1(*  Title:      HOL/Fun.thy
2    Author:     Tobias Nipkow, Cambridge University Computer Laboratory
3    Author:     Andrei Popescu, TU Muenchen
4    Copyright   1994, 2012
5*)
6
7section \<open>Notions about functions\<close>
8
9theory Fun
10  imports Set
11  keywords "functor" :: thy_goal
12begin
13
14lemma apply_inverse: "f x = u \<Longrightarrow> (\<And>x. P x \<Longrightarrow> g (f x) = x) \<Longrightarrow> P x \<Longrightarrow> x = g u"
15  by auto
16
17text \<open>Uniqueness, so NOT the axiom of choice.\<close>
18lemma uniq_choice: "\<forall>x. \<exists>!y. Q x y \<Longrightarrow> \<exists>f. \<forall>x. Q x (f x)"
19  by (force intro: theI')
20
21lemma b_uniq_choice: "\<forall>x\<in>S. \<exists>!y. Q x y \<Longrightarrow> \<exists>f. \<forall>x\<in>S. Q x (f x)"
22  by (force intro: theI')
23
24
25subsection \<open>The Identity Function \<open>id\<close>\<close>
26
27definition id :: "'a \<Rightarrow> 'a"
28  where "id = (\<lambda>x. x)"
29
30lemma id_apply [simp]: "id x = x"
31  by (simp add: id_def)
32
33lemma image_id [simp]: "image id = id"
34  by (simp add: id_def fun_eq_iff)
35
36lemma vimage_id [simp]: "vimage id = id"
37  by (simp add: id_def fun_eq_iff)
38
39lemma eq_id_iff: "(\<forall>x. f x = x) \<longleftrightarrow> f = id"
40  by auto
41
42code_printing
43  constant id \<rightharpoonup> (Haskell) "id"
44
45
46subsection \<open>The Composition Operator \<open>f \<circ> g\<close>\<close>
47
48definition comp :: "('b \<Rightarrow> 'c) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'c"  (infixl "\<circ>" 55)
49  where "f \<circ> g = (\<lambda>x. f (g x))"
50
51notation (ASCII)
52  comp  (infixl "o" 55)
53
54lemma comp_apply [simp]: "(f \<circ> g) x = f (g x)"
55  by (simp add: comp_def)
56
57lemma comp_assoc: "(f \<circ> g) \<circ> h = f \<circ> (g \<circ> h)"
58  by (simp add: fun_eq_iff)
59
60lemma id_comp [simp]: "id \<circ> g = g"
61  by (simp add: fun_eq_iff)
62
63lemma comp_id [simp]: "f \<circ> id = f"
64  by (simp add: fun_eq_iff)
65
66lemma comp_eq_dest: "a \<circ> b = c \<circ> d \<Longrightarrow> a (b v) = c (d v)"
67  by (simp add: fun_eq_iff)
68
69lemma comp_eq_elim: "a \<circ> b = c \<circ> d \<Longrightarrow> ((\<And>v. a (b v) = c (d v)) \<Longrightarrow> R) \<Longrightarrow> R"
70  by (simp add: fun_eq_iff)
71
72lemma comp_eq_dest_lhs: "a \<circ> b = c \<Longrightarrow> a (b v) = c v"
73  by clarsimp
74
75lemma comp_eq_id_dest: "a \<circ> b = id \<circ> c \<Longrightarrow> a (b v) = c v"
76  by clarsimp
77
78lemma image_comp: "f ` (g ` r) = (f \<circ> g) ` r"
79  by auto
80
81lemma vimage_comp: "f -` (g -` x) = (g \<circ> f) -` x"
82  by auto
83
84lemma image_eq_imp_comp: "f ` A = g ` B \<Longrightarrow> (h \<circ> f) ` A = (h \<circ> g) ` B"
85  by (auto simp: comp_def elim!: equalityE)
86
87lemma image_bind: "f ` (Set.bind A g) = Set.bind A ((`) f \<circ> g)"
88  by (auto simp add: Set.bind_def)
89
90lemma bind_image: "Set.bind (f ` A) g = Set.bind A (g \<circ> f)"
91  by (auto simp add: Set.bind_def)
92
93lemma (in group_add) minus_comp_minus [simp]: "uminus \<circ> uminus = id"
94  by (simp add: fun_eq_iff)
95
96lemma (in boolean_algebra) minus_comp_minus [simp]: "uminus \<circ> uminus = id"
97  by (simp add: fun_eq_iff)
98
99code_printing
100  constant comp \<rightharpoonup> (SML) infixl 5 "o" and (Haskell) infixr 9 "."
101
102
103subsection \<open>The Forward Composition Operator \<open>fcomp\<close>\<close>
104
105definition fcomp :: "('a \<Rightarrow> 'b) \<Rightarrow> ('b \<Rightarrow> 'c) \<Rightarrow> 'a \<Rightarrow> 'c"  (infixl "\<circ>>" 60)
106  where "f \<circ>> g = (\<lambda>x. g (f x))"
107
108lemma fcomp_apply [simp]:  "(f \<circ>> g) x = g (f x)"
109  by (simp add: fcomp_def)
110
111lemma fcomp_assoc: "(f \<circ>> g) \<circ>> h = f \<circ>> (g \<circ>> h)"
112  by (simp add: fcomp_def)
113
114lemma id_fcomp [simp]: "id \<circ>> g = g"
115  by (simp add: fcomp_def)
116
117lemma fcomp_id [simp]: "f \<circ>> id = f"
118  by (simp add: fcomp_def)
119
120lemma fcomp_comp: "fcomp f g = comp g f"
121  by (simp add: ext)
122
123code_printing
124  constant fcomp \<rightharpoonup> (Eval) infixl 1 "#>"
125
126no_notation fcomp (infixl "\<circ>>" 60)
127
128
129subsection \<open>Mapping functions\<close>
130
131definition map_fun :: "('c \<Rightarrow> 'a) \<Rightarrow> ('b \<Rightarrow> 'd) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'c \<Rightarrow> 'd"
132  where "map_fun f g h = g \<circ> h \<circ> f"
133
134lemma map_fun_apply [simp]: "map_fun f g h x = g (h (f x))"
135  by (simp add: map_fun_def)
136
137
138subsection \<open>Injectivity and Bijectivity\<close>
139
140definition inj_on :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> bool"  \<comment> \<open>injective\<close>
141  where "inj_on f A \<longleftrightarrow> (\<forall>x\<in>A. \<forall>y\<in>A. f x = f y \<longrightarrow> x = y)"
142
143definition bij_betw :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'b set \<Rightarrow> bool"  \<comment> \<open>bijective\<close>
144  where "bij_betw f A B \<longleftrightarrow> inj_on f A \<and> f ` A = B"
145
146text \<open>
147  A common special case: functions injective, surjective or bijective over
148  the entire domain type.
149\<close>
150
151abbreviation inj :: "('a \<Rightarrow> 'b) \<Rightarrow> bool"
152  where "inj f \<equiv> inj_on f UNIV"
153
154abbreviation surj :: "('a \<Rightarrow> 'b) \<Rightarrow> bool"
155  where "surj f \<equiv> range f = UNIV"
156
157translations \<comment> \<open>The negated case:\<close>
158  "\<not> CONST surj f" \<leftharpoondown> "CONST range f \<noteq> CONST UNIV"
159
160abbreviation bij :: "('a \<Rightarrow> 'b) \<Rightarrow> bool"
161  where "bij f \<equiv> bij_betw f UNIV UNIV"
162
163lemma inj_def: "inj f \<longleftrightarrow> (\<forall>x y. f x = f y \<longrightarrow> x = y)"
164  unfolding inj_on_def by blast
165
166lemma injI: "(\<And>x y. f x = f y \<Longrightarrow> x = y) \<Longrightarrow> inj f"
167  unfolding inj_def by blast
168
169theorem range_ex1_eq: "inj f \<Longrightarrow> b \<in> range f \<longleftrightarrow> (\<exists>!x. b = f x)"
170  unfolding inj_def by blast
171
172lemma injD: "inj f \<Longrightarrow> f x = f y \<Longrightarrow> x = y"
173  by (simp add: inj_def)
174
175lemma inj_on_eq_iff: "inj_on f A \<Longrightarrow> x \<in> A \<Longrightarrow> y \<in> A \<Longrightarrow> f x = f y \<longleftrightarrow> x = y"
176  by (auto simp: inj_on_def)
177
178lemma inj_on_cong: "(\<And>a. a \<in> A \<Longrightarrow> f a = g a) \<Longrightarrow> inj_on f A \<longleftrightarrow> inj_on g A"
179  by (auto simp: inj_on_def)
180
181lemma inj_on_strict_subset: "inj_on f B \<Longrightarrow> A \<subset> B \<Longrightarrow> f ` A \<subset> f ` B"
182  unfolding inj_on_def by blast
183
184lemma inj_comp: "inj f \<Longrightarrow> inj g \<Longrightarrow> inj (f \<circ> g)"
185  by (simp add: inj_def)
186
187lemma inj_fun: "inj f \<Longrightarrow> inj (\<lambda>x y. f x)"
188  by (simp add: inj_def fun_eq_iff)
189
190lemma inj_eq: "inj f \<Longrightarrow> f x = f y \<longleftrightarrow> x = y"
191  by (simp add: inj_on_eq_iff)
192
193lemma inj_on_id[simp]: "inj_on id A"
194  by (simp add: inj_on_def)
195
196lemma inj_on_id2[simp]: "inj_on (\<lambda>x. x) A"
197  by (simp add: inj_on_def)
198
199lemma inj_on_Int: "inj_on f A \<or> inj_on f B \<Longrightarrow> inj_on f (A \<inter> B)"
200  unfolding inj_on_def by blast
201
202lemma surj_id: "surj id"
203  by simp
204
205lemma bij_id[simp]: "bij id"
206  by (simp add: bij_betw_def)
207
208lemma bij_uminus: "bij (uminus :: 'a \<Rightarrow> 'a::ab_group_add)"
209  unfolding bij_betw_def inj_on_def
210  by (force intro: minus_minus [symmetric])
211
212lemma inj_onI [intro?]: "(\<And>x y. x \<in> A \<Longrightarrow> y \<in> A \<Longrightarrow> f x = f y \<Longrightarrow> x = y) \<Longrightarrow> inj_on f A"
213  by (simp add: inj_on_def)
214
215lemma inj_on_inverseI: "(\<And>x. x \<in> A \<Longrightarrow> g (f x) = x) \<Longrightarrow> inj_on f A"
216  by (auto dest: arg_cong [of concl: g] simp add: inj_on_def)
217
218lemma inj_onD: "inj_on f A \<Longrightarrow> f x = f y \<Longrightarrow> x \<in> A \<Longrightarrow> y \<in> A \<Longrightarrow> x = y"
219  unfolding inj_on_def by blast
220
221lemma inj_on_subset:
222  assumes "inj_on f A"
223    and "B \<subseteq> A"
224  shows "inj_on f B"
225proof (rule inj_onI)
226  fix a b
227  assume "a \<in> B" and "b \<in> B"
228  with assms have "a \<in> A" and "b \<in> A"
229    by auto
230  moreover assume "f a = f b"
231  ultimately show "a = b"
232    using assms by (auto dest: inj_onD)
233qed
234
235lemma comp_inj_on: "inj_on f A \<Longrightarrow> inj_on g (f ` A) \<Longrightarrow> inj_on (g \<circ> f) A"
236  by (simp add: comp_def inj_on_def)
237
238lemma inj_on_imageI: "inj_on (g \<circ> f) A \<Longrightarrow> inj_on g (f ` A)"
239  by (auto simp add: inj_on_def)
240
241lemma inj_on_image_iff:
242  "\<forall>x\<in>A. \<forall>y\<in>A. g (f x) = g (f y) \<longleftrightarrow> g x = g y \<Longrightarrow> inj_on f A \<Longrightarrow> inj_on g (f ` A) \<longleftrightarrow> inj_on g A"
243  unfolding inj_on_def by blast
244
245lemma inj_on_contraD: "inj_on f A \<Longrightarrow> x \<noteq> y \<Longrightarrow> x \<in> A \<Longrightarrow> y \<in> A \<Longrightarrow> f x \<noteq> f y"
246  unfolding inj_on_def by blast
247
248lemma inj_singleton [simp]: "inj_on (\<lambda>x. {x}) A"
249  by (simp add: inj_on_def)
250
251lemma inj_on_empty[iff]: "inj_on f {}"
252  by (simp add: inj_on_def)
253
254lemma subset_inj_on: "inj_on f B \<Longrightarrow> A \<subseteq> B \<Longrightarrow> inj_on f A"
255  unfolding inj_on_def by blast
256
257lemma inj_on_Un: "inj_on f (A \<union> B) \<longleftrightarrow> inj_on f A \<and> inj_on f B \<and> f ` (A - B) \<inter> f ` (B - A) = {}"
258  unfolding inj_on_def by (blast intro: sym)
259
260lemma inj_on_insert [iff]: "inj_on f (insert a A) \<longleftrightarrow> inj_on f A \<and> f a \<notin> f ` (A - {a})"
261  unfolding inj_on_def by (blast intro: sym)
262
263lemma inj_on_diff: "inj_on f A \<Longrightarrow> inj_on f (A - B)"
264  unfolding inj_on_def by blast
265
266lemma comp_inj_on_iff: "inj_on f A \<Longrightarrow> inj_on f' (f ` A) \<longleftrightarrow> inj_on (f' \<circ> f) A"
267  by (auto simp: comp_inj_on inj_on_def)
268
269lemma inj_on_imageI2: "inj_on (f' \<circ> f) A \<Longrightarrow> inj_on f A"
270  by (auto simp: comp_inj_on inj_on_def)
271
272lemma inj_img_insertE:
273  assumes "inj_on f A"
274  assumes "x \<notin> B"
275    and "insert x B = f ` A"
276  obtains x' A' where "x' \<notin> A'" and "A = insert x' A'" and "x = f x'" and "B = f ` A'"
277proof -
278  from assms have "x \<in> f ` A" by auto
279  then obtain x' where *: "x' \<in> A" "x = f x'" by auto
280  then have A: "A = insert x' (A - {x'})" by auto
281  with assms * have B: "B = f ` (A - {x'})" by (auto dest: inj_on_contraD)
282  have "x' \<notin> A - {x'}" by simp
283  from this A \<open>x = f x'\<close> B show ?thesis ..
284qed
285
286lemma linorder_injI:
287  assumes "\<And>x y::'a::linorder. x < y \<Longrightarrow> f x \<noteq> f y"
288  shows "inj f"
289  \<comment> \<open>Courtesy of Stephan Merz\<close>
290proof (rule inj_onI)
291  show "x = y" if "f x = f y" for x y
292   by (rule linorder_cases) (auto dest: assms simp: that)
293qed
294
295lemma surj_def: "surj f \<longleftrightarrow> (\<forall>y. \<exists>x. y = f x)"
296  by auto
297
298lemma surjI:
299  assumes "\<And>x. g (f x) = x"
300  shows "surj g"
301  using assms [symmetric] by auto
302
303lemma surjD: "surj f \<Longrightarrow> \<exists>x. y = f x"
304  by (simp add: surj_def)
305
306lemma surjE: "surj f \<Longrightarrow> (\<And>x. y = f x \<Longrightarrow> C) \<Longrightarrow> C"
307  by (simp add: surj_def) blast
308
309lemma comp_surj: "surj f \<Longrightarrow> surj g \<Longrightarrow> surj (g \<circ> f)"
310  by (simp add: image_comp [symmetric])
311
312lemma bij_betw_imageI: "inj_on f A \<Longrightarrow> f ` A = B \<Longrightarrow> bij_betw f A B"
313  unfolding bij_betw_def by clarify
314
315lemma bij_betw_imp_surj_on: "bij_betw f A B \<Longrightarrow> f ` A = B"
316  unfolding bij_betw_def by clarify
317
318lemma bij_betw_imp_surj: "bij_betw f A UNIV \<Longrightarrow> surj f"
319  unfolding bij_betw_def by auto
320
321lemma bij_betw_empty1: "bij_betw f {} A \<Longrightarrow> A = {}"
322  unfolding bij_betw_def by blast
323
324lemma bij_betw_empty2: "bij_betw f A {} \<Longrightarrow> A = {}"
325  unfolding bij_betw_def by blast
326
327lemma inj_on_imp_bij_betw: "inj_on f A \<Longrightarrow> bij_betw f A (f ` A)"
328  unfolding bij_betw_def by simp
329
330lemma bij_def: "bij f \<longleftrightarrow> inj f \<and> surj f"
331  by (rule bij_betw_def)
332
333lemma bijI: "inj f \<Longrightarrow> surj f \<Longrightarrow> bij f"
334  by (rule bij_betw_imageI)
335
336lemma bij_is_inj: "bij f \<Longrightarrow> inj f"
337  by (simp add: bij_def)
338
339lemma bij_is_surj: "bij f \<Longrightarrow> surj f"
340  by (simp add: bij_def)
341
342lemma bij_betw_imp_inj_on: "bij_betw f A B \<Longrightarrow> inj_on f A"
343  by (simp add: bij_betw_def)
344
345lemma bij_betw_trans: "bij_betw f A B \<Longrightarrow> bij_betw g B C \<Longrightarrow> bij_betw (g \<circ> f) A C"
346  by (auto simp add:bij_betw_def comp_inj_on)
347
348lemma bij_comp: "bij f \<Longrightarrow> bij g \<Longrightarrow> bij (g \<circ> f)"
349  by (rule bij_betw_trans)
350
351lemma bij_betw_comp_iff: "bij_betw f A A' \<Longrightarrow> bij_betw f' A' A'' \<longleftrightarrow> bij_betw (f' \<circ> f) A A''"
352  by (auto simp add: bij_betw_def inj_on_def)
353
354lemma bij_betw_comp_iff2:
355  assumes bij: "bij_betw f' A' A''"
356    and img: "f ` A \<le> A'"
357  shows "bij_betw f A A' \<longleftrightarrow> bij_betw (f' \<circ> f) A A''"
358  using assms
359proof (auto simp add: bij_betw_comp_iff)
360  assume *: "bij_betw (f' \<circ> f) A A''"
361  then show "bij_betw f A A'"
362    using img
363  proof (auto simp add: bij_betw_def)
364    assume "inj_on (f' \<circ> f) A"
365    then show "inj_on f A"
366      using inj_on_imageI2 by blast
367  next
368    fix a'
369    assume **: "a' \<in> A'"
370    with bij have "f' a' \<in> A''"
371      unfolding bij_betw_def by auto
372    with * obtain a where 1: "a \<in> A \<and> f' (f a) = f' a'"
373      unfolding bij_betw_def by force
374    with img have "f a \<in> A'" by auto
375    with bij ** 1 have "f a = a'"
376      unfolding bij_betw_def inj_on_def by auto
377    with 1 show "a' \<in> f ` A" by auto
378  qed
379qed
380
381lemma bij_betw_inv:
382  assumes "bij_betw f A B"
383  shows "\<exists>g. bij_betw g B A"
384proof -
385  have i: "inj_on f A" and s: "f ` A = B"
386    using assms by (auto simp: bij_betw_def)
387  let ?P = "\<lambda>b a. a \<in> A \<and> f a = b"
388  let ?g = "\<lambda>b. The (?P b)"
389  have g: "?g b = a" if P: "?P b a" for a b
390  proof -
391    from that s have ex1: "\<exists>a. ?P b a" by blast
392    then have uex1: "\<exists>!a. ?P b a" by (blast dest:inj_onD[OF i])
393    then show ?thesis
394      using the1_equality[OF uex1, OF P] P by simp
395  qed
396  have "inj_on ?g B"
397  proof (rule inj_onI)
398    fix x y
399    assume "x \<in> B" "y \<in> B" "?g x = ?g y"
400    from s \<open>x \<in> B\<close> obtain a1 where a1: "?P x a1" by blast
401    from s \<open>y \<in> B\<close> obtain a2 where a2: "?P y a2" by blast
402    from g [OF a1] a1 g [OF a2] a2 \<open>?g x = ?g y\<close> show "x = y" by simp
403  qed
404  moreover have "?g ` B = A"
405  proof (auto simp: image_def)
406    fix b
407    assume "b \<in> B"
408    with s obtain a where P: "?P b a" by blast
409    with g[OF P] show "?g b \<in> A" by auto
410  next
411    fix a
412    assume "a \<in> A"
413    with s obtain b where P: "?P b a" by blast
414    with s have "b \<in> B" by blast
415    with g[OF P] show "\<exists>b\<in>B. a = ?g b" by blast
416  qed
417  ultimately show ?thesis
418    by (auto simp: bij_betw_def)
419qed
420
421lemma bij_betw_cong: "(\<And>a. a \<in> A \<Longrightarrow> f a = g a) \<Longrightarrow> bij_betw f A A' = bij_betw g A A'"
422  unfolding bij_betw_def inj_on_def by safe force+  (* somewhat slow *)
423
424lemma bij_betw_id[intro, simp]: "bij_betw id A A"
425  unfolding bij_betw_def id_def by auto
426
427lemma bij_betw_id_iff: "bij_betw id A B \<longleftrightarrow> A = B"
428  by (auto simp add: bij_betw_def)
429
430lemma bij_betw_combine:
431  "bij_betw f A B \<Longrightarrow> bij_betw f C D \<Longrightarrow> B \<inter> D = {} \<Longrightarrow> bij_betw f (A \<union> C) (B \<union> D)"
432  unfolding bij_betw_def inj_on_Un image_Un by auto
433
434lemma bij_betw_subset: "bij_betw f A A' \<Longrightarrow> B \<subseteq> A \<Longrightarrow> f ` B = B' \<Longrightarrow> bij_betw f B B'"
435  by (auto simp add: bij_betw_def inj_on_def)
436
437lemma bij_pointE:
438  assumes "bij f"
439  obtains x where "y = f x" and "\<And>x'. y = f x' \<Longrightarrow> x' = x"
440proof -
441  from assms have "inj f" by (rule bij_is_inj)
442  moreover from assms have "surj f" by (rule bij_is_surj)
443  then have "y \<in> range f" by simp
444  ultimately have "\<exists>!x. y = f x" by (simp add: range_ex1_eq)
445  with that show thesis by blast
446qed
447
448lemma surj_image_vimage_eq: "surj f \<Longrightarrow> f ` (f -` A) = A"
449  by simp
450
451lemma surj_vimage_empty:
452  assumes "surj f"
453  shows "f -` A = {} \<longleftrightarrow> A = {}"
454  using surj_image_vimage_eq [OF \<open>surj f\<close>, of A]
455  by (intro iffI) fastforce+
456
457lemma inj_vimage_image_eq: "inj f \<Longrightarrow> f -` (f ` A) = A"
458  unfolding inj_def by blast
459
460lemma vimage_subsetD: "surj f \<Longrightarrow> f -` B \<subseteq> A \<Longrightarrow> B \<subseteq> f ` A"
461  by (blast intro: sym)
462
463lemma vimage_subsetI: "inj f \<Longrightarrow> B \<subseteq> f ` A \<Longrightarrow> f -` B \<subseteq> A"
464  unfolding inj_def by blast
465
466lemma vimage_subset_eq: "bij f \<Longrightarrow> f -` B \<subseteq> A \<longleftrightarrow> B \<subseteq> f ` A"
467  unfolding bij_def by (blast del: subsetI intro: vimage_subsetI vimage_subsetD)
468
469lemma inj_on_image_eq_iff: "inj_on f C \<Longrightarrow> A \<subseteq> C \<Longrightarrow> B \<subseteq> C \<Longrightarrow> f ` A = f ` B \<longleftrightarrow> A = B"
470  by (fastforce simp: inj_on_def)
471
472lemma inj_on_Un_image_eq_iff: "inj_on f (A \<union> B) \<Longrightarrow> f ` A = f ` B \<longleftrightarrow> A = B"
473  by (erule inj_on_image_eq_iff) simp_all
474
475lemma inj_on_image_Int: "inj_on f C \<Longrightarrow> A \<subseteq> C \<Longrightarrow> B \<subseteq> C \<Longrightarrow> f ` (A \<inter> B) = f ` A \<inter> f ` B"
476  unfolding inj_on_def by blast
477
478lemma inj_on_image_set_diff: "inj_on f C \<Longrightarrow> A - B \<subseteq> C \<Longrightarrow> B \<subseteq> C \<Longrightarrow> f ` (A - B) = f ` A - f ` B"
479  unfolding inj_on_def by blast
480
481lemma image_Int: "inj f \<Longrightarrow> f ` (A \<inter> B) = f ` A \<inter> f ` B"
482  unfolding inj_def by blast
483
484lemma image_set_diff: "inj f \<Longrightarrow> f ` (A - B) = f ` A - f ` B"
485  unfolding inj_def by blast
486
487lemma inj_on_image_mem_iff: "inj_on f B \<Longrightarrow> a \<in> B \<Longrightarrow> A \<subseteq> B \<Longrightarrow> f a \<in> f ` A \<longleftrightarrow> a \<in> A"
488  by (auto simp: inj_on_def)
489
490(*FIXME DELETE*)
491lemma inj_on_image_mem_iff_alt: "inj_on f B \<Longrightarrow> A \<subseteq> B \<Longrightarrow> f a \<in> f ` A \<Longrightarrow> a \<in> B \<Longrightarrow> a \<in> A"
492  by (blast dest: inj_onD)
493
494lemma inj_image_mem_iff: "inj f \<Longrightarrow> f a \<in> f ` A \<longleftrightarrow> a \<in> A"
495  by (blast dest: injD)
496
497lemma inj_image_subset_iff: "inj f \<Longrightarrow> f ` A \<subseteq> f ` B \<longleftrightarrow> A \<subseteq> B"
498  by (blast dest: injD)
499
500lemma inj_image_eq_iff: "inj f \<Longrightarrow> f ` A = f ` B \<longleftrightarrow> A = B"
501  by (blast dest: injD)
502
503lemma surj_Compl_image_subset: "surj f \<Longrightarrow> - (f ` A) \<subseteq> f ` (- A)"
504  by auto
505
506lemma inj_image_Compl_subset: "inj f \<Longrightarrow> f ` (- A) \<subseteq> - (f ` A)"
507  by (auto simp: inj_def)
508
509lemma bij_image_Compl_eq: "bij f \<Longrightarrow> f ` (- A) = - (f ` A)"
510  by (simp add: bij_def inj_image_Compl_subset surj_Compl_image_subset equalityI)
511
512lemma inj_vimage_singleton: "inj f \<Longrightarrow> f -` {a} \<subseteq> {THE x. f x = a}"
513  \<comment> \<open>The inverse image of a singleton under an injective function is included in a singleton.\<close>
514  by (simp add: inj_def) (blast intro: the_equality [symmetric])
515
516lemma inj_on_vimage_singleton: "inj_on f A \<Longrightarrow> f -` {a} \<inter> A \<subseteq> {THE x. x \<in> A \<and> f x = a}"
517  by (auto simp add: inj_on_def intro: the_equality [symmetric])
518
519lemma (in ordered_ab_group_add) inj_uminus[simp, intro]: "inj_on uminus A"
520  by (auto intro!: inj_onI)
521
522lemma (in linorder) strict_mono_imp_inj_on: "strict_mono f \<Longrightarrow> inj_on f A"
523  by (auto intro!: inj_onI dest: strict_mono_eq)
524
525lemma bij_betw_byWitness:
526  assumes left: "\<forall>a \<in> A. f' (f a) = a"
527    and right: "\<forall>a' \<in> A'. f (f' a') = a'"
528    and "f ` A \<subseteq> A'"
529    and img2: "f' ` A' \<subseteq> A"
530  shows "bij_betw f A A'"
531  using assms
532  unfolding bij_betw_def inj_on_def
533proof safe
534  fix a b
535  assume "a \<in> A" "b \<in> A"
536  with left have "a = f' (f a) \<and> b = f' (f b)" by simp
537  moreover assume "f a = f b"
538  ultimately show "a = b" by simp
539next
540  fix a' assume *: "a' \<in> A'"
541  with img2 have "f' a' \<in> A" by blast
542  moreover from * right have "a' = f (f' a')" by simp
543  ultimately show "a' \<in> f ` A" by blast
544qed
545
546corollary notIn_Un_bij_betw:
547  assumes "b \<notin> A"
548    and "f b \<notin> A'"
549    and "bij_betw f A A'"
550  shows "bij_betw f (A \<union> {b}) (A' \<union> {f b})"
551proof -
552  have "bij_betw f {b} {f b}"
553    unfolding bij_betw_def inj_on_def by simp
554  with assms show ?thesis
555    using bij_betw_combine[of f A A' "{b}" "{f b}"] by blast
556qed
557
558lemma notIn_Un_bij_betw3:
559  assumes "b \<notin> A"
560    and "f b \<notin> A'"
561  shows "bij_betw f A A' = bij_betw f (A \<union> {b}) (A' \<union> {f b})"
562proof
563  assume "bij_betw f A A'"
564  then show "bij_betw f (A \<union> {b}) (A' \<union> {f b})"
565    using assms notIn_Un_bij_betw [of b A f A'] by blast
566next
567  assume *: "bij_betw f (A \<union> {b}) (A' \<union> {f b})"
568  have "f ` A = A'"
569  proof auto
570    fix a
571    assume **: "a \<in> A"
572    then have "f a \<in> A' \<union> {f b}"
573      using * unfolding bij_betw_def by blast
574    moreover
575    have False if "f a = f b"
576    proof -
577      have "a = b"
578        using * ** that unfolding bij_betw_def inj_on_def by blast
579      with \<open>b \<notin> A\<close> ** show ?thesis by blast
580    qed
581    ultimately show "f a \<in> A'" by blast
582  next
583    fix a'
584    assume **: "a' \<in> A'"
585    then have "a' \<in> f ` (A \<union> {b})"
586      using * by (auto simp add: bij_betw_def)
587    then obtain a where 1: "a \<in> A \<union> {b} \<and> f a = a'" by blast
588    moreover
589    have False if "a = b" using 1 ** \<open>f b \<notin> A'\<close> that by blast
590    ultimately have "a \<in> A" by blast
591    with 1 show "a' \<in> f ` A" by blast
592  qed
593  then show "bij_betw f A A'"
594    using * bij_betw_subset[of f "A \<union> {b}" _ A] by blast
595qed
596
597
598subsection \<open>Function Updating\<close>
599
600definition fun_upd :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> ('a \<Rightarrow> 'b)"
601  where "fun_upd f a b = (\<lambda>x. if x = a then b else f x)"
602
603nonterminal updbinds and updbind
604
605syntax
606  "_updbind" :: "'a \<Rightarrow> 'a \<Rightarrow> updbind"             ("(2_ :=/ _)")
607  ""         :: "updbind \<Rightarrow> updbinds"             ("_")
608  "_updbinds":: "updbind \<Rightarrow> updbinds \<Rightarrow> updbinds" ("_,/ _")
609  "_Update"  :: "'a \<Rightarrow> updbinds \<Rightarrow> 'a"            ("_/'((_)')" [1000, 0] 900)
610
611translations
612  "_Update f (_updbinds b bs)" \<rightleftharpoons> "_Update (_Update f b) bs"
613  "f(x:=y)" \<rightleftharpoons> "CONST fun_upd f x y"
614
615(* Hint: to define the sum of two functions (or maps), use case_sum.
616         A nice infix syntax could be defined by
617notation
618  case_sum  (infixr "'(+')"80)
619*)
620
621lemma fun_upd_idem_iff: "f(x:=y) = f \<longleftrightarrow> f x = y"
622  unfolding fun_upd_def
623  apply safe
624   apply (erule subst)
625   apply (rule_tac [2] ext)
626   apply auto
627  done
628
629lemma fun_upd_idem: "f x = y \<Longrightarrow> f(x := y) = f"
630  by (simp only: fun_upd_idem_iff)
631
632lemma fun_upd_triv [iff]: "f(x := f x) = f"
633  by (simp only: fun_upd_idem)
634
635lemma fun_upd_apply [simp]: "(f(x := y)) z = (if z = x then y else f z)"
636  by (simp add: fun_upd_def)
637
638(* fun_upd_apply supersedes these two, but they are useful
639   if fun_upd_apply is intentionally removed from the simpset *)
640lemma fun_upd_same: "(f(x := y)) x = y"
641  by simp
642
643lemma fun_upd_other: "z \<noteq> x \<Longrightarrow> (f(x := y)) z = f z"
644  by simp
645
646lemma fun_upd_upd [simp]: "f(x := y, x := z) = f(x := z)"
647  by (simp add: fun_eq_iff)
648
649lemma fun_upd_twist: "a \<noteq> c \<Longrightarrow> (m(a := b))(c := d) = (m(c := d))(a := b)"
650  by (rule ext) auto
651
652lemma inj_on_fun_updI: "inj_on f A \<Longrightarrow> y \<notin> f ` A \<Longrightarrow> inj_on (f(x := y)) A"
653  by (auto simp: inj_on_def)
654
655lemma fun_upd_image: "f(x := y) ` A = (if x \<in> A then insert y (f ` (A - {x})) else f ` A)"
656  by auto
657
658lemma fun_upd_comp: "f \<circ> (g(x := y)) = (f \<circ> g)(x := f y)"
659  by auto
660
661lemma fun_upd_eqD: "f(x := y) = g(x := z) \<Longrightarrow> y = z"
662  by (simp add: fun_eq_iff split: if_split_asm)
663
664
665subsection \<open>\<open>override_on\<close>\<close>
666
667definition override_on :: "('a \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'a \<Rightarrow> 'b"
668  where "override_on f g A = (\<lambda>a. if a \<in> A then g a else f a)"
669
670lemma override_on_emptyset[simp]: "override_on f g {} = f"
671  by (simp add: override_on_def)
672
673lemma override_on_apply_notin[simp]: "a \<notin> A \<Longrightarrow> (override_on f g A) a = f a"
674  by (simp add: override_on_def)
675
676lemma override_on_apply_in[simp]: "a \<in> A \<Longrightarrow> (override_on f g A) a = g a"
677  by (simp add: override_on_def)
678
679lemma override_on_insert: "override_on f g (insert x X) = (override_on f g X)(x:=g x)"
680  by (simp add: override_on_def fun_eq_iff)
681
682lemma override_on_insert': "override_on f g (insert x X) = (override_on (f(x:=g x)) g X)"
683  by (simp add: override_on_def fun_eq_iff)
684
685
686subsection \<open>\<open>swap\<close>\<close>
687
688definition swap :: "'a \<Rightarrow> 'a \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'b)"
689  where "swap a b f = f (a := f b, b:= f a)"
690
691lemma swap_apply [simp]:
692  "swap a b f a = f b"
693  "swap a b f b = f a"
694  "c \<noteq> a \<Longrightarrow> c \<noteq> b \<Longrightarrow> swap a b f c = f c"
695  by (simp_all add: swap_def)
696
697lemma swap_self [simp]: "swap a a f = f"
698  by (simp add: swap_def)
699
700lemma swap_commute: "swap a b f = swap b a f"
701  by (simp add: fun_upd_def swap_def fun_eq_iff)
702
703lemma swap_nilpotent [simp]: "swap a b (swap a b f) = f"
704  by (rule ext) (simp add: fun_upd_def swap_def)
705
706lemma swap_comp_involutory [simp]: "swap a b \<circ> swap a b = id"
707  by (rule ext) simp
708
709lemma swap_triple:
710  assumes "a \<noteq> c" and "b \<noteq> c"
711  shows "swap a b (swap b c (swap a b f)) = swap a c f"
712  using assms by (simp add: fun_eq_iff swap_def)
713
714lemma comp_swap: "f \<circ> swap a b g = swap a b (f \<circ> g)"
715  by (rule ext) (simp add: fun_upd_def swap_def)
716
717lemma swap_image_eq [simp]:
718  assumes "a \<in> A" "b \<in> A"
719  shows "swap a b f ` A = f ` A"
720proof -
721  have subset: "\<And>f. swap a b f ` A \<subseteq> f ` A"
722    using assms by (auto simp: image_iff swap_def)
723  then have "swap a b (swap a b f) ` A \<subseteq> (swap a b f) ` A" .
724  with subset[of f] show ?thesis by auto
725qed
726
727lemma inj_on_imp_inj_on_swap: "inj_on f A \<Longrightarrow> a \<in> A \<Longrightarrow> b \<in> A \<Longrightarrow> inj_on (swap a b f) A"
728  by (auto simp add: inj_on_def swap_def)
729
730lemma inj_on_swap_iff [simp]:
731  assumes A: "a \<in> A" "b \<in> A"
732  shows "inj_on (swap a b f) A \<longleftrightarrow> inj_on f A"
733proof
734  assume "inj_on (swap a b f) A"
735  with A have "inj_on (swap a b (swap a b f)) A"
736    by (iprover intro: inj_on_imp_inj_on_swap)
737  then show "inj_on f A" by simp
738next
739  assume "inj_on f A"
740  with A show "inj_on (swap a b f) A"
741    by (iprover intro: inj_on_imp_inj_on_swap)
742qed
743
744lemma surj_imp_surj_swap: "surj f \<Longrightarrow> surj (swap a b f)"
745  by simp
746
747lemma surj_swap_iff [simp]: "surj (swap a b f) \<longleftrightarrow> surj f"
748  by simp
749
750lemma bij_betw_swap_iff [simp]: "x \<in> A \<Longrightarrow> y \<in> A \<Longrightarrow> bij_betw (swap x y f) A B \<longleftrightarrow> bij_betw f A B"
751  by (auto simp: bij_betw_def)
752
753lemma bij_swap_iff [simp]: "bij (swap a b f) \<longleftrightarrow> bij f"
754  by simp
755
756hide_const (open) swap
757
758
759subsection \<open>Inversion of injective functions\<close>
760
761definition the_inv_into :: "'a set \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('b \<Rightarrow> 'a)"
762  where "the_inv_into A f = (\<lambda>x. THE y. y \<in> A \<and> f y = x)"
763
764lemma the_inv_into_f_f: "inj_on f A \<Longrightarrow> x \<in> A \<Longrightarrow> the_inv_into A f (f x) = x"
765  unfolding the_inv_into_def inj_on_def by blast
766
767lemma f_the_inv_into_f: "inj_on f A \<Longrightarrow> y \<in> f ` A  \<Longrightarrow> f (the_inv_into A f y) = y"
768  apply (simp add: the_inv_into_def)
769  apply (rule the1I2)
770   apply (blast dest: inj_onD)
771  apply blast
772  done
773
774lemma the_inv_into_into: "inj_on f A \<Longrightarrow> x \<in> f ` A \<Longrightarrow> A \<subseteq> B \<Longrightarrow> the_inv_into A f x \<in> B"
775  apply (simp add: the_inv_into_def)
776  apply (rule the1I2)
777   apply (blast dest: inj_onD)
778  apply blast
779  done
780
781lemma the_inv_into_onto [simp]: "inj_on f A \<Longrightarrow> the_inv_into A f ` (f ` A) = A"
782  by (fast intro: the_inv_into_into the_inv_into_f_f [symmetric])
783
784lemma the_inv_into_f_eq: "inj_on f A \<Longrightarrow> f x = y \<Longrightarrow> x \<in> A \<Longrightarrow> the_inv_into A f y = x"
785  apply (erule subst)
786  apply (erule the_inv_into_f_f)
787  apply assumption
788  done
789
790lemma the_inv_into_comp:
791  "inj_on f (g ` A) \<Longrightarrow> inj_on g A \<Longrightarrow> x \<in> f ` g ` A \<Longrightarrow>
792    the_inv_into A (f \<circ> g) x = (the_inv_into A g \<circ> the_inv_into (g ` A) f) x"
793  apply (rule the_inv_into_f_eq)
794    apply (fast intro: comp_inj_on)
795   apply (simp add: f_the_inv_into_f the_inv_into_into)
796  apply (simp add: the_inv_into_into)
797  done
798
799lemma inj_on_the_inv_into: "inj_on f A \<Longrightarrow> inj_on (the_inv_into A f) (f ` A)"
800  by (auto intro: inj_onI simp: the_inv_into_f_f)
801
802lemma bij_betw_the_inv_into: "bij_betw f A B \<Longrightarrow> bij_betw (the_inv_into A f) B A"
803  by (auto simp add: bij_betw_def inj_on_the_inv_into the_inv_into_into)
804
805abbreviation the_inv :: "('a \<Rightarrow> 'b) \<Rightarrow> ('b \<Rightarrow> 'a)"
806  where "the_inv f \<equiv> the_inv_into UNIV f"
807
808lemma the_inv_f_f: "the_inv f (f x) = x" if "inj f"
809  using that UNIV_I by (rule the_inv_into_f_f)
810
811
812subsection \<open>Cantor's Paradox\<close>
813
814theorem Cantors_paradox: "\<nexists>f. f ` A = Pow A"
815proof
816  assume "\<exists>f. f ` A = Pow A"
817  then obtain f where f: "f ` A = Pow A" ..
818  let ?X = "{a \<in> A. a \<notin> f a}"
819  have "?X \<in> Pow A" by blast
820  then have "?X \<in> f ` A" by (simp only: f)
821  then obtain x where "x \<in> A" and "f x = ?X" by blast
822  then show False by blast
823qed
824
825
826subsection \<open>Setup\<close>
827
828subsubsection \<open>Proof tools\<close>
829
830text \<open>Simplify terms of the form \<open>f(\<dots>,x:=y,\<dots>,x:=z,\<dots>)\<close> to \<open>f(\<dots>,x:=z,\<dots>)\<close>\<close>
831
832simproc_setup fun_upd2 ("f(v := w, x := y)") = \<open>fn _ =>
833  let
834    fun gen_fun_upd NONE T _ _ = NONE
835      | gen_fun_upd (SOME f) T x y = SOME (Const (@{const_name fun_upd}, T) $ f $ x $ y)
836    fun dest_fun_T1 (Type (_, T :: Ts)) = T
837    fun find_double (t as Const (@{const_name fun_upd},T) $ f $ x $ y) =
838      let
839        fun find (Const (@{const_name fun_upd},T) $ g $ v $ w) =
840              if v aconv x then SOME g else gen_fun_upd (find g) T v w
841          | find t = NONE
842      in (dest_fun_T1 T, gen_fun_upd (find f) T x y) end
843
844    val ss = simpset_of @{context}
845
846    fun proc ctxt ct =
847      let
848        val t = Thm.term_of ct
849      in
850        (case find_double t of
851          (T, NONE) => NONE
852        | (T, SOME rhs) =>
853            SOME (Goal.prove ctxt [] [] (Logic.mk_equals (t, rhs))
854              (fn _ =>
855                resolve_tac ctxt [eq_reflection] 1 THEN
856                resolve_tac ctxt @{thms ext} 1 THEN
857                simp_tac (put_simpset ss ctxt) 1)))
858      end
859  in proc end
860\<close>
861
862
863subsubsection \<open>Functorial structure of types\<close>
864
865ML_file "Tools/functor.ML"
866
867functor map_fun: map_fun
868  by (simp_all add: fun_eq_iff)
869
870functor vimage
871  by (simp_all add: fun_eq_iff vimage_comp)
872
873
874text \<open>Legacy theorem names\<close>
875
876lemmas o_def = comp_def
877lemmas o_apply = comp_apply
878lemmas o_assoc = comp_assoc [symmetric]
879lemmas id_o = id_comp
880lemmas o_id = comp_id
881lemmas o_eq_dest = comp_eq_dest
882lemmas o_eq_elim = comp_eq_elim
883lemmas o_eq_dest_lhs = comp_eq_dest_lhs
884lemmas o_eq_id_dest = comp_eq_id_dest
885
886end
887