int_simps =
1055  of_int_0 of_int_1 of_int_add of_int_mult
1056
1057ML_file "Tools/int_arith.ML"
1058declaration \<open>K Int_Arith.setup\<close>
1059
1060simproc_setup fast_arith
1061  ("(m::'a::linordered_idom) < n" |
1062    "(m::'a::linordered_idom) \<le> n" |
1063    "(m::'a::linordered_idom) = n") =
1064  \<open>K Lin_Arith.simproc\<close>
1065
1066
1067subsection\<open>More Inequality Reasoning\<close>
1068
1069lemma zless_add1_eq: "w < z + 1 \<longleftrightarrow> w < z \<or> w = z"
1070  for w z :: int
1071  by arith
1072
1073lemma add1_zle_eq: "w + 1 \<le> z \<longleftrightarrow> w < z"
1074  for w z :: int
1075  by arith
1076
1077lemma zle_diff1_eq [simp]: "w \<le> z - 1 \<longleftrightarrow> w < z"
1078  for w z :: int
1079  by arith
1080
1081lemma zle_add1_eq_le [simp]: "w < z + 1 \<longleftrightarrow> w \<le> z"
1082  for w z :: int
1083  by arith
1084
1085lemma int_one_le_iff_zero_less: "1 \<le> z \<longleftrightarrow> 0 < z"
1086  for z :: int
1087  by arith
1088
1089lemma Ints_nonzero_abs_ge1:
1090  fixes x:: "'a :: linordered_idom"
1091    assumes "x \<in> Ints" "x \<noteq> 0"
1092    shows "1 \<le> abs x"
1093proof (rule Ints_cases [OF \<open>x \<in> Ints\<close>])
1094  fix z::int
1095  assume "x = of_int z"
1096    with \<open>x \<noteq> 0\<close> 
1097  show "1 \<le> \<bar>x\<bar>"
1098    apply (auto simp add: abs_if)
1099    by (metis diff_0 of_int_1 of_int_le_iff of_int_minus zle_diff1_eq)
1100qed
1101  
1102lemma Ints_nonzero_abs_less1:
1103  fixes x:: "'a :: linordered_idom"
1104  shows "\<lbrakk>x \<in> Ints; abs x < 1\<rbrakk> \<Longrightarrow> x = 0"
1105    using Ints_nonzero_abs_ge1 [of x] by auto
1106    
1107
1108subsection \<open>The functions @{term nat} and @{term int}\<close>
1109
1110text \<open>Simplify the term @{term "w + - z"}.\<close>
1111
1112lemma one_less_nat_eq [simp]: "Suc 0 < nat z \<longleftrightarrow> 1 < z"
1113  using zless_nat_conj [of 1 z] by auto
1114
1115lemma int_eq_iff_numeral [simp]:
1116  "int m = numeral v \<longleftrightarrow> m = numeral v"
1117  by (simp add: int_eq_iff)
1118
1119lemma nat_abs_int_diff:
1120  "nat \<bar>int a - int b\<bar> = (if a \<le> b then b - a else a - b)"
1121  by auto
1122
1123lemma nat_int_add: "nat (int a + int b) = a + b"
1124  by auto
1125
1126context ring_1
1127begin
1128
1129lemma of_int_of_nat [nitpick_simp]:
1130  "of_int k = (if k < 0 then - of_nat (nat (- k)) else of_nat (nat k))"
1131proof (cases "k < 0")
1132  case True
1133  then have "0 \<le> - k" by simp
1134  then have "of_nat (nat (- k)) = of_int (- k)" by (rule of_nat_nat)
1135  with True show ?thesis by simp
1136next
1137  case False
1138  then show ?thesis by (simp add: not_less)
1139qed
1140
1141end
1142
1143lemma transfer_rule_of_int:
1144  fixes R :: "'a::ring_1 \<Rightarrow> 'b::ring_1 \<Rightarrow> bool"
1145  assumes [transfer_rule]: "R 0 0" "R 1 1"
1146    "rel_fun R (rel_fun R R) plus plus"
1147    "rel_fun R R uminus uminus"
1148  shows "rel_fun HOL.eq R of_int of_int"
1149proof -
1150  note transfer_rule_of_nat [transfer_rule]
1151  have [transfer_rule]: "rel_fun HOL.eq R of_nat of_nat"
1152    by transfer_prover
1153  show ?thesis
1154    by (unfold of_int_of_nat [abs_def]) transfer_prover
1155qed
1156
1157lemma nat_mult_distrib:
1158  fixes z z' :: int
1159  assumes "0 \<le> z"
1160  shows "nat (z * z') = nat z * nat z'"
1161proof (cases "0 \<le> z'")
1162  case False
1163  with assms have "z * z' \<le> 0"
1164    by (simp add: not_le mult_le_0_iff)
1165  then have "nat (z * z') = 0" by simp
1166  moreover from False have "nat z' = 0" by simp
1167  ultimately show ?thesis by simp
1168next
1169  case True
1170  with assms have ge_0: "z * z' \<ge> 0" by (simp add: zero_le_mult_iff)
1171  show ?thesis
1172    by (rule injD [of "of_nat :: nat \<Rightarrow> int", OF inj_of_nat])
1173      (simp only: of_nat_mult of_nat_nat [OF True]
1174         of_nat_nat [OF assms] of_nat_nat [OF ge_0], simp)
1175qed
1176
1177lemma nat_mult_distrib_neg: "z \<le> 0 \<Longrightarrow> nat (z * z') = nat (- z) * nat (- z')"
1178  for z z' :: int
1179  apply (rule trans)
1180   apply (rule_tac [2] nat_mult_distrib)
1181   apply auto
1182  done
1183
1184lemma nat_abs_mult_distrib: "nat \<bar>w * z\<bar> = nat \<bar>w\<bar> * nat \<bar>z\<bar>"
1185  by (cases "z = 0 \<or> w = 0")
1186    (auto simp add: abs_if nat_mult_distrib [symmetric]
1187      nat_mult_distrib_neg [symmetric] mult_less_0_iff)
1188
1189lemma int_in_range_abs [simp]: "int n \<in> range abs"
1190proof (rule range_eqI)
1191  show "int n = \<bar>int n\<bar>" by simp
1192qed
1193
1194lemma range_abs_Nats [simp]: "range abs = (\<nat> :: int set)"
1195proof -
1196  have "\<bar>k\<bar> \<in> \<nat>" for k :: int
1197    by (cases k) simp_all
1198  moreover have "k \<in> range abs" if "k \<in> \<nat>" for k :: int
1199    using that by induct simp
1200  ultimately show ?thesis by blast
1201qed
1202
1203lemma Suc_nat_eq_nat_zadd1: "0 \<le> z \<Longrightarrow> Suc (nat z) = nat (1 + z)"
1204  for z :: int
1205  by (rule sym) (simp add: nat_eq_iff)
1206
1207lemma diff_nat_eq_if:
1208  "nat z - nat z' =
1209    (if z' < 0 then nat z
1210     else
1211      let d = z - z'
1212      in if d < 0 then 0 else nat d)"
1213  by (simp add: Let_def nat_diff_distrib [symmetric])
1214
1215lemma nat_numeral_diff_1 [simp]: "numeral v - (1::nat) = nat (numeral v - 1)"
1216  using diff_nat_numeral [of v Num.One] by simp
1217
1218
1219subsection \<open>Induction principles for int\<close>
1220
1221text \<open>Well-founded segments of the integers.\<close>
1222
1223definition int_ge_less_than :: "int \<Rightarrow> (int \<times> int) set"
1224  where "int_ge_less_than d = {(z', z). d \<le> z' \<and> z' < z}"
1225
1226lemma wf_int_ge_less_than: "wf (int_ge_less_than d)"
1227proof -
1228  have "int_ge_less_than d \<subseteq> measure (\<lambda>z. nat (z - d))"
1229    by (auto simp add: int_ge_less_than_def)
1230  then show ?thesis
1231    by (rule wf_subset [OF wf_measure])
1232qed
1233
1234text \<open>
1235  This variant looks odd, but is typical of the relations suggested
1236  by RankFinder.\<close>
1237
1238definition int_ge_less_than2 :: "int \<Rightarrow> (int \<times> int) set"
1239  where "int_ge_less_than2 d = {(z',z). d \<le> z \<and> z' < z}"
1240
1241lemma wf_int_ge_less_than2: "wf (int_ge_less_than2 d)"
1242proof -
1243  have "int_ge_less_than2 d \<subseteq> measure (\<lambda>z. nat (1 + z - d))"
1244    by (auto simp add: int_ge_less_than2_def)
1245  then show ?thesis
1246    by (rule wf_subset [OF wf_measure])
1247qed
1248
1249(* `set:int': dummy construction *)
1250theorem int_ge_induct [case_names base step, induct set: int]:
1251  fixes i :: int
1252  assumes ge: "k \<le> i"
1253    and base: "P k"
1254    and step: "\<And>i. k \<le> i \<Longrightarrow> P i \<Longrightarrow> P (i + 1)"
1255  shows "P i"
1256proof -
1257  have "\<And>i::int. n = nat (i - k) \<Longrightarrow> k \<le> i \<Longrightarrow> P i" for n
1258  proof (induct n)
1259    case 0
1260    then have "i = k" by arith
1261    with base show "P i" by simp
1262  next
1263    case (Suc n)
1264    then have "n = nat ((i - 1) - k)" by arith
1265    moreover have k: "k \<le> i - 1" using Suc.prems by arith
1266    ultimately have "P (i - 1)" by (rule Suc.hyps)
1267    from step [OF k this] show ?case by simp
1268  qed
1269  with ge show ?thesis by fast
1270qed
1271
1272(* `set:int': dummy construction *)
1273theorem int_gr_induct [case_names base step, induct set: int]:
1274  fixes i k :: int
1275  assumes gr: "k < i"
1276    and base: "P (k + 1)"
1277    and step: "\<And>i. k < i \<Longrightarrow> P i \<Longrightarrow> P (i + 1)"
1278  shows "P i"
1279  apply (rule int_ge_induct[of "k + 1"])
1280  using gr apply arith
1281   apply (rule base)
1282  apply (rule step)
1283   apply simp_all
1284  done
1285
1286theorem int_le_induct [consumes 1, case_names base step]:
1287  fixes i k :: int
1288  assumes le: "i \<le> k"
1289    and base: "P k"
1290    and step: "\<And>i. i \<le> k \<Longrightarrow> P i \<Longrightarrow> P (i - 1)"
1291  shows "P i"
1292proof -
1293  have "\<And>i::int. n = nat(k-i) \<Longrightarrow> i \<le> k \<Longrightarrow> P i" for n
1294  proof (induct n)
1295    case 0
1296    then have "i = k" by arith
1297    with base show "P i" by simp
1298  next
1299    case (Suc n)
1300    then have "n = nat (k - (i + 1))" by arith
1301    moreover have k: "i + 1 \<le> k" using Suc.prems by arith
1302    ultimately have "P (i + 1)" by (rule Suc.hyps)
1303    from step[OF k this] show ?case by simp
1304  qed
1305  with le show ?thesis by fast
1306qed
1307
1308theorem int_less_induct [consumes 1, case_names base step]:
1309  fixes i k :: int
1310  assumes less: "i < k"
1311    and base: "P (k - 1)"
1312    and step: "\<And>i. i < k \<Longrightarrow> P i \<Longrightarrow> P (i - 1)"
1313  shows "P i"
1314  apply (rule int_le_induct[of _ "k - 1"])
1315  using less apply arith
1316   apply (rule base)
1317  apply (rule step)
1318   apply simp_all
1319  done
1320
1321theorem int_induct [case_names base step1 step2]:
1322  fixes k :: int
1323  assumes base: "P k"
1324    and step1: "\<And>i. k \<le> i \<Longrightarrow> P i \<Longrightarrow> P (i + 1)"
1325    and step2: "\<And>i. k \<ge> i \<Longrightarrow> P i \<Longrightarrow> P (i - 1)"
1326  shows "P i"
1327proof -
1328  have "i \<le> k \<or> i \<ge> k" by arith
1329  then show ?thesis
1330  proof
1331    assume "i \<ge> k"
1332    then show ?thesis
1333      using base by (rule int_ge_induct) (fact step1)
1334  next
1335    assume "i \<le> k"
1336    then show ?thesis
1337      using base by (rule int_le_induct) (fact step2)
1338  qed
1339qed
1340
1341
1342subsection \<open>Intermediate value theorems\<close>
1343
1344lemma nat_intermed_int_val:
1345  "\<exists>i. m \<le> i \<and> i \<le> n \<and> f i = k"
1346  if "\<forall>i. m \<le> i \<and> i < n \<longrightarrow> \<bar>f (Suc i) - f i\<bar> \<le> 1"
1347    "m \<le> n" "f m \<le> k" "k \<le> f n"
1348  for m n :: nat and k :: int
1349proof -
1350  have "(\<forall>i<n. \<bar>f (Suc i) - f i\<bar> \<le> 1) \<Longrightarrow> f 0 \<le> k \<Longrightarrow> k \<le> f n
1351    \<Longrightarrow> (\<exists>i \<le> n. f i = k)"
1352  for n :: nat and f
1353    apply (induct n)
1354     apply auto
1355    apply (erule_tac x = n in allE)
1356    apply (case_tac "k = f (Suc n)")
1357     apply (auto simp add: abs_if split: if_split_asm intro: le_SucI)
1358    done
1359  from this [of "n - m" "f \<circ> plus m"] that show ?thesis
1360    apply auto
1361    apply (rule_tac x = "m + i" in exI)
1362    apply auto
1363    done
1364qed
1365
1366lemma nat0_intermed_int_val:
1367  "\<exists>i\<le>n. f i = k"
1368  if "\<forall>i<n. \<bar>f (i + 1) - f i\<bar> \<le> 1" "f 0 \<le> k" "k \<le> f n"
1369  for n :: nat and k :: int
1370  using nat_intermed_int_val [of 0 n f k] that by auto
1371
1372
1373subsection \<open>Products and 1, by T. M. Rasmussen\<close>
1374
1375lemma abs_zmult_eq_1:
1376  fixes m n :: int
1377  assumes mn: "\<bar>m * n\<bar> = 1"
1378  shows "\<bar>m\<bar> = 1"
1379proof -
1380  from mn have 0: "m \<noteq> 0" "n \<noteq> 0" by auto
1381  have "\<not> 2 \<le> \<bar>m\<bar>"
1382  proof
1383    assume "2 \<le> \<bar>m\<bar>"
1384    then have "2 * \<bar>n\<bar> \<le> \<bar>m\<bar> * \<bar>n\<bar>" by (simp add: mult_mono 0)
1385    also have "\<dots> = \<bar>m * n\<bar>" by (simp add: abs_mult)
1386    also from mn have "\<dots> = 1" by simp
1387    finally have "2 * \<bar>n\<bar> \<le> 1" .
1388    with 0 show "False" by arith
1389  qed
1390  with 0 show ?thesis by auto
1391qed
1392
1393lemma pos_zmult_eq_1_iff_lemma: "m * n = 1 \<Longrightarrow> m = 1 \<or> m = - 1"
1394  for m n :: int
1395  using abs_zmult_eq_1 [of m n] by arith
1396
1397lemma pos_zmult_eq_1_iff:
1398  fixes m n :: int
1399  assumes "0 < m"
1400  shows "m * n = 1 \<longleftrightarrow> m = 1 \<and> n = 1"
1401proof -
1402  from assms have "m * n = 1 \<Longrightarrow> m = 1"
1403    by (auto dest: pos_zmult_eq_1_iff_lemma)
1404  then show ?thesis
1405    by (auto dest: pos_zmult_eq_1_iff_lemma)
1406qed
1407
1408lemma zmult_eq_1_iff: "m * n = 1 \<longleftrightarrow> (m = 1 \<and> n = 1) \<or> (m = - 1 \<and> n = - 1)"
1409  for m n :: int
1410  apply (rule iffI)
1411   apply (frule pos_zmult_eq_1_iff_lemma)
1412   apply (simp add: mult.commute [of m])
1413   apply (frule pos_zmult_eq_1_iff_lemma)
1414   apply auto
1415  done
1416
1417lemma infinite_UNIV_int: "\<not> finite (UNIV::int set)"
1418proof
1419  assume "finite (UNIV::int set)"
1420  moreover have "inj (\<lambda>i::int. 2 * i)"
1421    by (rule injI) simp
1422  ultimately have "surj (\<lambda>i::int. 2 * i)"
1423    by (rule finite_UNIV_inj_surj)
1424  then obtain i :: int where "1 = 2 * i" by (rule surjE)
1425  then show False by (simp add: pos_zmult_eq_1_iff)
1426qed
1427
1428
1429subsection \<open>The divides relation\<close>
1430
1431lemma zdvd_antisym_nonneg: "0 \<le> m \<Longrightarrow> 0 \<le> n \<Longrightarrow> m dvd n \<Longrightarrow> n dvd m \<Longrightarrow> m = n"
1432  for m n :: int
1433  by (auto simp add: dvd_def mult.assoc zero_le_mult_iff zmult_eq_1_iff)
1434
1435lemma zdvd_antisym_abs:
1436  fixes a b :: int
1437  assumes "a dvd b" and "b dvd a"
1438  shows "\<bar>a\<bar> = \<bar>b\<bar>"
1439proof (cases "a = 0")
1440  case True
1441  with assms show ?thesis by simp
1442next
1443  case False
1444  from \<open>a dvd b\<close> obtain k where k: "b = a * k"
1445    unfolding dvd_def by blast
1446  from \<open>b dvd a\<close> obtain k' where k': "a = b * k'"
1447    unfolding dvd_def by blast
1448  from k k' have "a = a * k * k'" by simp
1449  with mult_cancel_left1[where c="a" and b="k*k'"] have kk': "k * k' = 1"
1450    using \<open>a \<noteq> 0\<close> by (simp add: mult.assoc)
1451  then have "k = 1 \<and> k' = 1 \<or> k = -1 \<and> k' = -1"
1452    by (simp add: zmult_eq_1_iff)
1453  with k k' show ?thesis by auto
1454qed
1455
1456lemma zdvd_zdiffD: "k dvd m - n \<Longrightarrow> k dvd n \<Longrightarrow> k dvd m"
1457  for k m n :: int
1458  using dvd_add_right_iff [of k "- n" m] by simp
1459
1460lemma zdvd_reduce: "k dvd n + k * m \<longleftrightarrow> k dvd n"
1461  for k m n :: int
1462  using dvd_add_times_triv_right_iff [of k n m] by (simp add: ac_simps)
1463
1464lemma dvd_imp_le_int:
1465  fixes d i :: int
1466  assumes "i \<noteq> 0" and "d dvd i"
1467  shows "\<bar>d\<bar> \<le> \<bar>i\<bar>"
1468proof -
1469  from \<open>d dvd i\<close> obtain k where "i = d * k" ..
1470  with \<open>i \<noteq> 0\<close> have "k \<noteq> 0" by auto
1471  then have "1 \<le> \<bar>k\<bar>" and "0 \<le> \<bar>d\<bar>" by auto
1472  then have "\<bar>d\<bar> * 1 \<le> \<bar>d\<bar> * \<bar>k\<bar>" by (rule mult_left_mono)
1473  with \<open>i = d * k\<close> show ?thesis by (simp add: abs_mult)
1474qed
1475
1476lemma zdvd_not_zless:
1477  fixes m n :: int
1478  assumes "0 < m" and "m < n"
1479  shows "\<not> n dvd m"
1480proof
1481  from assms have "0 < n" by auto
1482  assume "n dvd m" then obtain k where k: "m = n * k" ..
1483  with \<open>0 < m\<close> have "0 < n * k" by auto
1484  with \<open>0 < n\<close> have "0 < k" by (simp add: zero_less_mult_iff)
1485  with k \<open>0 < n\<close> \<open>m < n\<close> have "n * k < n * 1" by simp
1486  with \<open>0 < n\<close> \<open>0 < k\<close> show False unfolding mult_less_cancel_left by auto
1487qed
1488
1489lemma zdvd_mult_cancel:
1490  fixes k m n :: int
1491  assumes d: "k * m dvd k * n"
1492    and "k \<noteq> 0"
1493  shows "m dvd n"
1494proof -
1495  from d obtain h where h: "k * n = k * m * h"
1496    unfolding dvd_def by blast
1497  have "n = m * h"
1498  proof (rule ccontr)
1499    assume "\<not> ?thesis"
1500    with \<open>k \<noteq> 0\<close> have "k * n \<noteq> k * (m * h)" by simp
1501    with h show False
1502      by (simp add: mult.assoc)
1503  qed
1504  then show ?thesis by simp
1505qed
1506
1507lemma int_dvd_int_iff [simp]:
1508  "int m dvd int n \<longleftrightarrow> m dvd n"
1509proof -
1510  have "m dvd n" if "int n = int m * k" for k
1511  proof (cases k)
1512    case (nonneg q)
1513    with that have "n = m * q"
1514      by (simp del: of_nat_mult add: of_nat_mult [symmetric])
1515    then show ?thesis ..
1516  next
1517    case (neg q)
1518    with that have "int n = int m * (- int (Suc q))"
1519      by simp
1520    also have "\<dots> = - (int m * int (Suc q))"
1521      by (simp only: mult_minus_right)
1522    also have "\<dots> = - int (m * Suc q)"
1523      by (simp only: of_nat_mult [symmetric])
1524    finally have "- int (m * Suc q) = int n" ..
1525    then show ?thesis
1526      by (simp only: negative_eq_positive) auto
1527  qed
1528  then show ?thesis by (auto simp add: dvd_def)
1529qed
1530
1531lemma dvd_nat_abs_iff [simp]:
1532  "n dvd nat \<bar>k\<bar> \<longleftrightarrow> int n dvd k"
1533proof -
1534  have "n dvd nat \<bar>k\<bar> \<longleftrightarrow> int n dvd int (nat \<bar>k\<bar>)"
1535    by (simp only: int_dvd_int_iff)
1536  then show ?thesis
1537    by simp
1538qed
1539
1540lemma nat_abs_dvd_iff [simp]:
1541  "nat \<bar>k\<bar> dvd n \<longleftrightarrow> k dvd int n"
1542proof -
1543  have "nat \<bar>k\<bar> dvd n \<longleftrightarrow> int (nat \<bar>k\<bar>) dvd int n"
1544    by (simp only: int_dvd_int_iff)
1545  then show ?thesis
1546    by simp
1547qed
1548
1549lemma zdvd1_eq [simp]: "x dvd 1 \<longleftrightarrow> \<bar>x\<bar> = 1" (is "?lhs \<longleftrightarrow> ?rhs")
1550  for x :: int
1551proof
1552  assume ?lhs
1553  then have "nat \<bar>x\<bar> dvd nat \<bar>1\<bar>"
1554    by (simp only: nat_abs_dvd_iff) simp
1555  then have "nat \<bar>x\<bar> = 1"
1556    by simp
1557  then show ?rhs
1558    by (cases "x < 0") simp_all
1559next
1560  assume ?rhs
1561  then have "x = 1 \<or> x = - 1"
1562    by auto
1563  then show ?lhs
1564    by (auto intro: dvdI)
1565qed
1566
1567lemma zdvd_mult_cancel1:
1568  fixes m :: int
1569  assumes mp: "m \<noteq> 0"
1570  shows "m * n dvd m \<longleftrightarrow> \<bar>n\<bar> = 1"
1571    (is "?lhs \<longleftrightarrow> ?rhs")
1572proof
1573  assume ?rhs
1574  then show ?lhs
1575    by (cases "n > 0") (auto simp add: minus_equation_iff)
1576next
1577  assume ?lhs
1578  then have "m * n dvd m * 1" by simp
1579  from zdvd_mult_cancel[OF this mp] show ?rhs
1580    by (simp only: zdvd1_eq)
1581qed
1582
1583lemma nat_dvd_iff: "nat z dvd m \<longleftrightarrow> (if 0 \<le> z then z dvd int m else m = 0)"
1584  using nat_abs_dvd_iff [of z m] by (cases "z \<ge> 0") auto
1585
1586lemma eq_nat_nat_iff: "0 \<le> z \<Longrightarrow> 0 \<le> z' \<Longrightarrow> nat z = nat z' \<longleftrightarrow> z = z'"
1587  by (auto elim: nonneg_int_cases)
1588
1589lemma nat_power_eq: "0 \<le> z \<Longrightarrow> nat (z ^ n) = nat z ^ n"
1590  by (induct n) (simp_all add: nat_mult_distrib)
1591
1592lemma numeral_power_eq_nat_cancel_iff [simp]:
1593  "numeral x ^ n = nat y \<longleftrightarrow> numeral x ^ n = y"
1594  using nat_eq_iff2 by auto
1595
1596lemma nat_eq_numeral_power_cancel_iff [simp]:
1597  "nat y = numeral x ^ n \<longleftrightarrow> y = numeral x ^ n"
1598  using numeral_power_eq_nat_cancel_iff[of x n y]
1599  by (metis (mono_tags))
1600
1601lemma numeral_power_le_nat_cancel_iff [simp]:
1602  "numeral x ^ n \<le> nat a \<longleftrightarrow> numeral x ^ n \<le> a"
1603  using nat_le_eq_zle[of "numeral x ^ n" a]
1604  by (auto simp: nat_power_eq)
1605
1606lemma nat_le_numeral_power_cancel_iff [simp]:
1607  "nat a \<le> numeral x ^ n \<longleftrightarrow> a \<le> numeral x ^ n"
1608  by (simp add: nat_le_iff)
1609
1610lemma numeral_power_less_nat_cancel_iff [simp]:
1611  "numeral x ^ n < nat a \<longleftrightarrow> numeral x ^ n < a"
1612  using nat_less_eq_zless[of "numeral x ^ n" a]
1613  by (auto simp: nat_power_eq)
1614
1615lemma nat_less_numeral_power_cancel_iff [simp]:
1616  "nat a < numeral x ^ n \<longleftrightarrow> a < numeral x ^ n"
1617  using nat_less_eq_zless[of a "numeral x ^ n"]
1618  by (cases "a < 0") (auto simp: nat_power_eq less_le_trans[where y=0])
1619
1620lemma zdvd_imp_le: "z dvd n \<Longrightarrow> 0 < n \<Longrightarrow> z \<le> n"
1621  for n z :: int
1622  apply (cases n)
1623  apply auto
1624  apply (cases z)
1625   apply (auto simp add: dvd_imp_le)
1626  done
1627
1628lemma zdvd_period:
1629  fixes a d :: int
1630  assumes "a dvd d"
1631  shows "a dvd (x + t) \<longleftrightarrow> a dvd ((x + c * d) + t)"
1632    (is "?lhs \<longleftrightarrow> ?rhs")
1633proof -
1634  from assms have "a dvd (x + t) \<longleftrightarrow> a dvd ((x + t) + c * d)"
1635    by (simp add: dvd_add_left_iff)
1636  then show ?thesis
1637    by (simp add: ac_simps)
1638qed
1639
1640
1641subsection \<open>Finiteness of intervals\<close>
1642
1643lemma finite_interval_int1 [iff]: "finite {i :: int. a \<le> i \<and> i \<le> b}"
1644proof (cases "a \<le> b")
1645  case True
1646  then show ?thesis
1647  proof (induct b rule: int_ge_induct)
1648    case base
1649    have "{i. a \<le> i \<and> i \<le> a} = {a}" by auto
1650    then show ?case by simp
1651  next
1652    case (step b)
1653    then have "{i. a \<le> i \<and> i \<le> b + 1} = {i. a \<le> i \<and> i \<le> b} \<union> {b + 1}" by auto
1654    with step show ?case by simp
1655  qed
1656next
1657  case False
1658  then show ?thesis
1659    by (metis (lifting, no_types) Collect_empty_eq finite.emptyI order_trans)
1660qed
1661
1662lemma finite_interval_int2 [iff]: "finite {i :: int. a \<le> i \<and> i < b}"
1663  by (rule rev_finite_subset[OF finite_interval_int1[of "a" "b"]]) auto
1664
1665lemma finite_interval_int3 [iff]: "finite {i :: int. a < i \<and> i \<le> b}"
1666  by (rule rev_finite_subset[OF finite_interval_int1[of "a" "b"]]) auto
1667
1668lemma finite_interval_int4 [iff]: "finite {i :: int. a < i \<and> i < b}"
1669  by (rule rev_finite_subset[OF finite_interval_int1[of "a" "b"]]) auto
1670
1671
1672subsection \<open>Configuration of the code generator\<close>
1673
1674text \<open>Constructors\<close>
1675
1676definition Pos :: "num \<Rightarrow> int"
1677  where [simp, code_abbrev]: "Pos = numeral"
1678
1679definition Neg :: "num \<Rightarrow> int"
1680  where [simp, code_abbrev]: "Neg n = - (Pos n)"
1681
1682code_datatype "0::int" Pos Neg
1683
1684
1685text \<open>Auxiliary operations.\<close>
1686
1687definition dup :: "int \<Rightarrow> int"
1688  where [simp]: "dup k = k + k"
1689
1690lemma dup_code [code]:
1691  "dup 0 = 0"
1692  "dup (Pos n) = Pos (Num.Bit0 n)"
1693  "dup (Neg n) = Neg (Num.Bit0 n)"
1694  by (simp_all add: numeral_Bit0)
1695
1696definition sub :: "num \<Rightarrow> num \<Rightarrow> int"
1697  where [simp]: "sub m n = numeral m - numeral n"
1698
1699lemma sub_code [code]:
1700  "sub Num.One Num.One = 0"
1701  "sub (Num.Bit0 m) Num.One = Pos (Num.BitM m)"
1702  "sub (Num.Bit1 m) Num.One = Pos (Num.Bit0 m)"
1703  "sub Num.One (Num.Bit0 n) = Neg (Num.BitM n)"
1704  "sub Num.One (Num.Bit1 n) = Neg (Num.Bit0 n)"
1705  "sub (Num.Bit0 m) (Num.Bit0 n) = dup (sub m n)"
1706  "sub (Num.Bit1 m) (Num.Bit1 n) = dup (sub m n)"
1707  "sub (Num.Bit1 m) (Num.Bit0 n) = dup (sub m n) + 1"
1708  "sub (Num.Bit0 m) (Num.Bit1 n) = dup (sub m n) - 1"
1709  by (simp_all only: sub_def dup_def numeral.simps Pos_def Neg_def numeral_BitM)
1710
1711text \<open>Implementations.\<close>
1712
1713lemma one_int_code [code]: "1 = Pos Num.One"
1714  by simp
1715
1716lemma plus_int_code [code]:
1717  "k + 0 = k"
1718  "0 + l = l"
1719  "Pos m + Pos n = Pos (m + n)"
1720  "Pos m + Neg n = sub m n"
1721  "Neg m + Pos n = sub n m"
1722  "Neg m + Neg n = Neg (m + n)"
1723  for k l :: int
1724  by simp_all
1725
1726lemma uminus_int_code [code]:
1727  "uminus 0 = (0::int)"
1728  "uminus (Pos m) = Neg m"
1729  "uminus (Neg m) = Pos m"
1730  by simp_all
1731
1732lemma minus_int_code [code]:
1733  "k - 0 = k"
1734  "0 - l = uminus l"
1735  "Pos m - Pos n = sub m n"
1736  "Pos m - Neg n = Pos (m + n)"
1737  "Neg m - Pos n = Neg (m + n)"
1738  "Neg m - Neg n = sub n m"
1739  for k l :: int
1740  by simp_all
1741
1742lemma times_int_code [code]:
1743  "k * 0 = 0"
1744  "0 * l = 0"
1745  "Pos m * Pos n = Pos (m * n)"
1746  "Pos m * Neg n = Neg (m * n)"
1747  "Neg m * Pos n = Neg (m * n)"
1748  "Neg m * Neg n = Pos (m * n)"
1749  for k l :: int
1750  by simp_all
1751
1752instantiation int :: equal
1753begin
1754
1755definition "HOL.equal k l \<longleftrightarrow> k = (l::int)"
1756
1757instance
1758  by standard (rule equal_int_def)
1759
1760end
1761
1762lemma equal_int_code [code]:
1763  "HOL.equal 0 (0::int) \<longleftrightarrow> True"
1764  "HOL.equal 0 (Pos l) \<longleftrightarrow> False"
1765  "HOL.equal 0 (Neg l) \<longleftrightarrow> False"
1766  "HOL.equal (Pos k) 0 \<longleftrightarrow> False"
1767  "HOL.equal (Pos k) (Pos l) \<longleftrightarrow> HOL.equal k l"
1768  "HOL.equal (Pos k) (Neg l) \<longleftrightarrow> False"
1769  "HOL.equal (Neg k) 0 \<longleftrightarrow> False"
1770  "HOL.equal (Neg k) (Pos l) \<longleftrightarrow> False"
1771  "HOL.equal (Neg k) (Neg l) \<longleftrightarrow> HOL.equal k l"
1772  by (auto simp add: equal)
1773
1774lemma equal_int_refl [code nbe]: "HOL.equal k k \<longleftrightarrow> True"
1775  for k :: int
1776  by (fact equal_refl)
1777
1778lemma less_eq_int_code [code]:
1779  "0 \<le> (0::int) \<longleftrightarrow> True"
1780  "0 \<le> Pos l \<longleftrightarrow> True"
1781  "0 \<le> Neg l \<longleftrightarrow> False"
1782  "Pos k \<le> 0 \<longleftrightarrow> False"
1783  "Pos k \<le> Pos l \<longleftrightarrow> k \<le> l"
1784  "Pos k \<le> Neg l \<longleftrightarrow> False"
1785  "Neg k \<le> 0 \<longleftrightarrow> True"
1786  "Neg k \<le> Pos l \<longleftrightarrow> True"
1787  "Neg k \<le> Neg l \<longleftrightarrow> l \<le> k"
1788  by simp_all
1789
1790lemma less_int_code [code]:
1791  "0 < (0::int) \<longleftrightarrow> False"
1792  "0 < Pos l \<longleftrightarrow> True"
1793  "0 < Neg l \<longleftrightarrow> False"
1794  "Pos k < 0 \<longleftrightarrow> False"
1795  "Pos k < Pos l \<longleftrightarrow> k < l"
1796  "Pos k < Neg l \<longleftrightarrow> False"
1797  "Neg k < 0 \<longleftrightarrow> True"
1798  "Neg k < Pos l \<longleftrightarrow> True"
1799  "Neg k < Neg l \<longleftrightarrow> l < k"
1800  by simp_all
1801
1802lemma nat_code [code]:
1803  "nat (Int.Neg k) = 0"
1804  "nat 0 = 0"
1805  "nat (Int.Pos k) = nat_of_num k"
1806  by (simp_all add: nat_of_num_numeral)
1807
1808lemma (in ring_1) of_int_code [code]:
1809  "of_int (Int.Neg k) = - numeral k"
1810  "of_int 0 = 0"
1811  "of_int (Int.Pos k) = numeral k"
1812  by simp_all
1813
1814
1815text \<open>Serializer setup.\<close>
1816
1817code_identifier
1818  code_module Int \<rightharpoonup> (SML) Arith and (OCaml) Arith and (Haskell) Arith
1819
1820quickcheck_params [default_type = int]
1821
1822hide_const (open) Pos Neg sub dup
1823
1824
1825text \<open>De-register \<open>int\<close> as a quotient type:\<close>
1826
1827lifting_update int.lifting
1828lifting_forget int.lifting
1829
1830
1831subsection \<open>Duplicates\<close>
1832
1833lemmas int_sum = of_nat_sum [where 'a=int]
1834lemmas int_prod = of_nat_prod [where 'a=int]
1835lemmas zle_int = of_nat_le_iff [where 'a=int]
1836lemmas int_int_eq = of_nat_eq_iff [where 'a=int]
1837lemmas nonneg_eq_int = nonneg_int_cases
1838lemmas double_eq_0_iff = double_zero
1839
1840lemmas int_distrib =
1841  distrib_right [of z1 z2 w]
1842  distrib_left [of w z1 z2]
1843  left_diff_distrib [of z1 z2 w]
1844  right_diff_distrib [of w z1 z2]
1845  for z1 z2 w :: int
1846
1847end
1848
1849