1(* Author: Tobias Nipkow *)
2
3section \<open>Red-Black Tree Implementation of Sets\<close>
4
5theory RBT_Set
6imports
7  Complex_Main
8  RBT
9  Cmp
10  Isin2
11begin
12
13definition empty :: "'a rbt" where
14"empty = Leaf"
15
16fun ins :: "'a::linorder \<Rightarrow> 'a rbt \<Rightarrow> 'a rbt" where
17"ins x Leaf = R Leaf x Leaf" |
18"ins x (B l a r) =
19  (case cmp x a of
20     LT \<Rightarrow> baliL (ins x l) a r |
21     GT \<Rightarrow> baliR l a (ins x r) |
22     EQ \<Rightarrow> B l a r)" |
23"ins x (R l a r) =
24  (case cmp x a of
25    LT \<Rightarrow> R (ins x l) a r |
26    GT \<Rightarrow> R l a (ins x r) |
27    EQ \<Rightarrow> R l a r)"
28
29definition insert :: "'a::linorder \<Rightarrow> 'a rbt \<Rightarrow> 'a rbt" where
30"insert x t = paint Black (ins x t)"
31
32fun color :: "'a rbt \<Rightarrow> color" where
33"color Leaf = Black" |
34"color (Node _ _ c _) = c"
35
36fun del :: "'a::linorder \<Rightarrow> 'a rbt \<Rightarrow> 'a rbt" where
37"del x Leaf = Leaf" |
38"del x (Node l a _ r) =
39  (case cmp x a of
40     LT \<Rightarrow> if l \<noteq> Leaf \<and> color l = Black
41           then baldL (del x l) a r else R (del x l) a r |
42     GT \<Rightarrow> if r \<noteq> Leaf\<and> color r = Black
43           then baldR l a (del x r) else R l a (del x r) |
44     EQ \<Rightarrow> combine l r)"
45
46definition delete :: "'a::linorder \<Rightarrow> 'a rbt \<Rightarrow> 'a rbt" where
47"delete x t = paint Black (del x t)"
48
49
50subsection "Functional Correctness Proofs"
51
52lemma inorder_paint: "inorder(paint c t) = inorder t"
53by(cases t) (auto)
54
55lemma inorder_baliL:
56  "inorder(baliL l a r) = inorder l @ a # inorder r"
57by(cases "(l,a,r)" rule: baliL.cases) (auto)
58
59lemma inorder_baliR:
60  "inorder(baliR l a r) = inorder l @ a # inorder r"
61by(cases "(l,a,r)" rule: baliR.cases) (auto)
62
63lemma inorder_ins:
64  "sorted(inorder t) \<Longrightarrow> inorder(ins x t) = ins_list x (inorder t)"
65by(induction x t rule: ins.induct)
66  (auto simp: ins_list_simps inorder_baliL inorder_baliR)
67
68lemma inorder_insert:
69  "sorted(inorder t) \<Longrightarrow> inorder(insert x t) = ins_list x (inorder t)"
70by (simp add: insert_def inorder_ins inorder_paint)
71
72lemma inorder_baldL:
73  "inorder(baldL l a r) = inorder l @ a # inorder r"
74by(cases "(l,a,r)" rule: baldL.cases)
75  (auto simp:  inorder_baliL inorder_baliR inorder_paint)
76
77lemma inorder_baldR:
78  "inorder(baldR l a r) = inorder l @ a # inorder r"
79by(cases "(l,a,r)" rule: baldR.cases)
80  (auto simp:  inorder_baliL inorder_baliR inorder_paint)
81
82lemma inorder_combine:
83  "inorder(combine l r) = inorder l @ inorder r"
84by(induction l r rule: combine.induct)
85  (auto simp: inorder_baldL inorder_baldR split: tree.split color.split)
86
87lemma inorder_del:
88 "sorted(inorder t) \<Longrightarrow>  inorder(del x t) = del_list x (inorder t)"
89by(induction x t rule: del.induct)
90  (auto simp: del_list_simps inorder_combine inorder_baldL inorder_baldR)
91
92lemma inorder_delete:
93  "sorted(inorder t) \<Longrightarrow> inorder(delete x t) = del_list x (inorder t)"
94by (auto simp: delete_def inorder_del inorder_paint)
95
96
97subsection \<open>Structural invariants\<close>
98
99text\<open>The proofs are due to Markus Reiter and Alexander Krauss.\<close>
100
101fun bheight :: "'a rbt \<Rightarrow> nat" where
102"bheight Leaf = 0" |
103"bheight (Node l x c r) = (if c = Black then bheight l + 1 else bheight l)"
104
105fun invc :: "'a rbt \<Rightarrow> bool" where
106"invc Leaf = True" |
107"invc (Node l a c r) =
108  (invc l \<and> invc r \<and> (c = Red \<longrightarrow> color l = Black \<and> color r = Black))"
109
110fun invc2 :: "'a rbt \<Rightarrow> bool" \<comment> \<open>Weaker version\<close> where
111"invc2 Leaf = True" |
112"invc2 (Node l a c r) = (invc l \<and> invc r)"
113
114fun invh :: "'a rbt \<Rightarrow> bool" where
115"invh Leaf = True" |
116"invh (Node l x c r) = (invh l \<and> invh r \<and> bheight l = bheight r)"
117
118lemma invc2I: "invc t \<Longrightarrow> invc2 t"
119by (cases t) simp+
120
121definition rbt :: "'a rbt \<Rightarrow> bool" where
122"rbt t = (invc t \<and> invh t \<and> color t = Black)"
123
124lemma color_paint_Black: "color (paint Black t) = Black"
125by (cases t) auto
126
127lemma paint_invc2: "invc2 t \<Longrightarrow> invc2 (paint c t)"
128by (cases t) auto
129
130lemma invc_paint_Black: "invc2 t \<Longrightarrow> invc (paint Black t)"
131by (cases t) auto
132
133lemma invh_paint: "invh t \<Longrightarrow> invh (paint c t)"
134by (cases t) auto
135
136lemma invc_baliL:
137  "\<lbrakk>invc2 l; invc r\<rbrakk> \<Longrightarrow> invc (baliL l a r)" 
138by (induct l a r rule: baliL.induct) auto
139
140lemma invc_baliR:
141  "\<lbrakk>invc l; invc2 r\<rbrakk> \<Longrightarrow> invc (baliR l a r)" 
142by (induct l a r rule: baliR.induct) auto
143
144lemma bheight_baliL:
145  "bheight l = bheight r \<Longrightarrow> bheight (baliL l a r) = Suc (bheight l)"
146by (induct l a r rule: baliL.induct) auto
147
148lemma bheight_baliR:
149  "bheight l = bheight r \<Longrightarrow> bheight (baliR l a r) = Suc (bheight l)"
150by (induct l a r rule: baliR.induct) auto
151
152lemma invh_baliL: 
153  "\<lbrakk> invh l; invh r; bheight l = bheight r \<rbrakk> \<Longrightarrow> invh (baliL l a r)"
154by (induct l a r rule: baliL.induct) auto
155
156lemma invh_baliR: 
157  "\<lbrakk> invh l; invh r; bheight l = bheight r \<rbrakk> \<Longrightarrow> invh (baliR l a r)"
158by (induct l a r rule: baliR.induct) auto
159
160
161subsubsection \<open>Insertion\<close>
162
163lemma invc_ins: assumes "invc t"
164  shows "color t = Black \<Longrightarrow> invc (ins x t)" "invc2 (ins x t)"
165using assms
166by (induct x t rule: ins.induct) (auto simp: invc_baliL invc_baliR invc2I)
167
168lemma invh_ins: assumes "invh t"
169  shows "invh (ins x t)" "bheight (ins x t) = bheight t"
170using assms
171by(induct x t rule: ins.induct)
172  (auto simp: invh_baliL invh_baliR bheight_baliL bheight_baliR)
173
174theorem rbt_insert: "rbt t \<Longrightarrow> rbt (insert x t)"
175by (simp add: invc_ins(2) invh_ins(1) color_paint_Black invc_paint_Black invh_paint
176  rbt_def insert_def)
177
178
179subsubsection \<open>Deletion\<close>
180
181lemma bheight_paint_Red:
182  "color t = Black \<Longrightarrow> bheight (paint Red t) = bheight t - 1"
183by (cases t) auto
184
185lemma invh_baldL_invc:
186  "\<lbrakk> invh l;  invh r;  bheight l + 1 = bheight r;  invc r \<rbrakk>
187   \<Longrightarrow> invh (baldL l a r) \<and> bheight (baldL l a r) = bheight l + 1"
188by (induct l a r rule: baldL.induct)
189   (auto simp: invh_baliR invh_paint bheight_baliR bheight_paint_Red)
190
191lemma invh_baldL_Black: 
192  "\<lbrakk> invh l;  invh r;  bheight l + 1 = bheight r;  color r = Black \<rbrakk>
193   \<Longrightarrow> invh (baldL l a r) \<and> bheight (baldL l a r) = bheight r"
194by (induct l a r rule: baldL.induct) (auto simp add: invh_baliR bheight_baliR) 
195
196lemma invc_baldL: "\<lbrakk>invc2 l; invc r; color r = Black\<rbrakk> \<Longrightarrow> invc (baldL l a r)"
197by (induct l a r rule: baldL.induct) (simp_all add: invc_baliR)
198
199lemma invc2_baldL: "\<lbrakk> invc2 l; invc r \<rbrakk> \<Longrightarrow> invc2 (baldL l a r)"
200by (induct l a r rule: baldL.induct) (auto simp: invc_baliR paint_invc2 invc2I)
201
202lemma invh_baldR_invc:
203  "\<lbrakk> invh l;  invh r;  bheight l = bheight r + 1;  invc l \<rbrakk>
204  \<Longrightarrow> invh (baldR l a r) \<and> bheight (baldR l a r) = bheight l"
205by(induct l a r rule: baldR.induct)
206  (auto simp: invh_baliL bheight_baliL invh_paint bheight_paint_Red)
207
208lemma invc_baldR: "\<lbrakk>invc a; invc2 b; color a = Black\<rbrakk> \<Longrightarrow> invc (baldR a x b)"
209by (induct a x b rule: baldR.induct) (simp_all add: invc_baliL)
210
211lemma invc2_baldR: "\<lbrakk> invc l; invc2 r \<rbrakk> \<Longrightarrow>invc2 (baldR l x r)"
212by (induct l x r rule: baldR.induct) (auto simp: invc_baliL paint_invc2 invc2I)
213
214lemma invh_combine:
215  "\<lbrakk> invh l; invh r; bheight l = bheight r \<rbrakk>
216  \<Longrightarrow> invh (combine l r) \<and> bheight (combine l r) = bheight l"
217by (induct l r rule: combine.induct) 
218   (auto simp: invh_baldL_Black split: tree.splits color.splits)
219
220lemma invc_combine: 
221  assumes "invc l" "invc r"
222  shows "color l = Black \<Longrightarrow> color r = Black \<Longrightarrow> invc (combine l r)"
223         "invc2 (combine l r)"
224using assms 
225by (induct l r rule: combine.induct)
226   (auto simp: invc_baldL invc2I split: tree.splits color.splits)
227
228lemma neq_LeafD: "t \<noteq> Leaf \<Longrightarrow> \<exists>c l x r. t = Node c l x r"
229by(cases t) auto
230
231lemma del_invc_invh: "invh t \<Longrightarrow> invc t \<Longrightarrow> invh (del x t) \<and>
232   (color t = Red \<and> bheight (del x t) = bheight t \<and> invc (del x t) \<or>
233    color t = Black \<and> bheight (del x t) = bheight t - 1 \<and> invc2 (del x t))"
234proof (induct x t rule: del.induct)
235case (2 x _ y c)
236  have "x = y \<or> x < y \<or> x > y" by auto
237  thus ?case proof (elim disjE)
238    assume "x = y"
239    with 2 show ?thesis
240    by (cases c) (simp_all add: invh_combine invc_combine)
241  next
242    assume "x < y"
243    with 2 show ?thesis
244      by(cases c)
245        (auto simp: invh_baldL_invc invc_baldL invc2_baldL dest: neq_LeafD)
246  next
247    assume "y < x"
248    with 2 show ?thesis
249      by(cases c)
250        (auto simp: invh_baldR_invc invc_baldR invc2_baldR dest: neq_LeafD)
251  qed
252qed auto
253
254theorem rbt_delete: "rbt t \<Longrightarrow> rbt (delete k t)"
255by (metis delete_def rbt_def color_paint_Black del_invc_invh invc_paint_Black invc2I invh_paint)
256
257text \<open>Overall correctness:\<close>
258
259interpretation S: Set_by_Ordered
260where empty = empty and isin = isin and insert = insert and delete = delete
261and inorder = inorder and inv = rbt
262proof (standard, goal_cases)
263  case 1 show ?case by (simp add: empty_def)
264next
265  case 2 thus ?case by(simp add: isin_set_inorder)
266next
267  case 3 thus ?case by(simp add: inorder_insert)
268next
269  case 4 thus ?case by(simp add: inorder_delete)
270next
271  case 5 thus ?case by (simp add: rbt_def empty_def) 
272next
273  case 6 thus ?case by (simp add: rbt_insert) 
274next
275  case 7 thus ?case by (simp add: rbt_delete) 
276qed
277
278
279subsection \<open>Height-Size Relation\<close>
280
281lemma neq_Black[simp]: "(c \<noteq> Black) = (c = Red)"
282by (cases c) auto
283
284lemma rbt_height_bheight_if: "invc t \<Longrightarrow> invh t \<Longrightarrow>
285  height t \<le> (if color t = Black then 2 * bheight t else 2 * bheight t + 1)"
286by(induction t) (auto split: if_split_asm)
287
288lemma rbt_height_bheight: "rbt t \<Longrightarrow> height t / 2 \<le> bheight t "
289by(auto simp: rbt_def dest: rbt_height_bheight_if)
290
291lemma bheight_size_bound:  "invc t \<Longrightarrow> invh t \<Longrightarrow> 2 ^ (bheight t) \<le> size1 t"
292by (induction t) auto
293
294lemma rbt_height_le: assumes "rbt t" shows "height t \<le> 2 * log 2 (size1 t)"
295proof -
296  have "2 powr (height t / 2) \<le> 2 powr bheight t"
297    using rbt_height_bheight[OF assms] by (simp)
298  also have "\<dots> \<le> size1 t" using assms
299    by (simp add: powr_realpow bheight_size_bound rbt_def)
300  finally have "2 powr (height t / 2) \<le> size1 t" .
301  hence "height t / 2 \<le> log 2 (size1 t)"
302    by (simp add: le_log_iff size1_def del: divide_le_eq_numeral1(1))
303  thus ?thesis by simp
304qed
305
306end
307