1(*  Title:      HOL/Library/Multiset_Permutations.thy
2    Author:     Manuel Eberl (TU M��nchen)
3
4Defines the set of permutations of a given multiset (or set), i.e. the set of all lists whose 
5entries correspond to the multiset (resp. set).
6*)
7
8section \<open>Permutations of a Multiset\<close>
9
10theory Multiset_Permutations
11imports 
12  Complex_Main 
13  Multiset
14  Permutations
15begin
16
17(* TODO Move *)
18lemma mset_tl: "xs \<noteq> [] \<Longrightarrow> mset (tl xs) = mset xs - {#hd xs#}"
19  by (cases xs) simp_all
20
21lemma mset_set_image_inj:
22  assumes "inj_on f A"
23  shows   "mset_set (f ` A) = image_mset f (mset_set A)"
24proof (cases "finite A")
25  case True
26  from this and assms show ?thesis by (induction A) auto
27qed (insert assms, simp add: finite_image_iff)
28
29lemma multiset_remove_induct [case_names empty remove]:
30  assumes "P {#}" "\<And>A. A \<noteq> {#} \<Longrightarrow> (\<And>x. x \<in># A \<Longrightarrow> P (A - {#x#})) \<Longrightarrow> P A"
31  shows   "P A"
32proof (induction A rule: full_multiset_induct)
33  case (less A)
34  hence IH: "P B" if "B \<subset># A" for B using that by blast
35  show ?case
36  proof (cases "A = {#}")
37    case True
38    thus ?thesis by (simp add: assms)
39  next
40    case False
41    hence "P (A - {#x#})" if "x \<in># A" for x
42      using that by (intro IH) (simp add: mset_subset_diff_self)
43    from False and this show "P A" by (rule assms)
44  qed
45qed
46
47lemma map_list_bind: "map g (List.bind xs f) = List.bind xs (map g \<circ> f)"
48  by (simp add: List.bind_def map_concat)
49
50lemma mset_eq_mset_set_imp_distinct:
51  "finite A \<Longrightarrow> mset_set A = mset xs \<Longrightarrow> distinct xs"
52proof (induction xs arbitrary: A)
53  case (Cons x xs A)
54  from Cons.prems(2) have "x \<in># mset_set A" by simp
55  with Cons.prems(1) have [simp]: "x \<in> A" by simp
56  from Cons.prems have "x \<notin># mset_set (A - {x})" by simp
57  also from Cons.prems have "mset_set (A - {x}) = mset_set A - {#x#}"
58    by (subst mset_set_Diff) simp_all
59  also have "mset_set A = mset (x#xs)" by (simp add: Cons.prems)
60  also have "\<dots> - {#x#} = mset xs" by simp
61  finally have [simp]: "x \<notin> set xs" by (simp add: in_multiset_in_set)
62  from Cons.prems show ?case by (auto intro!: Cons.IH[of "A - {x}"] simp: mset_set_Diff)
63qed simp_all
64(* END TODO *)
65
66
67subsection \<open>Permutations of a multiset\<close>
68
69definition permutations_of_multiset :: "'a multiset \<Rightarrow> 'a list set" where
70  "permutations_of_multiset A = {xs. mset xs = A}"
71
72lemma permutations_of_multisetI: "mset xs = A \<Longrightarrow> xs \<in> permutations_of_multiset A"
73  by (simp add: permutations_of_multiset_def)
74
75lemma permutations_of_multisetD: "xs \<in> permutations_of_multiset A \<Longrightarrow> mset xs = A"
76  by (simp add: permutations_of_multiset_def)
77
78lemma permutations_of_multiset_Cons_iff:
79  "x # xs \<in> permutations_of_multiset A \<longleftrightarrow> x \<in># A \<and> xs \<in> permutations_of_multiset (A - {#x#})"
80  by (auto simp: permutations_of_multiset_def)
81
82lemma permutations_of_multiset_empty [simp]: "permutations_of_multiset {#} = {[]}"
83  unfolding permutations_of_multiset_def by simp
84
85lemma permutations_of_multiset_nonempty: 
86  assumes nonempty: "A \<noteq> {#}"
87  shows   "permutations_of_multiset A = 
88             (\<Union>x\<in>set_mset A. ((#) x) ` permutations_of_multiset (A - {#x#}))" (is "_ = ?rhs")
89proof safe
90  fix xs assume "xs \<in> permutations_of_multiset A"
91  hence mset_xs: "mset xs = A" by (simp add: permutations_of_multiset_def)
92  hence "xs \<noteq> []" by (auto simp: nonempty)
93  then obtain x xs' where xs: "xs = x # xs'" by (cases xs) simp_all
94  with mset_xs have "x \<in> set_mset A" "xs' \<in> permutations_of_multiset (A - {#x#})"
95    by (auto simp: permutations_of_multiset_def)
96  with xs show "xs \<in> ?rhs" by auto
97qed (auto simp: permutations_of_multiset_def)
98
99lemma permutations_of_multiset_singleton [simp]: "permutations_of_multiset {#x#} = {[x]}"
100  by (simp add: permutations_of_multiset_nonempty)
101
102lemma permutations_of_multiset_doubleton: 
103  "permutations_of_multiset {#x,y#} = {[x,y], [y,x]}"
104  by (simp add: permutations_of_multiset_nonempty insert_commute)
105
106lemma rev_permutations_of_multiset [simp]:
107  "rev ` permutations_of_multiset A = permutations_of_multiset A"
108proof
109  have "rev ` rev ` permutations_of_multiset A \<subseteq> rev ` permutations_of_multiset A"
110    unfolding permutations_of_multiset_def by auto
111  also have "rev ` rev ` permutations_of_multiset A = permutations_of_multiset A"
112    by (simp add: image_image)
113  finally show "permutations_of_multiset A \<subseteq> rev ` permutations_of_multiset A" .
114next
115  show "rev ` permutations_of_multiset A \<subseteq> permutations_of_multiset A"
116    unfolding permutations_of_multiset_def by auto
117qed
118
119lemma length_finite_permutations_of_multiset:
120  "xs \<in> permutations_of_multiset A \<Longrightarrow> length xs = size A"
121  by (auto simp: permutations_of_multiset_def)
122
123lemma permutations_of_multiset_lists: "permutations_of_multiset A \<subseteq> lists (set_mset A)"
124  by (auto simp: permutations_of_multiset_def)
125
126lemma finite_permutations_of_multiset [simp]: "finite (permutations_of_multiset A)"
127proof (rule finite_subset)
128  show "permutations_of_multiset A \<subseteq> {xs. set xs \<subseteq> set_mset A \<and> length xs = size A}" 
129    by (auto simp: permutations_of_multiset_def)
130  show "finite {xs. set xs \<subseteq> set_mset A \<and> length xs = size A}" 
131    by (rule finite_lists_length_eq) simp_all
132qed
133
134lemma permutations_of_multiset_not_empty [simp]: "permutations_of_multiset A \<noteq> {}"
135proof -
136  from ex_mset[of A] guess xs ..
137  thus ?thesis by (auto simp: permutations_of_multiset_def)
138qed
139
140lemma permutations_of_multiset_image:
141  "permutations_of_multiset (image_mset f A) = map f ` permutations_of_multiset A"
142proof safe
143  fix xs assume A: "xs \<in> permutations_of_multiset (image_mset f A)"
144  from ex_mset[of A] obtain ys where ys: "mset ys = A" ..
145  with A have "mset xs = mset (map f ys)" 
146    by (simp add: permutations_of_multiset_def)
147  from mset_eq_permutation[OF this] guess \<sigma> . note \<sigma> = this
148  with ys have "xs = map f (permute_list \<sigma> ys)"
149    by (simp add: permute_list_map)
150  moreover from \<sigma> ys have "permute_list \<sigma> ys \<in> permutations_of_multiset A"
151    by (simp add: permutations_of_multiset_def)
152  ultimately show "xs \<in> map f ` permutations_of_multiset A" by blast
153qed (auto simp: permutations_of_multiset_def)
154
155
156subsection \<open>Cardinality of permutations\<close>
157
158text \<open>
159  In this section, we prove some basic facts about the number of permutations of a multiset.
160\<close>
161
162context
163begin
164
165private lemma multiset_prod_fact_insert:
166  "(\<Prod>y\<in>set_mset (A+{#x#}). fact (count (A+{#x#}) y)) =
167     (count A x + 1) * (\<Prod>y\<in>set_mset A. fact (count A y))"
168proof -
169  have "(\<Prod>y\<in>set_mset (A+{#x#}). fact (count (A+{#x#}) y)) =
170          (\<Prod>y\<in>set_mset (A+{#x#}). (if y = x then count A x + 1 else 1) * fact (count A y))"
171    by (intro prod.cong) simp_all
172  also have "\<dots> = (count A x + 1) * (\<Prod>y\<in>set_mset (A+{#x#}). fact (count A y))"
173    by (simp add: prod.distrib prod.delta)
174  also have "(\<Prod>y\<in>set_mset (A+{#x#}). fact (count A y)) = (\<Prod>y\<in>set_mset A. fact (count A y))"
175    by (intro prod.mono_neutral_right) (auto simp: not_in_iff)
176  finally show ?thesis .
177qed
178
179private lemma multiset_prod_fact_remove:
180  "x \<in># A \<Longrightarrow> (\<Prod>y\<in>set_mset A. fact (count A y)) =
181                   count A x * (\<Prod>y\<in>set_mset (A-{#x#}). fact (count (A-{#x#}) y))"
182  using multiset_prod_fact_insert[of "A - {#x#}" x] by simp
183
184lemma card_permutations_of_multiset_aux:
185  "card (permutations_of_multiset A) * (\<Prod>x\<in>set_mset A. fact (count A x)) = fact (size A)"
186proof (induction A rule: multiset_remove_induct)
187  case (remove A)
188  have "card (permutations_of_multiset A) = 
189          card (\<Union>x\<in>set_mset A. (#) x ` permutations_of_multiset (A - {#x#}))"
190    by (simp add: permutations_of_multiset_nonempty remove.hyps)
191  also have "\<dots> = (\<Sum>x\<in>set_mset A. card (permutations_of_multiset (A - {#x#})))"
192    by (subst card_UN_disjoint) (auto simp: card_image)
193  also have "\<dots> * (\<Prod>x\<in>set_mset A. fact (count A x)) = 
194               (\<Sum>x\<in>set_mset A. card (permutations_of_multiset (A - {#x#})) * 
195                 (\<Prod>y\<in>set_mset A. fact (count A y)))"
196    by (subst sum_distrib_right) simp_all
197  also have "\<dots> = (\<Sum>x\<in>set_mset A. count A x * fact (size A - 1))"
198  proof (intro sum.cong refl)
199    fix x assume x: "x \<in># A"
200    have "card (permutations_of_multiset (A - {#x#})) * (\<Prod>y\<in>set_mset A. fact (count A y)) = 
201            count A x * (card (permutations_of_multiset (A - {#x#})) * 
202              (\<Prod>y\<in>set_mset (A - {#x#}). fact (count (A - {#x#}) y)))" (is "?lhs = _")
203      by (subst multiset_prod_fact_remove[OF x]) simp_all
204    also note remove.IH[OF x]
205    also from x have "size (A - {#x#}) = size A - 1" by (simp add: size_Diff_submset)
206    finally show "?lhs = count A x * fact (size A - 1)" .
207  qed
208  also have "(\<Sum>x\<in>set_mset A. count A x * fact (size A - 1)) =
209                size A * fact (size A - 1)"
210    by (simp add: sum_distrib_right size_multiset_overloaded_eq)
211  also from remove.hyps have "\<dots> = fact (size A)"
212    by (cases "size A") auto
213  finally show ?case .
214qed simp_all
215
216theorem card_permutations_of_multiset:
217  "card (permutations_of_multiset A) = fact (size A) div (\<Prod>x\<in>set_mset A. fact (count A x))"
218  "(\<Prod>x\<in>set_mset A. fact (count A x) :: nat) dvd fact (size A)"
219  by (simp_all flip: card_permutations_of_multiset_aux[of A])
220
221lemma card_permutations_of_multiset_insert_aux:
222  "card (permutations_of_multiset (A + {#x#})) * (count A x + 1) = 
223      (size A + 1) * card (permutations_of_multiset A)"
224proof -
225  note card_permutations_of_multiset_aux[of "A + {#x#}"]
226  also have "fact (size (A + {#x#})) = (size A + 1) * fact (size A)" by simp
227  also note multiset_prod_fact_insert[of A x]
228  also note card_permutations_of_multiset_aux[of A, symmetric]
229  finally have "card (permutations_of_multiset (A + {#x#})) * (count A x + 1) *
230                    (\<Prod>y\<in>set_mset A. fact (count A y)) =
231                (size A + 1) * card (permutations_of_multiset A) *
232                    (\<Prod>x\<in>set_mset A. fact (count A x))" by (simp only: mult_ac)
233  thus ?thesis by (subst (asm) mult_right_cancel) simp_all
234qed
235
236lemma card_permutations_of_multiset_remove_aux:
237  assumes "x \<in># A"
238  shows   "card (permutations_of_multiset A) * count A x = 
239             size A * card (permutations_of_multiset (A - {#x#}))"
240proof -
241  from assms have A: "A - {#x#} + {#x#} = A" by simp
242  from assms have B: "size A = size (A - {#x#}) + 1" 
243    by (subst A [symmetric], subst size_union) simp
244  show ?thesis
245    using card_permutations_of_multiset_insert_aux[of "A - {#x#}" x, unfolded A] assms
246    by (simp add: B)
247qed
248
249lemma real_card_permutations_of_multiset_remove:
250  assumes "x \<in># A"
251  shows   "real (card (permutations_of_multiset (A - {#x#}))) = 
252             real (card (permutations_of_multiset A) * count A x) / real (size A)"
253  using assms by (subst card_permutations_of_multiset_remove_aux[OF assms]) auto
254
255lemma real_card_permutations_of_multiset_remove':
256  assumes "x \<in># A"
257  shows   "real (card (permutations_of_multiset A)) = 
258             real (size A * card (permutations_of_multiset (A - {#x#}))) / real (count A x)"
259  using assms by (subst card_permutations_of_multiset_remove_aux[OF assms, symmetric]) simp
260
261end
262
263
264
265subsection \<open>Permutations of a set\<close>
266
267definition permutations_of_set :: "'a set \<Rightarrow> 'a list set" where
268  "permutations_of_set A = {xs. set xs = A \<and> distinct xs}"
269
270lemma permutations_of_set_altdef:
271  "finite A \<Longrightarrow> permutations_of_set A = permutations_of_multiset (mset_set A)"
272  by (auto simp add: permutations_of_set_def permutations_of_multiset_def mset_set_set 
273        in_multiset_in_set [symmetric] mset_eq_mset_set_imp_distinct)
274
275lemma permutations_of_setI [intro]:
276  assumes "set xs = A" "distinct xs"
277  shows   "xs \<in> permutations_of_set A"
278  using assms unfolding permutations_of_set_def by simp
279  
280lemma permutations_of_setD:
281  assumes "xs \<in> permutations_of_set A"
282  shows   "set xs = A" "distinct xs"
283  using assms unfolding permutations_of_set_def by simp_all
284  
285lemma permutations_of_set_lists: "permutations_of_set A \<subseteq> lists A"
286  unfolding permutations_of_set_def by auto
287
288lemma permutations_of_set_empty [simp]: "permutations_of_set {} = {[]}"
289  by (auto simp: permutations_of_set_def)
290  
291lemma UN_set_permutations_of_set [simp]:
292  "finite A \<Longrightarrow> (\<Union>xs\<in>permutations_of_set A. set xs) = A"
293  using finite_distinct_list by (auto simp: permutations_of_set_def)
294
295lemma permutations_of_set_infinite:
296  "\<not>finite A \<Longrightarrow> permutations_of_set A = {}"
297  by (auto simp: permutations_of_set_def)
298
299lemma permutations_of_set_nonempty:
300  "A \<noteq> {} \<Longrightarrow> permutations_of_set A = 
301                  (\<Union>x\<in>A. (\<lambda>xs. x # xs) ` permutations_of_set (A - {x}))"
302  by (cases "finite A")
303     (simp_all add: permutations_of_multiset_nonempty mset_set_empty_iff mset_set_Diff 
304                    permutations_of_set_altdef permutations_of_set_infinite)
305    
306lemma permutations_of_set_singleton [simp]: "permutations_of_set {x} = {[x]}"
307  by (subst permutations_of_set_nonempty) auto
308
309lemma permutations_of_set_doubleton: 
310  "x \<noteq> y \<Longrightarrow> permutations_of_set {x,y} = {[x,y], [y,x]}"
311  by (subst permutations_of_set_nonempty) 
312     (simp_all add: insert_Diff_if insert_commute)
313
314lemma rev_permutations_of_set [simp]:
315  "rev ` permutations_of_set A = permutations_of_set A"
316  by (cases "finite A") (simp_all add: permutations_of_set_altdef permutations_of_set_infinite)
317
318lemma length_finite_permutations_of_set:
319  "xs \<in> permutations_of_set A \<Longrightarrow> length xs = card A"
320  by (auto simp: permutations_of_set_def distinct_card)
321
322lemma finite_permutations_of_set [simp]: "finite (permutations_of_set A)"
323  by (cases "finite A") (simp_all add: permutations_of_set_infinite permutations_of_set_altdef)
324
325lemma permutations_of_set_empty_iff [simp]:
326  "permutations_of_set A = {} \<longleftrightarrow> \<not>finite A"
327  unfolding permutations_of_set_def using finite_distinct_list[of A] by auto
328
329lemma card_permutations_of_set [simp]:
330  "finite A \<Longrightarrow> card (permutations_of_set A) = fact (card A)"
331  by (simp add: permutations_of_set_altdef card_permutations_of_multiset del: One_nat_def)
332
333lemma permutations_of_set_image_inj:
334  assumes inj: "inj_on f A"
335  shows   "permutations_of_set (f ` A) = map f ` permutations_of_set A"
336  by (cases "finite A")
337     (simp_all add: permutations_of_set_infinite permutations_of_set_altdef
338                    permutations_of_multiset_image mset_set_image_inj inj finite_image_iff)
339
340lemma permutations_of_set_image_permutes:
341  "\<sigma> permutes A \<Longrightarrow> map \<sigma> ` permutations_of_set A = permutations_of_set A"
342  by (subst permutations_of_set_image_inj [symmetric])
343     (simp_all add: permutes_inj_on permutes_image)
344
345
346subsection \<open>Code generation\<close>
347
348text \<open>
349  First, we give code an implementation for permutations of lists.
350\<close>
351
352declare length_remove1 [termination_simp] 
353
354fun permutations_of_list_impl where
355  "permutations_of_list_impl xs = (if xs = [] then [[]] else
356     List.bind (remdups xs) (\<lambda>x. map ((#) x) (permutations_of_list_impl (remove1 x xs))))"
357
358fun permutations_of_list_impl_aux where
359  "permutations_of_list_impl_aux acc xs = (if xs = [] then [acc] else
360     List.bind (remdups xs) (\<lambda>x. permutations_of_list_impl_aux (x#acc) (remove1 x xs)))"
361
362declare permutations_of_list_impl_aux.simps [simp del]    
363declare permutations_of_list_impl.simps [simp del]
364    
365lemma permutations_of_list_impl_Nil [simp]:
366  "permutations_of_list_impl [] = [[]]"
367  by (simp add: permutations_of_list_impl.simps)
368
369lemma permutations_of_list_impl_nonempty:
370  "xs \<noteq> [] \<Longrightarrow> permutations_of_list_impl xs = 
371     List.bind (remdups xs) (\<lambda>x. map ((#) x) (permutations_of_list_impl (remove1 x xs)))"
372  by (subst permutations_of_list_impl.simps) simp_all
373
374lemma set_permutations_of_list_impl:
375  "set (permutations_of_list_impl xs) = permutations_of_multiset (mset xs)"
376  by (induction xs rule: permutations_of_list_impl.induct)
377     (subst permutations_of_list_impl.simps, 
378      simp_all add: permutations_of_multiset_nonempty set_list_bind)
379
380lemma distinct_permutations_of_list_impl:
381  "distinct (permutations_of_list_impl xs)"
382  by (induction xs rule: permutations_of_list_impl.induct, 
383      subst permutations_of_list_impl.simps)
384     (auto intro!: distinct_list_bind simp: distinct_map o_def disjoint_family_on_def)
385
386lemma permutations_of_list_impl_aux_correct':
387  "permutations_of_list_impl_aux acc xs = 
388     map (\<lambda>xs. rev xs @ acc) (permutations_of_list_impl xs)"
389  by (induction acc xs rule: permutations_of_list_impl_aux.induct,
390      subst permutations_of_list_impl_aux.simps, subst permutations_of_list_impl.simps)
391     (auto simp: map_list_bind intro!: list_bind_cong)
392    
393lemma permutations_of_list_impl_aux_correct:
394  "permutations_of_list_impl_aux [] xs = map rev (permutations_of_list_impl xs)"
395  by (simp add: permutations_of_list_impl_aux_correct')
396
397lemma distinct_permutations_of_list_impl_aux:
398  "distinct (permutations_of_list_impl_aux acc xs)"
399  by (simp add: permutations_of_list_impl_aux_correct' distinct_map 
400        distinct_permutations_of_list_impl inj_on_def)
401
402lemma set_permutations_of_list_impl_aux:
403  "set (permutations_of_list_impl_aux [] xs) = permutations_of_multiset (mset xs)"
404  by (simp add: permutations_of_list_impl_aux_correct set_permutations_of_list_impl)
405  
406declare set_permutations_of_list_impl_aux [symmetric, code]
407
408value [code] "permutations_of_multiset {#1,2,3,4::int#}"
409
410
411
412text \<open>
413  Now we turn to permutations of sets. We define an auxiliary version with an 
414  accumulator to avoid having to map over the results.
415\<close>
416function permutations_of_set_aux where
417  "permutations_of_set_aux acc A = 
418     (if \<not>finite A then {} else if A = {} then {acc} else 
419        (\<Union>x\<in>A. permutations_of_set_aux (x#acc) (A - {x})))"
420by auto
421termination by (relation "Wellfounded.measure (card \<circ> snd)") (simp_all add: card_gt_0_iff)
422
423lemma permutations_of_set_aux_altdef:
424  "permutations_of_set_aux acc A = (\<lambda>xs. rev xs @ acc) ` permutations_of_set A"
425proof (cases "finite A")
426  assume "finite A"
427  thus ?thesis
428  proof (induction A arbitrary: acc rule: finite_psubset_induct)
429    case (psubset A acc)
430    show ?case
431    proof (cases "A = {}")
432      case False
433      note [simp del] = permutations_of_set_aux.simps
434      from psubset.hyps False 
435        have "permutations_of_set_aux acc A = 
436                (\<Union>y\<in>A. permutations_of_set_aux (y#acc) (A - {y}))"
437        by (subst permutations_of_set_aux.simps) simp_all
438      also have "\<dots> = (\<Union>y\<in>A. (\<lambda>xs. rev xs @ acc) ` (\<lambda>xs. y # xs) ` permutations_of_set (A - {y}))"
439        by (intro SUP_cong refl, subst psubset) (auto simp: image_image)
440      also from False have "\<dots> = (\<lambda>xs. rev xs @ acc) ` permutations_of_set A"
441        by (subst (2) permutations_of_set_nonempty) (simp_all add: image_UN)
442      finally show ?thesis .
443    qed simp_all
444  qed
445qed (simp_all add: permutations_of_set_infinite)
446
447declare permutations_of_set_aux.simps [simp del]
448
449lemma permutations_of_set_aux_correct:
450  "permutations_of_set_aux [] A = permutations_of_set A"
451  by (simp add: permutations_of_set_aux_altdef)
452
453
454text \<open>
455  In another refinement step, we define a version on lists.
456\<close>
457declare length_remove1 [termination_simp]
458
459fun permutations_of_set_aux_list where
460  "permutations_of_set_aux_list acc xs = 
461     (if xs = [] then [acc] else 
462        List.bind xs (\<lambda>x. permutations_of_set_aux_list (x#acc) (List.remove1 x xs)))"
463
464definition permutations_of_set_list where
465  "permutations_of_set_list xs = permutations_of_set_aux_list [] xs"
466
467declare permutations_of_set_aux_list.simps [simp del]
468
469lemma permutations_of_set_aux_list_refine:
470  assumes "distinct xs"
471  shows   "set (permutations_of_set_aux_list acc xs) = permutations_of_set_aux acc (set xs)"
472  using assms
473  by (induction acc xs rule: permutations_of_set_aux_list.induct)
474     (subst permutations_of_set_aux_list.simps,
475      subst permutations_of_set_aux.simps,
476      simp_all add: set_list_bind cong: SUP_cong)
477
478
479text \<open>
480  The permutation lists contain no duplicates if the inputs contain no duplicates.
481  Therefore, these functions can easily be used when working with a representation of
482  sets by distinct lists.
483  The same approach should generalise to any kind of set implementation that supports
484  a monadic bind operation, and since the results are disjoint, merging should be cheap.
485\<close>
486lemma distinct_permutations_of_set_aux_list:
487  "distinct xs \<Longrightarrow> distinct (permutations_of_set_aux_list acc xs)"
488  by (induction acc xs rule: permutations_of_set_aux_list.induct)
489     (subst permutations_of_set_aux_list.simps,
490      auto intro!: distinct_list_bind simp: disjoint_family_on_def 
491         permutations_of_set_aux_list_refine permutations_of_set_aux_altdef)
492
493lemma distinct_permutations_of_set_list:
494    "distinct xs \<Longrightarrow> distinct (permutations_of_set_list xs)"
495  by (simp add: permutations_of_set_list_def distinct_permutations_of_set_aux_list)
496
497lemma permutations_of_list:
498    "permutations_of_set (set xs) = set (permutations_of_set_list (remdups xs))"
499  by (simp add: permutations_of_set_aux_correct [symmetric] 
500        permutations_of_set_aux_list_refine permutations_of_set_list_def)
501
502lemma permutations_of_list_code [code]:
503  "permutations_of_set (set xs) = set (permutations_of_set_list (remdups xs))"
504  "permutations_of_set (List.coset xs) = 
505     Code.abort (STR ''Permutation of set complement not supported'') 
506       (\<lambda>_. permutations_of_set (List.coset xs))"
507  by (simp_all add: permutations_of_list)
508
509value [code] "permutations_of_set (set ''abcd'')"
510
511end
512