1(*  Title:      HOL/BNF_Greatest_Fixpoint.thy
2    Author:     Dmitriy Traytel, TU Muenchen
3    Author:     Lorenz Panny, TU Muenchen
4    Author:     Jasmin Blanchette, TU Muenchen
5    Copyright   2012, 2013, 2014
6
7Greatest fixpoint (codatatype) operation on bounded natural functors.
8*)
9
10section \<open>Greatest Fixpoint (Codatatype) Operation on Bounded Natural Functors\<close>
11
12theory BNF_Greatest_Fixpoint
13imports BNF_Fixpoint_Base String
14keywords
15  "codatatype" :: thy_decl and
16  "primcorecursive" :: thy_goal and
17  "primcorec" :: thy_decl
18begin
19
20alias proj = Equiv_Relations.proj
21
22lemma one_pointE: "\<lbrakk>\<And>x. s = x \<Longrightarrow> P\<rbrakk> \<Longrightarrow> P"
23  by simp
24
25lemma obj_sumE: "\<lbrakk>\<forall>x. s = Inl x \<longrightarrow> P; \<forall>x. s = Inr x \<longrightarrow> P\<rbrakk> \<Longrightarrow> P"
26  by (cases s) auto
27
28lemma not_TrueE: "\<not> True \<Longrightarrow> P"
29  by (erule notE, rule TrueI)
30
31lemma neq_eq_eq_contradict: "\<lbrakk>t \<noteq> u; s = t; s = u\<rbrakk> \<Longrightarrow> P"
32  by fast
33
34lemma converse_Times: "(A \<times> B)\<inverse> = B \<times> A"
35  by fast
36
37lemma equiv_proj:
38  assumes e: "equiv A R" and m: "z \<in> R"
39  shows "(proj R \<circ> fst) z = (proj R \<circ> snd) z"
40proof -
41  from m have z: "(fst z, snd z) \<in> R" by auto
42  with e have "\<And>x. (fst z, x) \<in> R \<Longrightarrow> (snd z, x) \<in> R" "\<And>x. (snd z, x) \<in> R \<Longrightarrow> (fst z, x) \<in> R"
43    unfolding equiv_def sym_def trans_def by blast+
44  then show ?thesis unfolding proj_def[abs_def] by auto
45qed
46
47(* Operators: *)
48definition image2 where "image2 A f g = {(f a, g a) | a. a \<in> A}"
49
50lemma Id_on_Gr: "Id_on A = Gr A id"
51  unfolding Id_on_def Gr_def by auto
52
53lemma image2_eqI: "\<lbrakk>b = f x; c = g x; x \<in> A\<rbrakk> \<Longrightarrow> (b, c) \<in> image2 A f g"
54  unfolding image2_def by auto
55
56lemma IdD: "(a, b) \<in> Id \<Longrightarrow> a = b"
57  by auto
58
59lemma image2_Gr: "image2 A f g = (Gr A f)\<inverse> O (Gr A g)"
60  unfolding image2_def Gr_def by auto
61
62lemma GrD1: "(x, fx) \<in> Gr A f \<Longrightarrow> x \<in> A"
63  unfolding Gr_def by simp
64
65lemma GrD2: "(x, fx) \<in> Gr A f \<Longrightarrow> f x = fx"
66  unfolding Gr_def by simp
67
68lemma Gr_incl: "Gr A f \<subseteq> A \<times> B \<longleftrightarrow> f ` A \<subseteq> B"
69  unfolding Gr_def by auto
70
71lemma subset_Collect_iff: "B \<subseteq> A \<Longrightarrow> (B \<subseteq> {x \<in> A. P x}) = (\<forall>x \<in> B. P x)"
72  by blast
73
74lemma subset_CollectI: "B \<subseteq> A \<Longrightarrow> (\<And>x. x \<in> B \<Longrightarrow> Q x \<Longrightarrow> P x) \<Longrightarrow> ({x \<in> B. Q x} \<subseteq> {x \<in> A. P x})"
75  by blast
76
77lemma in_rel_Collect_case_prod_eq: "in_rel (Collect (case_prod X)) = X"
78  unfolding fun_eq_iff by auto
79
80lemma Collect_case_prod_in_rel_leI: "X \<subseteq> Y \<Longrightarrow> X \<subseteq> Collect (case_prod (in_rel Y))"
81  by auto
82
83lemma Collect_case_prod_in_rel_leE: "X \<subseteq> Collect (case_prod (in_rel Y)) \<Longrightarrow> (X \<subseteq> Y \<Longrightarrow> R) \<Longrightarrow> R"
84  by force
85
86lemma conversep_in_rel: "(in_rel R)\<inverse>\<inverse> = in_rel (R\<inverse>)"
87  unfolding fun_eq_iff by auto
88
89lemma relcompp_in_rel: "in_rel R OO in_rel S = in_rel (R O S)"
90  unfolding fun_eq_iff by auto
91
92lemma in_rel_Gr: "in_rel (Gr A f) = Grp A f"
93  unfolding Gr_def Grp_def fun_eq_iff by auto
94
95definition relImage where
96  "relImage R f \<equiv> {(f a1, f a2) | a1 a2. (a1,a2) \<in> R}"
97
98definition relInvImage where
99  "relInvImage A R f \<equiv> {(a1, a2) | a1 a2. a1 \<in> A \<and> a2 \<in> A \<and> (f a1, f a2) \<in> R}"
100
101lemma relImage_Gr:
102  "\<lbrakk>R \<subseteq> A \<times> A\<rbrakk> \<Longrightarrow> relImage R f = (Gr A f)\<inverse> O R O Gr A f"
103  unfolding relImage_def Gr_def relcomp_def by auto
104
105lemma relInvImage_Gr: "\<lbrakk>R \<subseteq> B \<times> B\<rbrakk> \<Longrightarrow> relInvImage A R f = Gr A f O R O (Gr A f)\<inverse>"
106  unfolding Gr_def relcomp_def image_def relInvImage_def by auto
107
108lemma relImage_mono:
109  "R1 \<subseteq> R2 \<Longrightarrow> relImage R1 f \<subseteq> relImage R2 f"
110  unfolding relImage_def by auto
111
112lemma relInvImage_mono:
113  "R1 \<subseteq> R2 \<Longrightarrow> relInvImage A R1 f \<subseteq> relInvImage A R2 f"
114  unfolding relInvImage_def by auto
115
116lemma relInvImage_Id_on:
117  "(\<And>a1 a2. f a1 = f a2 \<longleftrightarrow> a1 = a2) \<Longrightarrow> relInvImage A (Id_on B) f \<subseteq> Id"
118  unfolding relInvImage_def Id_on_def by auto
119
120lemma relInvImage_UNIV_relImage:
121  "R \<subseteq> relInvImage UNIV (relImage R f) f"
122  unfolding relInvImage_def relImage_def by auto
123
124lemma relImage_proj:
125  assumes "equiv A R"
126  shows "relImage R (proj R) \<subseteq> Id_on (A//R)"
127  unfolding relImage_def Id_on_def
128  using proj_iff[OF assms] equiv_class_eq_iff[OF assms]
129  by (auto simp: proj_preserves)
130
131lemma relImage_relInvImage:
132  assumes "R \<subseteq> f ` A \<times> f ` A"
133  shows "relImage (relInvImage A R f) f = R"
134  using assms unfolding relImage_def relInvImage_def by fast
135
136lemma subst_Pair: "P x y \<Longrightarrow> a = (x, y) \<Longrightarrow> P (fst a) (snd a)"
137  by simp
138
139lemma fst_diag_id: "(fst \<circ> (\<lambda>x. (x, x))) z = id z" by simp
140lemma snd_diag_id: "(snd \<circ> (\<lambda>x. (x, x))) z = id z" by simp
141
142lemma fst_diag_fst: "fst \<circ> ((\<lambda>x. (x, x)) \<circ> fst) = fst" by auto
143lemma snd_diag_fst: "snd \<circ> ((\<lambda>x. (x, x)) \<circ> fst) = fst" by auto
144lemma fst_diag_snd: "fst \<circ> ((\<lambda>x. (x, x)) \<circ> snd) = snd" by auto
145lemma snd_diag_snd: "snd \<circ> ((\<lambda>x. (x, x)) \<circ> snd) = snd" by auto
146
147definition Succ where "Succ Kl kl = {k . kl @ [k] \<in> Kl}"
148definition Shift where "Shift Kl k = {kl. k # kl \<in> Kl}"
149definition shift where "shift lab k = (\<lambda>kl. lab (k # kl))"
150
151lemma empty_Shift: "\<lbrakk>[] \<in> Kl; k \<in> Succ Kl []\<rbrakk> \<Longrightarrow> [] \<in> Shift Kl k"
152  unfolding Shift_def Succ_def by simp
153
154lemma SuccD: "k \<in> Succ Kl kl \<Longrightarrow> kl @ [k] \<in> Kl"
155  unfolding Succ_def by simp
156
157lemmas SuccE = SuccD[elim_format]
158
159lemma SuccI: "kl @ [k] \<in> Kl \<Longrightarrow> k \<in> Succ Kl kl"
160  unfolding Succ_def by simp
161
162lemma ShiftD: "kl \<in> Shift Kl k \<Longrightarrow> k # kl \<in> Kl"
163  unfolding Shift_def by simp
164
165lemma Succ_Shift: "Succ (Shift Kl k) kl = Succ Kl (k # kl)"
166  unfolding Succ_def Shift_def by auto
167
168lemma length_Cons: "length (x # xs) = Suc (length xs)"
169  by simp
170
171lemma length_append_singleton: "length (xs @ [x]) = Suc (length xs)"
172  by simp
173
174(*injection into the field of a cardinal*)
175definition "toCard_pred A r f \<equiv> inj_on f A \<and> f ` A \<subseteq> Field r \<and> Card_order r"
176definition "toCard A r \<equiv> SOME f. toCard_pred A r f"
177
178lemma ex_toCard_pred:
179  "\<lbrakk>|A| \<le>o r; Card_order r\<rbrakk> \<Longrightarrow> \<exists> f. toCard_pred A r f"
180  unfolding toCard_pred_def
181  using card_of_ordLeq[of A "Field r"]
182    ordLeq_ordIso_trans[OF _ card_of_unique[of "Field r" r], of "|A|"]
183  by blast
184
185lemma toCard_pred_toCard:
186  "\<lbrakk>|A| \<le>o r; Card_order r\<rbrakk> \<Longrightarrow> toCard_pred A r (toCard A r)"
187  unfolding toCard_def using someI_ex[OF ex_toCard_pred] .
188
189lemma toCard_inj: "\<lbrakk>|A| \<le>o r; Card_order r; x \<in> A; y \<in> A\<rbrakk> \<Longrightarrow> toCard A r x = toCard A r y \<longleftrightarrow> x = y"
190  using toCard_pred_toCard unfolding inj_on_def toCard_pred_def by blast
191
192definition "fromCard A r k \<equiv> SOME b. b \<in> A \<and> toCard A r b = k"
193
194lemma fromCard_toCard:
195  "\<lbrakk>|A| \<le>o r; Card_order r; b \<in> A\<rbrakk> \<Longrightarrow> fromCard A r (toCard A r b) = b"
196  unfolding fromCard_def by (rule some_equality) (auto simp add: toCard_inj)
197
198lemma Inl_Field_csum: "a \<in> Field r \<Longrightarrow> Inl a \<in> Field (r +c s)"
199  unfolding Field_card_of csum_def by auto
200
201lemma Inr_Field_csum: "a \<in> Field s \<Longrightarrow> Inr a \<in> Field (r +c s)"
202  unfolding Field_card_of csum_def by auto
203
204lemma rec_nat_0_imp: "f = rec_nat f1 (\<lambda>n rec. f2 n rec) \<Longrightarrow> f 0 = f1"
205  by auto
206
207lemma rec_nat_Suc_imp: "f = rec_nat f1 (\<lambda>n rec. f2 n rec) \<Longrightarrow> f (Suc n) = f2 n (f n)"
208  by auto
209
210lemma rec_list_Nil_imp: "f = rec_list f1 (\<lambda>x xs rec. f2 x xs rec) \<Longrightarrow> f [] = f1"
211  by auto
212
213lemma rec_list_Cons_imp: "f = rec_list f1 (\<lambda>x xs rec. f2 x xs rec) \<Longrightarrow> f (x # xs) = f2 x xs (f xs)"
214  by auto
215
216lemma not_arg_cong_Inr: "x \<noteq> y \<Longrightarrow> Inr x \<noteq> Inr y"
217  by simp
218
219definition image2p where
220  "image2p f g R = (\<lambda>x y. \<exists>x' y'. R x' y' \<and> f x' = x \<and> g y' = y)"
221
222lemma image2pI: "R x y \<Longrightarrow> image2p f g R (f x) (g y)"
223  unfolding image2p_def by blast
224
225lemma image2pE: "\<lbrakk>image2p f g R fx gy; (\<And>x y. fx = f x \<Longrightarrow> gy = g y \<Longrightarrow> R x y \<Longrightarrow> P)\<rbrakk> \<Longrightarrow> P"
226  unfolding image2p_def by blast
227
228lemma rel_fun_iff_geq_image2p: "rel_fun R S f g = (image2p f g R \<le> S)"
229  unfolding rel_fun_def image2p_def by auto
230
231lemma rel_fun_image2p: "rel_fun R (image2p f g R) f g"
232  unfolding rel_fun_def image2p_def by auto
233
234
235subsection \<open>Equivalence relations, quotients, and Hilbert's choice\<close>
236
237lemma equiv_Eps_in:
238"\<lbrakk>equiv A r; X \<in> A//r\<rbrakk> \<Longrightarrow> Eps (\<lambda>x. x \<in> X) \<in> X"
239  apply (rule someI2_ex)
240  using in_quotient_imp_non_empty by blast
241
242lemma equiv_Eps_preserves:
243  assumes ECH: "equiv A r" and X: "X \<in> A//r"
244  shows "Eps (\<lambda>x. x \<in> X) \<in> A"
245  apply (rule in_mono[rule_format])
246   using assms apply (rule in_quotient_imp_subset)
247  by (rule equiv_Eps_in) (rule assms)+
248
249lemma proj_Eps:
250  assumes "equiv A r" and "X \<in> A//r"
251  shows "proj r (Eps (\<lambda>x. x \<in> X)) = X"
252unfolding proj_def
253proof auto
254  fix x assume x: "x \<in> X"
255  thus "(Eps (\<lambda>x. x \<in> X), x) \<in> r" using assms equiv_Eps_in in_quotient_imp_in_rel by fast
256next
257  fix x assume "(Eps (\<lambda>x. x \<in> X),x) \<in> r"
258  thus "x \<in> X" using in_quotient_imp_closed[OF assms equiv_Eps_in[OF assms]] by fast
259qed
260
261definition univ where "univ f X == f (Eps (\<lambda>x. x \<in> X))"
262
263lemma univ_commute:
264assumes ECH: "equiv A r" and RES: "f respects r" and x: "x \<in> A"
265shows "(univ f) (proj r x) = f x"
266proof (unfold univ_def)
267  have prj: "proj r x \<in> A//r" using x proj_preserves by fast
268  hence "Eps (\<lambda>y. y \<in> proj r x) \<in> A" using ECH equiv_Eps_preserves by fast
269  moreover have "proj r (Eps (\<lambda>y. y \<in> proj r x)) = proj r x" using ECH prj proj_Eps by fast
270  ultimately have "(x, Eps (\<lambda>y. y \<in> proj r x)) \<in> r" using x ECH proj_iff by fast
271  thus "f (Eps (\<lambda>y. y \<in> proj r x)) = f x" using RES unfolding congruent_def by fastforce
272qed
273
274lemma univ_preserves:
275  assumes ECH: "equiv A r" and RES: "f respects r" and PRES: "\<forall>x \<in> A. f x \<in> B"
276  shows "\<forall>X \<in> A//r. univ f X \<in> B"
277proof
278  fix X assume "X \<in> A//r"
279  then obtain x where x: "x \<in> A" and X: "X = proj r x" using ECH proj_image[of r A] by blast
280  hence "univ f X = f x" using ECH RES univ_commute by fastforce
281  thus "univ f X \<in> B" using x PRES by simp
282qed
283
284ML_file "Tools/BNF/bnf_gfp_util.ML"
285ML_file "Tools/BNF/bnf_gfp_tactics.ML"
286ML_file "Tools/BNF/bnf_gfp.ML"
287ML_file "Tools/BNF/bnf_gfp_rec_sugar_tactics.ML"
288ML_file "Tools/BNF/bnf_gfp_rec_sugar.ML"
289
290end
291