1(*  Title:      HOL/Equiv_Relations.thy
2    Author:     Lawrence C Paulson, 1996 Cambridge University Computer Laboratory
3*)
4
5section \<open>Equivalence Relations in Higher-Order Set Theory\<close>
6
7theory Equiv_Relations
8  imports Groups_Big
9begin
10
11subsection \<open>Equivalence relations -- set version\<close>
12
13definition equiv :: "'a set \<Rightarrow> ('a \<times> 'a) set \<Rightarrow> bool"
14  where "equiv A r \<longleftrightarrow> refl_on A r \<and> sym r \<and> trans r"
15
16lemma equivI: "refl_on A r \<Longrightarrow> sym r \<Longrightarrow> trans r \<Longrightarrow> equiv A r"
17  by (simp add: equiv_def)
18
19lemma equivE:
20  assumes "equiv A r"
21  obtains "refl_on A r" and "sym r" and "trans r"
22  using assms by (simp add: equiv_def)
23
24text \<open>
25  Suppes, Theorem 70: \<open>r\<close> is an equiv relation iff \<open>r\<inverse> O r = r\<close>.
26
27  First half: \<open>equiv A r \<Longrightarrow> r\<inverse> O r = r\<close>.
28\<close>
29
30lemma sym_trans_comp_subset: "sym r \<Longrightarrow> trans r \<Longrightarrow> r\<inverse> O r \<subseteq> r"
31  unfolding trans_def sym_def converse_unfold by blast
32
33lemma refl_on_comp_subset: "refl_on A r \<Longrightarrow> r \<subseteq> r\<inverse> O r"
34  unfolding refl_on_def by blast
35
36lemma equiv_comp_eq: "equiv A r \<Longrightarrow> r\<inverse> O r = r"
37  apply (unfold equiv_def)
38  apply clarify
39  apply (rule equalityI)
40   apply (iprover intro: sym_trans_comp_subset refl_on_comp_subset)+
41  done
42
43text \<open>Second half.\<close>
44
45lemma comp_equivI: "r\<inverse> O r = r \<Longrightarrow> Domain r = A \<Longrightarrow> equiv A r"
46  apply (unfold equiv_def refl_on_def sym_def trans_def)
47  apply (erule equalityE)
48  apply (subgoal_tac "\<forall>x y. (x, y) \<in> r \<longrightarrow> (y, x) \<in> r")
49   apply fast
50  apply fast
51  done
52
53
54subsection \<open>Equivalence classes\<close>
55
56lemma equiv_class_subset: "equiv A r \<Longrightarrow> (a, b) \<in> r \<Longrightarrow> r``{a} \<subseteq> r``{b}"
57  \<comment> \<open>lemma for the next result\<close>
58  unfolding equiv_def trans_def sym_def by blast
59
60theorem equiv_class_eq: "equiv A r \<Longrightarrow> (a, b) \<in> r \<Longrightarrow> r``{a} = r``{b}"
61  apply (assumption | rule equalityI equiv_class_subset)+
62  apply (unfold equiv_def sym_def)
63  apply blast
64  done
65
66lemma equiv_class_self: "equiv A r \<Longrightarrow> a \<in> A \<Longrightarrow> a \<in> r``{a}"
67  unfolding equiv_def refl_on_def by blast
68
69lemma subset_equiv_class: "equiv A r \<Longrightarrow> r``{b} \<subseteq> r``{a} \<Longrightarrow> b \<in> A \<Longrightarrow> (a, b) \<in> r"
70  \<comment> \<open>lemma for the next result\<close>
71  unfolding equiv_def refl_on_def by blast
72
73lemma eq_equiv_class: "r``{a} = r``{b} \<Longrightarrow> equiv A r \<Longrightarrow> b \<in> A \<Longrightarrow> (a, b) \<in> r"
74  by (iprover intro: equalityD2 subset_equiv_class)
75
76lemma equiv_class_nondisjoint: "equiv A r \<Longrightarrow> x \<in> (r``{a} \<inter> r``{b}) \<Longrightarrow> (a, b) \<in> r"
77  unfolding equiv_def trans_def sym_def by blast
78
79lemma equiv_type: "equiv A r \<Longrightarrow> r \<subseteq> A \<times> A"
80  unfolding equiv_def refl_on_def by blast
81
82lemma equiv_class_eq_iff: "equiv A r \<Longrightarrow> (x, y) \<in> r \<longleftrightarrow> r``{x} = r``{y} \<and> x \<in> A \<and> y \<in> A"
83  by (blast intro!: equiv_class_eq dest: eq_equiv_class equiv_type)
84
85lemma eq_equiv_class_iff: "equiv A r \<Longrightarrow> x \<in> A \<Longrightarrow> y \<in> A \<Longrightarrow> r``{x} = r``{y} \<longleftrightarrow> (x, y) \<in> r"
86  by (blast intro!: equiv_class_eq dest: eq_equiv_class equiv_type)
87
88
89subsection \<open>Quotients\<close>
90
91definition quotient :: "'a set \<Rightarrow> ('a \<times> 'a) set \<Rightarrow> 'a set set"  (infixl "'/'/" 90)
92  where "A//r = (\<Union>x \<in> A. {r``{x}})"  \<comment> \<open>set of equiv classes\<close>
93
94lemma quotientI: "x \<in> A ==> r``{x} \<in> A//r"
95  unfolding quotient_def by blast
96
97lemma quotientE: "X \<in> A//r \<Longrightarrow> (\<And>x. X = r``{x} \<Longrightarrow> x \<in> A \<Longrightarrow> P) \<Longrightarrow> P"
98  unfolding quotient_def by blast
99
100lemma Union_quotient: "equiv A r \<Longrightarrow> \<Union>(A//r) = A"
101  unfolding equiv_def refl_on_def quotient_def by blast
102
103lemma quotient_disj: "equiv A r \<Longrightarrow> X \<in> A//r \<Longrightarrow> Y \<in> A//r \<Longrightarrow> X = Y \<or> X \<inter> Y = {}"
104  apply (unfold quotient_def)
105  apply clarify
106  apply (rule equiv_class_eq)
107   apply assumption
108  apply (unfold equiv_def trans_def sym_def)
109  apply blast
110  done
111
112lemma quotient_eqI:
113  "equiv A r \<Longrightarrow> X \<in> A//r \<Longrightarrow> Y \<in> A//r \<Longrightarrow> x \<in> X \<Longrightarrow> y \<in> Y \<Longrightarrow> (x, y) \<in> r \<Longrightarrow> X = Y"
114  apply (clarify elim!: quotientE)
115  apply (rule equiv_class_eq)
116   apply assumption
117  apply (unfold equiv_def sym_def trans_def)
118  apply blast
119  done
120
121lemma quotient_eq_iff:
122  "equiv A r \<Longrightarrow> X \<in> A//r \<Longrightarrow> Y \<in> A//r \<Longrightarrow> x \<in> X \<Longrightarrow> y \<in> Y \<Longrightarrow> X = Y \<longleftrightarrow> (x, y) \<in> r"
123  apply (rule iffI)
124   prefer 2
125   apply (blast del: equalityI intro: quotient_eqI)
126  apply (clarify elim!: quotientE)
127  apply (unfold equiv_def sym_def trans_def)
128  apply blast
129  done
130
131lemma eq_equiv_class_iff2: "equiv A r \<Longrightarrow> x \<in> A \<Longrightarrow> y \<in> A \<Longrightarrow> {x}//r = {y}//r \<longleftrightarrow> (x, y) \<in> r"
132  by (simp add: quotient_def eq_equiv_class_iff)
133
134lemma quotient_empty [simp]: "{}//r = {}"
135  by (simp add: quotient_def)
136
137lemma quotient_is_empty [iff]: "A//r = {} \<longleftrightarrow> A = {}"
138  by (simp add: quotient_def)
139
140lemma quotient_is_empty2 [iff]: "{} = A//r \<longleftrightarrow> A = {}"
141  by (simp add: quotient_def)
142
143lemma singleton_quotient: "{x}//r = {r `` {x}}"
144  by (simp add: quotient_def)
145
146lemma quotient_diff1: "inj_on (\<lambda>a. {a}//r) A \<Longrightarrow> a \<in> A \<Longrightarrow> (A - {a})//r = A//r - {a}//r"
147  unfolding quotient_def inj_on_def by blast
148
149
150subsection \<open>Refinement of one equivalence relation WRT another\<close>
151
152lemma refines_equiv_class_eq: "R \<subseteq> S \<Longrightarrow> equiv A R \<Longrightarrow> equiv A S \<Longrightarrow> R``(S``{a}) = S``{a}"
153  by (auto simp: equiv_class_eq_iff)
154
155lemma refines_equiv_class_eq2: "R \<subseteq> S \<Longrightarrow> equiv A R \<Longrightarrow> equiv A S \<Longrightarrow> S``(R``{a}) = S``{a}"
156  by (auto simp: equiv_class_eq_iff)
157
158lemma refines_equiv_image_eq: "R \<subseteq> S \<Longrightarrow> equiv A R \<Longrightarrow> equiv A S \<Longrightarrow> (\<lambda>X. S``X) ` (A//R) = A//S"
159   by (auto simp: quotient_def image_UN refines_equiv_class_eq2)
160
161lemma finite_refines_finite:
162  "finite (A//R) \<Longrightarrow> R \<subseteq> S \<Longrightarrow> equiv A R \<Longrightarrow> equiv A S \<Longrightarrow> finite (A//S)"
163  by (erule finite_surj [where f = "\<lambda>X. S``X"]) (simp add: refines_equiv_image_eq)
164
165lemma finite_refines_card_le:
166  "finite (A//R) \<Longrightarrow> R \<subseteq> S \<Longrightarrow> equiv A R \<Longrightarrow> equiv A S \<Longrightarrow> card (A//S) \<le> card (A//R)"
167  by (subst refines_equiv_image_eq [of R S A, symmetric])
168    (auto simp: card_image_le [where f = "\<lambda>X. S``X"])
169
170
171subsection \<open>Defining unary operations upon equivalence classes\<close>
172
173text \<open>A congruence-preserving function.\<close>
174
175definition congruent :: "('a \<times> 'a) set \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> bool"
176  where "congruent r f \<longleftrightarrow> (\<forall>(y, z) \<in> r. f y = f z)"
177
178lemma congruentI: "(\<And>y z. (y, z) \<in> r \<Longrightarrow> f y = f z) \<Longrightarrow> congruent r f"
179  by (auto simp add: congruent_def)
180
181lemma congruentD: "congruent r f \<Longrightarrow> (y, z) \<in> r \<Longrightarrow> f y = f z"
182  by (auto simp add: congruent_def)
183
184abbreviation RESPECTS :: "('a \<Rightarrow> 'b) \<Rightarrow> ('a \<times> 'a) set \<Rightarrow> bool"  (infixr "respects" 80)
185  where "f respects r \<equiv> congruent r f"
186
187
188lemma UN_constant_eq: "a \<in> A \<Longrightarrow> \<forall>y \<in> A. f y = c \<Longrightarrow> (\<Union>y \<in> A. f y) = c"
189  \<comment> \<open>lemma required to prove \<open>UN_equiv_class\<close>\<close>
190  by auto
191
192lemma UN_equiv_class: "equiv A r \<Longrightarrow> f respects r \<Longrightarrow> a \<in> A \<Longrightarrow> (\<Union>x \<in> r``{a}. f x) = f a"
193  \<comment> \<open>Conversion rule\<close>
194  apply (rule equiv_class_self [THEN UN_constant_eq])
195    apply assumption
196   apply assumption
197  apply (unfold equiv_def congruent_def sym_def)
198  apply (blast del: equalityI)
199  done
200
201lemma UN_equiv_class_type:
202  "equiv A r \<Longrightarrow> f respects r \<Longrightarrow> X \<in> A//r \<Longrightarrow> (\<And>x. x \<in> A \<Longrightarrow> f x \<in> B) \<Longrightarrow> (\<Union>x \<in> X. f x) \<in> B"
203  apply (unfold quotient_def)
204  apply clarify
205  apply (subst UN_equiv_class)
206     apply auto
207  done
208
209text \<open>
210  Sufficient conditions for injectiveness.  Could weaken premises!
211  major premise could be an inclusion; \<open>bcong\<close> could be
212  \<open>\<And>y. y \<in> A \<Longrightarrow> f y \<in> B\<close>.
213\<close>
214
215lemma UN_equiv_class_inject:
216  "equiv A r \<Longrightarrow> f respects r \<Longrightarrow>
217    (\<Union>x \<in> X. f x) = (\<Union>y \<in> Y. f y) \<Longrightarrow> X \<in> A//r ==> Y \<in> A//r
218    \<Longrightarrow> (\<And>x y. x \<in> A \<Longrightarrow> y \<in> A \<Longrightarrow> f x = f y \<Longrightarrow> (x, y) \<in> r)
219    \<Longrightarrow> X = Y"
220  apply (unfold quotient_def)
221  apply clarify
222  apply (rule equiv_class_eq)
223   apply assumption
224  apply (subgoal_tac "f x = f xa")
225   apply blast
226  apply (erule box_equals)
227   apply (assumption | rule UN_equiv_class)+
228  done
229
230
231subsection \<open>Defining binary operations upon equivalence classes\<close>
232
233text \<open>A congruence-preserving function of two arguments.\<close>
234
235definition congruent2 :: "('a \<times> 'a) set \<Rightarrow> ('b \<times> 'b) set \<Rightarrow> ('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> bool"
236  where "congruent2 r1 r2 f \<longleftrightarrow> (\<forall>(y1, z1) \<in> r1. \<forall>(y2, z2) \<in> r2. f y1 y2 = f z1 z2)"
237
238lemma congruent2I':
239  assumes "\<And>y1 z1 y2 z2. (y1, z1) \<in> r1 \<Longrightarrow> (y2, z2) \<in> r2 \<Longrightarrow> f y1 y2 = f z1 z2"
240  shows "congruent2 r1 r2 f"
241  using assms by (auto simp add: congruent2_def)
242
243lemma congruent2D: "congruent2 r1 r2 f \<Longrightarrow> (y1, z1) \<in> r1 \<Longrightarrow> (y2, z2) \<in> r2 \<Longrightarrow> f y1 y2 = f z1 z2"
244  by (auto simp add: congruent2_def)
245
246text \<open>Abbreviation for the common case where the relations are identical.\<close>
247abbreviation RESPECTS2:: "('a \<Rightarrow> 'a \<Rightarrow> 'b) \<Rightarrow> ('a \<times> 'a) set \<Rightarrow> bool"  (infixr "respects2" 80)
248  where "f respects2 r \<equiv> congruent2 r r f"
249
250
251lemma congruent2_implies_congruent:
252  "equiv A r1 \<Longrightarrow> congruent2 r1 r2 f \<Longrightarrow> a \<in> A \<Longrightarrow> congruent r2 (f a)"
253  unfolding congruent_def congruent2_def equiv_def refl_on_def by blast
254
255lemma congruent2_implies_congruent_UN:
256  "equiv A1 r1 \<Longrightarrow> equiv A2 r2 \<Longrightarrow> congruent2 r1 r2 f \<Longrightarrow> a \<in> A2 \<Longrightarrow>
257    congruent r1 (\<lambda>x1. \<Union>x2 \<in> r2``{a}. f x1 x2)"
258  apply (unfold congruent_def)
259  apply clarify
260  apply (rule equiv_type [THEN subsetD, THEN SigmaE2], assumption+)
261  apply (simp add: UN_equiv_class congruent2_implies_congruent)
262  apply (unfold congruent2_def equiv_def refl_on_def)
263  apply (blast del: equalityI)
264  done
265
266lemma UN_equiv_class2:
267  "equiv A1 r1 \<Longrightarrow> equiv A2 r2 \<Longrightarrow> congruent2 r1 r2 f \<Longrightarrow> a1 \<in> A1 \<Longrightarrow> a2 \<in> A2 \<Longrightarrow>
268    (\<Union>x1 \<in> r1``{a1}. \<Union>x2 \<in> r2``{a2}. f x1 x2) = f a1 a2"
269  by (simp add: UN_equiv_class congruent2_implies_congruent congruent2_implies_congruent_UN)
270
271lemma UN_equiv_class_type2:
272  "equiv A1 r1 \<Longrightarrow> equiv A2 r2 \<Longrightarrow> congruent2 r1 r2 f
273    \<Longrightarrow> X1 \<in> A1//r1 \<Longrightarrow> X2 \<in> A2//r2
274    \<Longrightarrow> (\<And>x1 x2. x1 \<in> A1 \<Longrightarrow> x2 \<in> A2 \<Longrightarrow> f x1 x2 \<in> B)
275    \<Longrightarrow> (\<Union>x1 \<in> X1. \<Union>x2 \<in> X2. f x1 x2) \<in> B"
276  apply (unfold quotient_def)
277  apply clarify
278  apply (blast intro: UN_equiv_class_type congruent2_implies_congruent_UN
279      congruent2_implies_congruent quotientI)
280  done
281
282lemma UN_UN_split_split_eq:
283  "(\<Union>(x1, x2) \<in> X. \<Union>(y1, y2) \<in> Y. A x1 x2 y1 y2) =
284    (\<Union>x \<in> X. \<Union>y \<in> Y. (\<lambda>(x1, x2). (\<lambda>(y1, y2). A x1 x2 y1 y2) y) x)"
285  \<comment> \<open>Allows a natural expression of binary operators,\<close>
286  \<comment> \<open>without explicit calls to \<open>split\<close>\<close>
287  by auto
288
289lemma congruent2I:
290  "equiv A1 r1 \<Longrightarrow> equiv A2 r2
291    \<Longrightarrow> (\<And>y z w. w \<in> A2 \<Longrightarrow> (y,z) \<in> r1 \<Longrightarrow> f y w = f z w)
292    \<Longrightarrow> (\<And>y z w. w \<in> A1 \<Longrightarrow> (y,z) \<in> r2 \<Longrightarrow> f w y = f w z)
293    \<Longrightarrow> congruent2 r1 r2 f"
294  \<comment> \<open>Suggested by John Harrison -- the two subproofs may be\<close>
295  \<comment> \<open>\<^emph>\<open>much\<close> simpler than the direct proof.\<close>
296  apply (unfold congruent2_def equiv_def refl_on_def)
297  apply clarify
298  apply (blast intro: trans)
299  done
300
301lemma congruent2_commuteI:
302  assumes equivA: "equiv A r"
303    and commute: "\<And>y z. y \<in> A \<Longrightarrow> z \<in> A \<Longrightarrow> f y z = f z y"
304    and congt: "\<And>y z w. w \<in> A \<Longrightarrow> (y,z) \<in> r \<Longrightarrow> f w y = f w z"
305  shows "f respects2 r"
306  apply (rule congruent2I [OF equivA equivA])
307   apply (rule commute [THEN trans])
308     apply (rule_tac [3] commute [THEN trans, symmetric])
309       apply (rule_tac [5] sym)
310       apply (rule congt | assumption |
311         erule equivA [THEN equiv_type, THEN subsetD, THEN SigmaE2])+
312  done
313
314
315subsection \<open>Quotients and finiteness\<close>
316
317text \<open>Suggested by Florian Kamm��ller\<close>
318
319lemma finite_quotient: "finite A \<Longrightarrow> r \<subseteq> A \<times> A \<Longrightarrow> finite (A//r)"
320  \<comment> \<open>recall @{thm equiv_type}\<close>
321  apply (rule finite_subset)
322   apply (erule_tac [2] finite_Pow_iff [THEN iffD2])
323  apply (unfold quotient_def)
324  apply blast
325  done
326
327lemma finite_equiv_class: "finite A \<Longrightarrow> r \<subseteq> A \<times> A \<Longrightarrow> X \<in> A//r \<Longrightarrow> finite X"
328  apply (unfold quotient_def)
329  apply (rule finite_subset)
330   prefer 2 apply assumption
331  apply blast
332  done
333
334lemma equiv_imp_dvd_card: "finite A \<Longrightarrow> equiv A r \<Longrightarrow> \<forall>X \<in> A//r. k dvd card X \<Longrightarrow> k dvd card A"
335  apply (rule Union_quotient [THEN subst [where P="\<lambda>A. k dvd card A"]])
336   apply assumption
337  apply (rule dvd_partition)
338    prefer 3 apply (blast dest: quotient_disj)
339   apply (simp_all add: Union_quotient equiv_type)
340  done
341
342lemma card_quotient_disjoint: "finite A \<Longrightarrow> inj_on (\<lambda>x. {x} // r) A \<Longrightarrow> card (A//r) = card A"
343  apply (simp add:quotient_def)
344  apply (subst card_UN_disjoint)
345     apply assumption
346    apply simp
347   apply (fastforce simp add:inj_on_def)
348  apply simp
349  done
350
351
352subsection \<open>Projection\<close>
353
354definition proj :: "('b \<times> 'a) set \<Rightarrow> 'b \<Rightarrow> 'a set"
355  where "proj r x = r `` {x}"
356
357lemma proj_preserves: "x \<in> A \<Longrightarrow> proj r x \<in> A//r"
358  unfolding proj_def by (rule quotientI)
359
360lemma proj_in_iff:
361  assumes "equiv A r"
362  shows "proj r x \<in> A//r \<longleftrightarrow> x \<in> A"
363    (is "?lhs \<longleftrightarrow> ?rhs")
364proof
365  assume ?rhs
366  then show ?lhs by (simp add: proj_preserves)
367next
368  assume ?lhs
369  then show ?rhs
370    unfolding proj_def quotient_def
371  proof clarsimp
372    fix y
373    assume y: "y \<in> A" and "r `` {x} = r `` {y}"
374    moreover have "y \<in> r `` {y}"
375      using assms y unfolding equiv_def refl_on_def by blast
376    ultimately have "(x, y) \<in> r" by blast
377    then show "x \<in> A"
378      using assms unfolding equiv_def refl_on_def by blast
379  qed
380qed
381
382lemma proj_iff: "equiv A r \<Longrightarrow> {x, y} \<subseteq> A \<Longrightarrow> proj r x = proj r y \<longleftrightarrow> (x, y) \<in> r"
383  by (simp add: proj_def eq_equiv_class_iff)
384
385(*
386lemma in_proj: "\<lbrakk>equiv A r; x \<in> A\<rbrakk> \<Longrightarrow> x \<in> proj r x"
387unfolding proj_def equiv_def refl_on_def by blast
388*)
389
390lemma proj_image: "proj r ` A = A//r"
391  unfolding proj_def[abs_def] quotient_def by blast
392
393lemma in_quotient_imp_non_empty: "equiv A r \<Longrightarrow> X \<in> A//r \<Longrightarrow> X \<noteq> {}"
394  unfolding quotient_def using equiv_class_self by fast
395
396lemma in_quotient_imp_in_rel: "equiv A r \<Longrightarrow> X \<in> A//r \<Longrightarrow> {x, y} \<subseteq> X \<Longrightarrow> (x, y) \<in> r"
397  using quotient_eq_iff[THEN iffD1] by fastforce
398
399lemma in_quotient_imp_closed: "equiv A r \<Longrightarrow> X \<in> A//r \<Longrightarrow> x \<in> X \<Longrightarrow> (x, y) \<in> r \<Longrightarrow> y \<in> X"
400  unfolding quotient_def equiv_def trans_def by blast
401
402lemma in_quotient_imp_subset: "equiv A r \<Longrightarrow> X \<in> A//r \<Longrightarrow> X \<subseteq> A"
403  using in_quotient_imp_in_rel equiv_type by fastforce
404
405
406subsection \<open>Equivalence relations -- predicate version\<close>
407
408text \<open>Partial equivalences.\<close>
409
410definition part_equivp :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> bool"
411  where "part_equivp R \<longleftrightarrow> (\<exists>x. R x x) \<and> (\<forall>x y. R x y \<longleftrightarrow> R x x \<and> R y y \<and> R x = R y)"
412    \<comment> \<open>John-Harrison-style characterization\<close>
413
414lemma part_equivpI: "\<exists>x. R x x \<Longrightarrow> symp R \<Longrightarrow> transp R \<Longrightarrow> part_equivp R"
415  by (auto simp add: part_equivp_def) (auto elim: sympE transpE)
416
417lemma part_equivpE:
418  assumes "part_equivp R"
419  obtains x where "R x x" and "symp R" and "transp R"
420proof -
421  from assms have 1: "\<exists>x. R x x"
422    and 2: "\<And>x y. R x y \<longleftrightarrow> R x x \<and> R y y \<and> R x = R y"
423    unfolding part_equivp_def by blast+
424  from 1 obtain x where "R x x" ..
425  moreover have "symp R"
426  proof (rule sympI)
427    fix x y
428    assume "R x y"
429    with 2 [of x y] show "R y x" by auto
430  qed
431  moreover have "transp R"
432  proof (rule transpI)
433    fix x y z
434    assume "R x y" and "R y z"
435    with 2 [of x y] 2 [of y z] show "R x z" by auto
436  qed
437  ultimately show thesis by (rule that)
438qed
439
440lemma part_equivp_refl_symp_transp: "part_equivp R \<longleftrightarrow> (\<exists>x. R x x) \<and> symp R \<and> transp R"
441  by (auto intro: part_equivpI elim: part_equivpE)
442
443lemma part_equivp_symp: "part_equivp R \<Longrightarrow> R x y \<Longrightarrow> R y x"
444  by (erule part_equivpE, erule sympE)
445
446lemma part_equivp_transp: "part_equivp R \<Longrightarrow> R x y \<Longrightarrow> R y z \<Longrightarrow> R x z"
447  by (erule part_equivpE, erule transpE)
448
449lemma part_equivp_typedef: "part_equivp R \<Longrightarrow> \<exists>d. d \<in> {c. \<exists>x. R x x \<and> c = Collect (R x)}"
450  by (auto elim: part_equivpE)
451
452
453text \<open>Total equivalences.\<close>
454
455definition equivp :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> bool"
456  where "equivp R \<longleftrightarrow> (\<forall>x y. R x y = (R x = R y))" \<comment> \<open>John-Harrison-style characterization\<close>
457
458lemma equivpI: "reflp R \<Longrightarrow> symp R \<Longrightarrow> transp R \<Longrightarrow> equivp R"
459  by (auto elim: reflpE sympE transpE simp add: equivp_def)
460
461lemma equivpE:
462  assumes "equivp R"
463  obtains "reflp R" and "symp R" and "transp R"
464  using assms by (auto intro!: that reflpI sympI transpI simp add: equivp_def)
465
466lemma equivp_implies_part_equivp: "equivp R \<Longrightarrow> part_equivp R"
467  by (auto intro: part_equivpI elim: equivpE reflpE)
468
469lemma equivp_equiv: "equiv UNIV A \<longleftrightarrow> equivp (\<lambda>x y. (x, y) \<in> A)"
470  by (auto intro!: equivI equivpI [to_set] elim!: equivE equivpE [to_set])
471
472lemma equivp_reflp_symp_transp: "equivp R \<longleftrightarrow> reflp R \<and> symp R \<and> transp R"
473  by (auto intro: equivpI elim: equivpE)
474
475lemma identity_equivp: "equivp (=)"
476  by (auto intro: equivpI reflpI sympI transpI)
477
478lemma equivp_reflp: "equivp R \<Longrightarrow> R x x"
479  by (erule equivpE, erule reflpE)
480
481lemma equivp_symp: "equivp R \<Longrightarrow> R x y \<Longrightarrow> R y x"
482  by (erule equivpE, erule sympE)
483
484lemma equivp_transp: "equivp R \<Longrightarrow> R x y \<Longrightarrow> R y z \<Longrightarrow> R x z"
485  by (erule equivpE, erule transpE)
486
487hide_const (open) proj
488
489end
490