1(*  Title:      HOL/Binomial.thy
2    Author:     Jacques D. Fleuriot
3    Author:     Lawrence C Paulson
4    Author:     Jeremy Avigad
5    Author:     Chaitanya Mangla
6    Author:     Manuel Eberl
7*)
8
9section \<open>Binomial Coefficients and Binomial Theorem\<close>
10
11theory Binomial
12  imports Presburger Factorial
13begin
14
15subsection \<open>Binomial coefficients\<close>
16
17text \<open>This development is based on the work of Andy Gordon and Florian Kammueller.\<close>
18
19text \<open>Combinatorial definition\<close>
20
21definition binomial :: "nat \<Rightarrow> nat \<Rightarrow> nat"  (infixl "choose" 65)
22  where "n choose k = card {K\<in>Pow {0..<n}. card K = k}"
23
24theorem n_subsets:
25  assumes "finite A"
26  shows "card {B. B \<subseteq> A \<and> card B = k} = card A choose k"
27proof -
28  from assms obtain f where bij: "bij_betw f {0..<card A} A"
29    by (blast dest: ex_bij_betw_nat_finite)
30  then have [simp]: "card (f ` C) = card C" if "C \<subseteq> {0..<card A}" for C
31    by (meson bij_betw_imp_inj_on bij_betw_subset card_image that)
32  from bij have "bij_betw (image f) (Pow {0..<card A}) (Pow A)"
33    by (rule bij_betw_Pow)
34  then have "inj_on (image f) (Pow {0..<card A})"
35    by (rule bij_betw_imp_inj_on)
36  moreover have "{K. K \<subseteq> {0..<card A} \<and> card K = k} \<subseteq> Pow {0..<card A}"
37    by auto
38  ultimately have "inj_on (image f) {K. K \<subseteq> {0..<card A} \<and> card K = k}"
39    by (rule inj_on_subset)
40  then have "card {K. K \<subseteq> {0..<card A} \<and> card K = k} =
41      card (image f ` {K. K \<subseteq> {0..<card A} \<and> card K = k})" (is "_ = card ?C")
42    by (simp add: card_image)
43  also have "?C = {K. K \<subseteq> f ` {0..<card A} \<and> card K = k}"
44    by (auto elim!: subset_imageE)
45  also have "f ` {0..<card A} = A"
46    by (meson bij bij_betw_def)
47  finally show ?thesis
48    by (simp add: binomial_def)
49qed
50
51text \<open>Recursive characterization\<close>
52
53lemma binomial_n_0 [simp, code]: "n choose 0 = 1"
54proof -
55  have "{K \<in> Pow {0..<n}. card K = 0} = {{}}"
56    by (auto dest: finite_subset)
57  then show ?thesis
58    by (simp add: binomial_def)
59qed
60
61lemma binomial_0_Suc [simp, code]: "0 choose Suc k = 0"
62  by (simp add: binomial_def)
63
64lemma binomial_Suc_Suc [simp, code]: "Suc n choose Suc k = (n choose k) + (n choose Suc k)"
65proof -
66  let ?P = "\<lambda>n k. {K. K \<subseteq> {0..<n} \<and> card K = k}"
67  let ?Q = "?P (Suc n) (Suc k)"
68  have inj: "inj_on (insert n) (?P n k)"
69    by rule (auto; metis atLeastLessThan_iff insert_iff less_irrefl subsetCE)
70  have disjoint: "insert n ` ?P n k \<inter> ?P n (Suc k) = {}"
71    by auto
72  have "?Q = {K\<in>?Q. n \<in> K} \<union> {K\<in>?Q. n \<notin> K}"
73    by auto
74  also have "{K\<in>?Q. n \<in> K} = insert n ` ?P n k" (is "?A = ?B")
75  proof (rule set_eqI)
76    fix K
77    have K_finite: "finite K" if "K \<subseteq> insert n {0..<n}"
78      using that by (rule finite_subset) simp_all
79    have Suc_card_K: "Suc (card K - Suc 0) = card K" if "n \<in> K"
80      and "finite K"
81    proof -
82      from \<open>n \<in> K\<close> obtain L where "K = insert n L" and "n \<notin> L"
83        by (blast elim: Set.set_insert)
84      with that show ?thesis by (simp add: card_insert)
85    qed
86    show "K \<in> ?A \<longleftrightarrow> K \<in> ?B"
87      by (subst in_image_insert_iff)
88        (auto simp add: card_insert subset_eq_atLeast0_lessThan_finite
89          Diff_subset_conv K_finite Suc_card_K)
90  qed
91  also have "{K\<in>?Q. n \<notin> K} = ?P n (Suc k)"
92    by (auto simp add: atLeast0_lessThan_Suc)
93  finally show ?thesis using inj disjoint
94    by (simp add: binomial_def card_Un_disjoint card_image)
95qed
96
97lemma binomial_eq_0: "n < k \<Longrightarrow> n choose k = 0"
98  by (auto simp add: binomial_def dest: subset_eq_atLeast0_lessThan_card)
99
100lemma zero_less_binomial: "k \<le> n \<Longrightarrow> n choose k > 0"
101  by (induct n k rule: diff_induct) simp_all
102
103lemma binomial_eq_0_iff [simp]: "n choose k = 0 \<longleftrightarrow> n < k"
104  by (metis binomial_eq_0 less_numeral_extra(3) not_less zero_less_binomial)
105
106lemma zero_less_binomial_iff [simp]: "n choose k > 0 \<longleftrightarrow> k \<le> n"
107  by (metis binomial_eq_0_iff not_less0 not_less zero_less_binomial)
108
109lemma binomial_n_n [simp]: "n choose n = 1"
110  by (induct n) (simp_all add: binomial_eq_0)
111
112lemma binomial_Suc_n [simp]: "Suc n choose n = Suc n"
113  by (induct n) simp_all
114
115lemma binomial_1 [simp]: "n choose Suc 0 = n"
116  by (induct n) simp_all
117
118lemma choose_reduce_nat:
119  "0 < n \<Longrightarrow> 0 < k \<Longrightarrow>
120    n choose k = ((n - 1) choose (k - 1)) + ((n - 1) choose k)"
121  using binomial_Suc_Suc [of "n - 1" "k - 1"] by simp
122
123lemma Suc_times_binomial_eq: "Suc n * (n choose k) = (Suc n choose Suc k) * Suc k"
124  apply (induct n arbitrary: k)
125   apply simp
126   apply arith
127  apply (case_tac k)
128   apply (auto simp add: add_mult_distrib add_mult_distrib2 le_Suc_eq binomial_eq_0)
129  done
130
131lemma binomial_le_pow2: "n choose k \<le> 2^n"
132  apply (induct n arbitrary: k)
133   apply (case_tac k)
134    apply simp_all
135  apply (case_tac k)
136   apply auto
137  apply (simp add: add_le_mono mult_2)
138  done
139
140text \<open>The absorption property.\<close>
141lemma Suc_times_binomial: "Suc k * (Suc n choose Suc k) = Suc n * (n choose k)"
142  using Suc_times_binomial_eq by auto
143
144text \<open>This is the well-known version of absorption, but it's harder to use
145  because of the need to reason about division.\<close>
146lemma binomial_Suc_Suc_eq_times: "(Suc n choose Suc k) = (Suc n * (n choose k)) div Suc k"
147  by (simp add: Suc_times_binomial_eq del: mult_Suc mult_Suc_right)
148
149text \<open>Another version of absorption, with \<open>-1\<close> instead of \<open>Suc\<close>.\<close>
150lemma times_binomial_minus1_eq: "0 < k \<Longrightarrow> k * (n choose k) = n * ((n - 1) choose (k - 1))"
151  using Suc_times_binomial_eq [where n = "n - 1" and k = "k - 1"]
152  by (auto split: nat_diff_split)
153
154
155subsection \<open>The binomial theorem (courtesy of Tobias Nipkow):\<close>
156
157text \<open>Avigad's version, generalized to any commutative ring\<close>
158theorem binomial_ring: "(a + b :: 'a::{comm_ring_1,power})^n =
159  (\<Sum>k\<le>n. (of_nat (n choose k)) * a^k * b^(n-k))"
160proof (induct n)
161  case 0
162  then show ?case by simp
163next
164  case (Suc n)
165  have decomp: "{0..n+1} = {0} \<union> {n + 1} \<union> {1..n}"
166    by auto
167  have decomp2: "{0..n} = {0} \<union> {1..n}"
168    by auto
169  have "(a + b)^(n+1) = (a + b) * (\<Sum>k\<le>n. of_nat (n choose k) * a^k * b^(n - k))"
170    using Suc.hyps by simp
171  also have "\<dots> = a * (\<Sum>k\<le>n. of_nat (n choose k) * a^k * b^(n-k)) +
172      b * (\<Sum>k\<le>n. of_nat (n choose k) * a^k * b^(n-k))"
173    by (rule distrib_right)
174  also have "\<dots> = (\<Sum>k\<le>n. of_nat (n choose k) * a^(k+1) * b^(n-k)) +
175      (\<Sum>k\<le>n. of_nat (n choose k) * a^k * b^(n - k + 1))"
176    by (auto simp add: sum_distrib_left ac_simps)
177  also have "\<dots> = (\<Sum>k\<le>n. of_nat (n choose k) * a^k * b^(n + 1 - k)) +
178      (\<Sum>k=1..n+1. of_nat (n choose (k - 1)) * a^k * b^(n + 1 - k))"
179    by (simp add: atMost_atLeast0 sum_shift_bounds_cl_Suc_ivl Suc_diff_le field_simps del: sum_cl_ivl_Suc)
180  also have "\<dots> = a^(n + 1) + b^(n + 1) +
181      (\<Sum>k=1..n. of_nat (n choose (k - 1)) * a^k * b^(n + 1 - k)) +
182      (\<Sum>k=1..n. of_nat (n choose k) * a^k * b^(n + 1 - k))"
183    by (simp add: atMost_atLeast0 decomp2)
184  also have "\<dots> = a^(n + 1) + b^(n + 1) +
185      (\<Sum>k=1..n. of_nat (n + 1 choose k) * a^k * b^(n + 1 - k))"
186    by (auto simp add: field_simps sum.distrib [symmetric] choose_reduce_nat)
187  also have "\<dots> = (\<Sum>k\<le>n+1. of_nat (n + 1 choose k) * a^k * b^(n + 1 - k))"
188    using decomp by (simp add: atMost_atLeast0 field_simps)
189  finally show ?case
190    by simp
191qed
192
193text \<open>Original version for the naturals.\<close>
194corollary binomial: "(a + b :: nat)^n = (\<Sum>k\<le>n. (of_nat (n choose k)) * a^k * b^(n - k))"
195  using binomial_ring [of "int a" "int b" n]
196  by (simp only: of_nat_add [symmetric] of_nat_mult [symmetric] of_nat_power [symmetric]
197      of_nat_sum [symmetric] of_nat_eq_iff of_nat_id)
198
199lemma binomial_fact_lemma: "k \<le> n \<Longrightarrow> fact k * fact (n - k) * (n choose k) = fact n"
200proof (induct n arbitrary: k rule: nat_less_induct)
201  fix n k
202  assume H: "\<forall>m<n. \<forall>x\<le>m. fact x * fact (m - x) * (m choose x) = fact m"
203  assume kn: "k \<le> n"
204  let ?ths = "fact k * fact (n - k) * (n choose k) = fact n"
205  consider "n = 0 \<or> k = 0 \<or> n = k" | m h where "n = Suc m" "k = Suc h" "h < m"
206    using kn by atomize_elim presburger
207  then show "fact k * fact (n - k) * (n choose k) = fact n"
208  proof cases
209    case 1
210    with kn show ?thesis by auto
211  next
212    case 2
213    note n = \<open>n = Suc m\<close>
214    note k = \<open>k = Suc h\<close>
215    note hm = \<open>h < m\<close>
216    have mn: "m < n"
217      using n by arith
218    have hm': "h \<le> m"
219      using hm by arith
220    have km: "k \<le> m"
221      using hm k n kn by arith
222    have "m - h = Suc (m - Suc h)"
223      using  k km hm by arith
224    with km k have "fact (m - h) = (m - h) * fact (m - k)"
225      by simp
226    with n k have "fact k * fact (n - k) * (n choose k) =
227        k * (fact h * fact (m - h) * (m choose h)) +
228        (m - h) * (fact k * fact (m - k) * (m choose k))"
229      by (simp add: field_simps)
230    also have "\<dots> = (k + (m - h)) * fact m"
231      using H[rule_format, OF mn hm'] H[rule_format, OF mn km]
232      by (simp add: field_simps)
233    finally show ?thesis
234      using k n km by simp
235  qed
236qed
237
238lemma binomial_fact':
239  assumes "k \<le> n"
240  shows "n choose k = fact n div (fact k * fact (n - k))"
241  using binomial_fact_lemma [OF assms]
242  by (metis fact_nonzero mult_eq_0_iff nonzero_mult_div_cancel_left)
243
244lemma binomial_fact:
245  assumes kn: "k \<le> n"
246  shows "(of_nat (n choose k) :: 'a::field_char_0) = fact n / (fact k * fact (n - k))"
247  using binomial_fact_lemma[OF kn]
248  apply (simp add: field_simps)
249  apply (metis mult.commute of_nat_fact of_nat_mult)
250  done
251
252lemma fact_binomial:
253  assumes "k \<le> n"
254  shows "fact k * of_nat (n choose k) = (fact n / fact (n - k) :: 'a::field_char_0)"
255  unfolding binomial_fact [OF assms] by (simp add: field_simps)
256
257lemma choose_two: "n choose 2 = n * (n - 1) div 2"
258proof (cases "n \<ge> 2")
259  case False
260  then have "n = 0 \<or> n = 1"
261    by auto
262  then show ?thesis by auto
263next
264  case True
265  define m where "m = n - 2"
266  with True have "n = m + 2"
267    by simp
268  then have "fact n = n * (n - 1) * fact (n - 2)"
269    by (simp add: fact_prod_Suc atLeast0_lessThan_Suc algebra_simps)
270  with True show ?thesis
271    by (simp add: binomial_fact')
272qed
273
274lemma choose_row_sum: "(\<Sum>k\<le>n. n choose k) = 2^n"
275  using binomial [of 1 "1" n] by (simp add: numeral_2_eq_2)
276
277lemma sum_choose_lower: "(\<Sum>k\<le>n. (r+k) choose k) = Suc (r+n) choose n"
278  by (induct n) auto
279
280lemma sum_choose_upper: "(\<Sum>k\<le>n. k choose m) = Suc n choose Suc m"
281  by (induct n) auto
282
283lemma choose_alternating_sum:
284  "n > 0 \<Longrightarrow> (\<Sum>i\<le>n. (-1)^i * of_nat (n choose i)) = (0 :: 'a::comm_ring_1)"
285  using binomial_ring[of "-1 :: 'a" 1 n]
286  by (simp add: atLeast0AtMost mult_of_nat_commute zero_power)
287
288lemma choose_even_sum:
289  assumes "n > 0"
290  shows "2 * (\<Sum>i\<le>n. if even i then of_nat (n choose i) else 0) = (2 ^ n :: 'a::comm_ring_1)"
291proof -
292  have "2 ^ n = (\<Sum>i\<le>n. of_nat (n choose i)) + (\<Sum>i\<le>n. (-1) ^ i * of_nat (n choose i) :: 'a)"
293    using choose_row_sum[of n]
294    by (simp add: choose_alternating_sum assms atLeast0AtMost of_nat_sum[symmetric])
295  also have "\<dots> = (\<Sum>i\<le>n. of_nat (n choose i) + (-1) ^ i * of_nat (n choose i))"
296    by (simp add: sum.distrib)
297  also have "\<dots> = 2 * (\<Sum>i\<le>n. if even i then of_nat (n choose i) else 0)"
298    by (subst sum_distrib_left, intro sum.cong) simp_all
299  finally show ?thesis ..
300qed
301
302lemma choose_odd_sum:
303  assumes "n > 0"
304  shows "2 * (\<Sum>i\<le>n. if odd i then of_nat (n choose i) else 0) = (2 ^ n :: 'a::comm_ring_1)"
305proof -
306  have "2 ^ n = (\<Sum>i\<le>n. of_nat (n choose i)) - (\<Sum>i\<le>n. (-1) ^ i * of_nat (n choose i) :: 'a)"
307    using choose_row_sum[of n]
308    by (simp add: choose_alternating_sum assms atLeast0AtMost of_nat_sum[symmetric])
309  also have "\<dots> = (\<Sum>i\<le>n. of_nat (n choose i) - (-1) ^ i * of_nat (n choose i))"
310    by (simp add: sum_subtractf)
311  also have "\<dots> = 2 * (\<Sum>i\<le>n. if odd i then of_nat (n choose i) else 0)"
312    by (subst sum_distrib_left, intro sum.cong) simp_all
313  finally show ?thesis ..
314qed
315
316text\<open>NW diagonal sum property\<close>
317lemma sum_choose_diagonal:
318  assumes "m \<le> n"
319  shows "(\<Sum>k\<le>m. (n - k) choose (m - k)) = Suc n choose m"
320proof -
321  have "(\<Sum>k\<le>m. (n-k) choose (m - k)) = (\<Sum>k\<le>m. (n - m + k) choose k)"
322    using sum.atLeastAtMost_rev [of "\<lambda>k. (n - k) choose (m - k)" 0 m] assms
323    by (simp add: atMost_atLeast0)
324  also have "\<dots> = Suc (n - m + m) choose m"
325    by (rule sum_choose_lower)
326  also have "\<dots> = Suc n choose m"
327    using assms by simp
328  finally show ?thesis .
329qed
330
331
332subsection \<open>Generalized binomial coefficients\<close>
333
334definition gbinomial :: "'a::{semidom_divide,semiring_char_0} \<Rightarrow> nat \<Rightarrow> 'a"  (infixl "gchoose" 65)
335  where gbinomial_prod_rev: "a gchoose n = prod (\<lambda>i. a - of_nat i) {0..<n} div fact n"
336
337lemma gbinomial_0 [simp]:
338  "a gchoose 0 = 1"
339  "0 gchoose (Suc n) = 0"
340  by (simp_all add: gbinomial_prod_rev prod.atLeast0_lessThan_Suc_shift)
341
342lemma gbinomial_Suc: "a gchoose (Suc k) = prod (\<lambda>i. a - of_nat i) {0..k} div fact (Suc k)"
343  by (simp add: gbinomial_prod_rev atLeastLessThanSuc_atLeastAtMost)
344
345lemma gbinomial_mult_fact: "fact n * (a gchoose n) = (\<Prod>i = 0..<n. a - of_nat i)"
346  for a :: "'a::field_char_0"
347  by (simp_all add: gbinomial_prod_rev field_simps)
348
349lemma gbinomial_mult_fact': "(a gchoose n) * fact n = (\<Prod>i = 0..<n. a - of_nat i)"
350  for a :: "'a::field_char_0"
351  using gbinomial_mult_fact [of n a] by (simp add: ac_simps)
352
353lemma gbinomial_pochhammer: "a gchoose n = (- 1) ^ n * pochhammer (- a) n / fact n"
354  for a :: "'a::field_char_0"
355  by (cases n)
356    (simp_all add: pochhammer_minus,
357     simp_all add: gbinomial_prod_rev pochhammer_prod_rev
358       power_mult_distrib [symmetric] atLeastLessThanSuc_atLeastAtMost
359       prod.atLeast_Suc_atMost_Suc_shift of_nat_diff)
360
361lemma gbinomial_pochhammer': "s gchoose n = pochhammer (s - of_nat n + 1) n / fact n"
362  for s :: "'a::field_char_0"
363proof -
364  have "s gchoose n = ((-1)^n * (-1)^n) * pochhammer (s - of_nat n + 1) n / fact n"
365    by (simp add: gbinomial_pochhammer pochhammer_minus mult_ac)
366  also have "(-1 :: 'a)^n * (-1)^n = 1"
367    by (subst power_add [symmetric]) simp
368  finally show ?thesis
369    by simp
370qed
371
372lemma gbinomial_binomial: "n gchoose k = n choose k"
373proof (cases "k \<le> n")
374  case False
375  then have "n < k"
376    by (simp add: not_le)
377  then have "0 \<in> ((-) n) ` {0..<k}"
378    by auto
379  then have "prod ((-) n) {0..<k} = 0"
380    by (auto intro: prod_zero)
381  with \<open>n < k\<close> show ?thesis
382    by (simp add: binomial_eq_0 gbinomial_prod_rev prod_zero)
383next
384  case True
385  from True have *: "prod ((-) n) {0..<k} = \<Prod>{Suc (n - k)..n}"
386    by (intro prod.reindex_bij_witness[of _ "\<lambda>i. n - i" "\<lambda>i. n - i"]) auto
387  from True have "n choose k = fact n div (fact k * fact (n - k))"
388    by (rule binomial_fact')
389  with * show ?thesis
390    by (simp add: gbinomial_prod_rev mult.commute [of "fact k"] div_mult2_eq fact_div_fact)
391qed
392
393lemma of_nat_gbinomial: "of_nat (n gchoose k) = (of_nat n gchoose k :: 'a::field_char_0)"
394proof (cases "k \<le> n")
395  case False
396  then show ?thesis
397    by (simp add: not_le gbinomial_binomial binomial_eq_0 gbinomial_prod_rev)
398next
399  case True
400  define m where "m = n - k"
401  with True have n: "n = m + k"
402    by arith
403  from n have "fact n = ((\<Prod>i = 0..<m + k. of_nat (m + k - i) ):: 'a)"
404    by (simp add: fact_prod_rev)
405  also have "\<dots> = ((\<Prod>i\<in>{0..<k} \<union> {k..<m + k}. of_nat (m + k - i)) :: 'a)"
406    by (simp add: ivl_disj_un)
407  finally have "fact n = (fact m * (\<Prod>i = 0..<k. of_nat m + of_nat k - of_nat i) :: 'a)"
408    using prod_shift_bounds_nat_ivl [of "\<lambda>i. of_nat (m + k - i) :: 'a" 0 k m]
409    by (simp add: fact_prod_rev [of m] prod.union_disjoint of_nat_diff)
410  then have "fact n / fact (n - k) = ((\<Prod>i = 0..<k. of_nat n - of_nat i) :: 'a)"
411    by (simp add: n)
412  with True have "fact k * of_nat (n gchoose k) = (fact k * (of_nat n gchoose k) :: 'a)"
413    by (simp only: gbinomial_mult_fact [of k "of_nat n"] gbinomial_binomial [of n k] fact_binomial)
414  then show ?thesis
415    by simp
416qed
417
418lemma binomial_gbinomial: "of_nat (n choose k) = (of_nat n gchoose k :: 'a::field_char_0)"
419  by (simp add: gbinomial_binomial [symmetric] of_nat_gbinomial)
420
421setup
422  \<open>Sign.add_const_constraint (@{const_name gbinomial}, SOME @{typ "'a::field_char_0 \<Rightarrow> nat \<Rightarrow> 'a"})\<close>
423
424lemma gbinomial_1[simp]: "a gchoose 1 = a"
425  by (simp add: gbinomial_prod_rev lessThan_Suc)
426
427lemma gbinomial_Suc0[simp]: "a gchoose (Suc 0) = a"
428  by (simp add: gbinomial_prod_rev lessThan_Suc)
429
430lemma gbinomial_mult_1:
431  fixes a :: "'a::field_char_0"
432  shows "a * (a gchoose n) = of_nat n * (a gchoose n) + of_nat (Suc n) * (a gchoose (Suc n))"
433  (is "?l = ?r")
434proof -
435  have "?r = ((- 1) ^n * pochhammer (- a) n / (fact n)) * (of_nat n - (- a + of_nat n))"
436    apply (simp only: gbinomial_pochhammer pochhammer_Suc right_diff_distrib power_Suc)
437    apply (simp del: of_nat_Suc fact_Suc)
438    apply (auto simp add: field_simps simp del: of_nat_Suc)
439    done
440  also have "\<dots> = ?l"
441    by (simp add: field_simps gbinomial_pochhammer)
442  finally show ?thesis ..
443qed
444
445lemma gbinomial_mult_1':
446  "(a gchoose n) * a = of_nat n * (a gchoose n) + of_nat (Suc n) * (a gchoose (Suc n))"
447  for a :: "'a::field_char_0"
448  by (simp add: mult.commute gbinomial_mult_1)
449
450lemma gbinomial_Suc_Suc: "(a + 1) gchoose (Suc k) = a gchoose k + (a gchoose (Suc k))"
451  for a :: "'a::field_char_0"
452proof (cases k)
453  case 0
454  then show ?thesis by simp
455next
456  case (Suc h)
457  have eq0: "(\<Prod>i\<in>{1..k}. (a + 1) - of_nat i) = (\<Prod>i\<in>{0..h}. a - of_nat i)"
458    apply (rule prod.reindex_cong [where l = Suc])
459      using Suc
460      apply (auto simp add: image_Suc_atMost)
461    done
462  have "fact (Suc k) * (a gchoose k + (a gchoose (Suc k))) =
463      (a gchoose Suc h) * (fact (Suc (Suc h))) +
464      (a gchoose Suc (Suc h)) * (fact (Suc (Suc h)))"
465    by (simp add: Suc field_simps del: fact_Suc)
466  also have "\<dots> =
467    (a gchoose Suc h) * of_nat (Suc (Suc h) * fact (Suc h)) + (\<Prod>i=0..Suc h. a - of_nat i)"
468    apply (simp del: fact_Suc add: gbinomial_mult_fact field_simps mult.left_commute [of _ "2"])
469    apply (simp del: fact_Suc add: fact_Suc [of "Suc h"] field_simps gbinomial_mult_fact
470      mult.left_commute [of _ "2"] atLeastLessThanSuc_atLeastAtMost)
471    done
472  also have "\<dots> =
473    (fact (Suc h) * (a gchoose Suc h)) * of_nat (Suc (Suc h)) + (\<Prod>i=0..Suc h. a - of_nat i)"
474    by (simp only: fact_Suc mult.commute mult.left_commute of_nat_fact of_nat_id of_nat_mult)
475  also have "\<dots> =
476    of_nat (Suc (Suc h)) * (\<Prod>i=0..h. a - of_nat i) + (\<Prod>i=0..Suc h. a - of_nat i)"
477    unfolding gbinomial_mult_fact atLeastLessThanSuc_atLeastAtMost by auto
478  also have "\<dots> =
479    (\<Prod>i=0..Suc h. a - of_nat i) + (of_nat h * (\<Prod>i=0..h. a - of_nat i) + 2 * (\<Prod>i=0..h. a - of_nat i))"
480    by (simp add: field_simps)
481  also have "\<dots> =
482    ((a gchoose Suc h) * (fact (Suc h)) * of_nat (Suc k)) + (\<Prod>i\<in>{0..Suc h}. a - of_nat i)"
483    unfolding gbinomial_mult_fact'
484    by (simp add: comm_semiring_class.distrib field_simps Suc atLeastLessThanSuc_atLeastAtMost)
485  also have "\<dots> = (\<Prod>i\<in>{0..h}. a - of_nat i) * (a + 1)"
486    unfolding gbinomial_mult_fact' atLeast0_atMost_Suc
487    by (simp add: field_simps Suc atLeastLessThanSuc_atLeastAtMost)
488  also have "\<dots> = (\<Prod>i\<in>{0..k}. (a + 1) - of_nat i)"
489    using eq0
490    by (simp add: Suc prod.atLeast0_atMost_Suc_shift)
491  also have "\<dots> = (fact (Suc k)) * ((a + 1) gchoose (Suc k))"
492    by (simp only: gbinomial_mult_fact atLeastLessThanSuc_atLeastAtMost)
493  finally show ?thesis
494    using fact_nonzero [of "Suc k"] by auto
495qed
496
497lemma gbinomial_reduce_nat: "0 < k \<Longrightarrow> a gchoose k = (a - 1) gchoose (k - 1) + ((a - 1) gchoose k)"
498  for a :: "'a::field_char_0"
499  by (metis Suc_pred' diff_add_cancel gbinomial_Suc_Suc)
500
501lemma gchoose_row_sum_weighted:
502  "(\<Sum>k = 0..m. (r gchoose k) * (r/2 - of_nat k)) = of_nat(Suc m) / 2 * (r gchoose (Suc m))"
503  for r :: "'a::field_char_0"
504  by (induct m) (simp_all add: field_simps distrib gbinomial_mult_1)
505
506lemma binomial_symmetric:
507  assumes kn: "k \<le> n"
508  shows "n choose k = n choose (n - k)"
509proof -
510  have kn': "n - k \<le> n"
511    using kn by arith
512  from binomial_fact_lemma[OF kn] binomial_fact_lemma[OF kn']
513  have "fact k * fact (n - k) * (n choose k) = fact (n - k) * fact (n - (n - k)) * (n choose (n - k))"
514    by simp
515  then show ?thesis
516    using kn by simp
517qed
518
519lemma choose_rising_sum:
520  "(\<Sum>j\<le>m. ((n + j) choose n)) = ((n + m + 1) choose (n + 1))"
521  "(\<Sum>j\<le>m. ((n + j) choose n)) = ((n + m + 1) choose m)"
522proof -
523  show "(\<Sum>j\<le>m. ((n + j) choose n)) = ((n + m + 1) choose (n + 1))"
524    by (induct m) simp_all
525  also have "\<dots> = (n + m + 1) choose m"
526    by (subst binomial_symmetric) simp_all
527  finally show "(\<Sum>j\<le>m. ((n + j) choose n)) = (n + m + 1) choose m" .
528qed
529
530lemma choose_linear_sum: "(\<Sum>i\<le>n. i * (n choose i)) = n * 2 ^ (n - 1)"
531proof (cases n)
532  case 0
533  then show ?thesis by simp
534next
535  case (Suc m)
536  have "(\<Sum>i\<le>n. i * (n choose i)) = (\<Sum>i\<le>Suc m. i * (Suc m choose i))"
537    by (simp add: Suc)
538  also have "\<dots> = Suc m * 2 ^ m"
539    unfolding sum_atMost_Suc_shift Suc_times_binomial sum_distrib_left[symmetric]
540    by (simp add: choose_row_sum)
541  finally show ?thesis
542    using Suc by simp
543qed
544
545lemma choose_alternating_linear_sum:
546  assumes "n \<noteq> 1"
547  shows "(\<Sum>i\<le>n. (-1)^i * of_nat i * of_nat (n choose i) :: 'a::comm_ring_1) = 0"
548proof (cases n)
549  case 0
550  then show ?thesis by simp
551next
552  case (Suc m)
553  with assms have "m > 0"
554    by simp
555  have "(\<Sum>i\<le>n. (-1) ^ i * of_nat i * of_nat (n choose i) :: 'a) =
556      (\<Sum>i\<le>Suc m. (-1) ^ i * of_nat i * of_nat (Suc m choose i))"
557    by (simp add: Suc)
558  also have "\<dots> = (\<Sum>i\<le>m. (-1) ^ (Suc i) * of_nat (Suc i * (Suc m choose Suc i)))"
559    by (simp only: sum_atMost_Suc_shift sum_distrib_left[symmetric] mult_ac of_nat_mult) simp
560  also have "\<dots> = - of_nat (Suc m) * (\<Sum>i\<le>m. (-1) ^ i * of_nat (m choose i))"
561    by (subst sum_distrib_left, rule sum.cong[OF refl], subst Suc_times_binomial)
562       (simp add: algebra_simps)
563  also have "(\<Sum>i\<le>m. (-1 :: 'a) ^ i * of_nat ((m choose i))) = 0"
564    using choose_alternating_sum[OF \<open>m > 0\<close>] by simp
565  finally show ?thesis
566    by simp
567qed
568
569lemma vandermonde: "(\<Sum>k\<le>r. (m choose k) * (n choose (r - k))) = (m + n) choose r"
570proof (induct n arbitrary: r)
571  case 0
572  have "(\<Sum>k\<le>r. (m choose k) * (0 choose (r - k))) = (\<Sum>k\<le>r. if k = r then (m choose k) else 0)"
573    by (intro sum.cong) simp_all
574  also have "\<dots> = m choose r"
575    by (simp add: sum.delta)
576  finally show ?case
577    by simp
578next
579  case (Suc n r)
580  show ?case
581    by (cases r) (simp_all add: Suc [symmetric] algebra_simps sum.distrib Suc_diff_le)
582qed
583
584lemma choose_square_sum: "(\<Sum>k\<le>n. (n choose k)^2) = ((2*n) choose n)"
585  using vandermonde[of n n n]
586  by (simp add: power2_eq_square mult_2 binomial_symmetric [symmetric])
587
588lemma pochhammer_binomial_sum:
589  fixes a b :: "'a::comm_ring_1"
590  shows "pochhammer (a + b) n = (\<Sum>k\<le>n. of_nat (n choose k) * pochhammer a k * pochhammer b (n - k))"
591proof (induction n arbitrary: a b)
592  case 0
593  then show ?case by simp
594next
595  case (Suc n a b)
596  have "(\<Sum>k\<le>Suc n. of_nat (Suc n choose k) * pochhammer a k * pochhammer b (Suc n - k)) =
597      (\<Sum>i\<le>n. of_nat (n choose i) * pochhammer a (Suc i) * pochhammer b (n - i)) +
598      ((\<Sum>i\<le>n. of_nat (n choose Suc i) * pochhammer a (Suc i) * pochhammer b (n - i)) +
599      pochhammer b (Suc n))"
600    by (subst sum_atMost_Suc_shift) (simp add: ring_distribs sum.distrib)
601  also have "(\<Sum>i\<le>n. of_nat (n choose i) * pochhammer a (Suc i) * pochhammer b (n - i)) =
602      a * pochhammer ((a + 1) + b) n"
603    by (subst Suc) (simp add: sum_distrib_left pochhammer_rec mult_ac)
604  also have "(\<Sum>i\<le>n. of_nat (n choose Suc i) * pochhammer a (Suc i) * pochhammer b (n - i)) +
605        pochhammer b (Suc n) =
606      (\<Sum>i=0..Suc n. of_nat (n choose i) * pochhammer a i * pochhammer b (Suc n - i))"
607    apply (subst sum_head_Suc)
608    apply simp
609    apply (subst sum_shift_bounds_cl_Suc_ivl)
610    apply (simp add: atLeast0AtMost)
611    done
612  also have "\<dots> = (\<Sum>i\<le>n. of_nat (n choose i) * pochhammer a i * pochhammer b (Suc n - i))"
613    using Suc by (intro sum.mono_neutral_right) (auto simp: not_le binomial_eq_0)
614  also have "\<dots> = (\<Sum>i\<le>n. of_nat (n choose i) * pochhammer a i * pochhammer b (Suc (n - i)))"
615    by (intro sum.cong) (simp_all add: Suc_diff_le)
616  also have "\<dots> = b * pochhammer (a + (b + 1)) n"
617    by (subst Suc) (simp add: sum_distrib_left mult_ac pochhammer_rec)
618  also have "a * pochhammer ((a + 1) + b) n + b * pochhammer (a + (b + 1)) n =
619      pochhammer (a + b) (Suc n)"
620    by (simp add: pochhammer_rec algebra_simps)
621  finally show ?case ..
622qed
623
624text \<open>Contributed by Manuel Eberl, generalised by LCP.
625  Alternative definition of the binomial coefficient as @{term "\<Prod>i<k. (n - i) / (k - i)"}.\<close>
626lemma gbinomial_altdef_of_nat: "x gchoose k = (\<Prod>i = 0..<k. (x - of_nat i) / of_nat (k - i) :: 'a)"
627  for k :: nat and x :: "'a::field_char_0"
628  by (simp add: prod_dividef gbinomial_prod_rev fact_prod_rev)
629
630lemma gbinomial_ge_n_over_k_pow_k:
631  fixes k :: nat
632    and x :: "'a::linordered_field"
633  assumes "of_nat k \<le> x"
634  shows "(x / of_nat k :: 'a) ^ k \<le> x gchoose k"
635proof -
636  have x: "0 \<le> x"
637    using assms of_nat_0_le_iff order_trans by blast
638  have "(x / of_nat k :: 'a) ^ k = (\<Prod>i = 0..<k. x / of_nat k :: 'a)"
639    by (simp add: prod_constant)
640  also have "\<dots> \<le> x gchoose k" (* FIXME *)
641    unfolding gbinomial_altdef_of_nat
642    apply (safe intro!: prod_mono)
643    apply simp_all
644    prefer 2
645    subgoal premises for i
646    proof -
647      from assms have "x * of_nat i \<ge> of_nat (i * k)"
648        by (metis mult.commute mult_le_cancel_right of_nat_less_0_iff of_nat_mult)
649      then have "x * of_nat k - x * of_nat i \<le> x * of_nat k - of_nat (i * k)"
650        by arith
651      then have "x * of_nat (k - i) \<le> (x - of_nat i) * of_nat k"
652        using \<open>i < k\<close> by (simp add: algebra_simps zero_less_mult_iff of_nat_diff)
653      then have "x * of_nat (k - i) \<le> (x - of_nat i) * (of_nat k :: 'a)"
654        by (simp only: of_nat_mult[symmetric] of_nat_le_iff)
655      with assms show ?thesis
656        using \<open>i < k\<close> by (simp add: field_simps)
657    qed
658    apply (simp add: x zero_le_divide_iff)
659    done
660  finally show ?thesis .
661qed
662
663lemma gbinomial_negated_upper: "(a gchoose b) = (-1) ^ b * ((of_nat b - a - 1) gchoose b)"
664  by (simp add: gbinomial_pochhammer pochhammer_minus algebra_simps)
665
666lemma gbinomial_minus: "((-a) gchoose b) = (-1) ^ b * ((a + of_nat b - 1) gchoose b)"
667  by (subst gbinomial_negated_upper) (simp add: add_ac)
668
669lemma Suc_times_gbinomial: "of_nat (Suc b) * ((a + 1) gchoose (Suc b)) = (a + 1) * (a gchoose b)"
670proof (cases b)
671  case 0
672  then show ?thesis by simp
673next
674  case (Suc b)
675  then have "((a + 1) gchoose (Suc (Suc b))) = (\<Prod>i = 0..Suc b. a + (1 - of_nat i)) / fact (b + 2)"
676    by (simp add: field_simps gbinomial_prod_rev atLeastLessThanSuc_atLeastAtMost)
677  also have "(\<Prod>i = 0..Suc b. a + (1 - of_nat i)) = (a + 1) * (\<Prod>i = 0..b. a - of_nat i)"
678    by (simp add: prod.atLeast0_atMost_Suc_shift)
679  also have "\<dots> / fact (b + 2) = (a + 1) / of_nat (Suc (Suc b)) * (a gchoose Suc b)"
680    by (simp_all add: gbinomial_prod_rev atLeastLessThanSuc_atLeastAtMost)
681  finally show ?thesis by (simp add: Suc field_simps del: of_nat_Suc)
682qed
683
684lemma gbinomial_factors: "((a + 1) gchoose (Suc b)) = (a + 1) / of_nat (Suc b) * (a gchoose b)"
685proof (cases b)
686  case 0
687  then show ?thesis by simp
688next
689  case (Suc b)
690  then have "((a + 1) gchoose (Suc (Suc b))) = (\<Prod>i = 0 .. Suc b. a + (1 - of_nat i)) / fact (b + 2)"
691    by (simp add: field_simps gbinomial_prod_rev atLeastLessThanSuc_atLeastAtMost)
692  also have "(\<Prod>i = 0 .. Suc b. a + (1 - of_nat i)) = (a + 1) * (\<Prod>i = 0..b. a - of_nat i)"
693    by (simp add: prod.atLeast0_atMost_Suc_shift)
694  also have "\<dots> / fact (b + 2) = (a + 1) / of_nat (Suc (Suc b)) * (a gchoose Suc b)"
695    by (simp_all add: gbinomial_prod_rev atLeastLessThanSuc_atLeastAtMost atLeast0AtMost)
696  finally show ?thesis
697    by (simp add: Suc)
698qed
699
700lemma gbinomial_rec: "((r + 1) gchoose (Suc k)) = (r gchoose k) * ((r + 1) / of_nat (Suc k))"
701  using gbinomial_mult_1[of r k]
702  by (subst gbinomial_Suc_Suc) (simp add: field_simps del: of_nat_Suc, simp add: algebra_simps)
703
704lemma gbinomial_of_nat_symmetric: "k \<le> n \<Longrightarrow> (of_nat n) gchoose k = (of_nat n) gchoose (n - k)"
705  using binomial_symmetric[of k n] by (simp add: binomial_gbinomial [symmetric])
706
707
708text \<open>The absorption identity (equation 5.5 @{cite \<open>p.~157\<close> GKP_CM}):
709\[
710{r \choose k} = \frac{r}{k}{r - 1 \choose k - 1},\quad \textnormal{integer } k \neq 0.
711\]\<close>
712lemma gbinomial_absorption': "k > 0 \<Longrightarrow> r gchoose k = (r / of_nat k) * (r - 1 gchoose (k - 1))"
713  using gbinomial_rec[of "r - 1" "k - 1"]
714  by (simp_all add: gbinomial_rec field_simps del: of_nat_Suc)
715
716text \<open>The absorption identity is written in the following form to avoid
717division by $k$ (the lower index) and therefore remove the $k \neq 0$
718restriction @{cite \<open>p.~157\<close> GKP_CM}:
719\[
720k{r \choose k} = r{r - 1 \choose k - 1}, \quad \textnormal{integer } k.
721\]\<close>
722lemma gbinomial_absorption: "of_nat (Suc k) * (r gchoose Suc k) = r * ((r - 1) gchoose k)"
723  using gbinomial_absorption'[of "Suc k" r] by (simp add: field_simps del: of_nat_Suc)
724
725text \<open>The absorption identity for natural number binomial coefficients:\<close>
726lemma binomial_absorption: "Suc k * (n choose Suc k) = n * ((n - 1) choose k)"
727  by (cases n) (simp_all add: binomial_eq_0 Suc_times_binomial del: binomial_Suc_Suc mult_Suc)
728
729text \<open>The absorption companion identity for natural number coefficients,
730  following the proof by GKP @{cite \<open>p.~157\<close> GKP_CM}:\<close>
731lemma binomial_absorb_comp: "(n - k) * (n choose k) = n * ((n - 1) choose k)"
732  (is "?lhs = ?rhs")
733proof (cases "n \<le> k")
734  case True
735  then show ?thesis by auto
736next
737  case False
738  then have "?rhs = Suc ((n - 1) - k) * (n choose Suc ((n - 1) - k))"
739    using binomial_symmetric[of k "n - 1"] binomial_absorption[of "(n - 1) - k" n]
740    by simp
741  also have "Suc ((n - 1) - k) = n - k"
742    using False by simp
743  also have "n choose \<dots> = n choose k"
744    using False by (intro binomial_symmetric [symmetric]) simp_all
745  finally show ?thesis ..
746qed
747
748text \<open>The generalised absorption companion identity:\<close>
749lemma gbinomial_absorb_comp: "(r - of_nat k) * (r gchoose k) = r * ((r - 1) gchoose k)"
750  using pochhammer_absorb_comp[of r k] by (simp add: gbinomial_pochhammer)
751
752lemma gbinomial_addition_formula:
753  "r gchoose (Suc k) = ((r - 1) gchoose (Suc k)) + ((r - 1) gchoose k)"
754  using gbinomial_Suc_Suc[of "r - 1" k] by (simp add: algebra_simps)
755
756lemma binomial_addition_formula:
757  "0 < n \<Longrightarrow> n choose (Suc k) = ((n - 1) choose (Suc k)) + ((n - 1) choose k)"
758  by (subst choose_reduce_nat) simp_all
759
760text \<open>
761  Equation 5.9 of the reference material @{cite \<open>p.~159\<close> GKP_CM} is a useful
762  summation formula, operating on both indices:
763  \[
764   \sum\limits_{k \leq n}{r + k \choose k} = {r + n + 1 \choose n},
765   \quad \textnormal{integer } n.
766  \]
767\<close>
768lemma gbinomial_parallel_sum: "(\<Sum>k\<le>n. (r + of_nat k) gchoose k) = (r + of_nat n + 1) gchoose n"
769proof (induct n)
770  case 0
771  then show ?case by simp
772next
773  case (Suc m)
774  then show ?case
775    using gbinomial_Suc_Suc[of "(r + of_nat m + 1)" m]
776    by (simp add: add_ac)
777qed
778
779
780subsubsection \<open>Summation on the upper index\<close>
781
782text \<open>
783  Another summation formula is equation 5.10 of the reference material @{cite \<open>p.~160\<close> GKP_CM},
784  aptly named \emph{summation on the upper index}:\[\sum_{0 \leq k \leq n} {k \choose m} =
785  {n + 1 \choose m + 1}, \quad \textnormal{integers } m, n \geq 0.\]
786\<close>
787lemma gbinomial_sum_up_index:
788  "(\<Sum>k = 0..n. (of_nat k gchoose m) :: 'a::field_char_0) = (of_nat n + 1) gchoose (m + 1)"
789proof (induct n)
790  case 0
791  show ?case
792    using gbinomial_Suc_Suc[of 0 m]
793    by (cases m) auto
794next
795  case (Suc n)
796  then show ?case
797    using gbinomial_Suc_Suc[of "of_nat (Suc n) :: 'a" m]
798    by (simp add: add_ac)
799qed
800
801lemma gbinomial_index_swap:
802  "((-1) ^ m) * ((- (of_nat n) - 1) gchoose m) = ((-1) ^ n) * ((- (of_nat m) - 1) gchoose n)"
803  (is "?lhs = ?rhs")
804proof -
805  have "?lhs = (of_nat (m + n) gchoose m)"
806    by (subst gbinomial_negated_upper) (simp add: power_mult_distrib [symmetric])
807  also have "\<dots> = (of_nat (m + n) gchoose n)"
808    by (subst gbinomial_of_nat_symmetric) simp_all
809  also have "\<dots> = ?rhs"
810    by (subst gbinomial_negated_upper) simp
811  finally show ?thesis .
812qed
813
814lemma gbinomial_sum_lower_neg: "(\<Sum>k\<le>m. (r gchoose k) * (- 1) ^ k) = (- 1) ^ m * (r - 1 gchoose m)"
815  (is "?lhs = ?rhs")
816proof -
817  have "?lhs = (\<Sum>k\<le>m. -(r + 1) + of_nat k gchoose k)"
818    by (intro sum.cong[OF refl]) (subst gbinomial_negated_upper, simp add: power_mult_distrib)
819  also have "\<dots>  = - r + of_nat m gchoose m"
820    by (subst gbinomial_parallel_sum) simp
821  also have "\<dots> = ?rhs"
822    by (subst gbinomial_negated_upper) (simp add: power_mult_distrib)
823  finally show ?thesis .
824qed
825
826lemma gbinomial_partial_row_sum:
827  "(\<Sum>k\<le>m. (r gchoose k) * ((r / 2) - of_nat k)) = ((of_nat m + 1)/2) * (r gchoose (m + 1))"
828proof (induct m)
829  case 0
830  then show ?case by simp
831next
832  case (Suc mm)
833  then have "(\<Sum>k\<le>Suc mm. (r gchoose k) * (r / 2 - of_nat k)) =
834      (r - of_nat (Suc mm)) * (r gchoose Suc mm) / 2"
835    by (simp add: field_simps)
836  also have "\<dots> = r * (r - 1 gchoose Suc mm) / 2"
837    by (subst gbinomial_absorb_comp) (rule refl)
838  also have "\<dots> = (of_nat (Suc mm) + 1) / 2 * (r gchoose (Suc mm + 1))"
839    by (subst gbinomial_absorption [symmetric]) simp
840  finally show ?case .
841qed
842
843lemma sum_bounds_lt_plus1: "(\<Sum>k<mm. f (Suc k)) = (\<Sum>k=1..mm. f k)"
844  by (induct mm) simp_all
845
846lemma gbinomial_partial_sum_poly:
847  "(\<Sum>k\<le>m. (of_nat m + r gchoose k) * x^k * y^(m-k)) =
848    (\<Sum>k\<le>m. (-r gchoose k) * (-x)^k * (x + y)^(m-k))"
849  (is "?lhs m = ?rhs m")
850proof (induction m)
851  case 0
852  then show ?case by simp
853next
854  case (Suc mm)
855  define G where "G i k = (of_nat i + r gchoose k) * x^k * y^(i - k)" for i k
856  define S where "S = ?lhs"
857  have SG_def: "S = (\<lambda>i. (\<Sum>k\<le>i. (G i k)))"
858    unfolding S_def G_def ..
859
860  have "S (Suc mm) = G (Suc mm) 0 + (\<Sum>k=Suc 0..Suc mm. G (Suc mm) k)"
861    using SG_def by (simp add: sum_head_Suc atLeast0AtMost [symmetric])
862  also have "(\<Sum>k=Suc 0..Suc mm. G (Suc mm) k) = (\<Sum>k=0..mm. G (Suc mm) (Suc k))"
863    by (subst sum_shift_bounds_cl_Suc_ivl) simp
864  also have "\<dots> = (\<Sum>k=0..mm. ((of_nat mm + r gchoose (Suc k)) +
865      (of_nat mm + r gchoose k)) * x^(Suc k) * y^(mm - k))"
866    unfolding G_def by (subst gbinomial_addition_formula) simp
867  also have "\<dots> = (\<Sum>k=0..mm. (of_nat mm + r gchoose (Suc k)) * x^(Suc k) * y^(mm - k)) +
868      (\<Sum>k=0..mm. (of_nat mm + r gchoose k) * x^(Suc k) * y^(mm - k))"
869    by (subst sum.distrib [symmetric]) (simp add: algebra_simps)
870  also have "(\<Sum>k=0..mm. (of_nat mm + r gchoose (Suc k)) * x^(Suc k) * y^(mm - k)) =
871      (\<Sum>k<Suc mm. (of_nat mm + r gchoose (Suc k)) * x^(Suc k) * y^(mm - k))"
872    by (simp only: atLeast0AtMost lessThan_Suc_atMost)
873  also have "\<dots> = (\<Sum>k<mm. (of_nat mm + r gchoose Suc k) * x^(Suc k) * y^(mm-k)) +
874      (of_nat mm + r gchoose (Suc mm)) * x^(Suc mm)"
875    (is "_ = ?A + ?B")
876    by (subst sum_lessThan_Suc) simp
877  also have "?A = (\<Sum>k=1..mm. (of_nat mm + r gchoose k) * x^k * y^(mm - k + 1))"
878  proof (subst sum_bounds_lt_plus1 [symmetric], intro sum.cong[OF refl], clarify)
879    fix k
880    assume "k < mm"
881    then have "mm - k = mm - Suc k + 1"
882      by linarith
883    then show "(of_nat mm + r gchoose Suc k) * x ^ Suc k * y ^ (mm - k) =
884        (of_nat mm + r gchoose Suc k) * x ^ Suc k * y ^ (mm - Suc k + 1)"
885      by (simp only:)
886  qed
887  also have "\<dots> + ?B = y * (\<Sum>k=1..mm. (G mm k)) + (of_nat mm + r gchoose (Suc mm)) * x^(Suc mm)"
888    unfolding G_def by (subst sum_distrib_left) (simp add: algebra_simps)
889  also have "(\<Sum>k=0..mm. (of_nat mm + r gchoose k) * x^(Suc k) * y^(mm - k)) = x * (S mm)"
890    unfolding S_def by (subst sum_distrib_left) (simp add: atLeast0AtMost algebra_simps)
891  also have "(G (Suc mm) 0) = y * (G mm 0)"
892    by (simp add: G_def)
893  finally have "S (Suc mm) =
894      y * (G mm 0 + (\<Sum>k=1..mm. (G mm k))) + (of_nat mm + r gchoose (Suc mm)) * x^(Suc mm) + x * (S mm)"
895    by (simp add: ring_distribs)
896  also have "G mm 0 + (\<Sum>k=1..mm. (G mm k)) = S mm"
897    by (simp add: sum_head_Suc[symmetric] SG_def atLeast0AtMost)
898  finally have "S (Suc mm) = (x + y) * (S mm) + (of_nat mm + r gchoose (Suc mm)) * x^(Suc mm)"
899    by (simp add: algebra_simps)
900  also have "(of_nat mm + r gchoose (Suc mm)) = (-1) ^ (Suc mm) * (- r gchoose (Suc mm))"
901    by (subst gbinomial_negated_upper) simp
902  also have "(-1) ^ Suc mm * (- r gchoose Suc mm) * x ^ Suc mm =
903      (- r gchoose (Suc mm)) * (-x) ^ Suc mm"
904    by (simp add: power_minus[of x])
905  also have "(x + y) * S mm + \<dots> = (x + y) * ?rhs mm + (- r gchoose (Suc mm)) * (- x)^Suc mm"
906    unfolding S_def by (subst Suc.IH) simp
907  also have "(x + y) * ?rhs mm = (\<Sum>n\<le>mm. ((- r gchoose n) * (- x) ^ n * (x + y) ^ (Suc mm - n)))"
908    by (subst sum_distrib_left, rule sum.cong) (simp_all add: Suc_diff_le)
909  also have "\<dots> + (-r gchoose (Suc mm)) * (-x)^Suc mm =
910      (\<Sum>n\<le>Suc mm. (- r gchoose n) * (- x) ^ n * (x + y) ^ (Suc mm - n))"
911    by simp
912  finally show ?case
913    by (simp only: S_def)
914qed
915
916lemma gbinomial_partial_sum_poly_xpos:
917    "(\<Sum>k\<le>m. (of_nat m + r gchoose k) * x^k * y^(m-k)) =
918     (\<Sum>k\<le>m. (of_nat k + r - 1 gchoose k) * x^k * (x + y)^(m-k))"
919  apply (subst gbinomial_partial_sum_poly)
920  apply (subst gbinomial_negated_upper)
921  apply (intro sum.cong, rule refl)
922  apply (simp add: power_mult_distrib [symmetric])
923  done
924
925lemma binomial_r_part_sum: "(\<Sum>k\<le>m. (2 * m + 1 choose k)) = 2 ^ (2 * m)"
926proof -
927  have "2 * 2^(2*m) = (\<Sum>k = 0..(2 * m + 1). (2 * m + 1 choose k))"
928    using choose_row_sum[where n="2 * m + 1"]  by (simp add: atMost_atLeast0)
929  also have "(\<Sum>k = 0..(2 * m + 1). (2 * m + 1 choose k)) =
930      (\<Sum>k = 0..m. (2 * m + 1 choose k)) +
931      (\<Sum>k = m+1..2*m+1. (2 * m + 1 choose k))"
932    using sum_ub_add_nat[of 0 m "\<lambda>k. 2 * m + 1 choose k" "m+1"]
933    by (simp add: mult_2)
934  also have "(\<Sum>k = m+1..2*m+1. (2 * m + 1 choose k)) =
935      (\<Sum>k = 0..m. (2 * m + 1 choose (k + (m + 1))))"
936    by (subst sum_shift_bounds_cl_nat_ivl [symmetric]) (simp add: mult_2)
937  also have "\<dots> = (\<Sum>k = 0..m. (2 * m + 1 choose (m - k)))"
938    by (intro sum.cong[OF refl], subst binomial_symmetric) simp_all
939  also have "\<dots> = (\<Sum>k = 0..m. (2 * m + 1 choose k))"
940    using sum.atLeastAtMost_rev [of "\<lambda>k. 2 * m + 1 choose (m - k)" 0 m]
941    by simp
942  also have "\<dots> + \<dots> = 2 * \<dots>"
943    by simp
944  finally show ?thesis
945    by (subst (asm) mult_cancel1) (simp add: atLeast0AtMost)
946qed
947
948lemma gbinomial_r_part_sum: "(\<Sum>k\<le>m. (2 * (of_nat m) + 1 gchoose k)) = 2 ^ (2 * m)"
949  (is "?lhs = ?rhs")
950proof -
951  have "?lhs = of_nat (\<Sum>k\<le>m. (2 * m + 1) choose k)"
952    by (simp add: binomial_gbinomial add_ac)
953  also have "\<dots> = of_nat (2 ^ (2 * m))"
954    by (subst binomial_r_part_sum) (rule refl)
955  finally show ?thesis by simp
956qed
957
958lemma gbinomial_sum_nat_pow2:
959  "(\<Sum>k\<le>m. (of_nat (m + k) gchoose k :: 'a::field_char_0) / 2 ^ k) = 2 ^ m"
960  (is "?lhs = ?rhs")
961proof -
962  have "2 ^ m * 2 ^ m = (2 ^ (2*m) :: 'a)"
963    by (induct m) simp_all
964  also have "\<dots> = (\<Sum>k\<le>m. (2 * (of_nat m) + 1 gchoose k))"
965    using gbinomial_r_part_sum ..
966  also have "\<dots> = (\<Sum>k\<le>m. (of_nat (m + k) gchoose k) * 2 ^ (m - k))"
967    using gbinomial_partial_sum_poly_xpos[where x="1" and y="1" and r="of_nat m + 1" and m="m"]
968    by (simp add: add_ac)
969  also have "\<dots> = 2 ^ m * (\<Sum>k\<le>m. (of_nat (m + k) gchoose k) / 2 ^ k)"
970    by (subst sum_distrib_left) (simp add: algebra_simps power_diff)
971  finally show ?thesis
972    by (subst (asm) mult_left_cancel) simp_all
973qed
974
975lemma gbinomial_trinomial_revision:
976  assumes "k \<le> m"
977  shows "(r gchoose m) * (of_nat m gchoose k) = (r gchoose k) * (r - of_nat k gchoose (m - k))"
978proof -
979  have "(r gchoose m) * (of_nat m gchoose k) = (r gchoose m) * fact m / (fact k * fact (m - k))"
980    using assms by (simp add: binomial_gbinomial [symmetric] binomial_fact)
981  also have "\<dots> = (r gchoose k) * (r - of_nat k gchoose (m - k))"
982    using assms by (simp add: gbinomial_pochhammer power_diff pochhammer_product)
983  finally show ?thesis .
984qed
985
986text \<open>Versions of the theorems above for the natural-number version of "choose"\<close>
987lemma binomial_altdef_of_nat:
988  "k \<le> n \<Longrightarrow> of_nat (n choose k) = (\<Prod>i = 0..<k. of_nat (n - i) / of_nat (k - i) :: 'a)"
989  for n k :: nat and x :: "'a::field_char_0"
990  by (simp add: gbinomial_altdef_of_nat binomial_gbinomial of_nat_diff)
991
992lemma binomial_ge_n_over_k_pow_k: "k \<le> n \<Longrightarrow> (of_nat n / of_nat k :: 'a) ^ k \<le> of_nat (n choose k)"
993  for k n :: nat and x :: "'a::linordered_field"
994  by (simp add: gbinomial_ge_n_over_k_pow_k binomial_gbinomial of_nat_diff)
995
996lemma binomial_le_pow:
997  assumes "r \<le> n"
998  shows "n choose r \<le> n ^ r"
999proof -
1000  have "n choose r \<le> fact n div fact (n - r)"
1001    using assms by (subst binomial_fact_lemma[symmetric]) auto
1002  with fact_div_fact_le_pow [OF assms] show ?thesis
1003    by auto
1004qed
1005
1006lemma binomial_altdef_nat: "k \<le> n \<Longrightarrow> n choose k = fact n div (fact k * fact (n - k))"
1007  for k n :: nat
1008  by (subst binomial_fact_lemma [symmetric]) auto
1009
1010lemma choose_dvd:
1011  "k \<le> n \<Longrightarrow> fact k * fact (n - k) dvd (fact n :: 'a::linordered_semidom)"
1012  unfolding dvd_def
1013  apply (rule exI [where x="of_nat (n choose k)"])
1014  using binomial_fact_lemma [of k n, THEN arg_cong [where f = of_nat and 'b='a]]
1015  apply auto
1016  done
1017
1018lemma fact_fact_dvd_fact:
1019  "fact k * fact n dvd (fact (k + n) :: 'a::linordered_semidom)"
1020  by (metis add.commute add_diff_cancel_left' choose_dvd le_add2)
1021
1022lemma choose_mult_lemma:
1023  "((m + r + k) choose (m + k)) * ((m + k) choose k) = ((m + r + k) choose k) * ((m + r) choose m)"
1024  (is "?lhs = _")
1025proof -
1026  have "?lhs =
1027      fact (m + r + k) div (fact (m + k) * fact (m + r - m)) * (fact (m + k) div (fact k * fact m))"
1028    by (simp add: binomial_altdef_nat)
1029  also have "\<dots> = fact (m + r + k) div (fact r * (fact k * fact m))"
1030    apply (subst div_mult_div_if_dvd)
1031    apply (auto simp: algebra_simps fact_fact_dvd_fact)
1032    apply (metis add.assoc add.commute fact_fact_dvd_fact)
1033    done
1034  also have "\<dots> = (fact (m + r + k) * fact (m + r)) div (fact r * (fact k * fact m) * fact (m + r))"
1035    apply (subst div_mult_div_if_dvd [symmetric])
1036    apply (auto simp add: algebra_simps)
1037    apply (metis fact_fact_dvd_fact dvd_trans nat_mult_dvd_cancel_disj)
1038    done
1039  also have "\<dots> =
1040      (fact (m + r + k) div (fact k * fact (m + r)) * (fact (m + r) div (fact r * fact m)))"
1041    apply (subst div_mult_div_if_dvd)
1042    apply (auto simp: fact_fact_dvd_fact algebra_simps)
1043    done
1044  finally show ?thesis
1045    by (simp add: binomial_altdef_nat mult.commute)
1046qed
1047
1048text \<open>The "Subset of a Subset" identity.\<close>
1049lemma choose_mult:
1050  "k \<le> m \<Longrightarrow> m \<le> n \<Longrightarrow> (n choose m) * (m choose k) = (n choose k) * ((n - k) choose (m - k))"
1051  using choose_mult_lemma [of "m-k" "n-m" k] by simp
1052
1053
1054subsection \<open>More on Binomial Coefficients\<close>
1055
1056lemma choose_one: "n choose 1 = n" for n :: nat
1057  by simp
1058
1059lemma card_UNION:
1060  assumes "finite A"
1061    and "\<forall>k \<in> A. finite k"
1062  shows "card (\<Union>A) = nat (\<Sum>I | I \<subseteq> A \<and> I \<noteq> {}. (- 1) ^ (card I + 1) * int (card (\<Inter>I)))"
1063  (is "?lhs = ?rhs")
1064proof -
1065  have "?rhs = nat (\<Sum>I | I \<subseteq> A \<and> I \<noteq> {}. (- 1) ^ (card I + 1) * (\<Sum>_\<in>\<Inter>I. 1))"
1066    by simp
1067  also have "\<dots> = nat (\<Sum>I | I \<subseteq> A \<and> I \<noteq> {}. (\<Sum>_\<in>\<Inter>I. (- 1) ^ (card I + 1)))"
1068    (is "_ = nat ?rhs")
1069    by (subst sum_distrib_left) simp
1070  also have "?rhs = (\<Sum>(I, _)\<in>Sigma {I. I \<subseteq> A \<and> I \<noteq> {}} Inter. (- 1) ^ (card I + 1))"
1071    using assms by (subst sum.Sigma) auto
1072  also have "\<dots> = (\<Sum>(x, I)\<in>(SIGMA x:UNIV. {I. I \<subseteq> A \<and> I \<noteq> {} \<and> x \<in> \<Inter>I}). (- 1) ^ (card I + 1))"
1073    by (rule sum.reindex_cong [where l = "\<lambda>(x, y). (y, x)"]) (auto intro: inj_onI simp add: split_beta)
1074  also have "\<dots> = (\<Sum>(x, I)\<in>(SIGMA x:\<Union>A. {I. I \<subseteq> A \<and> I \<noteq> {} \<and> x \<in> \<Inter>I}). (- 1) ^ (card I + 1))"
1075    using assms
1076    by (auto intro!: sum.mono_neutral_cong_right finite_SigmaI2 intro: finite_subset[where B="\<Union>A"])
1077  also have "\<dots> = (\<Sum>x\<in>\<Union>A. (\<Sum>I|I \<subseteq> A \<and> I \<noteq> {} \<and> x \<in> \<Inter>I. (- 1) ^ (card I + 1)))"
1078    using assms by (subst sum.Sigma) auto
1079  also have "\<dots> = (\<Sum>_\<in>\<Union>A. 1)" (is "sum ?lhs _ = _")
1080  proof (rule sum.cong[OF refl])
1081    fix x
1082    assume x: "x \<in> \<Union>A"
1083    define K where "K = {X \<in> A. x \<in> X}"
1084    with \<open>finite A\<close> have K: "finite K"
1085      by auto
1086    let ?I = "\<lambda>i. {I. I \<subseteq> A \<and> card I = i \<and> x \<in> \<Inter>I}"
1087    have "inj_on snd (SIGMA i:{1..card A}. ?I i)"
1088      using assms by (auto intro!: inj_onI)
1089    moreover have [symmetric]: "snd ` (SIGMA i:{1..card A}. ?I i) = {I. I \<subseteq> A \<and> I \<noteq> {} \<and> x \<in> \<Inter>I}"
1090      using assms
1091      by (auto intro!: rev_image_eqI[where x="(card a, a)" for a]
1092        simp add: card_gt_0_iff[folded Suc_le_eq]
1093        dest: finite_subset intro: card_mono)
1094    ultimately have "?lhs x = (\<Sum>(i, I)\<in>(SIGMA i:{1..card A}. ?I i). (- 1) ^ (i + 1))"
1095      by (rule sum.reindex_cong [where l = snd]) fastforce
1096    also have "\<dots> = (\<Sum>i=1..card A. (\<Sum>I|I \<subseteq> A \<and> card I = i \<and> x \<in> \<Inter>I. (- 1) ^ (i + 1)))"
1097      using assms by (subst sum.Sigma) auto
1098    also have "\<dots> = (\<Sum>i=1..card A. (- 1) ^ (i + 1) * (\<Sum>I|I \<subseteq> A \<and> card I = i \<and> x \<in> \<Inter>I. 1))"
1099      by (subst sum_distrib_left) simp
1100    also have "\<dots> = (\<Sum>i=1..card K. (- 1) ^ (i + 1) * (\<Sum>I|I \<subseteq> K \<and> card I = i. 1))"
1101      (is "_ = ?rhs")
1102    proof (rule sum.mono_neutral_cong_right[rule_format])
1103      show "finite {1..card A}"
1104        by simp
1105      show "{1..card K} \<subseteq> {1..card A}"
1106        using \<open>finite A\<close> by (auto simp add: K_def intro: card_mono)
1107    next
1108      fix i
1109      assume "i \<in> {1..card A} - {1..card K}"
1110      then have i: "i \<le> card A" "card K < i"
1111        by auto
1112      have "{I. I \<subseteq> A \<and> card I = i \<and> x \<in> \<Inter>I} = {I. I \<subseteq> K \<and> card I = i}"
1113        by (auto simp add: K_def)
1114      also have "\<dots> = {}"
1115        using \<open>finite A\<close> i by (auto simp add: K_def dest: card_mono[rotated 1])
1116      finally show "(- 1) ^ (i + 1) * (\<Sum>I | I \<subseteq> A \<and> card I = i \<and> x \<in> \<Inter>I. 1 :: int) = 0"
1117        by (simp only:) simp
1118    next
1119      fix i
1120      have "(\<Sum>I | I \<subseteq> A \<and> card I = i \<and> x \<in> \<Inter>I. 1) = (\<Sum>I | I \<subseteq> K \<and> card I = i. 1 :: int)"
1121        (is "?lhs = ?rhs")
1122        by (rule sum.cong) (auto simp add: K_def)
1123      then show "(- 1) ^ (i + 1) * ?lhs = (- 1) ^ (i + 1) * ?rhs"
1124        by simp
1125    qed
1126    also have "{I. I \<subseteq> K \<and> card I = 0} = {{}}"
1127      using assms by (auto simp add: card_eq_0_iff K_def dest: finite_subset)
1128    then have "?rhs = (\<Sum>i = 0..card K. (- 1) ^ (i + 1) * (\<Sum>I | I \<subseteq> K \<and> card I = i. 1 :: int)) + 1"
1129      by (subst (2) sum_head_Suc) simp_all
1130    also have "\<dots> = (\<Sum>i = 0..card K. (- 1) * ((- 1) ^ i * int (card K choose i))) + 1"
1131      using K by (subst n_subsets[symmetric]) simp_all
1132    also have "\<dots> = - (\<Sum>i = 0..card K. (- 1) ^ i * int (card K choose i)) + 1"
1133      by (subst sum_distrib_left[symmetric]) simp
1134    also have "\<dots> =  - ((-1 + 1) ^ card K) + 1"
1135      by (subst binomial_ring) (simp add: ac_simps atMost_atLeast0)
1136    also have "\<dots> = 1"
1137      using x K by (auto simp add: K_def card_gt_0_iff)
1138    finally show "?lhs x = 1" .
1139  qed
1140  also have "nat \<dots> = card (\<Union>A)"
1141    by simp
1142  finally show ?thesis ..
1143qed
1144
1145text \<open>The number of nat lists of length \<open>m\<close> summing to \<open>N\<close> is @{term "(N + m - 1) choose N"}:\<close>
1146lemma card_length_sum_list_rec:
1147  assumes "m \<ge> 1"
1148  shows "card {l::nat list. length l = m \<and> sum_list l = N} =
1149      card {l. length l = (m - 1) \<and> sum_list l = N} +
1150      card {l. length l = m \<and> sum_list l + 1 = N}"
1151    (is "card ?C = card ?A + card ?B")
1152proof -
1153  let ?A' = "{l. length l = m \<and> sum_list l = N \<and> hd l = 0}"
1154  let ?B' = "{l. length l = m \<and> sum_list l = N \<and> hd l \<noteq> 0}"
1155  let ?f = "\<lambda>l. 0 # l"
1156  let ?g = "\<lambda>l. (hd l + 1) # tl l"
1157  have 1: "xs \<noteq> [] \<Longrightarrow> x = hd xs \<Longrightarrow> x # tl xs = xs" for x :: nat and xs
1158    by simp
1159  have 2: "xs \<noteq> [] \<Longrightarrow> sum_list(tl xs) = sum_list xs - hd xs" for xs :: "nat list"
1160    by (auto simp add: neq_Nil_conv)
1161  have f: "bij_betw ?f ?A ?A'"
1162    apply (rule bij_betw_byWitness[where f' = tl])
1163    using assms
1164    apply (auto simp: 2 length_0_conv[symmetric] 1 simp del: length_0_conv)
1165    done
1166  have 3: "xs \<noteq> [] \<Longrightarrow> hd xs + (sum_list xs - hd xs) = sum_list xs" for xs :: "nat list"
1167    by (metis 1 sum_list_simps(2) 2)
1168  have g: "bij_betw ?g ?B ?B'"
1169    apply (rule bij_betw_byWitness[where f' = "\<lambda>l. (hd l - 1) # tl l"])
1170    using assms
1171    by (auto simp: 2 length_0_conv[symmetric] intro!: 3
1172        simp del: length_greater_0_conv length_0_conv)
1173  have fin: "finite {xs. size xs = M \<and> set xs \<subseteq> {0..<N}}" for M N :: nat
1174    using finite_lists_length_eq[OF finite_atLeastLessThan] conj_commute by auto
1175  have fin_A: "finite ?A" using fin[of _ "N+1"]
1176    by (intro finite_subset[where ?A = "?A" and ?B = "{xs. size xs = m - 1 \<and> set xs \<subseteq> {0..<N+1}}"])
1177      (auto simp: member_le_sum_list less_Suc_eq_le)
1178  have fin_B: "finite ?B"
1179    by (intro finite_subset[where ?A = "?B" and ?B = "{xs. size xs = m \<and> set xs \<subseteq> {0..<N}}"])
1180      (auto simp: member_le_sum_list less_Suc_eq_le fin)
1181  have uni: "?C = ?A' \<union> ?B'"
1182    by auto
1183  have disj: "?A' \<inter> ?B' = {}" by blast
1184  have "card ?C = card(?A' \<union> ?B')"
1185    using uni by simp
1186  also have "\<dots> = card ?A + card ?B"
1187    using card_Un_disjoint[OF _ _ disj] bij_betw_finite[OF f] bij_betw_finite[OF g]
1188      bij_betw_same_card[OF f] bij_betw_same_card[OF g] fin_A fin_B
1189    by presburger
1190  finally show ?thesis .
1191qed
1192
1193lemma card_length_sum_list: "card {l::nat list. size l = m \<and> sum_list l = N} = (N + m - 1) choose N"
1194  \<comment> \<open>by Holden Lee, tidied by Tobias Nipkow\<close>
1195proof (cases m)
1196  case 0
1197  then show ?thesis
1198    by (cases N) (auto cong: conj_cong)
1199next
1200  case (Suc m')
1201  have m: "m \<ge> 1"
1202    by (simp add: Suc)
1203  then show ?thesis
1204  proof (induct "N + m - 1" arbitrary: N m)
1205    case 0  \<comment> \<open>In the base case, the only solution is [0].\<close>
1206    have [simp]: "{l::nat list. length l = Suc 0 \<and> (\<forall>n\<in>set l. n = 0)} = {[0]}"
1207      by (auto simp: length_Suc_conv)
1208    have "m = 1 \<and> N = 0"
1209      using 0 by linarith
1210    then show ?case
1211      by simp
1212  next
1213    case (Suc k)
1214    have c1: "card {l::nat list. size l = (m - 1) \<and> sum_list l =  N} = (N + (m - 1) - 1) choose N"
1215    proof (cases "m = 1")
1216      case True
1217      with Suc.hyps have "N \<ge> 1"
1218        by auto
1219      with True show ?thesis
1220        by (simp add: binomial_eq_0)
1221    next
1222      case False
1223      then show ?thesis
1224        using Suc by fastforce
1225    qed
1226    from Suc have c2: "card {l::nat list. size l = m \<and> sum_list l + 1 = N} =
1227      (if N > 0 then ((N - 1) + m - 1) choose (N - 1) else 0)"
1228    proof -
1229      have *: "n > 0 \<Longrightarrow> Suc m = n \<longleftrightarrow> m = n - 1" for m n
1230        by arith
1231      from Suc have "N > 0 \<Longrightarrow>
1232        card {l::nat list. size l = m \<and> sum_list l + 1 = N} =
1233          ((N - 1) + m - 1) choose (N - 1)"
1234        by (simp add: *)
1235      then show ?thesis
1236        by auto
1237    qed
1238    from Suc.prems have "(card {l::nat list. size l = (m - 1) \<and> sum_list l = N} +
1239          card {l::nat list. size l = m \<and> sum_list l + 1 = N}) = (N + m - 1) choose N"
1240      by (auto simp: c1 c2 choose_reduce_nat[of "N + m - 1" N] simp del: One_nat_def)
1241    then show ?case
1242      using card_length_sum_list_rec[OF Suc.prems] by auto
1243  qed
1244qed
1245
1246lemma card_disjoint_shuffle:
1247  assumes "set xs \<inter> set ys = {}"
1248  shows   "card (shuffle xs ys) = (length xs + length ys) choose length xs"
1249using assms
1250proof (induction xs ys rule: shuffle.induct)
1251  case (3 x xs y ys)
1252  have "shuffle (x # xs) (y # ys) = (#) x ` shuffle xs (y # ys) \<union> (#) y ` shuffle (x # xs) ys"
1253    by (rule shuffle.simps)
1254  also have "card \<dots> = card ((#) x ` shuffle xs (y # ys)) + card ((#) y ` shuffle (x # xs) ys)"
1255    by (rule card_Un_disjoint) (insert "3.prems", auto)
1256  also have "card ((#) x ` shuffle xs (y # ys)) = card (shuffle xs (y # ys))"
1257    by (rule card_image) auto
1258  also have "\<dots> = (length xs + length (y # ys)) choose length xs"
1259    using "3.prems" by (intro "3.IH") auto
1260  also have "card ((#) y ` shuffle (x # xs) ys) = card (shuffle (x # xs) ys)"
1261    by (rule card_image) auto
1262  also have "\<dots> = (length (x # xs) + length ys) choose length (x # xs)"
1263    using "3.prems" by (intro "3.IH") auto
1264  also have "length xs + length (y # ys) choose length xs + \<dots> =
1265               (length (x # xs) + length (y # ys)) choose length (x # xs)" by simp
1266  finally show ?case .
1267qed auto
1268
1269lemma Suc_times_binomial_add: "Suc a * (Suc (a + b) choose Suc a) = Suc b * (Suc (a + b) choose a)"
1270  \<comment> \<open>by Lukas Bulwahn\<close>
1271proof -
1272  have dvd: "Suc a * (fact a * fact b) dvd fact (Suc (a + b))" for a b
1273    using fact_fact_dvd_fact[of "Suc a" "b", where 'a=nat]
1274    by (simp only: fact_Suc add_Suc[symmetric] of_nat_id mult.assoc)
1275  have "Suc a * (fact (Suc (a + b)) div (Suc a * fact a * fact b)) =
1276      Suc a * fact (Suc (a + b)) div (Suc a * (fact a * fact b))"
1277    by (subst div_mult_swap[symmetric]; simp only: mult.assoc dvd)
1278  also have "\<dots> = Suc b * fact (Suc (a + b)) div (Suc b * (fact a * fact b))"
1279    by (simp only: div_mult_mult1)
1280  also have "\<dots> = Suc b * (fact (Suc (a + b)) div (Suc b * (fact a * fact b)))"
1281    using dvd[of b a] by (subst div_mult_swap[symmetric]; simp only: ac_simps dvd)
1282  finally show ?thesis
1283    by (subst (1 2) binomial_altdef_nat)
1284      (simp_all only: ac_simps diff_Suc_Suc Suc_diff_le diff_add_inverse fact_Suc of_nat_id)
1285qed
1286
1287
1288subsection \<open>Misc\<close>
1289
1290lemma gbinomial_code [code]:
1291  "a gchoose n =
1292    (if n = 0 then 1
1293     else fold_atLeastAtMost_nat (\<lambda>n acc. (a - of_nat n) * acc) 0 (n - 1) 1 / fact n)"
1294  by (cases n)
1295    (simp_all add: gbinomial_prod_rev prod_atLeastAtMost_code [symmetric]
1296      atLeastLessThanSuc_atLeastAtMost)
1297
1298declare [[code drop: binomial]]
1299    
1300lemma binomial_code [code]:
1301  "(n choose k) =
1302      (if k > n then 0
1303       else if 2 * k > n then (n choose (n - k))
1304       else (fold_atLeastAtMost_nat (( * ) ) (n-k+1) n 1 div fact k))"
1305proof -
1306  {
1307    assume "k \<le> n"
1308    then have "{1..n} = {1..n-k} \<union> {n-k+1..n}" by auto
1309    then have "(fact n :: nat) = fact (n-k) * \<Prod>{n-k+1..n}"
1310      by (simp add: prod.union_disjoint fact_prod)
1311  }
1312  then show ?thesis by (auto simp: binomial_altdef_nat mult_ac prod_atLeastAtMost_code)
1313qed
1314
1315end
1316