1(*  Title:      HOL/Hilbert_Choice.thy
2    Author:     Lawrence C Paulson, Tobias Nipkow
3    Author:     Viorel Preoteasa (Results about complete distributive lattices) 
4    Copyright   2001  University of Cambridge
5*)
6
7section \<open>Hilbert's Epsilon-Operator and the Axiom of Choice\<close>
8
9theory Hilbert_Choice
10  imports Wellfounded
11  keywords "specification" :: thy_goal
12begin
13
14subsection \<open>Hilbert's epsilon\<close>
15
16axiomatization Eps :: "('a \<Rightarrow> bool) \<Rightarrow> 'a"
17  where someI: "P x \<Longrightarrow> P (Eps P)"
18
19syntax (epsilon)
20  "_Eps" :: "pttrn \<Rightarrow> bool \<Rightarrow> 'a"  ("(3\<some>_./ _)" [0, 10] 10)
21syntax (input)
22  "_Eps" :: "pttrn \<Rightarrow> bool \<Rightarrow> 'a"  ("(3@ _./ _)" [0, 10] 10)
23syntax
24  "_Eps" :: "pttrn \<Rightarrow> bool \<Rightarrow> 'a"  ("(3SOME _./ _)" [0, 10] 10)
25translations
26  "SOME x. P" \<rightleftharpoons> "CONST Eps (\<lambda>x. P)"
27
28print_translation \<open>
29  [(@{const_syntax Eps}, fn _ => fn [Abs abs] =>
30      let val (x, t) = Syntax_Trans.atomic_abs_tr' abs
31      in Syntax.const @{syntax_const "_Eps"} $ x $ t end)]
32\<close> \<comment> \<open>to avoid eta-contraction of body\<close>
33
34definition inv_into :: "'a set \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('b \<Rightarrow> 'a)" where
35"inv_into A f = (\<lambda>x. SOME y. y \<in> A \<and> f y = x)"
36
37lemma inv_into_def2: "inv_into A f x = (SOME y. y \<in> A \<and> f y = x)"
38by(simp add: inv_into_def)
39
40abbreviation inv :: "('a \<Rightarrow> 'b) \<Rightarrow> ('b \<Rightarrow> 'a)" where
41"inv \<equiv> inv_into UNIV"
42
43
44subsection \<open>Hilbert's Epsilon-operator\<close>
45
46text \<open>
47  Easier to apply than \<open>someI\<close> if the witness comes from an
48  existential formula.
49\<close>
50lemma someI_ex [elim?]: "\<exists>x. P x \<Longrightarrow> P (SOME x. P x)"
51  apply (erule exE)
52  apply (erule someI)
53  done
54
55text \<open>
56  Easier to apply than \<open>someI\<close> because the conclusion has only one
57  occurrence of @{term P}.
58\<close>
59lemma someI2: "P a \<Longrightarrow> (\<And>x. P x \<Longrightarrow> Q x) \<Longrightarrow> Q (SOME x. P x)"
60  by (blast intro: someI)
61
62text \<open>
63  Easier to apply than \<open>someI2\<close> if the witness comes from an
64  existential formula.
65\<close>
66lemma someI2_ex: "\<exists>a. P a \<Longrightarrow> (\<And>x. P x \<Longrightarrow> Q x) \<Longrightarrow> Q (SOME x. P x)"
67  by (blast intro: someI2)
68
69lemma someI2_bex: "\<exists>a\<in>A. P a \<Longrightarrow> (\<And>x. x \<in> A \<and> P x \<Longrightarrow> Q x) \<Longrightarrow> Q (SOME x. x \<in> A \<and> P x)"
70  by (blast intro: someI2)
71
72lemma some_equality [intro]: "P a \<Longrightarrow> (\<And>x. P x \<Longrightarrow> x = a) \<Longrightarrow> (SOME x. P x) = a"
73  by (blast intro: someI2)
74
75lemma some1_equality: "\<exists>!x. P x \<Longrightarrow> P a \<Longrightarrow> (SOME x. P x) = a"
76  by blast
77
78lemma some_eq_ex: "P (SOME x. P x) \<longleftrightarrow> (\<exists>x. P x)"
79  by (blast intro: someI)
80
81lemma some_in_eq: "(SOME x. x \<in> A) \<in> A \<longleftrightarrow> A \<noteq> {}"
82  unfolding ex_in_conv[symmetric] by (rule some_eq_ex)
83
84lemma some_eq_trivial [simp]: "(SOME y. y = x) = x"
85  by (rule some_equality) (rule refl)
86
87lemma some_sym_eq_trivial [simp]: "(SOME y. x = y) = x"
88  apply (rule some_equality)
89   apply (rule refl)
90  apply (erule sym)
91  done
92
93
94subsection \<open>Axiom of Choice, Proved Using the Description Operator\<close>
95
96lemma choice: "\<forall>x. \<exists>y. Q x y \<Longrightarrow> \<exists>f. \<forall>x. Q x (f x)"
97  by (fast elim: someI)
98
99lemma bchoice: "\<forall>x\<in>S. \<exists>y. Q x y \<Longrightarrow> \<exists>f. \<forall>x\<in>S. Q x (f x)"
100  by (fast elim: someI)
101
102lemma choice_iff: "(\<forall>x. \<exists>y. Q x y) \<longleftrightarrow> (\<exists>f. \<forall>x. Q x (f x))"
103  by (fast elim: someI)
104
105lemma choice_iff': "(\<forall>x. P x \<longrightarrow> (\<exists>y. Q x y)) \<longleftrightarrow> (\<exists>f. \<forall>x. P x \<longrightarrow> Q x (f x))"
106  by (fast elim: someI)
107
108lemma bchoice_iff: "(\<forall>x\<in>S. \<exists>y. Q x y) \<longleftrightarrow> (\<exists>f. \<forall>x\<in>S. Q x (f x))"
109  by (fast elim: someI)
110
111lemma bchoice_iff': "(\<forall>x\<in>S. P x \<longrightarrow> (\<exists>y. Q x y)) \<longleftrightarrow> (\<exists>f. \<forall>x\<in>S. P x \<longrightarrow> Q x (f x))"
112  by (fast elim: someI)
113
114lemma dependent_nat_choice:
115  assumes 1: "\<exists>x. P 0 x"
116    and 2: "\<And>x n. P n x \<Longrightarrow> \<exists>y. P (Suc n) y \<and> Q n x y"
117  shows "\<exists>f. \<forall>n. P n (f n) \<and> Q n (f n) (f (Suc n))"
118proof (intro exI allI conjI)
119  fix n
120  define f where "f = rec_nat (SOME x. P 0 x) (\<lambda>n x. SOME y. P (Suc n) y \<and> Q n x y)"
121  then have "P 0 (f 0)" "\<And>n. P n (f n) \<Longrightarrow> P (Suc n) (f (Suc n)) \<and> Q n (f n) (f (Suc n))"
122    using someI_ex[OF 1] someI_ex[OF 2] by simp_all
123  then show "P n (f n)" "Q n (f n) (f (Suc n))"
124    by (induct n) auto
125qed
126
127
128subsection \<open>Function Inverse\<close>
129
130lemma inv_def: "inv f = (\<lambda>y. SOME x. f x = y)"
131  by (simp add: inv_into_def)
132
133lemma inv_into_into: "x \<in> f ` A \<Longrightarrow> inv_into A f x \<in> A"
134  by (simp add: inv_into_def) (fast intro: someI2)
135
136lemma inv_identity [simp]: "inv (\<lambda>a. a) = (\<lambda>a. a)"
137  by (simp add: inv_def)
138
139lemma inv_id [simp]: "inv id = id"
140  by (simp add: id_def)
141
142lemma inv_into_f_f [simp]: "inj_on f A \<Longrightarrow> x \<in> A \<Longrightarrow> inv_into A f (f x) = x"
143  by (simp add: inv_into_def inj_on_def) (blast intro: someI2)
144
145lemma inv_f_f: "inj f \<Longrightarrow> inv f (f x) = x"
146  by simp
147
148lemma f_inv_into_f: "y \<in> f`A \<Longrightarrow> f (inv_into A f y) = y"
149  by (simp add: inv_into_def) (fast intro: someI2)
150
151lemma inv_into_f_eq: "inj_on f A \<Longrightarrow> x \<in> A \<Longrightarrow> f x = y \<Longrightarrow> inv_into A f y = x"
152  by (erule subst) (fast intro: inv_into_f_f)
153
154lemma inv_f_eq: "inj f \<Longrightarrow> f x = y \<Longrightarrow> inv f y = x"
155  by (simp add:inv_into_f_eq)
156
157lemma inj_imp_inv_eq: "inj f \<Longrightarrow> \<forall>x. f (g x) = x \<Longrightarrow> inv f = g"
158  by (blast intro: inv_into_f_eq)
159
160text \<open>But is it useful?\<close>
161lemma inj_transfer:
162  assumes inj: "inj f"
163    and minor: "\<And>y. y \<in> range f \<Longrightarrow> P (inv f y)"
164  shows "P x"
165proof -
166  have "f x \<in> range f" by auto
167  then have "P(inv f (f x))" by (rule minor)
168  then show "P x" by (simp add: inv_into_f_f [OF inj])
169qed
170
171lemma inj_iff: "inj f \<longleftrightarrow> inv f \<circ> f = id"
172  by (simp add: o_def fun_eq_iff) (blast intro: inj_on_inverseI inv_into_f_f)
173
174lemma inv_o_cancel[simp]: "inj f \<Longrightarrow> inv f \<circ> f = id"
175  by (simp add: inj_iff)
176
177lemma o_inv_o_cancel[simp]: "inj f \<Longrightarrow> g \<circ> inv f \<circ> f = g"
178  by (simp add: comp_assoc)
179
180lemma inv_into_image_cancel[simp]: "inj_on f A \<Longrightarrow> S \<subseteq> A \<Longrightarrow> inv_into A f ` f ` S = S"
181  by (fastforce simp: image_def)
182
183lemma inj_imp_surj_inv: "inj f \<Longrightarrow> surj (inv f)"
184  by (blast intro!: surjI inv_into_f_f)
185
186lemma surj_f_inv_f: "surj f \<Longrightarrow> f (inv f y) = y"
187  by (simp add: f_inv_into_f)
188
189lemma bij_inv_eq_iff: "bij p \<Longrightarrow> x = inv p y \<longleftrightarrow> p x = y"
190  using surj_f_inv_f[of p] by (auto simp add: bij_def)
191
192lemma inv_into_injective:
193  assumes eq: "inv_into A f x = inv_into A f y"
194    and x: "x \<in> f`A"
195    and y: "y \<in> f`A"
196  shows "x = y"
197proof -
198  from eq have "f (inv_into A f x) = f (inv_into A f y)"
199    by simp
200  with x y show ?thesis
201    by (simp add: f_inv_into_f)
202qed
203
204lemma inj_on_inv_into: "B \<subseteq> f`A \<Longrightarrow> inj_on (inv_into A f) B"
205  by (blast intro: inj_onI dest: inv_into_injective injD)
206
207lemma bij_betw_inv_into: "bij_betw f A B \<Longrightarrow> bij_betw (inv_into A f) B A"
208  by (auto simp add: bij_betw_def inj_on_inv_into)
209
210lemma surj_imp_inj_inv: "surj f \<Longrightarrow> inj (inv f)"
211  by (simp add: inj_on_inv_into)
212
213lemma surj_iff: "surj f \<longleftrightarrow> f \<circ> inv f = id"
214  by (auto intro!: surjI simp: surj_f_inv_f fun_eq_iff[where 'b='a])
215
216lemma surj_iff_all: "surj f \<longleftrightarrow> (\<forall>x. f (inv f x) = x)"
217  by (simp add: o_def surj_iff fun_eq_iff)
218
219lemma surj_imp_inv_eq: "surj f \<Longrightarrow> \<forall>x. g (f x) = x \<Longrightarrow> inv f = g"
220  apply (rule ext)
221  apply (drule_tac x = "inv f x" in spec)
222  apply (simp add: surj_f_inv_f)
223  done
224
225lemma bij_imp_bij_inv: "bij f \<Longrightarrow> bij (inv f)"
226  by (simp add: bij_def inj_imp_surj_inv surj_imp_inj_inv)
227
228lemma inv_equality: "(\<And>x. g (f x) = x) \<Longrightarrow> (\<And>y. f (g y) = y) \<Longrightarrow> inv f = g"
229  by (rule ext) (auto simp add: inv_into_def)
230
231lemma inv_inv_eq: "bij f \<Longrightarrow> inv (inv f) = f"
232  by (rule inv_equality) (auto simp add: bij_def surj_f_inv_f)
233
234text \<open>
235  \<open>bij (inv f)\<close> implies little about \<open>f\<close>. Consider \<open>f :: bool \<Rightarrow> bool\<close> such
236  that \<open>f True = f False = True\<close>. Then it ia consistent with axiom \<open>someI\<close>
237  that \<open>inv f\<close> could be any function at all, including the identity function.
238  If \<open>inv f = id\<close> then \<open>inv f\<close> is a bijection, but \<open>inj f\<close>, \<open>surj f\<close> and \<open>inv
239  (inv f) = f\<close> all fail.
240\<close>
241
242lemma inv_into_comp:
243  "inj_on f (g ` A) \<Longrightarrow> inj_on g A \<Longrightarrow> x \<in> f ` g ` A \<Longrightarrow>
244    inv_into A (f \<circ> g) x = (inv_into A g \<circ> inv_into (g ` A) f) x"
245  apply (rule inv_into_f_eq)
246    apply (fast intro: comp_inj_on)
247   apply (simp add: inv_into_into)
248  apply (simp add: f_inv_into_f inv_into_into)
249  done
250
251lemma o_inv_distrib: "bij f \<Longrightarrow> bij g \<Longrightarrow> inv (f \<circ> g) = inv g \<circ> inv f"
252  by (rule inv_equality) (auto simp add: bij_def surj_f_inv_f)
253
254lemma image_f_inv_f: "surj f \<Longrightarrow> f ` (inv f ` A) = A"
255  by (simp add: surj_f_inv_f image_comp comp_def)
256
257lemma image_inv_f_f: "inj f \<Longrightarrow> inv f ` (f ` A) = A"
258  by simp
259
260lemma bij_image_Collect_eq: "bij f \<Longrightarrow> f ` Collect P = {y. P (inv f y)}"
261  apply auto
262   apply (force simp add: bij_is_inj)
263  apply (blast intro: bij_is_surj [THEN surj_f_inv_f, symmetric])
264  done
265
266lemma bij_vimage_eq_inv_image: "bij f \<Longrightarrow> f -` A = inv f ` A"
267  apply (auto simp add: bij_is_surj [THEN surj_f_inv_f])
268  apply (blast intro: bij_is_inj [THEN inv_into_f_f, symmetric])
269  done
270
271lemma inv_fn_o_fn_is_id:
272  fixes f::"'a \<Rightarrow> 'a"
273  assumes "bij f"
274  shows "((inv f)^^n) o (f^^n) = (\<lambda>x. x)"
275proof -
276  have "((inv f)^^n)((f^^n) x) = x" for x n
277  proof (induction n)
278    case (Suc n)
279    have *: "(inv f) (f y) = y" for y
280      by (simp add: assms bij_is_inj)
281    have "(inv f ^^ Suc n) ((f ^^ Suc n) x) = (inv f^^n) (inv f (f ((f^^n) x)))"
282      by (simp add: funpow_swap1)
283    also have "... = (inv f^^n) ((f^^n) x)"
284      using * by auto
285    also have "... = x" using Suc.IH by auto
286    finally show ?case by simp
287  qed (auto)
288  then show ?thesis unfolding o_def by blast
289qed
290
291lemma fn_o_inv_fn_is_id:
292  fixes f::"'a \<Rightarrow> 'a"
293  assumes "bij f"
294  shows "(f^^n) o ((inv f)^^n) = (\<lambda>x. x)"
295proof -
296  have "(f^^n) (((inv f)^^n) x) = x" for x n
297  proof (induction n)
298    case (Suc n)
299    have *: "f(inv f y) = y" for y
300      using bij_inv_eq_iff[OF assms] by auto
301    have "(f ^^ Suc n) ((inv f ^^ Suc n) x) = (f^^n) (f (inv f ((inv f^^n) x)))"
302      by (simp add: funpow_swap1)
303    also have "... = (f^^n) ((inv f^^n) x)"
304      using * by auto
305    also have "... = x" using Suc.IH by auto
306    finally show ?case by simp
307  qed (auto)
308  then show ?thesis unfolding o_def by blast
309qed
310
311lemma inv_fn:
312  fixes f::"'a \<Rightarrow> 'a"
313  assumes "bij f"
314  shows "inv (f^^n) = ((inv f)^^n)"
315proof -
316  have "inv (f^^n) x = ((inv f)^^n) x" for x
317  apply (rule inv_into_f_eq, auto simp add: inj_fn[OF bij_is_inj[OF assms]])
318  using fn_o_inv_fn_is_id[OF assms, of n, THEN fun_cong] by (simp)
319  then show ?thesis by auto
320qed
321
322lemma mono_inv:
323  fixes f::"'a::linorder \<Rightarrow> 'b::linorder"
324  assumes "mono f" "bij f"
325  shows "mono (inv f)"
326proof
327  fix x y::'b assume "x \<le> y"
328  from \<open>bij f\<close> obtain a b where x: "x = f a" and y: "y = f b" by(fastforce simp: bij_def surj_def)
329  show "inv f x \<le> inv f y"
330  proof (rule le_cases)
331    assume "a \<le> b"
332    thus ?thesis using  \<open>bij f\<close> x y by(simp add: bij_def inv_f_f)
333  next
334    assume "b \<le> a"
335    hence "f b \<le> f a" by(rule monoD[OF \<open>mono f\<close>])
336    hence "y \<le> x" using x y by simp
337    hence "x = y" using \<open>x \<le> y\<close> by auto
338    thus ?thesis by simp
339  qed
340qed
341
342lemma mono_bij_Inf:
343  fixes f :: "'a::complete_linorder \<Rightarrow> 'b::complete_linorder"
344  assumes "mono f" "bij f"
345  shows "f (Inf A) = Inf (f`A)"
346proof -
347  have "surj f" using \<open>bij f\<close> by (auto simp: bij_betw_def)
348  have *: "(inv f) (Inf (f`A)) \<le> Inf ((inv f)`(f`A))"
349    using mono_Inf[OF mono_inv[OF assms], of "f`A"] by simp
350  have "Inf (f`A) \<le> f (Inf ((inv f)`(f`A)))"
351    using monoD[OF \<open>mono f\<close> *] by(simp add: surj_f_inv_f[OF \<open>surj f\<close>])
352  also have "... = f(Inf A)"
353    using assms by (simp add: bij_is_inj)
354  finally show ?thesis using mono_Inf[OF assms(1), of A] by auto
355qed
356
357lemma finite_fun_UNIVD1:
358  assumes fin: "finite (UNIV :: ('a \<Rightarrow> 'b) set)"
359    and card: "card (UNIV :: 'b set) \<noteq> Suc 0"
360  shows "finite (UNIV :: 'a set)"
361proof -
362  let ?UNIV_b = "UNIV :: 'b set"
363  from fin have "finite ?UNIV_b"
364    by (rule finite_fun_UNIVD2)
365  with card have "card ?UNIV_b \<ge> Suc (Suc 0)"
366    by (cases "card ?UNIV_b") (auto simp: card_eq_0_iff)
367  then have "card ?UNIV_b = Suc (Suc (card ?UNIV_b - Suc (Suc 0)))"
368    by simp
369  then obtain b1 b2 :: 'b where b1b2: "b1 \<noteq> b2"
370    by (auto simp: card_Suc_eq)
371  from fin have fin': "finite (range (\<lambda>f :: 'a \<Rightarrow> 'b. inv f b1))"
372    by (rule finite_imageI)
373  have "UNIV = range (\<lambda>f :: 'a \<Rightarrow> 'b. inv f b1)"
374  proof (rule UNIV_eq_I)
375    fix x :: 'a
376    from b1b2 have "x = inv (\<lambda>y. if y = x then b1 else b2) b1"
377      by (simp add: inv_into_def)
378    then show "x \<in> range (\<lambda>f::'a \<Rightarrow> 'b. inv f b1)"
379      by blast
380  qed
381  with fin' show ?thesis
382    by simp
383qed
384
385text \<open>
386  Every infinite set contains a countable subset. More precisely we
387  show that a set \<open>S\<close> is infinite if and only if there exists an
388  injective function from the naturals into \<open>S\<close>.
389
390  The ``only if'' direction is harder because it requires the
391  construction of a sequence of pairwise different elements of an
392  infinite set \<open>S\<close>. The idea is to construct a sequence of
393  non-empty and infinite subsets of \<open>S\<close> obtained by successively
394  removing elements of \<open>S\<close>.
395\<close>
396
397lemma infinite_countable_subset:
398  assumes inf: "\<not> finite S"
399  shows "\<exists>f::nat \<Rightarrow> 'a. inj f \<and> range f \<subseteq> S"
400  \<comment> \<open>Courtesy of Stephan Merz\<close>
401proof -
402  define Sseq where "Sseq = rec_nat S (\<lambda>n T. T - {SOME e. e \<in> T})"
403  define pick where "pick n = (SOME e. e \<in> Sseq n)" for n
404  have *: "Sseq n \<subseteq> S" "\<not> finite (Sseq n)" for n
405    by (induct n) (auto simp: Sseq_def inf)
406  then have **: "\<And>n. pick n \<in> Sseq n"
407    unfolding pick_def by (subst (asm) finite.simps) (auto simp add: ex_in_conv intro: someI_ex)
408  with * have "range pick \<subseteq> S" by auto
409  moreover have "pick n \<noteq> pick (n + Suc m)" for m n
410  proof -
411    have "pick n \<notin> Sseq (n + Suc m)"
412      by (induct m) (auto simp add: Sseq_def pick_def)
413    with ** show ?thesis by auto
414  qed
415  then have "inj pick"
416    by (intro linorder_injI) (auto simp add: less_iff_Suc_add)
417  ultimately show ?thesis by blast
418qed
419
420lemma infinite_iff_countable_subset: "\<not> finite S \<longleftrightarrow> (\<exists>f::nat \<Rightarrow> 'a. inj f \<and> range f \<subseteq> S)"
421  \<comment> \<open>Courtesy of Stephan Merz\<close>
422  using finite_imageD finite_subset infinite_UNIV_char_0 infinite_countable_subset by auto
423
424lemma image_inv_into_cancel:
425  assumes surj: "f`A = A'"
426    and sub: "B' \<subseteq> A'"
427  shows "f `((inv_into A f)`B') = B'"
428  using assms
429proof (auto simp: f_inv_into_f)
430  let ?f' = "inv_into A f"
431  fix a'
432  assume *: "a' \<in> B'"
433  with sub have "a' \<in> A'" by auto
434  with surj have "a' = f (?f' a')"
435    by (auto simp: f_inv_into_f)
436  with * show "a' \<in> f ` (?f' ` B')" by blast
437qed
438
439lemma inv_into_inv_into_eq:
440  assumes "bij_betw f A A'"
441    and a: "a \<in> A"
442  shows "inv_into A' (inv_into A f) a = f a"
443proof -
444  let ?f' = "inv_into A f"
445  let ?f'' = "inv_into A' ?f'"
446  from assms have *: "bij_betw ?f' A' A"
447    by (auto simp: bij_betw_inv_into)
448  with a obtain a' where a': "a' \<in> A'" "?f' a' = a"
449    unfolding bij_betw_def by force
450  with a * have "?f'' a = a'"
451    by (auto simp: f_inv_into_f bij_betw_def)
452  moreover from assms a' have "f a = a'"
453    by (auto simp: bij_betw_def)
454  ultimately show "?f'' a = f a" by simp
455qed
456
457lemma inj_on_iff_surj:
458  assumes "A \<noteq> {}"
459  shows "(\<exists>f. inj_on f A \<and> f ` A \<subseteq> A') \<longleftrightarrow> (\<exists>g. g ` A' = A)"
460proof safe
461  fix f
462  assume inj: "inj_on f A" and incl: "f ` A \<subseteq> A'"
463  let ?phi = "\<lambda>a' a. a \<in> A \<and> f a = a'"
464  let ?csi = "\<lambda>a. a \<in> A"
465  let ?g = "\<lambda>a'. if a' \<in> f ` A then (SOME a. ?phi a' a) else (SOME a. ?csi a)"
466  have "?g ` A' = A"
467  proof
468    show "?g ` A' \<subseteq> A"
469    proof clarify
470      fix a'
471      assume *: "a' \<in> A'"
472      show "?g a' \<in> A"
473      proof (cases "a' \<in> f ` A")
474        case True
475        then obtain a where "?phi a' a" by blast
476        then have "?phi a' (SOME a. ?phi a' a)"
477          using someI[of "?phi a'" a] by blast
478        with True show ?thesis by auto
479      next
480        case False
481        with assms have "?csi (SOME a. ?csi a)"
482          using someI_ex[of ?csi] by blast
483        with False show ?thesis by auto
484      qed
485    qed
486  next
487    show "A \<subseteq> ?g ` A'"
488    proof -
489      have "?g (f a) = a \<and> f a \<in> A'" if a: "a \<in> A" for a
490      proof -
491        let ?b = "SOME aa. ?phi (f a) aa"
492        from a have "?phi (f a) a" by auto
493        then have *: "?phi (f a) ?b"
494          using someI[of "?phi(f a)" a] by blast
495        then have "?g (f a) = ?b" using a by auto
496        moreover from inj * a have "a = ?b"
497          by (auto simp add: inj_on_def)
498        ultimately have "?g(f a) = a" by simp
499        with incl a show ?thesis by auto
500      qed
501      then show ?thesis by force
502    qed
503  qed
504  then show "\<exists>g. g ` A' = A" by blast
505next
506  fix g
507  let ?f = "inv_into A' g"
508  have "inj_on ?f (g ` A')"
509    by (auto simp: inj_on_inv_into)
510  moreover have "?f (g a') \<in> A'" if a': "a' \<in> A'" for a'
511  proof -
512    let ?phi = "\<lambda> b'. b' \<in> A' \<and> g b' = g a'"
513    from a' have "?phi a'" by auto
514    then have "?phi (SOME b'. ?phi b')"
515      using someI[of ?phi] by blast
516    then show ?thesis by (auto simp: inv_into_def)
517  qed
518  ultimately show "\<exists>f. inj_on f (g ` A') \<and> f ` g ` A' \<subseteq> A'"
519    by auto
520qed
521
522lemma Ex_inj_on_UNION_Sigma:
523  "\<exists>f. (inj_on f (\<Union>i \<in> I. A i) \<and> f ` (\<Union>i \<in> I. A i) \<subseteq> (SIGMA i : I. A i))"
524proof
525  let ?phi = "\<lambda>a i. i \<in> I \<and> a \<in> A i"
526  let ?sm = "\<lambda>a. SOME i. ?phi a i"
527  let ?f = "\<lambda>a. (?sm a, a)"
528  have "inj_on ?f (\<Union>i \<in> I. A i)"
529    by (auto simp: inj_on_def)
530  moreover
531  have "?sm a \<in> I \<and> a \<in> A(?sm a)" if "i \<in> I" and "a \<in> A i" for i a
532    using that someI[of "?phi a" i] by auto
533  then have "?f ` (\<Union>i \<in> I. A i) \<subseteq> (SIGMA i : I. A i)"
534    by auto
535  ultimately show "inj_on ?f (\<Union>i \<in> I. A i) \<and> ?f ` (\<Union>i \<in> I. A i) \<subseteq> (SIGMA i : I. A i)"
536    by auto
537qed
538
539lemma inv_unique_comp:
540  assumes fg: "f \<circ> g = id"
541    and gf: "g \<circ> f = id"
542  shows "inv f = g"
543  using fg gf inv_equality[of g f] by (auto simp add: fun_eq_iff)
544
545
546subsection \<open>Other Consequences of Hilbert's Epsilon\<close>
547
548text \<open>Hilbert's Epsilon and the @{term split} Operator\<close>
549
550text \<open>Looping simprule!\<close>
551lemma split_paired_Eps: "(SOME x. P x) = (SOME (a, b). P (a, b))"
552  by simp
553
554lemma Eps_case_prod: "Eps (case_prod P) = (SOME xy. P (fst xy) (snd xy))"
555  by (simp add: split_def)
556
557lemma Eps_case_prod_eq [simp]: "(SOME (x', y'). x = x' \<and> y = y') = (x, y)"
558  by blast
559
560
561text \<open>A relation is wellfounded iff it has no infinite descending chain.\<close>
562lemma wf_iff_no_infinite_down_chain: "wf r \<longleftrightarrow> (\<nexists>f. \<forall>i. (f (Suc i), f i) \<in> r)"
563  (is "_ \<longleftrightarrow> \<not> ?ex")
564proof
565  assume "wf r"
566  show "\<not> ?ex"
567  proof
568    assume ?ex
569    then obtain f where f: "(f (Suc i), f i) \<in> r" for i
570      by blast
571    from \<open>wf r\<close> have minimal: "x \<in> Q \<Longrightarrow> \<exists>z\<in>Q. \<forall>y. (y, z) \<in> r \<longrightarrow> y \<notin> Q" for x Q
572      by (auto simp: wf_eq_minimal)
573    let ?Q = "{w. \<exists>i. w = f i}"
574    fix n
575    have "f n \<in> ?Q" by blast
576    from minimal [OF this] obtain j where "(y, f j) \<in> r \<Longrightarrow> y \<notin> ?Q" for y by blast
577    with this [OF \<open>(f (Suc j), f j) \<in> r\<close>] have "f (Suc j) \<notin> ?Q" by simp
578    then show False by blast
579  qed
580next
581  assume "\<not> ?ex"
582  then show "wf r"
583  proof (rule contrapos_np)
584    assume "\<not> wf r"
585    then obtain Q x where x: "x \<in> Q" and rec: "z \<in> Q \<Longrightarrow> \<exists>y. (y, z) \<in> r \<and> y \<in> Q" for z
586      by (auto simp add: wf_eq_minimal)
587    obtain descend :: "nat \<Rightarrow> 'a"
588      where descend_0: "descend 0 = x"
589        and descend_Suc: "descend (Suc n) = (SOME y. y \<in> Q \<and> (y, descend n) \<in> r)" for n
590      by (rule that [of "rec_nat x (\<lambda>_ rec. (SOME y. y \<in> Q \<and> (y, rec) \<in> r))"]) simp_all
591    have descend_Q: "descend n \<in> Q" for n
592    proof (induct n)
593      case 0
594      with x show ?case by (simp only: descend_0)
595    next
596      case Suc
597      then show ?case by (simp only: descend_Suc) (rule someI2_ex; use rec in blast)
598    qed
599    have "(descend (Suc i), descend i) \<in> r" for i
600      by (simp only: descend_Suc) (rule someI2_ex; use descend_Q rec in blast)
601    then show "\<exists>f. \<forall>i. (f (Suc i), f i) \<in> r" by blast
602  qed
603qed
604
605lemma wf_no_infinite_down_chainE:
606  assumes "wf r"
607  obtains k where "(f (Suc k), f k) \<notin> r"
608  using assms wf_iff_no_infinite_down_chain[of r] by blast
609
610
611text \<open>A dynamically-scoped fact for TFL\<close>
612lemma tfl_some: "\<forall>P x. P x \<longrightarrow> P (Eps P)"
613  by (blast intro: someI)
614
615
616subsection \<open>An aside: bounded accessible part\<close>
617
618text \<open>Finite monotone eventually stable sequences\<close>
619
620lemma finite_mono_remains_stable_implies_strict_prefix:
621  fixes f :: "nat \<Rightarrow> 'a::order"
622  assumes S: "finite (range f)" "mono f"
623    and eq: "\<forall>n. f n = f (Suc n) \<longrightarrow> f (Suc n) = f (Suc (Suc n))"
624  shows "\<exists>N. (\<forall>n\<le>N. \<forall>m\<le>N. m < n \<longrightarrow> f m < f n) \<and> (\<forall>n\<ge>N. f N = f n)"
625  using assms
626proof -
627  have "\<exists>n. f n = f (Suc n)"
628  proof (rule ccontr)
629    assume "\<not> ?thesis"
630    then have "\<And>n. f n \<noteq> f (Suc n)" by auto
631    with \<open>mono f\<close> have "\<And>n. f n < f (Suc n)"
632      by (auto simp: le_less mono_iff_le_Suc)
633    with lift_Suc_mono_less_iff[of f] have *: "\<And>n m. n < m \<Longrightarrow> f n < f m"
634      by auto
635    have "inj f"
636    proof (intro injI)
637      fix x y
638      assume "f x = f y"
639      then show "x = y"
640        by (cases x y rule: linorder_cases) (auto dest: *)
641    qed
642    with \<open>finite (range f)\<close> have "finite (UNIV::nat set)"
643      by (rule finite_imageD)
644    then show False by simp
645  qed
646  then obtain n where n: "f n = f (Suc n)" ..
647  define N where "N = (LEAST n. f n = f (Suc n))"
648  have N: "f N = f (Suc N)"
649    unfolding N_def using n by (rule LeastI)
650  show ?thesis
651  proof (intro exI[of _ N] conjI allI impI)
652    fix n
653    assume "N \<le> n"
654    then have "\<And>m. N \<le> m \<Longrightarrow> m \<le> n \<Longrightarrow> f m = f N"
655    proof (induct rule: dec_induct)
656      case base
657      then show ?case by simp
658    next
659      case (step n)
660      then show ?case
661        using eq [rule_format, of "n - 1"] N
662        by (cases n) (auto simp add: le_Suc_eq)
663    qed
664    from this[of n] \<open>N \<le> n\<close> show "f N = f n" by auto
665  next
666    fix n m :: nat
667    assume "m < n" "n \<le> N"
668    then show "f m < f n"
669    proof (induct rule: less_Suc_induct)
670      case (1 i)
671      then have "i < N" by simp
672      then have "f i \<noteq> f (Suc i)"
673        unfolding N_def by (rule not_less_Least)
674      with \<open>mono f\<close> show ?case by (simp add: mono_iff_le_Suc less_le)
675    next
676      case 2
677      then show ?case by simp
678    qed
679  qed
680qed
681
682lemma finite_mono_strict_prefix_implies_finite_fixpoint:
683  fixes f :: "nat \<Rightarrow> 'a set"
684  assumes S: "\<And>i. f i \<subseteq> S" "finite S"
685    and ex: "\<exists>N. (\<forall>n\<le>N. \<forall>m\<le>N. m < n \<longrightarrow> f m \<subset> f n) \<and> (\<forall>n\<ge>N. f N = f n)"
686  shows "f (card S) = (\<Union>n. f n)"
687proof -
688  from ex obtain N where inj: "\<And>n m. n \<le> N \<Longrightarrow> m \<le> N \<Longrightarrow> m < n \<Longrightarrow> f m \<subset> f n"
689    and eq: "\<forall>n\<ge>N. f N = f n"
690    by atomize auto
691  have "i \<le> N \<Longrightarrow> i \<le> card (f i)" for i
692  proof (induct i)
693    case 0
694    then show ?case by simp
695  next
696    case (Suc i)
697    with inj [of "Suc i" i] have "(f i) \<subset> (f (Suc i))" by auto
698    moreover have "finite (f (Suc i))" using S by (rule finite_subset)
699    ultimately have "card (f i) < card (f (Suc i))" by (intro psubset_card_mono)
700    with Suc inj show ?case by auto
701  qed
702  then have "N \<le> card (f N)" by simp
703  also have "\<dots> \<le> card S" using S by (intro card_mono)
704  finally have "f (card S) = f N" using eq by auto
705  then show ?thesis
706    using eq inj [of N]
707    apply auto
708    apply (case_tac "n < N")
709     apply (auto simp: not_less)
710    done
711qed
712
713
714subsection \<open>More on injections, bijections, and inverses\<close>
715
716locale bijection =
717  fixes f :: "'a \<Rightarrow> 'a"
718  assumes bij: "bij f"
719begin
720
721lemma bij_inv: "bij (inv f)"
722  using bij by (rule bij_imp_bij_inv)
723
724lemma surj [simp]: "surj f"
725  using bij by (rule bij_is_surj)
726
727lemma inj: "inj f"
728  using bij by (rule bij_is_inj)
729
730lemma surj_inv [simp]: "surj (inv f)"
731  using inj by (rule inj_imp_surj_inv)
732
733lemma inj_inv: "inj (inv f)"
734  using surj by (rule surj_imp_inj_inv)
735
736lemma eqI: "f a = f b \<Longrightarrow> a = b"
737  using inj by (rule injD)
738
739lemma eq_iff [simp]: "f a = f b \<longleftrightarrow> a = b"
740  by (auto intro: eqI)
741
742lemma eq_invI: "inv f a = inv f b \<Longrightarrow> a = b"
743  using inj_inv by (rule injD)
744
745lemma eq_inv_iff [simp]: "inv f a = inv f b \<longleftrightarrow> a = b"
746  by (auto intro: eq_invI)
747
748lemma inv_left [simp]: "inv f (f a) = a"
749  using inj by (simp add: inv_f_eq)
750
751lemma inv_comp_left [simp]: "inv f \<circ> f = id"
752  by (simp add: fun_eq_iff)
753
754lemma inv_right [simp]: "f (inv f a) = a"
755  using surj by (simp add: surj_f_inv_f)
756
757lemma inv_comp_right [simp]: "f \<circ> inv f = id"
758  by (simp add: fun_eq_iff)
759
760lemma inv_left_eq_iff [simp]: "inv f a = b \<longleftrightarrow> f b = a"
761  by auto
762
763lemma inv_right_eq_iff [simp]: "b = inv f a \<longleftrightarrow> f b = a"
764  by auto
765
766end
767
768lemma infinite_imp_bij_betw:
769  assumes infinite: "\<not> finite A"
770  shows "\<exists>h. bij_betw h A (A - {a})"
771proof (cases "a \<in> A")
772  case False
773  then have "A - {a} = A" by blast
774  then show ?thesis
775    using bij_betw_id[of A] by auto
776next
777  case True
778  with infinite have "\<not> finite (A - {a})" by auto
779  with infinite_iff_countable_subset[of "A - {a}"]
780  obtain f :: "nat \<Rightarrow> 'a" where 1: "inj f" and 2: "f ` UNIV \<subseteq> A - {a}" by blast
781  define g where "g n = (if n = 0 then a else f (Suc n))" for n
782  define A' where "A' = g ` UNIV"
783  have *: "\<forall>y. f y \<noteq> a" using 2 by blast
784  have 3: "inj_on g UNIV \<and> g ` UNIV \<subseteq> A \<and> a \<in> g ` UNIV"
785    apply (auto simp add: True g_def [abs_def])
786     apply (unfold inj_on_def)
787     apply (intro ballI impI)
788     apply (case_tac "x = 0")
789      apply (auto simp add: 2)
790  proof -
791    fix y
792    assume "a = (if y = 0 then a else f (Suc y))"
793    then show "y = 0" by (cases "y = 0") (use * in auto)
794  next
795    fix x y
796    assume "f (Suc x) = (if y = 0 then a else f (Suc y))"
797    with 1 * show "x = y" by (cases "y = 0") (auto simp: inj_on_def)
798  next
799    fix n
800    from 2 show "f (Suc n) \<in> A" by blast
801  qed
802  then have 4: "bij_betw g UNIV A' \<and> a \<in> A' \<and> A' \<subseteq> A"
803    using inj_on_imp_bij_betw[of g] by (auto simp: A'_def)
804  then have 5: "bij_betw (inv g) A' UNIV"
805    by (auto simp add: bij_betw_inv_into)
806  from 3 obtain n where n: "g n = a" by auto
807  have 6: "bij_betw g (UNIV - {n}) (A' - {a})"
808    by (rule bij_betw_subset) (use 3 4 n in \<open>auto simp: image_set_diff A'_def\<close>)
809  define v where "v m = (if m < n then m else Suc m)" for m
810  have 7: "bij_betw v UNIV (UNIV - {n})"
811  proof (unfold bij_betw_def inj_on_def, intro conjI, clarify)
812    fix m1 m2
813    assume "v m1 = v m2"
814    then show "m1 = m2"
815      apply (cases "m1 < n")
816       apply (cases "m2 < n")
817        apply (auto simp: inj_on_def v_def [abs_def])
818      apply (cases "m2 < n")
819       apply auto
820      done
821  next
822    show "v ` UNIV = UNIV - {n}"
823    proof (auto simp: v_def [abs_def])
824      fix m
825      assume "m \<noteq> n"
826      assume *: "m \<notin> Suc ` {m'. \<not> m' < n}"
827      have False if "n \<le> m"
828      proof -
829        from \<open>m \<noteq> n\<close> that have **: "Suc n \<le> m" by auto
830        from Suc_le_D [OF this] obtain m' where m': "m = Suc m'" ..
831        with ** have "n \<le> m'" by auto
832        with m' * show ?thesis by auto
833      qed
834      then show "m < n" by force
835    qed
836  qed
837  define h' where "h' = g \<circ> v \<circ> (inv g)"
838  with 5 6 7 have 8: "bij_betw h' A' (A' - {a})"
839    by (auto simp add: bij_betw_trans)
840  define h where "h b = (if b \<in> A' then h' b else b)" for b
841  then have "\<forall>b \<in> A'. h b = h' b" by simp
842  with 8 have "bij_betw h  A' (A' - {a})"
843    using bij_betw_cong[of A' h] by auto
844  moreover
845  have "\<forall>b \<in> A - A'. h b = b" by (auto simp: h_def)
846  then have "bij_betw h  (A - A') (A - A')"
847    using bij_betw_cong[of "A - A'" h id] bij_betw_id[of "A - A'"] by auto
848  moreover
849  from 4 have "(A' \<inter> (A - A') = {} \<and> A' \<union> (A - A') = A) \<and>
850    ((A' - {a}) \<inter> (A - A') = {} \<and> (A' - {a}) \<union> (A - A') = A - {a})"
851    by blast
852  ultimately have "bij_betw h A (A - {a})"
853    using bij_betw_combine[of h A' "A' - {a}" "A - A'" "A - A'"] by simp
854  then show ?thesis by blast
855qed
856
857lemma infinite_imp_bij_betw2:
858  assumes "\<not> finite A"
859  shows "\<exists>h. bij_betw h A (A \<union> {a})"
860proof (cases "a \<in> A")
861  case True
862  then have "A \<union> {a} = A" by blast
863  then show ?thesis using bij_betw_id[of A] by auto
864next
865  case False
866  let ?A' = "A \<union> {a}"
867  from False have "A = ?A' - {a}" by blast
868  moreover from assms have "\<not> finite ?A'" by auto
869  ultimately obtain f where "bij_betw f ?A' A"
870    using infinite_imp_bij_betw[of ?A' a] by auto
871  then have "bij_betw (inv_into ?A' f) A ?A'" by (rule bij_betw_inv_into)
872  then show ?thesis by auto
873qed
874
875lemma bij_betw_inv_into_left: "bij_betw f A A' \<Longrightarrow> a \<in> A \<Longrightarrow> inv_into A f (f a) = a"
876  unfolding bij_betw_def by clarify (rule inv_into_f_f)
877
878lemma bij_betw_inv_into_right: "bij_betw f A A' \<Longrightarrow> a' \<in> A' \<Longrightarrow> f (inv_into A f a') = a'"
879  unfolding bij_betw_def using f_inv_into_f by force
880
881lemma bij_betw_inv_into_subset:
882  "bij_betw f A A' \<Longrightarrow> B \<subseteq> A \<Longrightarrow> f ` B = B' \<Longrightarrow> bij_betw (inv_into A f) B' B"
883  by (auto simp: bij_betw_def intro: inj_on_inv_into)
884
885
886subsection \<open>Specification package -- Hilbertized version\<close>
887
888lemma exE_some: "Ex P \<Longrightarrow> c \<equiv> Eps P \<Longrightarrow> P c"
889  by (simp only: someI_ex)
890
891ML_file "Tools/choice_specification.ML"
892
893subsection \<open>Complete Distributive Lattices -- Properties depending on Hilbert Choice\<close>
894
895context complete_distrib_lattice
896begin
897lemma Sup_Inf: "Sup (Inf ` A) = Inf (Sup ` {f ` A | f . (\<forall> Y \<in> A . f Y \<in> Y)})"
898proof (rule antisym)
899  show "SUPREMUM A Inf \<le> INFIMUM {f ` A |f. \<forall>Y\<in>A. f Y \<in> Y} Sup"
900    apply (rule Sup_least, rule INF_greatest)
901    using Inf_lower2 Sup_upper by auto
902next
903  show "INFIMUM {f ` A |f. \<forall>Y\<in>A. f Y \<in> Y} Sup \<le> SUPREMUM A Inf"
904  proof (simp add:  Inf_Sup, rule SUP_least, simp, safe)
905    fix f
906    assume "\<forall>Y. (\<exists>f. Y = f ` A \<and> (\<forall>Y\<in>A. f Y \<in> Y)) \<longrightarrow> f Y \<in> Y"
907    from this have B: "\<And> F . (\<forall> Y \<in> A . F Y \<in> Y) \<Longrightarrow> \<exists> Z \<in> A . f (F ` A) = F Z"
908      by auto
909    show "INFIMUM {f ` A |f. \<forall>Y\<in>A. f Y \<in> Y} f \<le> SUPREMUM A Inf"
910    proof (cases "\<exists> Z \<in> A . INFIMUM {f ` A |f. \<forall>Y\<in>A. f Y \<in> Y} f \<le> Inf Z")
911      case True
912      from this obtain Z where [simp]: "Z \<in> A" and A: "INFIMUM {f ` A |f. \<forall>Y\<in>A. f Y \<in> Y} f \<le> Inf Z"
913        by blast
914      have B: "... \<le> SUPREMUM A Inf"
915        by (simp add: SUP_upper)
916      from A and B show ?thesis
917        by simp
918    next
919      case False
920      from this have X: "\<And> Z . Z \<in> A \<Longrightarrow> \<exists> x . x \<in> Z \<and> \<not> INFIMUM {f ` A |f. \<forall>Y\<in>A. f Y \<in> Y} f \<le> x"
921        using Inf_greatest by blast
922      define F where "F = (\<lambda> Z . SOME x . x \<in> Z \<and> \<not> INFIMUM {f ` A |f. \<forall>Y\<in>A. f Y \<in> Y} f \<le> x)"
923      have C: "\<And> Y . Y \<in> A \<Longrightarrow> F Y \<in> Y"
924        using X by (simp add: F_def, rule someI2_ex, auto)
925      have E: "\<And> Y . Y \<in> A \<Longrightarrow> \<not> INFIMUM {f ` A |f. \<forall>Y\<in>A. f Y \<in> Y} f \<le> F Y"
926        using X by (simp add: F_def, rule someI2_ex, auto)
927      from C and B obtain  Z where D: "Z \<in> A " and Y: "f (F ` A) = F Z"
928        by blast
929      from E and D have W: "\<not> INFIMUM {f ` A |f. \<forall>Y\<in>A. f Y \<in> Y} f \<le> F Z"
930        by simp
931      have "INFIMUM {f ` A |f. \<forall>Y\<in>A. f Y \<in> Y} f \<le> f (F ` A)"
932        apply (rule INF_lower)
933        using C by blast
934      from this and W and Y show ?thesis
935        by simp
936    qed
937  qed
938qed
939  
940lemma dual_complete_distrib_lattice:
941  "class.complete_distrib_lattice Sup Inf sup (\<ge>) (>) inf \<top> \<bottom>"
942  apply (rule class.complete_distrib_lattice.intro)
943   apply (fact dual_complete_lattice)
944  by (simp add: class.complete_distrib_lattice_axioms_def Sup_Inf)
945
946lemma sup_Inf: "a \<squnion> Inf B = (INF b:B. a \<squnion> b)"
947proof (rule antisym)
948  show "a \<squnion> Inf B \<le> (INF b:B. a \<squnion> b)"
949    apply (rule INF_greatest)
950    using Inf_lower sup.mono by fastforce
951next
952  have "(INF b:B. a \<squnion> b) \<le> INFIMUM {{f {a}, f B} |f. f {a} = a \<and> f B \<in> B} Sup"
953    by (rule INF_greatest, auto simp add: INF_lower)
954  also have "... = SUPREMUM {{a}, B} Inf"
955    by (unfold Sup_Inf, simp)
956  finally show "(INF b:B. a \<squnion> b) \<le> a \<squnion> Inf B"
957    by simp
958qed
959
960lemma inf_Sup: "a \<sqinter> Sup B = (SUP b:B. a \<sqinter> b)"
961  using dual_complete_distrib_lattice
962  by (rule complete_distrib_lattice.sup_Inf)
963
964lemma INF_SUP: "(INF y. SUP x. ((P x y)::'a)) = (SUP x. INF y. P (x y) y)"
965proof (rule antisym)
966  show "(SUP x. INF y. P (x y) y) \<le> (INF y. SUP x. P x y)"
967    by (rule SUP_least, rule INF_greatest, rule SUP_upper2, simp_all, rule INF_lower2, simp, blast)
968next
969  have "(INF y. SUP x. ((P x y))) \<le> Inf (Sup ` {{P x y | x . True} | y . True })" (is "?A \<le> ?B")
970  proof (rule INF_greatest, clarsimp)
971    fix y
972    have "?A \<le> (SUP x. P x y)"
973      by (rule INF_lower, simp)
974    also have "... \<le> Sup {uu. \<exists>x. uu = P x y}"
975      by (simp add: full_SetCompr_eq)
976    finally show "?A \<le> Sup {uu. \<exists>x. uu = P x y}"
977      by simp
978  qed
979  also have "... \<le>  (SUP x. INF y. P (x y) y)"
980  proof (subst Inf_Sup, rule SUP_least, clarsimp)
981    fix f
982    assume A: "\<forall>Y. (\<exists>y. Y = {uu. \<exists>x. uu = P x y}) \<longrightarrow> f Y \<in> Y"
983      
984    have "(INF x:{uu. \<exists>y. uu = {uu. \<exists>x. uu = P x y}}. f x) \<le>  (INF y. P ((\<lambda> y. SOME x . f ({P x y | x. True}) = P x y) y) y)"
985    proof (rule INF_greatest, clarsimp)
986      fix y
987        have "(INF x:{uu. \<exists>y. uu = {uu. \<exists>x. uu = P x y}}. f x) \<le> f {uu. \<exists>x. uu = P x y}"
988          by (rule INF_lower, blast)
989        also have "... \<le> P (SOME x. f {uu . \<exists>x. uu = P x y} = P x y) y"
990          apply (rule someI2_ex)
991          using A by auto
992        finally show "(INF x:{uu. \<exists>y. uu = {uu. \<exists>x. uu = P x y}}. f x) \<le> P (SOME x. f {uu . \<exists>x. uu = P x y} = P x y) y"
993          by simp
994      qed
995      also have "... \<le> (SUP x. INF y. P (x y) y)"
996        by (rule SUP_upper, simp)
997      finally show "(INF x:{uu. \<exists>y. uu = {uu. \<exists>x. uu = P x y}}. f x) \<le> (SUP x. INF y. P (x y) y)"
998        by simp
999    qed
1000  finally show "(INF y. SUP x. P x y) \<le> (SUP x. INF y. P (x y) y)"
1001    by simp
1002qed
1003
1004lemma INF_SUP_set: "(INF x:A. SUP a:x. (g a)) = (SUP x:{f ` A |f. \<forall>Y\<in>A. f Y \<in> Y}. INF a:x. g a)"
1005proof (rule antisym)
1006  have [simp]: "\<And>f xa. \<forall>Y\<in>A. f Y \<in> Y \<Longrightarrow> xa \<in> A \<Longrightarrow> (\<Sqinter>x\<in>A. g (f x)) \<le> g (f xa)"
1007    by (rule INF_lower2, blast+)
1008  have B: "\<And>f xa. \<forall>Y\<in>A. f Y \<in> Y \<Longrightarrow> xa \<in> A \<Longrightarrow> f xa \<in> xa"
1009    by blast
1010  have A: "\<And>f xa. \<forall>Y\<in>A. f Y \<in> Y \<Longrightarrow> xa \<in> A \<Longrightarrow> (\<Sqinter>x\<in>A. g (f x)) \<le> SUPREMUM xa g"
1011    by (rule SUP_upper2, rule B, simp_all, simp)
1012  show "(\<Squnion>x\<in>{f ` A |f. \<forall>Y\<in>A. f Y \<in> Y}. \<Sqinter>a\<in>x. g a) \<le> (\<Sqinter>x\<in>A. \<Squnion>a\<in>x. g a)"
1013    apply (rule SUP_least, simp, safe, rule INF_greatest, simp)
1014    by (rule A)
1015next
1016  show "(\<Sqinter>x\<in>A. \<Squnion>a\<in>x. g a) \<le> (\<Squnion>x\<in>{f ` A |f. \<forall>Y\<in>A. f Y \<in> Y}. \<Sqinter>a\<in>x. g a)"
1017  proof (cases "{} \<in> A")
1018    case True
1019    then show ?thesis 
1020      by (rule INF_lower2, simp_all)
1021  next
1022    case False
1023    have [simp]: "\<And>x xa xb. xb \<in> A \<Longrightarrow> x xb \<in> xb \<Longrightarrow> (\<Sqinter>xa. if xa \<in> A then if x xa \<in> xa then g (x xa) else \<bottom> else \<top>) \<le> g (x xb)"
1024      by (rule INF_lower2, auto)
1025    have [simp]: " \<And>x xa y. y \<in> A \<Longrightarrow> x y \<notin> y \<Longrightarrow> (\<Sqinter>xa. if xa \<in> A then if x xa \<in> xa then g (x xa) else \<bottom> else \<top>) \<le> g (SOME x. x \<in> y)"
1026      by (rule INF_lower2, auto)
1027    have [simp]: "\<And>x. (\<Sqinter>xa. if xa \<in> A then if x xa \<in> xa then g (x xa) else \<bottom> else \<top>) \<le> (\<Squnion>x\<in>{f ` A |f. \<forall>Y\<in>A. f Y \<in> Y}. \<Sqinter>x\<in>x. g x)"
1028    proof -
1029      fix x
1030      define F where "F = (\<lambda> (y::'b set) . if x y \<in> y then x y else (SOME x . x \<in>y))"
1031      have B: "(\<forall>Y\<in>A. F Y \<in> Y)"
1032        using False some_in_eq F_def by auto
1033      have A: "F ` A \<in> {f ` A |f. \<forall>Y\<in>A. f Y \<in> Y}"
1034        using B by blast
1035      show "(\<Sqinter>xa. if xa \<in> A then if x xa \<in> xa then g (x xa) else \<bottom> else \<top>) \<le> (\<Squnion>x\<in>{f ` A |f. \<forall>Y\<in>A. f Y \<in> Y}. \<Sqinter>x\<in>x. g x)"
1036        using A apply (rule SUP_upper2)
1037        by (simp add: F_def, rule INF_greatest, auto)
1038    qed
1039
1040    {fix x
1041      have "(\<Sqinter>x\<in>A. \<Squnion>x\<in>x. g x) \<le> (\<Squnion>xa. if x \<in> A then if xa \<in> x then g xa else \<bottom> else \<top>)"
1042      proof (cases "x \<in> A")
1043        case True
1044        then show ?thesis
1045          apply (rule INF_lower2, simp_all)
1046          by (rule SUP_least, rule SUP_upper2, auto)
1047      next
1048        case False
1049        then show ?thesis by simp
1050      qed
1051    }
1052    from this have "(\<Sqinter>x\<in>A. \<Squnion>a\<in>x. g a) \<le> (\<Sqinter>x. \<Squnion>xa. if x \<in> A then if xa \<in> x then g xa else \<bottom> else \<top>)"
1053      by (rule INF_greatest)
1054    also have "... = (\<Squnion>x. \<Sqinter>xa. if xa \<in> A then if x xa \<in> xa then g (x xa) else \<bottom> else \<top>)"
1055      by (simp add: INF_SUP)
1056    also have "... \<le> (\<Squnion>x\<in>{f ` A |f. \<forall>Y\<in>A. f Y \<in> Y}. \<Sqinter>a\<in>x. g a)"
1057      by (rule SUP_least, simp)
1058    finally show ?thesis by simp
1059  qed
1060qed
1061
1062lemma SUP_INF: "(SUP y. INF x. ((P x y)::'a)) = (INF x. SUP y. P (x y) y)"
1063  using dual_complete_distrib_lattice
1064  by (rule complete_distrib_lattice.INF_SUP)
1065
1066lemma SUP_INF_set: "(SUP x:A. INF a:x. (g a)) = (INF x:{f ` A |f. \<forall>Y\<in>A. f Y \<in> Y}. SUP a:x. g a)"
1067  using dual_complete_distrib_lattice
1068  by (rule complete_distrib_lattice.INF_SUP_set)
1069
1070end
1071
1072(*properties of the former complete_distrib_lattice*)
1073context complete_distrib_lattice
1074begin
1075
1076lemma sup_INF: "a \<squnion> (\<Sqinter>b\<in>B. f b) = (\<Sqinter>b\<in>B. a \<squnion> f b)"
1077  by (simp add: sup_Inf)
1078
1079lemma inf_SUP: "a \<sqinter> (\<Squnion>b\<in>B. f b) = (\<Squnion>b\<in>B. a \<sqinter> f b)"
1080  by (simp add: inf_Sup)
1081
1082
1083lemma Inf_sup: "\<Sqinter>B \<squnion> a = (\<Sqinter>b\<in>B. b \<squnion> a)"
1084  by (simp add: sup_Inf sup_commute)
1085
1086lemma Sup_inf: "\<Squnion>B \<sqinter> a = (\<Squnion>b\<in>B. b \<sqinter> a)"
1087  by (simp add: inf_Sup inf_commute)
1088
1089lemma INF_sup: "(\<Sqinter>b\<in>B. f b) \<squnion> a = (\<Sqinter>b\<in>B. f b \<squnion> a)"
1090  by (simp add: sup_INF sup_commute)
1091
1092lemma SUP_inf: "(\<Squnion>b\<in>B. f b) \<sqinter> a = (\<Squnion>b\<in>B. f b \<sqinter> a)"
1093  by (simp add: inf_SUP inf_commute)
1094
1095lemma Inf_sup_eq_top_iff: "(\<Sqinter>B \<squnion> a = \<top>) \<longleftrightarrow> (\<forall>b\<in>B. b \<squnion> a = \<top>)"
1096  by (simp only: Inf_sup INF_top_conv)
1097
1098lemma Sup_inf_eq_bot_iff: "(\<Squnion>B \<sqinter> a = \<bottom>) \<longleftrightarrow> (\<forall>b\<in>B. b \<sqinter> a = \<bottom>)"
1099  by (simp only: Sup_inf SUP_bot_conv)
1100
1101lemma INF_sup_distrib2: "(\<Sqinter>a\<in>A. f a) \<squnion> (\<Sqinter>b\<in>B. g b) = (\<Sqinter>a\<in>A. \<Sqinter>b\<in>B. f a \<squnion> g b)"
1102  by (subst INF_commute) (simp add: sup_INF INF_sup)
1103
1104lemma SUP_inf_distrib2: "(\<Squnion>a\<in>A. f a) \<sqinter> (\<Squnion>b\<in>B. g b) = (\<Squnion>a\<in>A. \<Squnion>b\<in>B. f a \<sqinter> g b)"
1105  by (subst SUP_commute) (simp add: inf_SUP SUP_inf)
1106
1107end
1108
1109context complete_boolean_algebra
1110begin
1111
1112lemma dual_complete_boolean_algebra:
1113  "class.complete_boolean_algebra Sup Inf sup (\<ge>) (>) inf \<top> \<bottom> (\<lambda>x y. x \<squnion> - y) uminus"
1114  by (rule class.complete_boolean_algebra.intro,
1115      rule dual_complete_distrib_lattice,
1116      rule dual_boolean_algebra)
1117end
1118
1119
1120
1121instantiation "set" :: (type) complete_distrib_lattice
1122begin
1123instance proof (standard, clarsimp)
1124  fix A :: "(('a set) set) set"
1125  fix x::'a
1126  define F where "F = (\<lambda> Y . (SOME X . (Y \<in> A \<and> X \<in> Y \<and> x \<in> X)))"
1127  assume A: "\<forall>xa\<in>A. \<exists>X\<in>xa. x \<in> X"
1128    
1129  from this have B: " (\<forall>xa \<in> F ` A. x \<in> xa)"
1130    apply (safe, simp add: F_def)
1131    by (rule someI2_ex, auto)
1132
1133  have C: "(\<forall>Y\<in>A. F Y \<in> Y)"
1134    apply (simp  add: F_def, safe)
1135    apply (rule someI2_ex)
1136    using A by auto
1137
1138  have "(\<exists>f. F ` A  = f ` A \<and> (\<forall>Y\<in>A. f Y \<in> Y))"
1139    using C by blast
1140    
1141  from B and this show "\<exists>X. (\<exists>f. X = f ` A \<and> (\<forall>Y\<in>A. f Y \<in> Y)) \<and> (\<forall>xa\<in>X. x \<in> xa)"
1142    by auto
1143qed
1144end
1145
1146instance "set" :: (type) complete_boolean_algebra ..
1147
1148instantiation "fun" :: (type, complete_distrib_lattice) complete_distrib_lattice
1149begin
1150instance by standard (simp add: le_fun_def INF_SUP_set)
1151end
1152
1153instance "fun" :: (type, complete_boolean_algebra) complete_boolean_algebra ..
1154
1155context complete_linorder
1156begin
1157  
1158subclass complete_distrib_lattice
1159proof (standard, rule ccontr)
1160  fix A
1161  assume "\<not> INFIMUM A Sup \<le> SUPREMUM {f ` A |f. \<forall>Y\<in>A. f Y \<in> Y} Inf"
1162  from this have C: "INFIMUM A Sup > SUPREMUM {f ` A |f. \<forall>Y\<in>A. f Y \<in> Y} Inf"
1163    using local.not_le by blast
1164  show "False"
1165    proof (cases "\<exists> z . INFIMUM A Sup > z \<and> z > SUPREMUM {f ` A |f. \<forall>Y\<in>A. f Y \<in> Y} Inf")
1166      case True
1167      from this obtain z where A: "z < INFIMUM A Sup" and X: "SUPREMUM {f ` A |f. \<forall>Y\<in>A. f Y \<in> Y} Inf < z"
1168        by blast
1169          
1170      from A have "\<And> Y . Y \<in> A \<Longrightarrow> z < Sup Y"
1171        by (simp add: less_INF_D)
1172    
1173      from this have B: "\<And> Y . Y \<in> A \<Longrightarrow> \<exists> k \<in>Y . z < k"
1174        using local.less_Sup_iff by blast
1175          
1176      define F where "F = (\<lambda> Y . SOME k . k \<in> Y \<and> z < k)"
1177        
1178      have D: "\<And> Y . Y \<in> A \<Longrightarrow> z < F Y"
1179        using B apply (simp add: F_def)
1180        by (rule someI2_ex, auto)
1181
1182    
1183      have E: "\<And> Y . Y \<in> A \<Longrightarrow> F Y \<in> Y"
1184        using B apply (simp add: F_def)
1185        by (rule someI2_ex, auto)
1186    
1187      have "z \<le> Inf (F ` A)"
1188        by (simp add: D local.INF_greatest local.order.strict_implies_order)
1189    
1190      also have "... \<le> SUPREMUM {f ` A |f. \<forall>Y\<in>A. f Y \<in> Y} Inf"
1191        apply (rule SUP_upper, safe)
1192        using E by blast
1193      finally have "z \<le> SUPREMUM {f ` A |f. \<forall>Y\<in>A. f Y \<in> Y} Inf"
1194        by simp
1195          
1196      from X and this show ?thesis
1197        using local.not_less by blast
1198    next
1199      case False
1200      from this have A: "\<And> z . INFIMUM A Sup \<le> z \<or> z \<le> SUPREMUM {f ` A |f. \<forall>Y\<in>A. f Y \<in> Y} Inf"
1201        using local.le_less_linear by blast
1202          
1203      from C have "\<And> Y . Y \<in> A \<Longrightarrow> SUPREMUM {f ` A |f. \<forall>Y\<in>A. f Y \<in> Y} Inf < Sup Y"
1204        by (simp add: less_INF_D)
1205    
1206      from this have B: "\<And> Y . Y \<in> A \<Longrightarrow> \<exists> k \<in>Y . SUPREMUM {f ` A |f. \<forall>Y\<in>A. f Y \<in> Y} Inf < k"
1207        using local.less_Sup_iff by blast
1208          
1209      define F where "F = (\<lambda> Y . SOME k . k \<in> Y \<and> SUPREMUM {f ` A |f. \<forall>Y\<in>A. f Y \<in> Y} Inf < k)"
1210        
1211      have D: "\<And> Y . Y \<in> A \<Longrightarrow> SUPREMUM {f ` A |f. \<forall>Y\<in>A. f Y \<in> Y} Inf < F Y"
1212        using B apply (simp add: F_def)
1213        by (rule someI2_ex, auto)
1214    
1215      have E: "\<And> Y . Y \<in> A \<Longrightarrow> F Y \<in> Y"
1216        using B apply (simp add: F_def)
1217        by (rule someI2_ex, auto)
1218          
1219      have "\<And> Y . Y \<in> A \<Longrightarrow> INFIMUM A Sup \<le> F Y"
1220        using D False local.leI by blast
1221         
1222      from this have "INFIMUM A Sup \<le> Inf (F ` A)"
1223        by (simp add: local.INF_greatest)
1224          
1225      also have "Inf (F ` A) \<le> SUPREMUM {f ` A |f. \<forall>Y\<in>A. f Y \<in> Y} Inf"
1226        apply (rule SUP_upper, safe)
1227        using E by blast
1228          
1229      finally have "INFIMUM A Sup \<le> SUPREMUM {f ` A |f. \<forall>Y\<in>A. f Y \<in> Y} Inf"
1230        by simp
1231        
1232      from C and this show ?thesis
1233        using not_less by blast
1234    qed
1235  qed
1236end
1237
1238
1239
1240end
1241