1(*  Title:      HOL/UNITY/ProgressSets.thy
2    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
3    Copyright   2003  University of Cambridge
4
5Progress Sets.  From 
6
7    David Meier and Beverly Sanders,
8    Composing Leads-to Properties
9    Theoretical Computer Science 243:1-2 (2000), 339-361.
10
11    David Meier,
12    Progress Properties in Program Refinement and Parallel Composition
13    Swiss Federal Institute of Technology Zurich (1997)
14*)
15
16section\<open>Progress Sets\<close>
17
18theory ProgressSets imports Transformers begin
19
20subsection \<open>Complete Lattices and the Operator @{term cl}\<close>
21
22definition lattice :: "'a set set => bool" where
23   \<comment> \<open>Meier calls them closure sets, but they are just complete lattices\<close>
24   "lattice L ==
25         (\<forall>M. M \<subseteq> L --> \<Inter>M \<in> L) & (\<forall>M. M \<subseteq> L --> \<Union>M \<in> L)"
26
27definition cl :: "['a set set, 'a set] => 'a set" where
28   \<comment> \<open>short for ``closure''\<close>
29   "cl L r == \<Inter>{x. x\<in>L & r \<subseteq> x}"
30
31lemma UNIV_in_lattice: "lattice L ==> UNIV \<in> L"
32by (force simp add: lattice_def)
33
34lemma empty_in_lattice: "lattice L ==> {} \<in> L"
35by (force simp add: lattice_def)
36
37lemma Union_in_lattice: "[|M \<subseteq> L; lattice L|] ==> \<Union>M \<in> L"
38by (simp add: lattice_def)
39
40lemma Inter_in_lattice: "[|M \<subseteq> L; lattice L|] ==> \<Inter>M \<in> L"
41by (simp add: lattice_def)
42
43lemma UN_in_lattice:
44     "[|lattice L; !!i. i\<in>I ==> r i \<in> L|] ==> (\<Union>i\<in>I. r i) \<in> L"
45apply (blast intro: Union_in_lattice) 
46done
47
48lemma INT_in_lattice:
49     "[|lattice L; !!i. i\<in>I ==> r i \<in> L|] ==> (\<Inter>i\<in>I. r i)  \<in> L"
50apply (blast intro: Inter_in_lattice) 
51done
52
53lemma Un_in_lattice: "[|x\<in>L; y\<in>L; lattice L|] ==> x\<union>y \<in> L"
54  using Union_in_lattice [of "{x, y}" L] by simp
55
56lemma Int_in_lattice: "[|x\<in>L; y\<in>L; lattice L|] ==> x\<inter>y \<in> L"
57  using Inter_in_lattice [of "{x, y}" L] by simp
58
59lemma lattice_stable: "lattice {X. F \<in> stable X}"
60by (simp add: lattice_def stable_def constrains_def, blast)
61
62text\<open>The next three results state that @{term "cl L r"} is the minimal
63 element of @{term L} that includes @{term r}.\<close>
64lemma cl_in_lattice: "lattice L ==> cl L r \<in> L"
65apply (simp add: lattice_def cl_def)
66apply (erule conjE)  
67apply (drule spec, erule mp, blast) 
68done
69
70lemma cl_least: "[|c\<in>L; r\<subseteq>c|] ==> cl L r \<subseteq> c" 
71by (force simp add: cl_def)
72
73text\<open>The next three lemmas constitute assertion (4.61)\<close>
74lemma cl_mono: "r \<subseteq> r' ==> cl L r \<subseteq> cl L r'"
75by (simp add: cl_def, blast)
76
77lemma subset_cl: "r \<subseteq> cl L r"
78by (simp add: cl_def le_Inf_iff)
79
80text\<open>A reformulation of @{thm subset_cl}\<close>
81lemma clI: "x \<in> r ==> x \<in> cl L r"
82by (simp add: cl_def, blast)
83
84text\<open>A reformulation of @{thm cl_least}\<close>
85lemma clD: "[|c \<in> cl L r; B \<in> L; r \<subseteq> B|] ==> c \<in> B"
86by (force simp add: cl_def)
87
88lemma cl_UN_subset: "(\<Union>i\<in>I. cl L (r i)) \<subseteq> cl L (\<Union>i\<in>I. r i)"
89by (simp add: cl_def, blast)
90
91lemma cl_Un: "lattice L ==> cl L (r\<union>s) = cl L r \<union> cl L s"
92apply (rule equalityI) 
93 prefer 2 
94  apply (simp add: cl_def, blast)
95apply (rule cl_least)
96 apply (blast intro: Un_in_lattice cl_in_lattice)
97apply (blast intro: subset_cl [THEN subsetD])  
98done
99
100lemma cl_UN: "lattice L ==> cl L (\<Union>i\<in>I. r i) = (\<Union>i\<in>I. cl L (r i))"
101apply (rule equalityI) 
102 prefer 2 apply (simp add: cl_def, blast)
103apply (rule cl_least)
104 apply (blast intro: UN_in_lattice cl_in_lattice)
105apply (blast intro: subset_cl [THEN subsetD])  
106done
107
108lemma cl_Int_subset: "cl L (r\<inter>s) \<subseteq> cl L r \<inter> cl L s"
109by (simp add: cl_def, blast)
110
111lemma cl_idem [simp]: "cl L (cl L r) = cl L r"
112by (simp add: cl_def, blast)
113
114lemma cl_ident: "r\<in>L ==> cl L r = r" 
115by (force simp add: cl_def)
116
117lemma cl_empty [simp]: "lattice L ==> cl L {} = {}"
118by (simp add: cl_ident empty_in_lattice)
119
120lemma cl_UNIV [simp]: "lattice L ==> cl L UNIV = UNIV"
121by (simp add: cl_ident UNIV_in_lattice)
122
123text\<open>Assertion (4.62)\<close>
124lemma cl_ident_iff: "lattice L ==> (cl L r = r) = (r\<in>L)" 
125apply (rule iffI) 
126 apply (erule subst)
127 apply (erule cl_in_lattice)  
128apply (erule cl_ident) 
129done
130
131lemma cl_subset_in_lattice: "[|cl L r \<subseteq> r; lattice L|] ==> r\<in>L" 
132by (simp add: cl_ident_iff [symmetric] equalityI subset_cl)
133
134
135subsection \<open>Progress Sets and the Main Lemma\<close>
136text\<open>A progress set satisfies certain closure conditions and is a 
137simple way of including the set @{term "wens_set F B"}.\<close>
138
139definition closed :: "['a program, 'a set, 'a set,  'a set set] => bool" where
140   "closed F T B L == \<forall>M. \<forall>act \<in> Acts F. B\<subseteq>M & T\<inter>M \<in> L -->
141                              T \<inter> (B \<union> wp act M) \<in> L"
142
143definition progress_set :: "['a program, 'a set, 'a set] => 'a set set set" where
144   "progress_set F T B ==
145      {L. lattice L & B \<in> L & T \<in> L & closed F T B L}"
146
147lemma closedD:
148   "[|closed F T B L; act \<in> Acts F; B\<subseteq>M; T\<inter>M \<in> L|] 
149    ==> T \<inter> (B \<union> wp act M) \<in> L" 
150by (simp add: closed_def) 
151
152text\<open>Note: the formalization below replaces Meier's @{term q} by @{term B}
153and @{term m} by @{term X}.\<close>
154
155text\<open>Part of the proof of the claim at the bottom of page 97.  It's
156proved separately because the argument requires a generalization over
157all @{term "act \<in> Acts F"}.\<close>
158lemma lattice_awp_lemma:
159  assumes TXC:  "T\<inter>X \<in> C" \<comment> \<open>induction hypothesis in theorem below\<close>
160      and BsubX:  "B \<subseteq> X"   \<comment> \<open>holds in inductive step\<close>
161      and latt: "lattice C"
162      and TC:   "T \<in> C"
163      and BC:   "B \<in> C"
164      and clos: "closed F T B C"
165    shows "T \<inter> (B \<union> awp F (X \<union> cl C (T\<inter>r))) \<in> C"
166apply (simp del: INT_simps add: awp_def INT_extend_simps) 
167apply (rule INT_in_lattice [OF latt]) 
168apply (erule closedD [OF clos]) 
169apply (simp add: subset_trans [OF BsubX Un_upper1]) 
170apply (subgoal_tac "T \<inter> (X \<union> cl C (T\<inter>r)) = (T\<inter>X) \<union> cl C (T\<inter>r)")
171 prefer 2 apply (blast intro: TC clD) 
172apply (erule ssubst) 
173apply (blast intro: Un_in_lattice latt cl_in_lattice TXC) 
174done
175
176text\<open>Remainder of the proof of the claim at the bottom of page 97.\<close>
177lemma lattice_lemma:
178  assumes TXC:  "T\<inter>X \<in> C" \<comment> \<open>induction hypothesis in theorem below\<close>
179      and BsubX:  "B \<subseteq> X"   \<comment> \<open>holds in inductive step\<close>
180      and act:  "act \<in> Acts F"
181      and latt: "lattice C"
182      and TC:   "T \<in> C"
183      and BC:   "B \<in> C"
184      and clos: "closed F T B C"
185    shows "T \<inter> (wp act X \<inter> awp F (X \<union> cl C (T\<inter>r)) \<union> X) \<in> C"
186apply (subgoal_tac "T \<inter> (B \<union> wp act X) \<in> C")
187 prefer 2 apply (simp add: closedD [OF clos] act BsubX TXC)
188apply (drule Int_in_lattice
189              [OF _ lattice_awp_lemma [OF TXC BsubX latt TC BC clos, of r]
190                    latt])
191apply (subgoal_tac
192         "T \<inter> (B \<union> wp act X) \<inter> (T \<inter> (B \<union> awp F (X \<union> cl C (T\<inter>r)))) = 
193          T \<inter> (B \<union> wp act X \<inter> awp F (X \<union> cl C (T\<inter>r)))") 
194 prefer 2 apply blast 
195apply simp  
196apply (drule Un_in_lattice [OF _ TXC latt])  
197apply (subgoal_tac
198         "T \<inter> (B \<union> wp act X \<inter> awp F (X \<union> cl C (T\<inter>r))) \<union> T\<inter>X = 
199          T \<inter> (wp act X \<inter> awp F (X \<union> cl C (T\<inter>r)) \<union> X)")
200 apply simp 
201apply (blast intro: BsubX [THEN subsetD]) 
202done
203
204
205text\<open>Induction step for the main lemma\<close>
206lemma progress_induction_step:
207  assumes TXC:  "T\<inter>X \<in> C" \<comment> \<open>induction hypothesis in theorem below\<close>
208      and act:  "act \<in> Acts F"
209      and Xwens: "X \<in> wens_set F B"
210      and latt: "lattice C"
211      and  TC:  "T \<in> C"
212      and  BC:  "B \<in> C"
213      and clos: "closed F T B C"
214      and Fstable: "F \<in> stable T"
215  shows "T \<inter> wens F act X \<in> C"
216proof -
217  from Xwens have BsubX: "B \<subseteq> X"
218    by (rule wens_set_imp_subset) 
219  let ?r = "wens F act X"
220  have "?r \<subseteq> (wp act X \<inter> awp F (X\<union>?r)) \<union> X"
221    by (simp add: wens_unfold [symmetric])
222  then have "T\<inter>?r \<subseteq> T \<inter> ((wp act X \<inter> awp F (X\<union>?r)) \<union> X)"
223    by blast
224  then have "T\<inter>?r \<subseteq> T \<inter> ((wp act X \<inter> awp F (T \<inter> (X\<union>?r))) \<union> X)"
225    by (simp add: awp_Int_eq Fstable stable_imp_awp_ident, blast) 
226  then have "T\<inter>?r \<subseteq> T \<inter> ((wp act X \<inter> awp F (X \<union> cl C (T\<inter>?r))) \<union> X)"
227    by (blast intro: awp_mono [THEN [2] rev_subsetD] subset_cl [THEN subsetD])
228  then have "cl C (T\<inter>?r) \<subseteq> 
229             cl C (T \<inter> ((wp act X \<inter> awp F (X \<union> cl C (T\<inter>?r))) \<union> X))"
230    by (rule cl_mono) 
231  then have "cl C (T\<inter>?r) \<subseteq> 
232             T \<inter> ((wp act X \<inter> awp F (X \<union> cl C (T\<inter>?r))) \<union> X)"
233    by (simp add: cl_ident lattice_lemma [OF TXC BsubX act latt TC BC clos])
234  then have "cl C (T\<inter>?r) \<subseteq> (wp act X \<inter> awp F (X \<union> cl C (T\<inter>?r))) \<union> X"
235    by blast
236  then have "cl C (T\<inter>?r) \<subseteq> ?r"
237    by (blast intro!: subset_wens) 
238  then have cl_subset: "cl C (T\<inter>?r) \<subseteq> T\<inter>?r"
239    by (simp add: cl_ident TC
240                  subset_trans [OF cl_mono [OF Int_lower1]]) 
241  show ?thesis
242    by (rule cl_subset_in_lattice [OF cl_subset latt]) 
243qed
244
245text\<open>Proved on page 96 of Meier's thesis.  The special case when
246   @{term "T=UNIV"} states that every progress set for the program @{term F}
247   and set @{term B} includes the set @{term "wens_set F B"}.\<close>
248lemma progress_set_lemma:
249     "[|C \<in> progress_set F T B; r \<in> wens_set F B; F \<in> stable T|] ==> T\<inter>r \<in> C"
250apply (simp add: progress_set_def, clarify) 
251apply (erule wens_set.induct) 
252  txt\<open>Base\<close>
253  apply (simp add: Int_in_lattice) 
254 txt\<open>The difficult @{term wens} case\<close>
255 apply (simp add: progress_induction_step) 
256txt\<open>Disjunctive case\<close>
257apply (subgoal_tac "(\<Union>U\<in>W. T \<inter> U) \<in> C") 
258 apply simp 
259apply (blast intro: UN_in_lattice) 
260done
261
262
263subsection \<open>The Progress Set Union Theorem\<close>
264
265lemma closed_mono:
266  assumes BB':  "B \<subseteq> B'"
267      and TBwp: "T \<inter> (B \<union> wp act M) \<in> C"
268      and B'C:  "B' \<in> C"
269      and TC:   "T \<in> C"
270      and latt: "lattice C"
271  shows "T \<inter> (B' \<union> wp act M) \<in> C"
272proof -
273  from TBwp have "(T\<inter>B) \<union> (T \<inter> wp act M) \<in> C"
274    by (simp add: Int_Un_distrib)
275  then have TBBC: "(T\<inter>B') \<union> ((T\<inter>B) \<union> (T \<inter> wp act M)) \<in> C"
276    by (blast intro: Int_in_lattice Un_in_lattice TC B'C latt) 
277  show ?thesis
278    by (rule eqelem_imp_iff [THEN iffD1, OF _ TBBC], 
279        blast intro: BB' [THEN subsetD]) 
280qed
281
282
283lemma progress_set_mono:
284    assumes BB':  "B \<subseteq> B'"
285    shows
286     "[| B' \<in> C;  C \<in> progress_set F T B|] 
287      ==> C \<in> progress_set F T B'"
288by (simp add: progress_set_def closed_def closed_mono [OF BB'] 
289                 subset_trans [OF BB']) 
290
291theorem progress_set_Union:
292  assumes leadsTo: "F \<in> A leadsTo B'"
293      and prog: "C \<in> progress_set F T B"
294      and Fstable: "F \<in> stable T"
295      and BB':  "B \<subseteq> B'"
296      and B'C:  "B' \<in> C"
297      and Gco: "!!X. X\<in>C ==> G \<in> X-B co X"
298  shows "F\<squnion>G \<in> T\<inter>A leadsTo B'"
299apply (insert prog Fstable) 
300apply (rule leadsTo_Join [OF leadsTo]) 
301  apply (force simp add: progress_set_def awp_iff_stable [symmetric]) 
302apply (simp add: awp_iff_constrains)
303apply (drule progress_set_mono [OF BB' B'C]) 
304apply (blast intro: progress_set_lemma Gco constrains_weaken_L 
305                    BB' [THEN subsetD]) 
306done
307
308
309subsection \<open>Some Progress Sets\<close>
310
311lemma UNIV_in_progress_set: "UNIV \<in> progress_set F T B"
312by (simp add: progress_set_def lattice_def closed_def)
313
314
315
316subsubsection \<open>Lattices and Relations\<close>
317text\<open>From Meier's thesis, section 4.5.3\<close>
318
319definition relcl :: "'a set set => ('a * 'a) set" where
320    \<comment> \<open>Derived relation from a lattice\<close>
321    "relcl L == {(x,y). y \<in> cl L {x}}"
322  
323definition latticeof :: "('a * 'a) set => 'a set set" where
324    \<comment> \<open>Derived lattice from a relation: the set of upwards-closed sets\<close>
325    "latticeof r == {X. \<forall>s t. s \<in> X & (s,t) \<in> r --> t \<in> X}"
326
327
328lemma relcl_refl: "(a,a) \<in> relcl L"
329by (simp add: relcl_def subset_cl [THEN subsetD])
330
331lemma relcl_trans:
332     "[| (a,b) \<in> relcl L; (b,c) \<in> relcl L; lattice L |] ==> (a,c) \<in> relcl L"
333apply (simp add: relcl_def)
334apply (blast intro: clD cl_in_lattice)
335done
336
337lemma refl_relcl: "lattice L ==> refl (relcl L)"
338by (simp add: refl_onI relcl_def subset_cl [THEN subsetD])
339
340lemma trans_relcl: "lattice L ==> trans (relcl L)"
341by (blast intro: relcl_trans transI)
342
343lemma lattice_latticeof: "lattice (latticeof r)"
344by (auto simp add: lattice_def latticeof_def)
345
346lemma lattice_singletonI:
347     "[|lattice L; !!s. s \<in> X ==> {s} \<in> L|] ==> X \<in> L"
348apply (cut_tac UN_singleton [of X]) 
349apply (erule subst) 
350apply (simp only: UN_in_lattice) 
351done
352
353text\<open>Equation (4.71) of Meier's thesis.  He gives no proof.\<close>
354lemma cl_latticeof:
355     "[|refl r; trans r|] 
356      ==> cl (latticeof r) X = {t. \<exists>s. s\<in>X & (s,t) \<in> r}" 
357apply (rule equalityI) 
358 apply (rule cl_least) 
359  apply (simp (no_asm_use) add: latticeof_def trans_def, blast)
360 apply (simp add: latticeof_def refl_on_def, blast)
361apply (simp add: latticeof_def, clarify)
362apply (unfold cl_def, blast) 
363done
364
365text\<open>Related to (4.71).\<close>
366lemma cl_eq_Collect_relcl:
367     "lattice L ==> cl L X = {t. \<exists>s. s\<in>X & (s,t) \<in> relcl L}" 
368apply (cut_tac UN_singleton [of X]) 
369apply (erule subst) 
370apply (force simp only: relcl_def cl_UN)
371done
372
373text\<open>Meier's theorem of section 4.5.3\<close>
374theorem latticeof_relcl_eq: "lattice L ==> latticeof (relcl L) = L"
375apply (rule equalityI) 
376 prefer 2 apply (force simp add: latticeof_def relcl_def cl_def, clarify) 
377apply (rename_tac X)
378apply (rule cl_subset_in_lattice)   
379 prefer 2 apply assumption
380apply (drule cl_ident_iff [OF lattice_latticeof, THEN iffD2])
381apply (drule equalityD1)   
382apply (rule subset_trans) 
383 prefer 2 apply assumption
384apply (thin_tac "_ \<subseteq> X") 
385apply (cut_tac A=X in UN_singleton) 
386apply (erule subst) 
387apply (simp only: cl_UN lattice_latticeof 
388                  cl_latticeof [OF refl_relcl trans_relcl]) 
389apply (simp add: relcl_def) 
390done
391
392theorem relcl_latticeof_eq:
393     "[|refl r; trans r|] ==> relcl (latticeof r) = r"
394by (simp add: relcl_def cl_latticeof)
395
396
397subsubsection \<open>Decoupling Theorems\<close>
398
399definition decoupled :: "['a program, 'a program] => bool" where
400   "decoupled F G ==
401        \<forall>act \<in> Acts F. \<forall>B. G \<in> stable B --> G \<in> stable (wp act B)"
402
403
404text\<open>Rao's Decoupling Theorem\<close>
405lemma stableco: "F \<in> stable A ==> F \<in> A-B co A"
406by (simp add: stable_def constrains_def, blast) 
407
408theorem decoupling:
409  assumes leadsTo: "F \<in> A leadsTo B"
410      and Gstable: "G \<in> stable B"
411      and dec:     "decoupled F G"
412  shows "F\<squnion>G \<in> A leadsTo B"
413proof -
414  have prog: "{X. G \<in> stable X} \<in> progress_set F UNIV B"
415    by (simp add: progress_set_def lattice_stable Gstable closed_def
416                  stable_Un [OF Gstable] dec [unfolded decoupled_def]) 
417  have "F\<squnion>G \<in> (UNIV\<inter>A) leadsTo B" 
418    by (rule progress_set_Union [OF leadsTo prog],
419        simp_all add: Gstable stableco)
420  thus ?thesis by simp
421qed
422
423
424text\<open>Rao's Weak Decoupling Theorem\<close>
425theorem weak_decoupling:
426  assumes leadsTo: "F \<in> A leadsTo B"
427      and stable: "F\<squnion>G \<in> stable B"
428      and dec:     "decoupled F (F\<squnion>G)"
429  shows "F\<squnion>G \<in> A leadsTo B"
430proof -
431  have prog: "{X. F\<squnion>G \<in> stable X} \<in> progress_set F UNIV B" 
432    by (simp del: Join_stable
433             add: progress_set_def lattice_stable stable closed_def
434                  stable_Un [OF stable] dec [unfolded decoupled_def])
435  have "F\<squnion>G \<in> (UNIV\<inter>A) leadsTo B" 
436    by (rule progress_set_Union [OF leadsTo prog],
437        simp_all del: Join_stable add: stable,
438        simp add: stableco) 
439  thus ?thesis by simp
440qed
441
442text\<open>The ``Decoupling via @{term G'} Union Theorem''\<close>
443theorem decoupling_via_aux:
444  assumes leadsTo: "F \<in> A leadsTo B"
445      and prog: "{X. G' \<in> stable X} \<in> progress_set F UNIV B"
446      and GG':  "G \<le> G'"  
447               \<comment> \<open>Beware!  This is the converse of the refinement relation!\<close>
448  shows "F\<squnion>G \<in> A leadsTo B"
449proof -
450  from prog have stable: "G' \<in> stable B"
451    by (simp add: progress_set_def)
452  have "F\<squnion>G \<in> (UNIV\<inter>A) leadsTo B" 
453    by (rule progress_set_Union [OF leadsTo prog],
454        simp_all add: stable stableco component_stable [OF GG'])
455  thus ?thesis by simp
456qed
457
458
459subsection\<open>Composition Theorems Based on Monotonicity and Commutativity\<close>
460
461subsubsection\<open>Commutativity of @{term "cl L"} and assignment.\<close>
462definition commutes :: "['a program, 'a set, 'a set,  'a set set] => bool" where
463   "commutes F T B L ==
464       \<forall>M. \<forall>act \<in> Acts F. B \<subseteq> M --> 
465           cl L (T \<inter> wp act M) \<subseteq> T \<inter> (B \<union> wp act (cl L (T\<inter>M)))"
466
467
468text\<open>From Meier's thesis, section 4.5.6\<close>
469lemma commutativity1_lemma:
470  assumes commutes: "commutes F T B L" 
471      and lattice:  "lattice L"
472      and BL: "B \<in> L"
473      and TL: "T \<in> L"
474  shows "closed F T B L"
475apply (simp add: closed_def, clarify)
476apply (rule ProgressSets.cl_subset_in_lattice [OF _ lattice])  
477apply (simp add: Int_Un_distrib cl_Un [OF lattice] 
478                 cl_ident Int_in_lattice [OF TL BL lattice] Un_upper1)
479apply (subgoal_tac "cl L (T \<inter> wp act M) \<subseteq> T \<inter> (B \<union> wp act (cl L (T \<inter> M)))") 
480 prefer 2 
481 apply (cut_tac commutes, simp add: commutes_def) 
482apply (erule subset_trans) 
483apply (simp add: cl_ident)
484apply (blast intro: rev_subsetD [OF _ wp_mono]) 
485done
486
487text\<open>Version packaged with @{thm progress_set_Union}\<close>
488lemma commutativity1:
489  assumes leadsTo: "F \<in> A leadsTo B"
490      and lattice:  "lattice L"
491      and BL: "B \<in> L"
492      and TL: "T \<in> L"
493      and Fstable: "F \<in> stable T"
494      and Gco: "!!X. X\<in>L ==> G \<in> X-B co X"
495      and commutes: "commutes F T B L" 
496  shows "F\<squnion>G \<in> T\<inter>A leadsTo B"
497by (rule progress_set_Union [OF leadsTo _ Fstable subset_refl BL Gco],
498    simp add: progress_set_def commutativity1_lemma commutes lattice BL TL) 
499
500
501
502text\<open>Possibly move to Relation.thy, after @{term single_valued}\<close>
503definition funof :: "[('a*'b)set, 'a] => 'b" where
504   "funof r == (\<lambda>x. THE y. (x,y) \<in> r)"
505
506lemma funof_eq: "[|single_valued r; (x,y) \<in> r|] ==> funof r x = y"
507by (simp add: funof_def single_valued_def, blast)
508
509lemma funof_Pair_in:
510     "[|single_valued r; x \<in> Domain r|] ==> (x, funof r x) \<in> r"
511by (force simp add: funof_eq) 
512
513lemma funof_in:
514     "[|r``{x} \<subseteq> A; single_valued r; x \<in> Domain r|] ==> funof r x \<in> A" 
515by (force simp add: funof_eq)
516 
517lemma funof_imp_wp: "[|funof act t \<in> A; single_valued act|] ==> t \<in> wp act A"
518by (force simp add: in_wp_iff funof_eq)
519
520
521subsubsection\<open>Commutativity of Functions and Relation\<close>
522text\<open>Thesis, page 109\<close>
523
524(*FIXME: this proof is still an ungodly mess*)
525text\<open>From Meier's thesis, section 4.5.6\<close>
526lemma commutativity2_lemma:
527  assumes dcommutes: 
528      "\<And>act s t. act \<in> Acts F \<Longrightarrow> s \<in> T \<Longrightarrow> (s, t) \<in> relcl L \<Longrightarrow>
529        s \<in> B | t \<in> B | (funof act s, funof act t) \<in> relcl L"
530    and determ: "!!act. act \<in> Acts F ==> single_valued act"
531    and total: "!!act. act \<in> Acts F ==> Domain act = UNIV"
532    and lattice:  "lattice L"
533    and BL: "B \<in> L"
534    and TL: "T \<in> L"
535    and Fstable: "F \<in> stable T"
536  shows  "commutes F T B L"
537proof -
538  { fix M and act and t
539    assume 1: "B \<subseteq> M" "act \<in> Acts F" "t \<in> cl L (T \<inter> wp act M)"
540    then have "\<exists>s. (s,t) \<in> relcl L \<and> s \<in> T \<inter> wp act M"
541      by (force simp add: cl_eq_Collect_relcl [OF lattice])
542    then obtain s where 2: "(s, t) \<in> relcl L" "s \<in> T" "s \<in> wp act M"
543      by blast
544    then have 3: "\<forall>u\<in>L. s \<in> u --> t \<in> u"
545      apply (intro ballI impI) 
546      apply (subst cl_ident [symmetric], assumption)
547      apply (simp add: relcl_def)  
548      apply (blast intro: cl_mono [THEN [2] rev_subsetD])
549      done
550    with 1 2 Fstable have 4: "funof act s \<in> T\<inter>M"
551      by (force intro!: funof_in 
552        simp add: wp_def stable_def constrains_def determ total)
553    with 1 2 3 have 5: "s \<in> B | t \<in> B | (funof act s, funof act t) \<in> relcl L"
554      by (intro dcommutes) assumption+ 
555    with 1 2 3 4 have "t \<in> B | funof act t \<in> cl L (T\<inter>M)"
556      by (simp add: relcl_def) (blast intro: BL cl_mono [THEN [2] rev_subsetD])  
557    with 1 2 3 4 5 have "t \<in> B | t \<in> wp act (cl L (T\<inter>M))"
558      by (blast intro: funof_imp_wp determ) 
559    with 2 3 have "t \<in> T \<and> (t \<in> B \<or> t \<in> wp act (cl L (T \<inter> M)))"
560      by (blast intro: TL cl_mono [THEN [2] rev_subsetD])
561    then have"t \<in> T \<inter> (B \<union> wp act (cl L (T \<inter> M)))"
562      by simp
563  }
564  then show "commutes F T B L" unfolding commutes_def by clarify
565qed
566  
567text\<open>Version packaged with @{thm progress_set_Union}\<close>
568lemma commutativity2:
569  assumes leadsTo: "F \<in> A leadsTo B"
570      and dcommutes: 
571        "\<forall>act \<in> Acts F. 
572         \<forall>s \<in> T. \<forall>t. (s,t) \<in> relcl L --> 
573                      s \<in> B | t \<in> B | (funof act s, funof act t) \<in> relcl L"
574      and determ: "!!act. act \<in> Acts F ==> single_valued act"
575      and total: "!!act. act \<in> Acts F ==> Domain act = UNIV"
576      and lattice:  "lattice L"
577      and BL: "B \<in> L"
578      and TL: "T \<in> L"
579      and Fstable: "F \<in> stable T"
580      and Gco: "!!X. X\<in>L ==> G \<in> X-B co X"
581  shows "F\<squnion>G \<in> T\<inter>A leadsTo B"
582apply (rule commutativity1 [OF leadsTo lattice]) 
583apply (simp_all add: Gco commutativity2_lemma dcommutes determ total
584                     lattice BL TL Fstable)
585done
586
587
588subsection \<open>Monotonicity\<close>
589text\<open>From Meier's thesis, section 4.5.7, page 110\<close>
590(*to be continued?*)
591
592end
593