1(* Author: Tobias Nipkow, TU Muenchen *)
2
3section \<open>Sum and product over lists\<close>
4
5theory Groups_List
6imports List
7begin
8
9locale monoid_list = monoid
10begin
11
12definition F :: "'a list \<Rightarrow> 'a"
13where
14  eq_foldr [code]: "F xs = foldr f xs \<^bold>1"
15
16lemma Nil [simp]:
17  "F [] = \<^bold>1"
18  by (simp add: eq_foldr)
19
20lemma Cons [simp]:
21  "F (x # xs) = x \<^bold>* F xs"
22  by (simp add: eq_foldr)
23
24lemma append [simp]:
25  "F (xs @ ys) = F xs \<^bold>* F ys"
26  by (induct xs) (simp_all add: assoc)
27
28end
29
30locale comm_monoid_list = comm_monoid + monoid_list
31begin
32
33lemma rev [simp]:
34  "F (rev xs) = F xs"
35  by (simp add: eq_foldr foldr_fold  fold_rev fun_eq_iff assoc left_commute)
36
37end
38
39locale comm_monoid_list_set = list: comm_monoid_list + set: comm_monoid_set
40begin
41
42lemma distinct_set_conv_list:
43  "distinct xs \<Longrightarrow> set.F g (set xs) = list.F (map g xs)"
44  by (induct xs) simp_all
45
46lemma set_conv_list [code]:
47  "set.F g (set xs) = list.F (map g (remdups xs))"
48  by (simp add: distinct_set_conv_list [symmetric])
49
50end
51
52
53subsection \<open>List summation\<close>
54
55context monoid_add
56begin
57
58sublocale sum_list: monoid_list plus 0
59defines
60  sum_list = sum_list.F ..
61
62end
63
64context comm_monoid_add
65begin
66
67sublocale sum_list: comm_monoid_list plus 0
68rewrites
69  "monoid_list.F plus 0 = sum_list"
70proof -
71  show "comm_monoid_list plus 0" ..
72  then interpret sum_list: comm_monoid_list plus 0 .
73  from sum_list_def show "monoid_list.F plus 0 = sum_list" by simp
74qed
75
76sublocale sum: comm_monoid_list_set plus 0
77rewrites
78  "monoid_list.F plus 0 = sum_list"
79  and "comm_monoid_set.F plus 0 = sum"
80proof -
81  show "comm_monoid_list_set plus 0" ..
82  then interpret sum: comm_monoid_list_set plus 0 .
83  from sum_list_def show "monoid_list.F plus 0 = sum_list" by simp
84  from sum_def show "comm_monoid_set.F plus 0 = sum" by (auto intro: sym)
85qed
86
87end
88
89text \<open>Some syntactic sugar for summing a function over a list:\<close>
90syntax (ASCII)
91  "_sum_list" :: "pttrn => 'a list => 'b => 'b"    ("(3SUM _<-_. _)" [0, 51, 10] 10)
92syntax
93  "_sum_list" :: "pttrn => 'a list => 'b => 'b"    ("(3\<Sum>_\<leftarrow>_. _)" [0, 51, 10] 10)
94translations \<comment> \<open>Beware of argument permutation!\<close>
95  "\<Sum>x\<leftarrow>xs. b" == "CONST sum_list (CONST map (\<lambda>x. b) xs)"
96
97text \<open>TODO duplicates\<close>
98lemmas sum_list_simps = sum_list.Nil sum_list.Cons
99lemmas sum_list_append = sum_list.append
100lemmas sum_list_rev = sum_list.rev
101
102lemma (in monoid_add) fold_plus_sum_list_rev:
103  "fold plus xs = plus (sum_list (rev xs))"
104proof
105  fix x
106  have "fold plus xs x = sum_list (rev xs @ [x])"
107    by (simp add: foldr_conv_fold sum_list.eq_foldr)
108  also have "\<dots> = sum_list (rev xs) + x"
109    by simp
110  finally show "fold plus xs x = sum_list (rev xs) + x"
111    .
112qed
113
114lemma (in comm_monoid_add) sum_list_map_remove1:
115  "x \<in> set xs \<Longrightarrow> sum_list (map f xs) = f x + sum_list (map f (remove1 x xs))"
116  by (induct xs) (auto simp add: ac_simps)
117
118lemma (in monoid_add) size_list_conv_sum_list:
119  "size_list f xs = sum_list (map f xs) + size xs"
120  by (induct xs) auto
121
122lemma (in monoid_add) length_concat:
123  "length (concat xss) = sum_list (map length xss)"
124  by (induct xss) simp_all
125
126lemma (in monoid_add) length_product_lists:
127  "length (product_lists xss) = foldr ( * ) (map length xss) 1"
128proof (induct xss)
129  case (Cons xs xss) then show ?case by (induct xs) (auto simp: length_concat o_def)
130qed simp
131
132lemma (in monoid_add) sum_list_map_filter:
133  assumes "\<And>x. x \<in> set xs \<Longrightarrow> \<not> P x \<Longrightarrow> f x = 0"
134  shows "sum_list (map f (filter P xs)) = sum_list (map f xs)"
135  using assms by (induct xs) auto
136
137lemma (in comm_monoid_add) distinct_sum_list_conv_Sum:
138  "distinct xs \<Longrightarrow> sum_list xs = Sum (set xs)"
139  by (induct xs) simp_all
140
141lemma sum_list_upt[simp]:
142  "m \<le> n \<Longrightarrow> sum_list [m..<n] = \<Sum> {m..<n}"
143by(simp add: distinct_sum_list_conv_Sum)
144
145context ordered_comm_monoid_add
146begin
147
148lemma sum_list_nonneg: "(\<And>x. x \<in> set xs \<Longrightarrow> 0 \<le> x) \<Longrightarrow> 0 \<le> sum_list xs"
149by (induction xs) auto
150
151lemma sum_list_nonpos: "(\<And>x. x \<in> set xs \<Longrightarrow> x \<le> 0) \<Longrightarrow> sum_list xs \<le> 0"
152by (induction xs) (auto simp: add_nonpos_nonpos)
153
154lemma sum_list_nonneg_eq_0_iff:
155  "(\<And>x. x \<in> set xs \<Longrightarrow> 0 \<le> x) \<Longrightarrow> sum_list xs = 0 \<longleftrightarrow> (\<forall>x\<in> set xs. x = 0)"
156by (induction xs) (simp_all add: add_nonneg_eq_0_iff sum_list_nonneg)
157
158end
159
160context canonically_ordered_monoid_add
161begin
162
163lemma sum_list_eq_0_iff [simp]:
164  "sum_list ns = 0 \<longleftrightarrow> (\<forall>n \<in> set ns. n = 0)"
165by (simp add: sum_list_nonneg_eq_0_iff)
166
167lemma member_le_sum_list:
168  "x \<in> set xs \<Longrightarrow> x \<le> sum_list xs"
169by (induction xs) (auto simp: add_increasing add_increasing2)
170
171lemma elem_le_sum_list:
172  "k < size ns \<Longrightarrow> ns ! k \<le> sum_list (ns)"
173by (rule member_le_sum_list) simp
174
175end
176
177lemma (in ordered_cancel_comm_monoid_diff) sum_list_update:
178  "k < size xs \<Longrightarrow> sum_list (xs[k := x]) = sum_list xs + x - xs ! k"
179apply(induction xs arbitrary:k)
180 apply (auto simp: add_ac split: nat.split)
181apply(drule elem_le_sum_list)
182by (simp add: local.add_diff_assoc local.add_increasing)
183
184lemma (in monoid_add) sum_list_triv:
185  "(\<Sum>x\<leftarrow>xs. r) = of_nat (length xs) * r"
186  by (induct xs) (simp_all add: distrib_right)
187
188lemma (in monoid_add) sum_list_0 [simp]:
189  "(\<Sum>x\<leftarrow>xs. 0) = 0"
190  by (induct xs) (simp_all add: distrib_right)
191
192text\<open>For non-Abelian groups \<open>xs\<close> needs to be reversed on one side:\<close>
193lemma (in ab_group_add) uminus_sum_list_map:
194  "- sum_list (map f xs) = sum_list (map (uminus \<circ> f) xs)"
195  by (induct xs) simp_all
196
197lemma (in comm_monoid_add) sum_list_addf:
198  "(\<Sum>x\<leftarrow>xs. f x + g x) = sum_list (map f xs) + sum_list (map g xs)"
199  by (induct xs) (simp_all add: algebra_simps)
200
201lemma (in ab_group_add) sum_list_subtractf:
202  "(\<Sum>x\<leftarrow>xs. f x - g x) = sum_list (map f xs) - sum_list (map g xs)"
203  by (induct xs) (simp_all add: algebra_simps)
204
205lemma (in semiring_0) sum_list_const_mult:
206  "(\<Sum>x\<leftarrow>xs. c * f x) = c * (\<Sum>x\<leftarrow>xs. f x)"
207  by (induct xs) (simp_all add: algebra_simps)
208
209lemma (in semiring_0) sum_list_mult_const:
210  "(\<Sum>x\<leftarrow>xs. f x * c) = (\<Sum>x\<leftarrow>xs. f x) * c"
211  by (induct xs) (simp_all add: algebra_simps)
212
213lemma (in ordered_ab_group_add_abs) sum_list_abs:
214  "\<bar>sum_list xs\<bar> \<le> sum_list (map abs xs)"
215  by (induct xs) (simp_all add: order_trans [OF abs_triangle_ineq])
216
217lemma sum_list_mono:
218  fixes f g :: "'a \<Rightarrow> 'b::{monoid_add, ordered_ab_semigroup_add}"
219  shows "(\<And>x. x \<in> set xs \<Longrightarrow> f x \<le> g x) \<Longrightarrow> (\<Sum>x\<leftarrow>xs. f x) \<le> (\<Sum>x\<leftarrow>xs. g x)"
220  by (induct xs) (simp, simp add: add_mono)
221
222lemma (in monoid_add) sum_list_distinct_conv_sum_set:
223  "distinct xs \<Longrightarrow> sum_list (map f xs) = sum f (set xs)"
224  by (induct xs) simp_all
225
226lemma (in monoid_add) interv_sum_list_conv_sum_set_nat:
227  "sum_list (map f [m..<n]) = sum f (set [m..<n])"
228  by (simp add: sum_list_distinct_conv_sum_set)
229
230lemma (in monoid_add) interv_sum_list_conv_sum_set_int:
231  "sum_list (map f [k..l]) = sum f (set [k..l])"
232  by (simp add: sum_list_distinct_conv_sum_set)
233
234text \<open>General equivalence between @{const sum_list} and @{const sum}\<close>
235lemma (in monoid_add) sum_list_sum_nth:
236  "sum_list xs = (\<Sum> i = 0 ..< length xs. xs ! i)"
237  using interv_sum_list_conv_sum_set_nat [of "(!) xs" 0 "length xs"] by (simp add: map_nth)
238
239lemma sum_list_map_eq_sum_count:
240  "sum_list (map f xs) = sum (\<lambda>x. count_list xs x * f x) (set xs)"
241proof(induction xs)
242  case (Cons x xs)
243  show ?case (is "?l = ?r")
244  proof cases
245    assume "x \<in> set xs"
246    have "?l = f x + (\<Sum>x\<in>set xs. count_list xs x * f x)" by (simp add: Cons.IH)
247    also have "set xs = insert x (set xs - {x})" using \<open>x \<in> set xs\<close>by blast
248    also have "f x + (\<Sum>x\<in>insert x (set xs - {x}). count_list xs x * f x) = ?r"
249      by (simp add: sum.insert_remove eq_commute)
250    finally show ?thesis .
251  next
252    assume "x \<notin> set xs"
253    hence "\<And>xa. xa \<in> set xs \<Longrightarrow> x \<noteq> xa" by blast
254    thus ?thesis by (simp add: Cons.IH \<open>x \<notin> set xs\<close>)
255  qed
256qed simp
257
258lemma sum_list_map_eq_sum_count2:
259assumes "set xs \<subseteq> X" "finite X"
260shows "sum_list (map f xs) = sum (\<lambda>x. count_list xs x * f x) X"
261proof-
262  let ?F = "\<lambda>x. count_list xs x * f x"
263  have "sum ?F X = sum ?F (set xs \<union> (X - set xs))"
264    using Un_absorb1[OF assms(1)] by(simp)
265  also have "\<dots> = sum ?F (set xs)"
266    using assms(2)
267    by(simp add: sum.union_disjoint[OF _ _ Diff_disjoint] del: Un_Diff_cancel)
268  finally show ?thesis by(simp add:sum_list_map_eq_sum_count)
269qed
270
271lemma sum_list_nonneg:
272    "(\<And>x. x \<in> set xs \<Longrightarrow> (x :: 'a :: ordered_comm_monoid_add) \<ge> 0) \<Longrightarrow> sum_list xs \<ge> 0"
273  by (induction xs) simp_all
274
275lemma (in monoid_add) sum_list_map_filter':
276  "sum_list (map f (filter P xs)) = sum_list (map (\<lambda>x. if P x then f x else 0) xs)"
277  by (induction xs) simp_all
278
279text \<open>Summation of a strictly ascending sequence with length \<open>n\<close>
280  can be upper-bounded by summation over \<open>{0..<n}\<close>.\<close>
281
282lemma sorted_wrt_less_sum_mono_lowerbound:
283  fixes f :: "nat \<Rightarrow> ('b::ordered_comm_monoid_add)"
284  assumes mono: "\<And>x y. x\<le>y \<Longrightarrow> f x \<le> f y"
285  shows "sorted_wrt (<) ns \<Longrightarrow>
286    (\<Sum>i\<in>{0..<length ns}. f i) \<le> (\<Sum>i\<leftarrow>ns. f i)"
287proof (induction ns rule: rev_induct)
288  case Nil
289  then show ?case by simp
290next
291  case (snoc n ns)
292  have "sum f {0..<length (ns @ [n])}
293      = sum f {0..<length ns} + f (length ns)"
294    by simp
295  also have "sum f {0..<length ns} \<le> sum_list (map f ns)"
296    using snoc by (auto simp: sorted_wrt_append)
297  also have "length ns \<le> n"
298    using sorted_wrt_less_idx[OF snoc.prems(1), of "length ns"] by auto
299  finally have "sum f {0..<length (ns @ [n])} \<le> sum_list (map f ns) + f n"
300    using mono add_mono by blast
301  thus ?case by simp
302qed
303
304
305subsection \<open>Further facts about @{const List.n_lists}\<close>
306
307lemma length_n_lists: "length (List.n_lists n xs) = length xs ^ n"
308  by (induct n) (auto simp add: comp_def length_concat sum_list_triv)
309
310lemma distinct_n_lists:
311  assumes "distinct xs"
312  shows "distinct (List.n_lists n xs)"
313proof (rule card_distinct)
314  from assms have card_length: "card (set xs) = length xs" by (rule distinct_card)
315  have "card (set (List.n_lists n xs)) = card (set xs) ^ n"
316  proof (induct n)
317    case 0 then show ?case by simp
318  next
319    case (Suc n)
320    moreover have "card (\<Union>ys\<in>set (List.n_lists n xs). (\<lambda>y. y # ys) ` set xs)
321      = (\<Sum>ys\<in>set (List.n_lists n xs). card ((\<lambda>y. y # ys) ` set xs))"
322      by (rule card_UN_disjoint) auto
323    moreover have "\<And>ys. card ((\<lambda>y. y # ys) ` set xs) = card (set xs)"
324      by (rule card_image) (simp add: inj_on_def)
325    ultimately show ?case by auto
326  qed
327  also have "\<dots> = length xs ^ n" by (simp add: card_length)
328  finally show "card (set (List.n_lists n xs)) = length (List.n_lists n xs)"
329    by (simp add: length_n_lists)
330qed
331
332
333subsection \<open>Tools setup\<close>
334
335lemmas sum_code = sum.set_conv_list
336
337lemma sum_set_upto_conv_sum_list_int [code_unfold]:
338  "sum f (set [i..j::int]) = sum_list (map f [i..j])"
339  by (simp add: interv_sum_list_conv_sum_set_int)
340
341lemma sum_set_upt_conv_sum_list_nat [code_unfold]:
342  "sum f (set [m..<n]) = sum_list (map f [m..<n])"
343  by (simp add: interv_sum_list_conv_sum_set_nat)
344
345lemma sum_list_transfer[transfer_rule]:
346  includes lifting_syntax
347  assumes [transfer_rule]: "A 0 0"
348  assumes [transfer_rule]: "(A ===> A ===> A) (+) (+)"
349  shows "(list_all2 A ===> A) sum_list sum_list"
350  unfolding sum_list.eq_foldr [abs_def]
351  by transfer_prover
352
353
354subsection \<open>List product\<close>
355
356context monoid_mult
357begin
358
359sublocale prod_list: monoid_list times 1
360defines
361  prod_list = prod_list.F ..
362
363end
364
365context comm_monoid_mult
366begin
367
368sublocale prod_list: comm_monoid_list times 1
369rewrites
370  "monoid_list.F times 1 = prod_list"
371proof -
372  show "comm_monoid_list times 1" ..
373  then interpret prod_list: comm_monoid_list times 1 .
374  from prod_list_def show "monoid_list.F times 1 = prod_list" by simp
375qed
376
377sublocale prod: comm_monoid_list_set times 1
378rewrites
379  "monoid_list.F times 1 = prod_list"
380  and "comm_monoid_set.F times 1 = prod"
381proof -
382  show "comm_monoid_list_set times 1" ..
383  then interpret prod: comm_monoid_list_set times 1 .
384  from prod_list_def show "monoid_list.F times 1 = prod_list" by simp
385  from prod_def show "comm_monoid_set.F times 1 = prod" by (auto intro: sym)
386qed
387
388end
389
390lemma prod_list_zero_iff:
391  "prod_list xs = 0 \<longleftrightarrow> (0 :: 'a :: {semiring_no_zero_divisors, semiring_1}) \<in> set xs"
392  by (induction xs) simp_all
393
394text \<open>Some syntactic sugar:\<close>
395
396syntax (ASCII)
397  "_prod_list" :: "pttrn => 'a list => 'b => 'b"    ("(3PROD _<-_. _)" [0, 51, 10] 10)
398syntax
399  "_prod_list" :: "pttrn => 'a list => 'b => 'b"    ("(3\<Prod>_\<leftarrow>_. _)" [0, 51, 10] 10)
400translations \<comment> \<open>Beware of argument permutation!\<close>
401  "\<Prod>x\<leftarrow>xs. b" \<rightleftharpoons> "CONST prod_list (CONST map (\<lambda>x. b) xs)"
402
403end
404