1(*  Title:      HOL/Fields.thy
2    Author:     Gertrud Bauer
3    Author:     Steven Obua
4    Author:     Tobias Nipkow
5    Author:     Lawrence C Paulson
6    Author:     Markus Wenzel
7    Author:     Jeremy Avigad
8*)
9
10section \<open>Fields\<close>
11
12theory Fields
13imports Nat
14begin
15
16subsection \<open>Division rings\<close>
17
18text \<open>
19  A division ring is like a field, but without the commutativity requirement.
20\<close>
21
22class inverse = divide +
23  fixes inverse :: "'a \<Rightarrow> 'a"
24begin
25  
26abbreviation inverse_divide :: "'a \<Rightarrow> 'a \<Rightarrow> 'a"  (infixl "'/" 70)
27where
28  "inverse_divide \<equiv> divide"
29
30end
31
32text \<open>Setup for linear arithmetic prover\<close>
33
34ML_file "~~/src/Provers/Arith/fast_lin_arith.ML"
35ML_file "Tools/lin_arith.ML"
36setup \<open>Lin_Arith.global_setup\<close>
37declaration \<open>K Lin_Arith.setup\<close>
38
39simproc_setup fast_arith_nat ("(m::nat) < n" | "(m::nat) \<le> n" | "(m::nat) = n") =
40  \<open>K Lin_Arith.simproc\<close>
41(* Because of this simproc, the arithmetic solver is really only
42useful to detect inconsistencies among the premises for subgoals which are
43*not* themselves (in)equalities, because the latter activate
44fast_nat_arith_simproc anyway. However, it seems cheaper to activate the
45solver all the time rather than add the additional check. *)
46
47lemmas [arith_split] = nat_diff_split split_min split_max
48
49context linordered_nonzero_semiring
50begin
51lemma of_nat_max: "of_nat (max x y) = max (of_nat x) (of_nat y)"
52  by (auto simp: max_def)
53
54lemma of_nat_min: "of_nat (min x y) = min (of_nat x) (of_nat y)"
55  by (auto simp: min_def)
56end
57
58text\<open>Lemmas \<open>divide_simps\<close> move division to the outside and eliminates them on (in)equalities.\<close>
59
60named_theorems divide_simps "rewrite rules to eliminate divisions"
61
62class division_ring = ring_1 + inverse +
63  assumes left_inverse [simp]:  "a \<noteq> 0 \<Longrightarrow> inverse a * a = 1"
64  assumes right_inverse [simp]: "a \<noteq> 0 \<Longrightarrow> a * inverse a = 1"
65  assumes divide_inverse: "a / b = a * inverse b"
66  assumes inverse_zero [simp]: "inverse 0 = 0"
67begin
68
69subclass ring_1_no_zero_divisors
70proof
71  fix a b :: 'a
72  assume a: "a \<noteq> 0" and b: "b \<noteq> 0"
73  show "a * b \<noteq> 0"
74  proof
75    assume ab: "a * b = 0"
76    hence "0 = inverse a * (a * b) * inverse b" by simp
77    also have "\<dots> = (inverse a * a) * (b * inverse b)"
78      by (simp only: mult.assoc)
79    also have "\<dots> = 1" using a b by simp
80    finally show False by simp
81  qed
82qed
83
84lemma nonzero_imp_inverse_nonzero:
85  "a \<noteq> 0 \<Longrightarrow> inverse a \<noteq> 0"
86proof
87  assume ianz: "inverse a = 0"
88  assume "a \<noteq> 0"
89  hence "1 = a * inverse a" by simp
90  also have "... = 0" by (simp add: ianz)
91  finally have "1 = 0" .
92  thus False by (simp add: eq_commute)
93qed
94
95lemma inverse_zero_imp_zero:
96  "inverse a = 0 \<Longrightarrow> a = 0"
97apply (rule classical)
98apply (drule nonzero_imp_inverse_nonzero)
99apply auto
100done
101
102lemma inverse_unique:
103  assumes ab: "a * b = 1"
104  shows "inverse a = b"
105proof -
106  have "a \<noteq> 0" using ab by (cases "a = 0") simp_all
107  moreover have "inverse a * (a * b) = inverse a" by (simp add: ab)
108  ultimately show ?thesis by (simp add: mult.assoc [symmetric])
109qed
110
111lemma nonzero_inverse_minus_eq:
112  "a \<noteq> 0 \<Longrightarrow> inverse (- a) = - inverse a"
113by (rule inverse_unique) simp
114
115lemma nonzero_inverse_inverse_eq:
116  "a \<noteq> 0 \<Longrightarrow> inverse (inverse a) = a"
117by (rule inverse_unique) simp
118
119lemma nonzero_inverse_eq_imp_eq:
120  assumes "inverse a = inverse b" and "a \<noteq> 0" and "b \<noteq> 0"
121  shows "a = b"
122proof -
123  from \<open>inverse a = inverse b\<close>
124  have "inverse (inverse a) = inverse (inverse b)" by (rule arg_cong)
125  with \<open>a \<noteq> 0\<close> and \<open>b \<noteq> 0\<close> show "a = b"
126    by (simp add: nonzero_inverse_inverse_eq)
127qed
128
129lemma inverse_1 [simp]: "inverse 1 = 1"
130by (rule inverse_unique) simp
131
132lemma nonzero_inverse_mult_distrib:
133  assumes "a \<noteq> 0" and "b \<noteq> 0"
134  shows "inverse (a * b) = inverse b * inverse a"
135proof -
136  have "a * (b * inverse b) * inverse a = 1" using assms by simp
137  hence "a * b * (inverse b * inverse a) = 1" by (simp only: mult.assoc)
138  thus ?thesis by (rule inverse_unique)
139qed
140
141lemma division_ring_inverse_add:
142  "a \<noteq> 0 \<Longrightarrow> b \<noteq> 0 \<Longrightarrow> inverse a + inverse b = inverse a * (a + b) * inverse b"
143by (simp add: algebra_simps)
144
145lemma division_ring_inverse_diff:
146  "a \<noteq> 0 \<Longrightarrow> b \<noteq> 0 \<Longrightarrow> inverse a - inverse b = inverse a * (b - a) * inverse b"
147by (simp add: algebra_simps)
148
149lemma right_inverse_eq: "b \<noteq> 0 \<Longrightarrow> a / b = 1 \<longleftrightarrow> a = b"
150proof
151  assume neq: "b \<noteq> 0"
152  {
153    hence "a = (a / b) * b" by (simp add: divide_inverse mult.assoc)
154    also assume "a / b = 1"
155    finally show "a = b" by simp
156  next
157    assume "a = b"
158    with neq show "a / b = 1" by (simp add: divide_inverse)
159  }
160qed
161
162lemma nonzero_inverse_eq_divide: "a \<noteq> 0 \<Longrightarrow> inverse a = 1 / a"
163by (simp add: divide_inverse)
164
165lemma divide_self [simp]: "a \<noteq> 0 \<Longrightarrow> a / a = 1"
166by (simp add: divide_inverse)
167
168lemma inverse_eq_divide [field_simps, divide_simps]: "inverse a = 1 / a"
169by (simp add: divide_inverse)
170
171lemma add_divide_distrib: "(a+b) / c = a/c + b/c"
172by (simp add: divide_inverse algebra_simps)
173
174lemma times_divide_eq_right [simp]: "a * (b / c) = (a * b) / c"
175  by (simp add: divide_inverse mult.assoc)
176
177lemma minus_divide_left: "- (a / b) = (-a) / b"
178  by (simp add: divide_inverse)
179
180lemma nonzero_minus_divide_right: "b \<noteq> 0 ==> - (a / b) = a / (- b)"
181  by (simp add: divide_inverse nonzero_inverse_minus_eq)
182
183lemma nonzero_minus_divide_divide: "b \<noteq> 0 ==> (-a) / (-b) = a / b"
184  by (simp add: divide_inverse nonzero_inverse_minus_eq)
185
186lemma divide_minus_left [simp]: "(-a) / b = - (a / b)"
187  by (simp add: divide_inverse)
188
189lemma diff_divide_distrib: "(a - b) / c = a / c - b / c"
190  using add_divide_distrib [of a "- b" c] by simp
191
192lemma nonzero_eq_divide_eq [field_simps]: "c \<noteq> 0 \<Longrightarrow> a = b / c \<longleftrightarrow> a * c = b"
193proof -
194  assume [simp]: "c \<noteq> 0"
195  have "a = b / c \<longleftrightarrow> a * c = (b / c) * c" by simp
196  also have "... \<longleftrightarrow> a * c = b" by (simp add: divide_inverse mult.assoc)
197  finally show ?thesis .
198qed
199
200lemma nonzero_divide_eq_eq [field_simps]: "c \<noteq> 0 \<Longrightarrow> b / c = a \<longleftrightarrow> b = a * c"
201proof -
202  assume [simp]: "c \<noteq> 0"
203  have "b / c = a \<longleftrightarrow> (b / c) * c = a * c" by simp
204  also have "... \<longleftrightarrow> b = a * c" by (simp add: divide_inverse mult.assoc)
205  finally show ?thesis .
206qed
207
208lemma nonzero_neg_divide_eq_eq [field_simps]: "b \<noteq> 0 \<Longrightarrow> - (a / b) = c \<longleftrightarrow> - a = c * b"
209  using nonzero_divide_eq_eq[of b "-a" c] by simp
210
211lemma nonzero_neg_divide_eq_eq2 [field_simps]: "b \<noteq> 0 \<Longrightarrow> c = - (a / b) \<longleftrightarrow> c * b = - a"
212  using nonzero_neg_divide_eq_eq[of b a c] by auto
213
214lemma divide_eq_imp: "c \<noteq> 0 \<Longrightarrow> b = a * c \<Longrightarrow> b / c = a"
215  by (simp add: divide_inverse mult.assoc)
216
217lemma eq_divide_imp: "c \<noteq> 0 \<Longrightarrow> a * c = b \<Longrightarrow> a = b / c"
218  by (drule sym) (simp add: divide_inverse mult.assoc)
219
220lemma add_divide_eq_iff [field_simps]:
221  "z \<noteq> 0 \<Longrightarrow> x + y / z = (x * z + y) / z"
222  by (simp add: add_divide_distrib nonzero_eq_divide_eq)
223
224lemma divide_add_eq_iff [field_simps]:
225  "z \<noteq> 0 \<Longrightarrow> x / z + y = (x + y * z) / z"
226  by (simp add: add_divide_distrib nonzero_eq_divide_eq)
227
228lemma diff_divide_eq_iff [field_simps]:
229  "z \<noteq> 0 \<Longrightarrow> x - y / z = (x * z - y) / z"
230  by (simp add: diff_divide_distrib nonzero_eq_divide_eq eq_diff_eq)
231
232lemma minus_divide_add_eq_iff [field_simps]:
233  "z \<noteq> 0 \<Longrightarrow> - (x / z) + y = (- x + y * z) / z"
234  by (simp add: add_divide_distrib diff_divide_eq_iff)
235
236lemma divide_diff_eq_iff [field_simps]:
237  "z \<noteq> 0 \<Longrightarrow> x / z - y = (x - y * z) / z"
238  by (simp add: field_simps)
239
240lemma minus_divide_diff_eq_iff [field_simps]:
241  "z \<noteq> 0 \<Longrightarrow> - (x / z) - y = (- x - y * z) / z"
242  by (simp add: divide_diff_eq_iff[symmetric])
243
244lemma division_ring_divide_zero [simp]:
245  "a / 0 = 0"
246  by (simp add: divide_inverse)
247
248lemma divide_self_if [simp]:
249  "a / a = (if a = 0 then 0 else 1)"
250  by simp
251
252lemma inverse_nonzero_iff_nonzero [simp]:
253  "inverse a = 0 \<longleftrightarrow> a = 0"
254  by rule (fact inverse_zero_imp_zero, simp)
255
256lemma inverse_minus_eq [simp]:
257  "inverse (- a) = - inverse a"
258proof cases
259  assume "a=0" thus ?thesis by simp
260next
261  assume "a\<noteq>0"
262  thus ?thesis by (simp add: nonzero_inverse_minus_eq)
263qed
264
265lemma inverse_inverse_eq [simp]:
266  "inverse (inverse a) = a"
267proof cases
268  assume "a=0" thus ?thesis by simp
269next
270  assume "a\<noteq>0"
271  thus ?thesis by (simp add: nonzero_inverse_inverse_eq)
272qed
273
274lemma inverse_eq_imp_eq:
275  "inverse a = inverse b \<Longrightarrow> a = b"
276  by (drule arg_cong [where f="inverse"], simp)
277
278lemma inverse_eq_iff_eq [simp]:
279  "inverse a = inverse b \<longleftrightarrow> a = b"
280  by (force dest!: inverse_eq_imp_eq)
281
282lemma add_divide_eq_if_simps [divide_simps]:
283    "a + b / z = (if z = 0 then a else (a * z + b) / z)"
284    "a / z + b = (if z = 0 then b else (a + b * z) / z)"
285    "- (a / z) + b = (if z = 0 then b else (-a + b * z) / z)"
286    "a - b / z = (if z = 0 then a else (a * z - b) / z)"
287    "a / z - b = (if z = 0 then -b else (a - b * z) / z)"
288    "- (a / z) - b = (if z = 0 then -b else (- a - b * z) / z)"
289  by (simp_all add: add_divide_eq_iff divide_add_eq_iff diff_divide_eq_iff divide_diff_eq_iff
290      minus_divide_diff_eq_iff)
291
292lemma [divide_simps]:
293  shows divide_eq_eq: "b / c = a \<longleftrightarrow> (if c \<noteq> 0 then b = a * c else a = 0)"
294    and eq_divide_eq: "a = b / c \<longleftrightarrow> (if c \<noteq> 0 then a * c = b else a = 0)"
295    and minus_divide_eq_eq: "- (b / c) = a \<longleftrightarrow> (if c \<noteq> 0 then - b = a * c else a = 0)"
296    and eq_minus_divide_eq: "a = - (b / c) \<longleftrightarrow> (if c \<noteq> 0 then a * c = - b else a = 0)"
297  by (auto simp add:  field_simps)
298
299end
300
301subsection \<open>Fields\<close>
302
303class field = comm_ring_1 + inverse +
304  assumes field_inverse: "a \<noteq> 0 \<Longrightarrow> inverse a * a = 1"
305  assumes field_divide_inverse: "a / b = a * inverse b"
306  assumes field_inverse_zero: "inverse 0 = 0"
307begin
308
309subclass division_ring
310proof
311  fix a :: 'a
312  assume "a \<noteq> 0"
313  thus "inverse a * a = 1" by (rule field_inverse)
314  thus "a * inverse a = 1" by (simp only: mult.commute)
315next
316  fix a b :: 'a
317  show "a / b = a * inverse b" by (rule field_divide_inverse)
318next
319  show "inverse 0 = 0"
320    by (fact field_inverse_zero) 
321qed
322
323subclass idom_divide
324proof
325  fix b a
326  assume "b \<noteq> 0"
327  then show "a * b / b = a"
328    by (simp add: divide_inverse ac_simps)
329next
330  fix a
331  show "a / 0 = 0"
332    by (simp add: divide_inverse)
333qed
334
335text\<open>There is no slick version using division by zero.\<close>
336lemma inverse_add:
337  "a \<noteq> 0 \<Longrightarrow> b \<noteq> 0 \<Longrightarrow> inverse a + inverse b = (a + b) * inverse a * inverse b"
338  by (simp add: division_ring_inverse_add ac_simps)
339
340lemma nonzero_mult_divide_mult_cancel_left [simp]:
341  assumes [simp]: "c \<noteq> 0"
342  shows "(c * a) / (c * b) = a / b"
343proof (cases "b = 0")
344  case True then show ?thesis by simp
345next
346  case False
347  then have "(c*a)/(c*b) = c * a * (inverse b * inverse c)"
348    by (simp add: divide_inverse nonzero_inverse_mult_distrib)
349  also have "... =  a * inverse b * (inverse c * c)"
350    by (simp only: ac_simps)
351  also have "... =  a * inverse b" by simp
352    finally show ?thesis by (simp add: divide_inverse)
353qed
354
355lemma nonzero_mult_divide_mult_cancel_right [simp]:
356  "c \<noteq> 0 \<Longrightarrow> (a * c) / (b * c) = a / b"
357  using nonzero_mult_divide_mult_cancel_left [of c a b] by (simp add: ac_simps)
358
359lemma times_divide_eq_left [simp]: "(b / c) * a = (b * a) / c"
360  by (simp add: divide_inverse ac_simps)
361
362lemma divide_inverse_commute: "a / b = inverse b * a"
363  by (simp add: divide_inverse mult.commute)
364
365lemma add_frac_eq:
366  assumes "y \<noteq> 0" and "z \<noteq> 0"
367  shows "x / y + w / z = (x * z + w * y) / (y * z)"
368proof -
369  have "x / y + w / z = (x * z) / (y * z) + (y * w) / (y * z)"
370    using assms by simp
371  also have "\<dots> = (x * z + y * w) / (y * z)"
372    by (simp only: add_divide_distrib)
373  finally show ?thesis
374    by (simp only: mult.commute)
375qed
376
377text\<open>Special Cancellation Simprules for Division\<close>
378
379lemma nonzero_divide_mult_cancel_right [simp]:
380  "b \<noteq> 0 \<Longrightarrow> b / (a * b) = 1 / a"
381  using nonzero_mult_divide_mult_cancel_right [of b 1 a] by simp
382
383lemma nonzero_divide_mult_cancel_left [simp]:
384  "a \<noteq> 0 \<Longrightarrow> a / (a * b) = 1 / b"
385  using nonzero_mult_divide_mult_cancel_left [of a 1 b] by simp
386
387lemma nonzero_mult_divide_mult_cancel_left2 [simp]:
388  "c \<noteq> 0 \<Longrightarrow> (c * a) / (b * c) = a / b"
389  using nonzero_mult_divide_mult_cancel_left [of c a b] by (simp add: ac_simps)
390
391lemma nonzero_mult_divide_mult_cancel_right2 [simp]:
392  "c \<noteq> 0 \<Longrightarrow> (a * c) / (c * b) = a / b"
393  using nonzero_mult_divide_mult_cancel_right [of b c a] by (simp add: ac_simps)
394
395lemma diff_frac_eq:
396  "y \<noteq> 0 \<Longrightarrow> z \<noteq> 0 \<Longrightarrow> x / y - w / z = (x * z - w * y) / (y * z)"
397  by (simp add: field_simps)
398
399lemma frac_eq_eq:
400  "y \<noteq> 0 \<Longrightarrow> z \<noteq> 0 \<Longrightarrow> (x / y = w / z) = (x * z = w * y)"
401  by (simp add: field_simps)
402
403lemma divide_minus1 [simp]: "x / - 1 = - x"
404  using nonzero_minus_divide_right [of "1" x] by simp
405
406text\<open>This version builds in division by zero while also re-orienting
407      the right-hand side.\<close>
408lemma inverse_mult_distrib [simp]:
409  "inverse (a * b) = inverse a * inverse b"
410proof cases
411  assume "a \<noteq> 0 \<and> b \<noteq> 0"
412  thus ?thesis by (simp add: nonzero_inverse_mult_distrib ac_simps)
413next
414  assume "\<not> (a \<noteq> 0 \<and> b \<noteq> 0)"
415  thus ?thesis by force
416qed
417
418lemma inverse_divide [simp]:
419  "inverse (a / b) = b / a"
420  by (simp add: divide_inverse mult.commute)
421
422
423text \<open>Calculations with fractions\<close>
424
425text\<open>There is a whole bunch of simp-rules just for class \<open>field\<close> but none for class \<open>field\<close> and \<open>nonzero_divides\<close>
426because the latter are covered by a simproc.\<close>
427
428lemmas mult_divide_mult_cancel_left = nonzero_mult_divide_mult_cancel_left
429
430lemmas mult_divide_mult_cancel_right = nonzero_mult_divide_mult_cancel_right
431
432lemma divide_divide_eq_right [simp]:
433  "a / (b / c) = (a * c) / b"
434  by (simp add: divide_inverse ac_simps)
435
436lemma divide_divide_eq_left [simp]:
437  "(a / b) / c = a / (b * c)"
438  by (simp add: divide_inverse mult.assoc)
439
440lemma divide_divide_times_eq:
441  "(x / y) / (z / w) = (x * w) / (y * z)"
442  by simp
443
444text \<open>Special Cancellation Simprules for Division\<close>
445
446lemma mult_divide_mult_cancel_left_if [simp]:
447  shows "(c * a) / (c * b) = (if c = 0 then 0 else a / b)"
448  by simp
449
450
451text \<open>Division and Unary Minus\<close>
452
453lemma minus_divide_right:
454  "- (a / b) = a / - b"
455  by (simp add: divide_inverse)
456
457lemma divide_minus_right [simp]:
458  "a / - b = - (a / b)"
459  by (simp add: divide_inverse)
460
461lemma minus_divide_divide:
462  "(- a) / (- b) = a / b"
463  by (cases "b=0") (simp_all add: nonzero_minus_divide_divide)
464
465lemma inverse_eq_1_iff [simp]:
466  "inverse x = 1 \<longleftrightarrow> x = 1"
467  by (insert inverse_eq_iff_eq [of x 1], simp)
468
469lemma divide_eq_0_iff [simp]:
470  "a / b = 0 \<longleftrightarrow> a = 0 \<or> b = 0"
471  by (simp add: divide_inverse)
472
473lemma divide_cancel_right [simp]:
474  "a / c = b / c \<longleftrightarrow> c = 0 \<or> a = b"
475  by (cases "c=0") (simp_all add: divide_inverse)
476
477lemma divide_cancel_left [simp]:
478  "c / a = c / b \<longleftrightarrow> c = 0 \<or> a = b"
479  by (cases "c=0") (simp_all add: divide_inverse)
480
481lemma divide_eq_1_iff [simp]:
482  "a / b = 1 \<longleftrightarrow> b \<noteq> 0 \<and> a = b"
483  by (cases "b=0") (simp_all add: right_inverse_eq)
484
485lemma one_eq_divide_iff [simp]:
486  "1 = a / b \<longleftrightarrow> b \<noteq> 0 \<and> a = b"
487  by (simp add: eq_commute [of 1])
488
489lemma divide_eq_minus_1_iff:
490   "(a / b = - 1) \<longleftrightarrow> b \<noteq> 0 \<and> a = - b"
491using divide_eq_1_iff by fastforce
492
493lemma times_divide_times_eq:
494  "(x / y) * (z / w) = (x * z) / (y * w)"
495  by simp
496
497lemma add_frac_num:
498  "y \<noteq> 0 \<Longrightarrow> x / y + z = (x + z * y) / y"
499  by (simp add: add_divide_distrib)
500
501lemma add_num_frac:
502  "y \<noteq> 0 \<Longrightarrow> z + x / y = (x + z * y) / y"
503  by (simp add: add_divide_distrib add.commute)
504
505lemma dvd_field_iff:
506  "a dvd b \<longleftrightarrow> (a = 0 \<longrightarrow> b = 0)"
507proof (cases "a = 0")
508  case False
509  then have "b = a * (b / a)"
510    by (simp add: field_simps)
511  then have "a dvd b" ..
512  with False show ?thesis
513    by simp
514qed simp
515
516end
517
518class field_char_0 = field + ring_char_0
519
520
521subsection \<open>Ordered fields\<close>
522
523class field_abs_sgn = field + idom_abs_sgn
524begin
525
526lemma sgn_inverse [simp]:
527  "sgn (inverse a) = inverse (sgn a)"
528proof (cases "a = 0")
529  case True then show ?thesis by simp
530next
531  case False
532  then have "a * inverse a = 1"
533    by simp
534  then have "sgn (a * inverse a) = sgn 1"
535    by simp
536  then have "sgn a * sgn (inverse a) = 1"
537    by (simp add: sgn_mult)
538  then have "inverse (sgn a) * (sgn a * sgn (inverse a)) = inverse (sgn a) * 1"
539    by simp
540  then have "(inverse (sgn a) * sgn a) * sgn (inverse a) = inverse (sgn a)"
541    by (simp add: ac_simps)
542  with False show ?thesis
543    by (simp add: sgn_eq_0_iff)
544qed
545
546lemma abs_inverse [simp]:
547  "\<bar>inverse a\<bar> = inverse \<bar>a\<bar>"
548proof -
549  from sgn_mult_abs [of "inverse a"] sgn_mult_abs [of a]
550  have "inverse (sgn a) * \<bar>inverse a\<bar> = inverse (sgn a * \<bar>a\<bar>)"
551    by simp
552  then show ?thesis by (auto simp add: sgn_eq_0_iff)
553qed
554    
555lemma sgn_divide [simp]:
556  "sgn (a / b) = sgn a / sgn b"
557  unfolding divide_inverse sgn_mult by simp
558
559lemma abs_divide [simp]:
560  "\<bar>a / b\<bar> = \<bar>a\<bar> / \<bar>b\<bar>"
561  unfolding divide_inverse abs_mult by simp
562  
563end
564
565class linordered_field = field + linordered_idom
566begin
567
568lemma positive_imp_inverse_positive:
569  assumes a_gt_0: "0 < a"
570  shows "0 < inverse a"
571proof -
572  have "0 < a * inverse a"
573    by (simp add: a_gt_0 [THEN less_imp_not_eq2])
574  thus "0 < inverse a"
575    by (simp add: a_gt_0 [THEN less_not_sym] zero_less_mult_iff)
576qed
577
578lemma negative_imp_inverse_negative:
579  "a < 0 \<Longrightarrow> inverse a < 0"
580  by (insert positive_imp_inverse_positive [of "-a"],
581    simp add: nonzero_inverse_minus_eq less_imp_not_eq)
582
583lemma inverse_le_imp_le:
584  assumes invle: "inverse a \<le> inverse b" and apos: "0 < a"
585  shows "b \<le> a"
586proof (rule classical)
587  assume "\<not> b \<le> a"
588  hence "a < b"  by (simp add: linorder_not_le)
589  hence bpos: "0 < b"  by (blast intro: apos less_trans)
590  hence "a * inverse a \<le> a * inverse b"
591    by (simp add: apos invle less_imp_le mult_left_mono)
592  hence "(a * inverse a) * b \<le> (a * inverse b) * b"
593    by (simp add: bpos less_imp_le mult_right_mono)
594  thus "b \<le> a"  by (simp add: mult.assoc apos bpos less_imp_not_eq2)
595qed
596
597lemma inverse_positive_imp_positive:
598  assumes inv_gt_0: "0 < inverse a" and nz: "a \<noteq> 0"
599  shows "0 < a"
600proof -
601  have "0 < inverse (inverse a)"
602    using inv_gt_0 by (rule positive_imp_inverse_positive)
603  thus "0 < a"
604    using nz by (simp add: nonzero_inverse_inverse_eq)
605qed
606
607lemma inverse_negative_imp_negative:
608  assumes inv_less_0: "inverse a < 0" and nz: "a \<noteq> 0"
609  shows "a < 0"
610proof -
611  have "inverse (inverse a) < 0"
612    using inv_less_0 by (rule negative_imp_inverse_negative)
613  thus "a < 0" using nz by (simp add: nonzero_inverse_inverse_eq)
614qed
615
616lemma linordered_field_no_lb:
617  "\<forall>x. \<exists>y. y < x"
618proof
619  fix x::'a
620  have m1: "- (1::'a) < 0" by simp
621  from add_strict_right_mono[OF m1, where c=x]
622  have "(- 1) + x < x" by simp
623  thus "\<exists>y. y < x" by blast
624qed
625
626lemma linordered_field_no_ub:
627  "\<forall> x. \<exists>y. y > x"
628proof
629  fix x::'a
630  have m1: " (1::'a) > 0" by simp
631  from add_strict_right_mono[OF m1, where c=x]
632  have "1 + x > x" by simp
633  thus "\<exists>y. y > x" by blast
634qed
635
636lemma less_imp_inverse_less:
637  assumes less: "a < b" and apos:  "0 < a"
638  shows "inverse b < inverse a"
639proof (rule ccontr)
640  assume "\<not> inverse b < inverse a"
641  hence "inverse a \<le> inverse b" by simp
642  hence "\<not> (a < b)"
643    by (simp add: not_less inverse_le_imp_le [OF _ apos])
644  thus False by (rule notE [OF _ less])
645qed
646
647lemma inverse_less_imp_less:
648  "inverse a < inverse b \<Longrightarrow> 0 < a \<Longrightarrow> b < a"
649apply (simp add: less_le [of "inverse a"] less_le [of "b"])
650apply (force dest!: inverse_le_imp_le nonzero_inverse_eq_imp_eq)
651done
652
653text\<open>Both premises are essential. Consider -1 and 1.\<close>
654lemma inverse_less_iff_less [simp]:
655  "0 < a \<Longrightarrow> 0 < b \<Longrightarrow> inverse a < inverse b \<longleftrightarrow> b < a"
656  by (blast intro: less_imp_inverse_less dest: inverse_less_imp_less)
657
658lemma le_imp_inverse_le:
659  "a \<le> b \<Longrightarrow> 0 < a \<Longrightarrow> inverse b \<le> inverse a"
660  by (force simp add: le_less less_imp_inverse_less)
661
662lemma inverse_le_iff_le [simp]:
663  "0 < a \<Longrightarrow> 0 < b \<Longrightarrow> inverse a \<le> inverse b \<longleftrightarrow> b \<le> a"
664  by (blast intro: le_imp_inverse_le dest: inverse_le_imp_le)
665
666
667text\<open>These results refer to both operands being negative.  The opposite-sign
668case is trivial, since inverse preserves signs.\<close>
669lemma inverse_le_imp_le_neg:
670  "inverse a \<le> inverse b \<Longrightarrow> b < 0 \<Longrightarrow> b \<le> a"
671apply (rule classical)
672apply (subgoal_tac "a < 0")
673 prefer 2 apply force
674apply (insert inverse_le_imp_le [of "-b" "-a"])
675apply (simp add: nonzero_inverse_minus_eq)
676done
677
678lemma less_imp_inverse_less_neg:
679   "a < b \<Longrightarrow> b < 0 \<Longrightarrow> inverse b < inverse a"
680apply (subgoal_tac "a < 0")
681 prefer 2 apply (blast intro: less_trans)
682apply (insert less_imp_inverse_less [of "-b" "-a"])
683apply (simp add: nonzero_inverse_minus_eq)
684done
685
686lemma inverse_less_imp_less_neg:
687   "inverse a < inverse b \<Longrightarrow> b < 0 \<Longrightarrow> b < a"
688apply (rule classical)
689apply (subgoal_tac "a < 0")
690 prefer 2
691 apply force
692apply (insert inverse_less_imp_less [of "-b" "-a"])
693apply (simp add: nonzero_inverse_minus_eq)
694done
695
696lemma inverse_less_iff_less_neg [simp]:
697  "a < 0 \<Longrightarrow> b < 0 \<Longrightarrow> inverse a < inverse b \<longleftrightarrow> b < a"
698apply (insert inverse_less_iff_less [of "-b" "-a"])
699apply (simp del: inverse_less_iff_less
700            add: nonzero_inverse_minus_eq)
701done
702
703lemma le_imp_inverse_le_neg:
704  "a \<le> b \<Longrightarrow> b < 0 ==> inverse b \<le> inverse a"
705  by (force simp add: le_less less_imp_inverse_less_neg)
706
707lemma inverse_le_iff_le_neg [simp]:
708  "a < 0 \<Longrightarrow> b < 0 \<Longrightarrow> inverse a \<le> inverse b \<longleftrightarrow> b \<le> a"
709  by (blast intro: le_imp_inverse_le_neg dest: inverse_le_imp_le_neg)
710
711lemma one_less_inverse:
712  "0 < a \<Longrightarrow> a < 1 \<Longrightarrow> 1 < inverse a"
713  using less_imp_inverse_less [of a 1, unfolded inverse_1] .
714
715lemma one_le_inverse:
716  "0 < a \<Longrightarrow> a \<le> 1 \<Longrightarrow> 1 \<le> inverse a"
717  using le_imp_inverse_le [of a 1, unfolded inverse_1] .
718
719lemma pos_le_divide_eq [field_simps]:
720  assumes "0 < c"
721  shows "a \<le> b / c \<longleftrightarrow> a * c \<le> b"
722proof -
723  from assms have "a \<le> b / c \<longleftrightarrow> a * c \<le> (b / c) * c"
724    using mult_le_cancel_right [of a c "b * inverse c"] by (auto simp add: field_simps)
725  also have "... \<longleftrightarrow> a * c \<le> b"
726    by (simp add: less_imp_not_eq2 [OF assms] divide_inverse mult.assoc)
727  finally show ?thesis .
728qed
729
730lemma pos_less_divide_eq [field_simps]:
731  assumes "0 < c"
732  shows "a < b / c \<longleftrightarrow> a * c < b"
733proof -
734  from assms have "a < b / c \<longleftrightarrow> a * c < (b / c) * c"
735    using mult_less_cancel_right [of a c "b / c"] by auto
736  also have "... = (a*c < b)"
737    by (simp add: less_imp_not_eq2 [OF assms] divide_inverse mult.assoc)
738  finally show ?thesis .
739qed
740
741lemma neg_less_divide_eq [field_simps]:
742  assumes "c < 0"
743  shows "a < b / c \<longleftrightarrow> b < a * c"
744proof -
745  from assms have "a < b / c \<longleftrightarrow> (b / c) * c < a * c"
746    using mult_less_cancel_right [of "b / c" c a] by auto
747  also have "... \<longleftrightarrow> b < a * c"
748    by (simp add: less_imp_not_eq [OF assms] divide_inverse mult.assoc)
749  finally show ?thesis .
750qed
751
752lemma neg_le_divide_eq [field_simps]:
753  assumes "c < 0"
754  shows "a \<le> b / c \<longleftrightarrow> b \<le> a * c"
755proof -
756  from assms have "a \<le> b / c \<longleftrightarrow> (b / c) * c \<le> a * c"
757    using mult_le_cancel_right [of "b * inverse c" c a] by (auto simp add: field_simps)
758  also have "... \<longleftrightarrow> b \<le> a * c"
759    by (simp add: less_imp_not_eq [OF assms] divide_inverse mult.assoc)
760  finally show ?thesis .
761qed
762
763lemma pos_divide_le_eq [field_simps]:
764  assumes "0 < c"
765  shows "b / c \<le> a \<longleftrightarrow> b \<le> a * c"
766proof -
767  from assms have "b / c \<le> a \<longleftrightarrow> (b / c) * c \<le> a * c"
768    using mult_le_cancel_right [of "b / c" c a] by auto
769  also have "... \<longleftrightarrow> b \<le> a * c"
770    by (simp add: less_imp_not_eq2 [OF assms] divide_inverse mult.assoc)
771  finally show ?thesis .
772qed
773
774lemma pos_divide_less_eq [field_simps]:
775  assumes "0 < c"
776  shows "b / c < a \<longleftrightarrow> b < a * c"
777proof -
778  from assms have "b / c < a \<longleftrightarrow> (b / c) * c < a * c"
779    using mult_less_cancel_right [of "b / c" c a] by auto
780  also have "... \<longleftrightarrow> b < a * c"
781    by (simp add: less_imp_not_eq2 [OF assms] divide_inverse mult.assoc)
782  finally show ?thesis .
783qed
784
785lemma neg_divide_le_eq [field_simps]:
786  assumes "c < 0"
787  shows "b / c \<le> a \<longleftrightarrow> a * c \<le> b"
788proof -
789  from assms have "b / c \<le> a \<longleftrightarrow> a * c \<le> (b / c) * c"
790    using mult_le_cancel_right [of a c "b / c"] by auto
791  also have "... \<longleftrightarrow> a * c \<le> b"
792    by (simp add: less_imp_not_eq [OF assms] divide_inverse mult.assoc)
793  finally show ?thesis .
794qed
795
796lemma neg_divide_less_eq [field_simps]:
797  assumes "c < 0"
798  shows "b / c < a \<longleftrightarrow> a * c < b"
799proof -
800  from assms have "b / c < a \<longleftrightarrow> a * c < b / c * c"
801    using mult_less_cancel_right [of a c "b / c"] by auto
802  also have "... \<longleftrightarrow> a * c < b"
803    by (simp add: less_imp_not_eq [OF assms] divide_inverse mult.assoc)
804  finally show ?thesis .
805qed
806
807text\<open>The following \<open>field_simps\<close> rules are necessary, as minus is always moved atop of
808division but we want to get rid of division.\<close>
809
810lemma pos_le_minus_divide_eq [field_simps]: "0 < c \<Longrightarrow> a \<le> - (b / c) \<longleftrightarrow> a * c \<le> - b"
811  unfolding minus_divide_left by (rule pos_le_divide_eq)
812
813lemma neg_le_minus_divide_eq [field_simps]: "c < 0 \<Longrightarrow> a \<le> - (b / c) \<longleftrightarrow> - b \<le> a * c"
814  unfolding minus_divide_left by (rule neg_le_divide_eq)
815
816lemma pos_less_minus_divide_eq [field_simps]: "0 < c \<Longrightarrow> a < - (b / c) \<longleftrightarrow> a * c < - b"
817  unfolding minus_divide_left by (rule pos_less_divide_eq)
818
819lemma neg_less_minus_divide_eq [field_simps]: "c < 0 \<Longrightarrow> a < - (b / c) \<longleftrightarrow> - b < a * c"
820  unfolding minus_divide_left by (rule neg_less_divide_eq)
821
822lemma pos_minus_divide_less_eq [field_simps]: "0 < c \<Longrightarrow> - (b / c) < a \<longleftrightarrow> - b < a * c"
823  unfolding minus_divide_left by (rule pos_divide_less_eq)
824
825lemma neg_minus_divide_less_eq [field_simps]: "c < 0 \<Longrightarrow> - (b / c) < a \<longleftrightarrow> a * c < - b"
826  unfolding minus_divide_left by (rule neg_divide_less_eq)
827
828lemma pos_minus_divide_le_eq [field_simps]: "0 < c \<Longrightarrow> - (b / c) \<le> a \<longleftrightarrow> - b \<le> a * c"
829  unfolding minus_divide_left by (rule pos_divide_le_eq)
830
831lemma neg_minus_divide_le_eq [field_simps]: "c < 0 \<Longrightarrow> - (b / c) \<le> a \<longleftrightarrow> a * c \<le> - b"
832  unfolding minus_divide_left by (rule neg_divide_le_eq)
833
834lemma frac_less_eq:
835  "y \<noteq> 0 \<Longrightarrow> z \<noteq> 0 \<Longrightarrow> x / y < w / z \<longleftrightarrow> (x * z - w * y) / (y * z) < 0"
836  by (subst less_iff_diff_less_0) (simp add: diff_frac_eq )
837
838lemma frac_le_eq:
839  "y \<noteq> 0 \<Longrightarrow> z \<noteq> 0 \<Longrightarrow> x / y \<le> w / z \<longleftrightarrow> (x * z - w * y) / (y * z) \<le> 0"
840  by (subst le_iff_diff_le_0) (simp add: diff_frac_eq )
841
842text\<open>Lemmas \<open>sign_simps\<close> is a first attempt to automate proofs
843of positivity/negativity needed for \<open>field_simps\<close>. Have not added \<open>sign_simps\<close> to \<open>field_simps\<close> because the former can lead to case
844explosions.\<close>
845
846(* Only works once linear arithmetic is installed:
847text{*An example:*}
848lemma fixes a b c d e f :: "'a::linordered_field"
849shows "\<lbrakk>a>b; c<d; e<f; 0 < u \<rbrakk> \<Longrightarrow>
850 ((a-b)*(c-d)*(e-f))/((c-d)*(e-f)*(a-b)) <
851 ((e-f)*(a-b)*(c-d))/((e-f)*(a-b)*(c-d)) + u"
852apply(subgoal_tac "(c-d)*(e-f)*(a-b) > 0")
853 prefer 2 apply(simp add:sign_simps)
854apply(subgoal_tac "(c-d)*(e-f)*(a-b)*u > 0")
855 prefer 2 apply(simp add:sign_simps)
856apply(simp add:field_simps)
857done
858*)
859
860lemma divide_pos_pos[simp]:
861  "0 < x ==> 0 < y ==> 0 < x / y"
862by(simp add:field_simps)
863
864lemma divide_nonneg_pos:
865  "0 <= x ==> 0 < y ==> 0 <= x / y"
866by(simp add:field_simps)
867
868lemma divide_neg_pos:
869  "x < 0 ==> 0 < y ==> x / y < 0"
870by(simp add:field_simps)
871
872lemma divide_nonpos_pos:
873  "x <= 0 ==> 0 < y ==> x / y <= 0"
874by(simp add:field_simps)
875
876lemma divide_pos_neg:
877  "0 < x ==> y < 0 ==> x / y < 0"
878by(simp add:field_simps)
879
880lemma divide_nonneg_neg:
881  "0 <= x ==> y < 0 ==> x / y <= 0"
882by(simp add:field_simps)
883
884lemma divide_neg_neg:
885  "x < 0 ==> y < 0 ==> 0 < x / y"
886by(simp add:field_simps)
887
888lemma divide_nonpos_neg:
889  "x <= 0 ==> y < 0 ==> 0 <= x / y"
890by(simp add:field_simps)
891
892lemma divide_strict_right_mono:
893     "[|a < b; 0 < c|] ==> a / c < b / c"
894by (simp add: less_imp_not_eq2 divide_inverse mult_strict_right_mono
895              positive_imp_inverse_positive)
896
897
898lemma divide_strict_right_mono_neg:
899     "[|b < a; c < 0|] ==> a / c < b / c"
900apply (drule divide_strict_right_mono [of _ _ "-c"], simp)
901apply (simp add: less_imp_not_eq nonzero_minus_divide_right [symmetric])
902done
903
904text\<open>The last premise ensures that @{term a} and @{term b}
905      have the same sign\<close>
906lemma divide_strict_left_mono:
907  "[|b < a; 0 < c; 0 < a*b|] ==> c / a < c / b"
908  by (auto simp: field_simps zero_less_mult_iff mult_strict_right_mono)
909
910lemma divide_left_mono:
911  "[|b \<le> a; 0 \<le> c; 0 < a*b|] ==> c / a \<le> c / b"
912  by (auto simp: field_simps zero_less_mult_iff mult_right_mono)
913
914lemma divide_strict_left_mono_neg:
915  "[|a < b; c < 0; 0 < a*b|] ==> c / a < c / b"
916  by (auto simp: field_simps zero_less_mult_iff mult_strict_right_mono_neg)
917
918lemma mult_imp_div_pos_le: "0 < y ==> x <= z * y ==>
919    x / y <= z"
920by (subst pos_divide_le_eq, assumption+)
921
922lemma mult_imp_le_div_pos: "0 < y ==> z * y <= x ==>
923    z <= x / y"
924by(simp add:field_simps)
925
926lemma mult_imp_div_pos_less: "0 < y ==> x < z * y ==>
927    x / y < z"
928by(simp add:field_simps)
929
930lemma mult_imp_less_div_pos: "0 < y ==> z * y < x ==>
931    z < x / y"
932by(simp add:field_simps)
933
934lemma frac_le: "0 <= x ==>
935    x <= y ==> 0 < w ==> w <= z  ==> x / z <= y / w"
936  apply (rule mult_imp_div_pos_le)
937  apply simp
938  apply (subst times_divide_eq_left)
939  apply (rule mult_imp_le_div_pos, assumption)
940  apply (rule mult_mono)
941  apply simp_all
942done
943
944lemma frac_less: "0 <= x ==>
945    x < y ==> 0 < w ==> w <= z  ==> x / z < y / w"
946  apply (rule mult_imp_div_pos_less)
947  apply simp
948  apply (subst times_divide_eq_left)
949  apply (rule mult_imp_less_div_pos, assumption)
950  apply (erule mult_less_le_imp_less)
951  apply simp_all
952done
953
954lemma frac_less2: "0 < x ==>
955    x <= y ==> 0 < w ==> w < z  ==> x / z < y / w"
956  apply (rule mult_imp_div_pos_less)
957  apply simp_all
958  apply (rule mult_imp_less_div_pos, assumption)
959  apply (erule mult_le_less_imp_less)
960  apply simp_all
961done
962
963lemma less_half_sum: "a < b ==> a < (a+b) / (1+1)"
964by (simp add: field_simps zero_less_two)
965
966lemma gt_half_sum: "a < b ==> (a+b)/(1+1) < b"
967by (simp add: field_simps zero_less_two)
968
969subclass unbounded_dense_linorder
970proof
971  fix x y :: 'a
972  from less_add_one show "\<exists>y. x < y" ..
973  from less_add_one have "x + (- 1) < (x + 1) + (- 1)" by (rule add_strict_right_mono)
974  then have "x - 1 < x + 1 - 1" by simp
975  then have "x - 1 < x" by (simp add: algebra_simps)
976  then show "\<exists>y. y < x" ..
977  show "x < y \<Longrightarrow> \<exists>z>x. z < y" by (blast intro!: less_half_sum gt_half_sum)
978qed
979
980subclass field_abs_sgn ..
981
982lemma inverse_sgn [simp]:
983  "inverse (sgn a) = sgn a"
984  by (cases a 0 rule: linorder_cases) simp_all
985
986lemma divide_sgn [simp]:
987  "a / sgn b = a * sgn b"
988  by (cases b 0 rule: linorder_cases) simp_all
989
990lemma nonzero_abs_inverse:
991  "a \<noteq> 0 ==> \<bar>inverse a\<bar> = inverse \<bar>a\<bar>"
992  by (rule abs_inverse)
993
994lemma nonzero_abs_divide:
995  "b \<noteq> 0 ==> \<bar>a / b\<bar> = \<bar>a\<bar> / \<bar>b\<bar>"
996  by (rule abs_divide)
997
998lemma field_le_epsilon:
999  assumes e: "\<And>e. 0 < e \<Longrightarrow> x \<le> y + e"
1000  shows "x \<le> y"
1001proof (rule dense_le)
1002  fix t assume "t < x"
1003  hence "0 < x - t" by (simp add: less_diff_eq)
1004  from e [OF this] have "x + 0 \<le> x + (y - t)" by (simp add: algebra_simps)
1005  then have "0 \<le> y - t" by (simp only: add_le_cancel_left)
1006  then show "t \<le> y" by (simp add: algebra_simps)
1007qed
1008
1009lemma inverse_positive_iff_positive [simp]:
1010  "(0 < inverse a) = (0 < a)"
1011apply (cases "a = 0", simp)
1012apply (blast intro: inverse_positive_imp_positive positive_imp_inverse_positive)
1013done
1014
1015lemma inverse_negative_iff_negative [simp]:
1016  "(inverse a < 0) = (a < 0)"
1017apply (cases "a = 0", simp)
1018apply (blast intro: inverse_negative_imp_negative negative_imp_inverse_negative)
1019done
1020
1021lemma inverse_nonnegative_iff_nonnegative [simp]:
1022  "0 \<le> inverse a \<longleftrightarrow> 0 \<le> a"
1023  by (simp add: not_less [symmetric])
1024
1025lemma inverse_nonpositive_iff_nonpositive [simp]:
1026  "inverse a \<le> 0 \<longleftrightarrow> a \<le> 0"
1027  by (simp add: not_less [symmetric])
1028
1029lemma one_less_inverse_iff: "1 < inverse x \<longleftrightarrow> 0 < x \<and> x < 1"
1030  using less_trans[of 1 x 0 for x]
1031  by (cases x 0 rule: linorder_cases) (auto simp add: field_simps)
1032
1033lemma one_le_inverse_iff: "1 \<le> inverse x \<longleftrightarrow> 0 < x \<and> x \<le> 1"
1034proof (cases "x = 1")
1035  case True then show ?thesis by simp
1036next
1037  case False then have "inverse x \<noteq> 1" by simp
1038  then have "1 \<noteq> inverse x" by blast
1039  then have "1 \<le> inverse x \<longleftrightarrow> 1 < inverse x" by (simp add: le_less)
1040  with False show ?thesis by (auto simp add: one_less_inverse_iff)
1041qed
1042
1043lemma inverse_less_1_iff: "inverse x < 1 \<longleftrightarrow> x \<le> 0 \<or> 1 < x"
1044  by (simp add: not_le [symmetric] one_le_inverse_iff)
1045
1046lemma inverse_le_1_iff: "inverse x \<le> 1 \<longleftrightarrow> x \<le> 0 \<or> 1 \<le> x"
1047  by (simp add: not_less [symmetric] one_less_inverse_iff)
1048
1049lemma [divide_simps]:
1050  shows le_divide_eq: "a \<le> b / c \<longleftrightarrow> (if 0 < c then a * c \<le> b else if c < 0 then b \<le> a * c else a \<le> 0)"
1051    and divide_le_eq: "b / c \<le> a \<longleftrightarrow> (if 0 < c then b \<le> a * c else if c < 0 then a * c \<le> b else 0 \<le> a)"
1052    and less_divide_eq: "a < b / c \<longleftrightarrow> (if 0 < c then a * c < b else if c < 0 then b < a * c else a < 0)"
1053    and divide_less_eq: "b / c < a \<longleftrightarrow> (if 0 < c then b < a * c else if c < 0 then a * c < b else 0 < a)"
1054    and le_minus_divide_eq: "a \<le> - (b / c) \<longleftrightarrow> (if 0 < c then a * c \<le> - b else if c < 0 then - b \<le> a * c else a \<le> 0)"
1055    and minus_divide_le_eq: "- (b / c) \<le> a \<longleftrightarrow> (if 0 < c then - b \<le> a * c else if c < 0 then a * c \<le> - b else 0 \<le> a)"
1056    and less_minus_divide_eq: "a < - (b / c) \<longleftrightarrow> (if 0 < c then a * c < - b else if c < 0 then - b < a * c else  a < 0)"
1057    and minus_divide_less_eq: "- (b / c) < a \<longleftrightarrow> (if 0 < c then - b < a * c else if c < 0 then a * c < - b else 0 < a)"
1058  by (auto simp: field_simps not_less dest: antisym)
1059
1060text \<open>Division and Signs\<close>
1061
1062lemma
1063  shows zero_less_divide_iff: "0 < a / b \<longleftrightarrow> 0 < a \<and> 0 < b \<or> a < 0 \<and> b < 0"
1064    and divide_less_0_iff: "a / b < 0 \<longleftrightarrow> 0 < a \<and> b < 0 \<or> a < 0 \<and> 0 < b"
1065    and zero_le_divide_iff: "0 \<le> a / b \<longleftrightarrow> 0 \<le> a \<and> 0 \<le> b \<or> a \<le> 0 \<and> b \<le> 0"
1066    and divide_le_0_iff: "a / b \<le> 0 \<longleftrightarrow> 0 \<le> a \<and> b \<le> 0 \<or> a \<le> 0 \<and> 0 \<le> b"
1067  by (auto simp add: divide_simps)
1068
1069text \<open>Division and the Number One\<close>
1070
1071text\<open>Simplify expressions equated with 1\<close>
1072
1073lemma zero_eq_1_divide_iff [simp]: "0 = 1 / a \<longleftrightarrow> a = 0"
1074  by (cases "a = 0") (auto simp: field_simps)
1075
1076lemma one_divide_eq_0_iff [simp]: "1 / a = 0 \<longleftrightarrow> a = 0"
1077  using zero_eq_1_divide_iff[of a] by simp
1078
1079text\<open>Simplify expressions such as \<open>0 < 1/x\<close> to \<open>0 < x\<close>\<close>
1080
1081lemma zero_le_divide_1_iff [simp]:
1082  "0 \<le> 1 / a \<longleftrightarrow> 0 \<le> a"
1083  by (simp add: zero_le_divide_iff)
1084
1085lemma zero_less_divide_1_iff [simp]:
1086  "0 < 1 / a \<longleftrightarrow> 0 < a"
1087  by (simp add: zero_less_divide_iff)
1088
1089lemma divide_le_0_1_iff [simp]:
1090  "1 / a \<le> 0 \<longleftrightarrow> a \<le> 0"
1091  by (simp add: divide_le_0_iff)
1092
1093lemma divide_less_0_1_iff [simp]:
1094  "1 / a < 0 \<longleftrightarrow> a < 0"
1095  by (simp add: divide_less_0_iff)
1096
1097lemma divide_right_mono:
1098     "[|a \<le> b; 0 \<le> c|] ==> a/c \<le> b/c"
1099by (force simp add: divide_strict_right_mono le_less)
1100
1101lemma divide_right_mono_neg: "a <= b
1102    ==> c <= 0 ==> b / c <= a / c"
1103apply (drule divide_right_mono [of _ _ "- c"])
1104apply auto
1105done
1106
1107lemma divide_left_mono_neg: "a <= b
1108    ==> c <= 0 ==> 0 < a * b ==> c / a <= c / b"
1109  apply (drule divide_left_mono [of _ _ "- c"])
1110  apply (auto simp add: mult.commute)
1111done
1112
1113lemma inverse_le_iff: "inverse a \<le> inverse b \<longleftrightarrow> (0 < a * b \<longrightarrow> b \<le> a) \<and> (a * b \<le> 0 \<longrightarrow> a \<le> b)"
1114  by (cases a 0 b 0 rule: linorder_cases[case_product linorder_cases])
1115     (auto simp add: field_simps zero_less_mult_iff mult_le_0_iff)
1116
1117lemma inverse_less_iff: "inverse a < inverse b \<longleftrightarrow> (0 < a * b \<longrightarrow> b < a) \<and> (a * b \<le> 0 \<longrightarrow> a < b)"
1118  by (subst less_le) (auto simp: inverse_le_iff)
1119
1120lemma divide_le_cancel: "a / c \<le> b / c \<longleftrightarrow> (0 < c \<longrightarrow> a \<le> b) \<and> (c < 0 \<longrightarrow> b \<le> a)"
1121  by (simp add: divide_inverse mult_le_cancel_right)
1122
1123lemma divide_less_cancel: "a / c < b / c \<longleftrightarrow> (0 < c \<longrightarrow> a < b) \<and> (c < 0 \<longrightarrow> b < a) \<and> c \<noteq> 0"
1124  by (auto simp add: divide_inverse mult_less_cancel_right)
1125
1126text\<open>Simplify quotients that are compared with the value 1.\<close>
1127
1128lemma le_divide_eq_1:
1129  "(1 \<le> b / a) = ((0 < a \<and> a \<le> b) \<or> (a < 0 \<and> b \<le> a))"
1130by (auto simp add: le_divide_eq)
1131
1132lemma divide_le_eq_1:
1133  "(b / a \<le> 1) = ((0 < a \<and> b \<le> a) \<or> (a < 0 \<and> a \<le> b) \<or> a=0)"
1134by (auto simp add: divide_le_eq)
1135
1136lemma less_divide_eq_1:
1137  "(1 < b / a) = ((0 < a \<and> a < b) \<or> (a < 0 \<and> b < a))"
1138by (auto simp add: less_divide_eq)
1139
1140lemma divide_less_eq_1:
1141  "(b / a < 1) = ((0 < a \<and> b < a) \<or> (a < 0 \<and> a < b) \<or> a=0)"
1142by (auto simp add: divide_less_eq)
1143
1144lemma divide_nonneg_nonneg [simp]:
1145  "0 \<le> x \<Longrightarrow> 0 \<le> y \<Longrightarrow> 0 \<le> x / y"
1146  by (auto simp add: divide_simps)
1147
1148lemma divide_nonpos_nonpos:
1149  "x \<le> 0 \<Longrightarrow> y \<le> 0 \<Longrightarrow> 0 \<le> x / y"
1150  by (auto simp add: divide_simps)
1151
1152lemma divide_nonneg_nonpos:
1153  "0 \<le> x \<Longrightarrow> y \<le> 0 \<Longrightarrow> x / y \<le> 0"
1154  by (auto simp add: divide_simps)
1155
1156lemma divide_nonpos_nonneg:
1157  "x \<le> 0 \<Longrightarrow> 0 \<le> y \<Longrightarrow> x / y \<le> 0"
1158  by (auto simp add: divide_simps)
1159
1160text \<open>Conditional Simplification Rules: No Case Splits\<close>
1161
1162lemma le_divide_eq_1_pos [simp]:
1163  "0 < a \<Longrightarrow> (1 \<le> b/a) = (a \<le> b)"
1164by (auto simp add: le_divide_eq)
1165
1166lemma le_divide_eq_1_neg [simp]:
1167  "a < 0 \<Longrightarrow> (1 \<le> b/a) = (b \<le> a)"
1168by (auto simp add: le_divide_eq)
1169
1170lemma divide_le_eq_1_pos [simp]:
1171  "0 < a \<Longrightarrow> (b/a \<le> 1) = (b \<le> a)"
1172by (auto simp add: divide_le_eq)
1173
1174lemma divide_le_eq_1_neg [simp]:
1175  "a < 0 \<Longrightarrow> (b/a \<le> 1) = (a \<le> b)"
1176by (auto simp add: divide_le_eq)
1177
1178lemma less_divide_eq_1_pos [simp]:
1179  "0 < a \<Longrightarrow> (1 < b/a) = (a < b)"
1180by (auto simp add: less_divide_eq)
1181
1182lemma less_divide_eq_1_neg [simp]:
1183  "a < 0 \<Longrightarrow> (1 < b/a) = (b < a)"
1184by (auto simp add: less_divide_eq)
1185
1186lemma divide_less_eq_1_pos [simp]:
1187  "0 < a \<Longrightarrow> (b/a < 1) = (b < a)"
1188by (auto simp add: divide_less_eq)
1189
1190lemma divide_less_eq_1_neg [simp]:
1191  "a < 0 \<Longrightarrow> b/a < 1 \<longleftrightarrow> a < b"
1192by (auto simp add: divide_less_eq)
1193
1194lemma eq_divide_eq_1 [simp]:
1195  "(1 = b/a) = ((a \<noteq> 0 \<and> a = b))"
1196by (auto simp add: eq_divide_eq)
1197
1198lemma divide_eq_eq_1 [simp]:
1199  "(b/a = 1) = ((a \<noteq> 0 \<and> a = b))"
1200by (auto simp add: divide_eq_eq)
1201
1202lemma abs_div_pos: "0 < y ==>
1203    \<bar>x\<bar> / y = \<bar>x / y\<bar>"
1204  apply (subst abs_divide)
1205  apply (simp add: order_less_imp_le)
1206done
1207
1208lemma zero_le_divide_abs_iff [simp]: "(0 \<le> a / \<bar>b\<bar>) = (0 \<le> a \<or> b = 0)"
1209by (auto simp: zero_le_divide_iff)
1210
1211lemma divide_le_0_abs_iff [simp]: "(a / \<bar>b\<bar> \<le> 0) = (a \<le> 0 \<or> b = 0)"
1212by (auto simp: divide_le_0_iff)
1213
1214lemma field_le_mult_one_interval:
1215  assumes *: "\<And>z. \<lbrakk> 0 < z ; z < 1 \<rbrakk> \<Longrightarrow> z * x \<le> y"
1216  shows "x \<le> y"
1217proof (cases "0 < x")
1218  assume "0 < x"
1219  thus ?thesis
1220    using dense_le_bounded[of 0 1 "y/x"] *
1221    unfolding le_divide_eq if_P[OF \<open>0 < x\<close>] by simp
1222next
1223  assume "\<not>0 < x" hence "x \<le> 0" by simp
1224  obtain s::'a where s: "0 < s" "s < 1" using dense[of 0 "1::'a"] by auto
1225  hence "x \<le> s * x" using mult_le_cancel_right[of 1 x s] \<open>x \<le> 0\<close> by auto
1226  also note *[OF s]
1227  finally show ?thesis .
1228qed
1229
1230text\<open>For creating values between @{term u} and @{term v}.\<close>
1231lemma scaling_mono:
1232  assumes "u \<le> v" "0 \<le> r" "r \<le> s"
1233    shows "u + r * (v - u) / s \<le> v"
1234proof -
1235  have "r/s \<le> 1" using assms
1236    using divide_le_eq_1 by fastforce
1237  then have "(r/s) * (v - u) \<le> 1 * (v - u)"
1238    apply (rule mult_right_mono)
1239    using assms by simp
1240  then show ?thesis
1241    by (simp add: field_simps)
1242qed
1243
1244end
1245
1246text \<open>Min/max Simplification Rules\<close>
1247
1248lemma min_mult_distrib_left:
1249  fixes x::"'a::linordered_idom" 
1250  shows "p * min x y = (if 0 \<le> p then min (p*x) (p*y) else max (p*x) (p*y))"
1251by (auto simp add: min_def max_def mult_le_cancel_left)
1252
1253lemma min_mult_distrib_right:
1254  fixes x::"'a::linordered_idom" 
1255  shows "min x y * p = (if 0 \<le> p then min (x*p) (y*p) else max (x*p) (y*p))"
1256by (auto simp add: min_def max_def mult_le_cancel_right)
1257
1258lemma min_divide_distrib_right:
1259  fixes x::"'a::linordered_field" 
1260  shows "min x y / p = (if 0 \<le> p then min (x/p) (y/p) else max (x/p) (y/p))"
1261by (simp add: min_mult_distrib_right divide_inverse)
1262
1263lemma max_mult_distrib_left:
1264  fixes x::"'a::linordered_idom" 
1265  shows "p * max x y = (if 0 \<le> p then max (p*x) (p*y) else min (p*x) (p*y))"
1266by (auto simp add: min_def max_def mult_le_cancel_left)
1267
1268lemma max_mult_distrib_right:
1269  fixes x::"'a::linordered_idom" 
1270  shows "max x y * p = (if 0 \<le> p then max (x*p) (y*p) else min (x*p) (y*p))"
1271by (auto simp add: min_def max_def mult_le_cancel_right)
1272
1273lemma max_divide_distrib_right:
1274  fixes x::"'a::linordered_field" 
1275  shows "max x y / p = (if 0 \<le> p then max (x/p) (y/p) else min (x/p) (y/p))"
1276by (simp add: max_mult_distrib_right divide_inverse)
1277
1278hide_fact (open) field_inverse field_divide_inverse field_inverse_zero
1279
1280code_identifier
1281  code_module Fields \<rightharpoonup> (SML) Arith and (OCaml) Arith and (Haskell) Arith
1282
1283end
1284