1(*<*)
2theory Main_Doc
3imports Main
4begin
5
6setup \<open>
7  Thy_Output.antiquotation_pretty_source @{binding term_type_only} (Args.term -- Args.typ_abbrev)
8    (fn ctxt => fn (t, T) =>
9      (if fastype_of t = Sign.certify_typ (Proof_Context.theory_of ctxt) T then ()
10       else error "term_type_only: type mismatch";
11       Syntax.pretty_typ ctxt T))
12\<close>
13setup \<open>
14  Thy_Output.antiquotation_pretty_source @{binding expanded_typ} Args.typ
15    Syntax.pretty_typ
16\<close>
17(*>*)
18text\<open>
19
20\begin{abstract}
21This document lists the main types, functions and syntax provided by theory @{theory Main}. It is meant as a quick overview of what is available. For infix operators and their precedences see the final section. The sophisticated class structure is only hinted at. For details see \<^url>\<open>https://isabelle.in.tum.de/library/HOL\<close>.
22\end{abstract}
23
24\section*{HOL}
25
26The basic logic: @{prop "x = y"}, @{const True}, @{const False}, @{prop "\<not> P"}, @{prop"P \<and> Q"},
27@{prop "P \<or> Q"}, @{prop "P \<longrightarrow> Q"}, @{prop "\<forall>x. P"}, @{prop "\<exists>x. P"}, @{prop"\<exists>! x. P"},
28@{term"THE x. P"}.
29\<^smallskip>
30
31\begin{tabular}{@ {} l @ {~::~} l @ {}}
32@{const HOL.undefined} & @{typeof HOL.undefined}\\
33@{const HOL.default} & @{typeof HOL.default}\\
34\end{tabular}
35
36\subsubsection*{Syntax}
37
38\begin{supertabular}{@ {} l @ {\quad$\equiv$\quad} l l @ {}}
39@{term"\<not> (x = y)"} & @{term[source]"\<not> (x = y)"} & (\<^verbatim>\<open>~=\<close>)\\
40@{term[source]"P \<longleftrightarrow> Q"} & @{term"P \<longleftrightarrow> Q"} \\
41@{term"If x y z"} & @{term[source]"If x y z"}\\
42@{term"Let e\<^sub>1 (\<lambda>x. e\<^sub>2)"} & @{term[source]"Let e\<^sub>1 (\<lambda>x. e\<^sub>2)"}\\
43\end{supertabular}
44
45
46\section*{Orderings}
47
48A collection of classes defining basic orderings:
49preorder, partial order, linear order, dense linear order and wellorder.
50\<^smallskip>
51
52\begin{supertabular}{@ {} l @ {~::~} l l @ {}}
53@{const Orderings.less_eq} & @{typeof Orderings.less_eq} & (\<^verbatim>\<open><=\<close>)\\
54@{const Orderings.less} & @{typeof Orderings.less}\\
55@{const Orderings.Least} & @{typeof Orderings.Least}\\
56@{const Orderings.Greatest} & @{typeof Orderings.Greatest}\\
57@{const Orderings.min} & @{typeof Orderings.min}\\
58@{const Orderings.max} & @{typeof Orderings.max}\\
59@{const[source] top} & @{typeof Orderings.top}\\
60@{const[source] bot} & @{typeof Orderings.bot}\\
61@{const Orderings.mono} & @{typeof Orderings.mono}\\
62@{const Orderings.strict_mono} & @{typeof Orderings.strict_mono}\\
63\end{supertabular}
64
65\subsubsection*{Syntax}
66
67\begin{supertabular}{@ {} l @ {\quad$\equiv$\quad} l l @ {}}
68@{term[source]"x \<ge> y"} & @{term"x \<ge> y"} & (\<^verbatim>\<open>>=\<close>)\\
69@{term[source]"x > y"} & @{term"x > y"}\\
70@{term "\<forall>x\<le>y. P"} & @{term[source]"\<forall>x. x \<le> y \<longrightarrow> P"}\\
71@{term "\<exists>x\<le>y. P"} & @{term[source]"\<exists>x. x \<le> y \<and> P"}\\
72\multicolumn{2}{@ {}l@ {}}{Similarly for $<$, $\ge$ and $>$}\\
73@{term "LEAST x. P"} & @{term[source]"Least (\<lambda>x. P)"}\\
74@{term "GREATEST x. P"} & @{term[source]"Greatest (\<lambda>x. P)"}\\
75\end{supertabular}
76
77
78\section*{Lattices}
79
80Classes semilattice, lattice, distributive lattice and complete lattice (the
81latter in theory @{theory HOL.Set}).
82
83\begin{tabular}{@ {} l @ {~::~} l @ {}}
84@{const Lattices.inf} & @{typeof Lattices.inf}\\
85@{const Lattices.sup} & @{typeof Lattices.sup}\\
86@{const Complete_Lattices.Inf} & @{term_type_only Complete_Lattices.Inf "'a set \<Rightarrow> 'a::Inf"}\\
87@{const Complete_Lattices.Sup} & @{term_type_only Complete_Lattices.Sup "'a set \<Rightarrow> 'a::Sup"}\\
88\end{tabular}
89
90\subsubsection*{Syntax}
91
92Available by loading theory \<open>Lattice_Syntax\<close> in directory \<open>Library\<close>.
93
94\begin{supertabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
95@{text[source]"x \<sqsubseteq> y"} & @{term"x \<le> y"}\\
96@{text[source]"x \<sqsubset> y"} & @{term"x < y"}\\
97@{text[source]"x \<sqinter> y"} & @{term"inf x y"}\\
98@{text[source]"x \<squnion> y"} & @{term"sup x y"}\\
99@{text[source]"\<Sqinter>A"} & @{term"Inf A"}\\
100@{text[source]"\<Squnion>A"} & @{term"Sup A"}\\
101@{text[source]"\<top>"} & @{term[source] top}\\
102@{text[source]"\<bottom>"} & @{term[source] bot}\\
103\end{supertabular}
104
105
106\section*{Set}
107
108\begin{supertabular}{@ {} l @ {~::~} l l @ {}}
109@{const Set.empty} & @{term_type_only "Set.empty" "'a set"}\\
110@{const Set.insert} & @{term_type_only insert "'a\<Rightarrow>'a set\<Rightarrow>'a set"}\\
111@{const Collect} & @{term_type_only Collect "('a\<Rightarrow>bool)\<Rightarrow>'a set"}\\
112@{const Set.member} & @{term_type_only Set.member "'a\<Rightarrow>'a set\<Rightarrow>bool"} & (\<^verbatim>\<open>:\<close>)\\
113@{const Set.union} & @{term_type_only Set.union "'a set\<Rightarrow>'a set \<Rightarrow> 'a set"} & (\<^verbatim>\<open>Un\<close>)\\
114@{const Set.inter} & @{term_type_only Set.inter "'a set\<Rightarrow>'a set \<Rightarrow> 'a set"} & (\<^verbatim>\<open>Int\<close>)\\
115@{const UNION} & @{term_type_only UNION "'a set\<Rightarrow>('a \<Rightarrow> 'b set) \<Rightarrow> 'b set"}\\
116@{const INTER} & @{term_type_only INTER "'a set\<Rightarrow>('a \<Rightarrow> 'b set) \<Rightarrow> 'b set"}\\
117@{const Union} & @{term_type_only Union "'a set set\<Rightarrow>'a set"}\\
118@{const Inter} & @{term_type_only Inter "'a set set\<Rightarrow>'a set"}\\
119@{const Pow} & @{term_type_only Pow "'a set \<Rightarrow>'a set set"}\\
120@{const UNIV} & @{term_type_only UNIV "'a set"}\\
121@{const image} & @{term_type_only image "('a\<Rightarrow>'b)\<Rightarrow>'a set\<Rightarrow>'b set"}\\
122@{const Ball} & @{term_type_only Ball "'a set\<Rightarrow>('a\<Rightarrow>bool)\<Rightarrow>bool"}\\
123@{const Bex} & @{term_type_only Bex "'a set\<Rightarrow>('a\<Rightarrow>bool)\<Rightarrow>bool"}\\
124\end{supertabular}
125
126\subsubsection*{Syntax}
127
128\begin{supertabular}{@ {} l @ {\quad$\equiv$\quad} l l @ {}}
129\<open>{a\<^sub>1,\<dots>,a\<^sub>n}\<close> & \<open>insert a\<^sub>1 (\<dots> (insert a\<^sub>n {})\<dots>)\<close>\\
130@{term "a \<notin> A"} & @{term[source]"\<not>(x \<in> A)"}\\
131@{term "A \<subseteq> B"} & @{term[source]"A \<le> B"}\\
132@{term "A \<subset> B"} & @{term[source]"A < B"}\\
133@{term[source]"A \<supseteq> B"} & @{term[source]"B \<le> A"}\\
134@{term[source]"A \<supset> B"} & @{term[source]"B < A"}\\
135@{term "{x. P}"} & @{term[source]"Collect (\<lambda>x. P)"}\\
136\<open>{t | x\<^sub>1 \<dots> x\<^sub>n. P}\<close> & \<open>{v. \<exists>x\<^sub>1 \<dots> x\<^sub>n. v = t \<and> P}\<close>\\
137@{term[source]"\<Union>x\<in>I. A"} & @{term[source]"UNION I (\<lambda>x. A)"} & (\texttt{UN})\\
138@{term[source]"\<Union>x. A"} & @{term[source]"UNION UNIV (\<lambda>x. A)"}\\
139@{term[source]"\<Inter>x\<in>I. A"} & @{term[source]"INTER I (\<lambda>x. A)"} & (\texttt{INT})\\
140@{term[source]"\<Inter>x. A"} & @{term[source]"INTER UNIV (\<lambda>x. A)"}\\
141@{term "\<forall>x\<in>A. P"} & @{term[source]"Ball A (\<lambda>x. P)"}\\
142@{term "\<exists>x\<in>A. P"} & @{term[source]"Bex A (\<lambda>x. P)"}\\
143@{term "range f"} & @{term[source]"f ` UNIV"}\\
144\end{supertabular}
145
146
147\section*{Fun}
148
149\begin{supertabular}{@ {} l @ {~::~} l l @ {}}
150@{const "Fun.id"} & @{typeof Fun.id}\\
151@{const "Fun.comp"} & @{typeof Fun.comp} & (\texttt{o})\\
152@{const "Fun.inj_on"} & @{term_type_only Fun.inj_on "('a\<Rightarrow>'b)\<Rightarrow>'a set\<Rightarrow>bool"}\\
153@{const "Fun.inj"} & @{typeof Fun.inj}\\
154@{const "Fun.surj"} & @{typeof Fun.surj}\\
155@{const "Fun.bij"} & @{typeof Fun.bij}\\
156@{const "Fun.bij_betw"} & @{term_type_only Fun.bij_betw "('a\<Rightarrow>'b)\<Rightarrow>'a set\<Rightarrow>'b set\<Rightarrow>bool"}\\
157@{const "Fun.fun_upd"} & @{typeof Fun.fun_upd}\\
158\end{supertabular}
159
160\subsubsection*{Syntax}
161
162\begin{tabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
163@{term"fun_upd f x y"} & @{term[source]"fun_upd f x y"}\\
164\<open>f(x\<^sub>1:=y\<^sub>1,\<dots>,x\<^sub>n:=y\<^sub>n)\<close> & \<open>f(x\<^sub>1:=y\<^sub>1)\<dots>(x\<^sub>n:=y\<^sub>n)\<close>\\
165\end{tabular}
166
167
168\section*{Hilbert\_Choice}
169
170Hilbert's selection ($\varepsilon$) operator: @{term"SOME x. P"}.
171\<^smallskip>
172
173\begin{tabular}{@ {} l @ {~::~} l @ {}}
174@{const Hilbert_Choice.inv_into} & @{term_type_only Hilbert_Choice.inv_into "'a set \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('b \<Rightarrow> 'a)"}
175\end{tabular}
176
177\subsubsection*{Syntax}
178
179\begin{tabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
180@{term inv} & @{term[source]"inv_into UNIV"}
181\end{tabular}
182
183\section*{Fixed Points}
184
185Theory: @{theory HOL.Inductive}.
186
187Least and greatest fixed points in a complete lattice @{typ 'a}:
188
189\begin{tabular}{@ {} l @ {~::~} l @ {}}
190@{const Inductive.lfp} & @{typeof Inductive.lfp}\\
191@{const Inductive.gfp} & @{typeof Inductive.gfp}\\
192\end{tabular}
193
194Note that in particular sets (@{typ"'a \<Rightarrow> bool"}) are complete lattices.
195
196\section*{Sum\_Type}
197
198Type constructor \<open>+\<close>.
199
200\begin{tabular}{@ {} l @ {~::~} l @ {}}
201@{const Sum_Type.Inl} & @{typeof Sum_Type.Inl}\\
202@{const Sum_Type.Inr} & @{typeof Sum_Type.Inr}\\
203@{const Sum_Type.Plus} & @{term_type_only Sum_Type.Plus "'a set\<Rightarrow>'b set\<Rightarrow>('a+'b)set"}
204\end{tabular}
205
206
207\section*{Product\_Type}
208
209Types @{typ unit} and \<open>\<times>\<close>.
210
211\begin{supertabular}{@ {} l @ {~::~} l @ {}}
212@{const Product_Type.Unity} & @{typeof Product_Type.Unity}\\
213@{const Pair} & @{typeof Pair}\\
214@{const fst} & @{typeof fst}\\
215@{const snd} & @{typeof snd}\\
216@{const case_prod} & @{typeof case_prod}\\
217@{const curry} & @{typeof curry}\\
218@{const Product_Type.Sigma} & @{term_type_only Product_Type.Sigma "'a set\<Rightarrow>('a\<Rightarrow>'b set)\<Rightarrow>('a*'b)set"}\\
219\end{supertabular}
220
221\subsubsection*{Syntax}
222
223\begin{tabular}{@ {} l @ {\quad$\equiv$\quad} ll @ {}}
224@{term "Pair a b"} & @{term[source]"Pair a b"}\\
225@{term "case_prod (\<lambda>x y. t)"} & @{term[source]"case_prod (\<lambda>x y. t)"}\\
226@{term "A \<times> B"} &  \<open>Sigma A (\<lambda>\<^latex>\<open>\_\<close>. B)\<close>
227\end{tabular}
228
229Pairs may be nested. Nesting to the right is printed as a tuple,
230e.g.\ \mbox{@{term "(a,b,c)"}} is really \mbox{\<open>(a, (b, c))\<close>.}
231Pattern matching with pairs and tuples extends to all binders,
232e.g.\ \mbox{@{prop "\<forall>(x,y)\<in>A. P"},} @{term "{(x,y). P}"}, etc.
233
234
235\section*{Relation}
236
237\begin{tabular}{@ {} l @ {~::~} l @ {}}
238@{const Relation.converse} & @{term_type_only Relation.converse "('a * 'b)set \<Rightarrow> ('b*'a)set"}\\
239@{const Relation.relcomp} & @{term_type_only Relation.relcomp "('a*'b)set\<Rightarrow>('b*'c)set\<Rightarrow>('a*'c)set"}\\
240@{const Relation.Image} & @{term_type_only Relation.Image "('a*'b)set\<Rightarrow>'a set\<Rightarrow>'b set"}\\
241@{const Relation.inv_image} & @{term_type_only Relation.inv_image "('a*'a)set\<Rightarrow>('b\<Rightarrow>'a)\<Rightarrow>('b*'b)set"}\\
242@{const Relation.Id_on} & @{term_type_only Relation.Id_on "'a set\<Rightarrow>('a*'a)set"}\\
243@{const Relation.Id} & @{term_type_only Relation.Id "('a*'a)set"}\\
244@{const Relation.Domain} & @{term_type_only Relation.Domain "('a*'b)set\<Rightarrow>'a set"}\\
245@{const Relation.Range} & @{term_type_only Relation.Range "('a*'b)set\<Rightarrow>'b set"}\\
246@{const Relation.Field} & @{term_type_only Relation.Field "('a*'a)set\<Rightarrow>'a set"}\\
247@{const Relation.refl_on} & @{term_type_only Relation.refl_on "'a set\<Rightarrow>('a*'a)set\<Rightarrow>bool"}\\
248@{const Relation.refl} & @{term_type_only Relation.refl "('a*'a)set\<Rightarrow>bool"}\\
249@{const Relation.sym} & @{term_type_only Relation.sym "('a*'a)set\<Rightarrow>bool"}\\
250@{const Relation.antisym} & @{term_type_only Relation.antisym "('a*'a)set\<Rightarrow>bool"}\\
251@{const Relation.trans} & @{term_type_only Relation.trans "('a*'a)set\<Rightarrow>bool"}\\
252@{const Relation.irrefl} & @{term_type_only Relation.irrefl "('a*'a)set\<Rightarrow>bool"}\\
253@{const Relation.total_on} & @{term_type_only Relation.total_on "'a set\<Rightarrow>('a*'a)set\<Rightarrow>bool"}\\
254@{const Relation.total} & @{term_type_only Relation.total "('a*'a)set\<Rightarrow>bool"}\\
255\end{tabular}
256
257\subsubsection*{Syntax}
258
259\begin{tabular}{@ {} l @ {\quad$\equiv$\quad} l l @ {}}
260@{term"converse r"} & @{term[source]"converse r"} & (\<^verbatim>\<open>^-1\<close>)
261\end{tabular}
262\<^medskip>
263
264\noindent
265Type synonym \ @{typ"'a rel"} \<open>=\<close> @{expanded_typ "'a rel"}
266
267\section*{Equiv\_Relations}
268
269\begin{supertabular}{@ {} l @ {~::~} l @ {}}
270@{const Equiv_Relations.equiv} & @{term_type_only Equiv_Relations.equiv "'a set \<Rightarrow> ('a*'a)set\<Rightarrow>bool"}\\
271@{const Equiv_Relations.quotient} & @{term_type_only Equiv_Relations.quotient "'a set \<Rightarrow> ('a \<times> 'a) set \<Rightarrow> 'a set set"}\\
272@{const Equiv_Relations.congruent} & @{term_type_only Equiv_Relations.congruent "('a*'a)set\<Rightarrow>('a\<Rightarrow>'b)\<Rightarrow>bool"}\\
273@{const Equiv_Relations.congruent2} & @{term_type_only Equiv_Relations.congruent2 "('a*'a)set\<Rightarrow>('b*'b)set\<Rightarrow>('a\<Rightarrow>'b\<Rightarrow>'c)\<Rightarrow>bool"}\\
274%@ {const Equiv_Relations.} & @ {term_type_only Equiv_Relations. ""}\\
275\end{supertabular}
276
277\subsubsection*{Syntax}
278
279\begin{tabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
280@{term"congruent r f"} & @{term[source]"congruent r f"}\\
281@{term"congruent2 r r f"} & @{term[source]"congruent2 r r f"}\\
282\end{tabular}
283
284
285\section*{Transitive\_Closure}
286
287\begin{tabular}{@ {} l @ {~::~} l @ {}}
288@{const Transitive_Closure.rtrancl} & @{term_type_only Transitive_Closure.rtrancl "('a*'a)set\<Rightarrow>('a*'a)set"}\\
289@{const Transitive_Closure.trancl} & @{term_type_only Transitive_Closure.trancl "('a*'a)set\<Rightarrow>('a*'a)set"}\\
290@{const Transitive_Closure.reflcl} & @{term_type_only Transitive_Closure.reflcl "('a*'a)set\<Rightarrow>('a*'a)set"}\\
291@{const Transitive_Closure.acyclic} & @{term_type_only Transitive_Closure.acyclic "('a*'a)set\<Rightarrow>bool"}\\
292@{const compower} & @{term_type_only "(^^) :: ('a*'a)set\<Rightarrow>nat\<Rightarrow>('a*'a)set" "('a*'a)set\<Rightarrow>nat\<Rightarrow>('a*'a)set"}\\
293\end{tabular}
294
295\subsubsection*{Syntax}
296
297\begin{tabular}{@ {} l @ {\quad$\equiv$\quad} l l @ {}}
298@{term"rtrancl r"} & @{term[source]"rtrancl r"} & (\<^verbatim>\<open>^*\<close>)\\
299@{term"trancl r"} & @{term[source]"trancl r"} & (\<^verbatim>\<open>^+\<close>)\\
300@{term"reflcl r"} & @{term[source]"reflcl r"} & (\<^verbatim>\<open>^=\<close>)
301\end{tabular}
302
303
304\section*{Algebra}
305
306Theories @{theory HOL.Groups}, @{theory HOL.Rings}, @{theory HOL.Fields} and @{theory
307HOL.Divides} define a large collection of classes describing common algebraic
308structures from semigroups up to fields. Everything is done in terms of
309overloaded operators:
310
311\begin{supertabular}{@ {} l @ {~::~} l l @ {}}
312\<open>0\<close> & @{typeof zero}\\
313\<open>1\<close> & @{typeof one}\\
314@{const plus} & @{typeof plus}\\
315@{const minus} & @{typeof minus}\\
316@{const uminus} & @{typeof uminus} & (\<^verbatim>\<open>-\<close>)\\
317@{const times} & @{typeof times}\\
318@{const inverse} & @{typeof inverse}\\
319@{const divide} & @{typeof divide}\\
320@{const abs} & @{typeof abs}\\
321@{const sgn} & @{typeof sgn}\\
322@{const Rings.dvd} & @{typeof Rings.dvd}\\
323@{const divide} & @{typeof divide}\\
324@{const modulo} & @{typeof modulo}\\
325\end{supertabular}
326
327\subsubsection*{Syntax}
328
329\begin{tabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
330@{term "\<bar>x\<bar>"} & @{term[source] "abs x"}
331\end{tabular}
332
333
334\section*{Nat}
335
336@{datatype nat}
337\<^bigskip>
338
339\begin{tabular}{@ {} lllllll @ {}}
340@{term "(+) :: nat \<Rightarrow> nat \<Rightarrow> nat"} &
341@{term "(-) :: nat \<Rightarrow> nat \<Rightarrow> nat"} &
342@{term "( * ) :: nat \<Rightarrow> nat \<Rightarrow> nat"} &
343@{term "(^) :: nat \<Rightarrow> nat \<Rightarrow> nat"} &
344@{term "(div) :: nat \<Rightarrow> nat \<Rightarrow> nat"}&
345@{term "(mod) :: nat \<Rightarrow> nat \<Rightarrow> nat"}&
346@{term "(dvd) :: nat \<Rightarrow> nat \<Rightarrow> bool"}\\
347@{term "(\<le>) :: nat \<Rightarrow> nat \<Rightarrow> bool"} &
348@{term "(<) :: nat \<Rightarrow> nat \<Rightarrow> bool"} &
349@{term "min :: nat \<Rightarrow> nat \<Rightarrow> nat"} &
350@{term "max :: nat \<Rightarrow> nat \<Rightarrow> nat"} &
351@{term "Min :: nat set \<Rightarrow> nat"} &
352@{term "Max :: nat set \<Rightarrow> nat"}\\
353\end{tabular}
354
355\begin{tabular}{@ {} l @ {~::~} l @ {}}
356@{const Nat.of_nat} & @{typeof Nat.of_nat}\\
357@{term "(^^) :: ('a \<Rightarrow> 'a) \<Rightarrow> nat \<Rightarrow> 'a \<Rightarrow> 'a"} &
358  @{term_type_only "(^^) :: ('a \<Rightarrow> 'a) \<Rightarrow> nat \<Rightarrow> 'a \<Rightarrow> 'a" "('a \<Rightarrow> 'a) \<Rightarrow> nat \<Rightarrow> 'a \<Rightarrow> 'a"}
359\end{tabular}
360
361\section*{Int}
362
363Type @{typ int}
364\<^bigskip>
365
366\begin{tabular}{@ {} llllllll @ {}}
367@{term "(+) :: int \<Rightarrow> int \<Rightarrow> int"} &
368@{term "(-) :: int \<Rightarrow> int \<Rightarrow> int"} &
369@{term "uminus :: int \<Rightarrow> int"} &
370@{term "( * ) :: int \<Rightarrow> int \<Rightarrow> int"} &
371@{term "(^) :: int \<Rightarrow> nat \<Rightarrow> int"} &
372@{term "(div) :: int \<Rightarrow> int \<Rightarrow> int"}&
373@{term "(mod) :: int \<Rightarrow> int \<Rightarrow> int"}&
374@{term "(dvd) :: int \<Rightarrow> int \<Rightarrow> bool"}\\
375@{term "(\<le>) :: int \<Rightarrow> int \<Rightarrow> bool"} &
376@{term "(<) :: int \<Rightarrow> int \<Rightarrow> bool"} &
377@{term "min :: int \<Rightarrow> int \<Rightarrow> int"} &
378@{term "max :: int \<Rightarrow> int \<Rightarrow> int"} &
379@{term "Min :: int set \<Rightarrow> int"} &
380@{term "Max :: int set \<Rightarrow> int"}\\
381@{term "abs :: int \<Rightarrow> int"} &
382@{term "sgn :: int \<Rightarrow> int"}\\
383\end{tabular}
384
385\begin{tabular}{@ {} l @ {~::~} l l @ {}}
386@{const Int.nat} & @{typeof Int.nat}\\
387@{const Int.of_int} & @{typeof Int.of_int}\\
388@{const Int.Ints} & @{term_type_only Int.Ints "'a::ring_1 set"} & (\<^verbatim>\<open>Ints\<close>)
389\end{tabular}
390
391\subsubsection*{Syntax}
392
393\begin{tabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
394@{term"of_nat::nat\<Rightarrow>int"} & @{term[source]"of_nat"}\\
395\end{tabular}
396
397
398\section*{Finite\_Set}
399
400\begin{supertabular}{@ {} l @ {~::~} l @ {}}
401@{const Finite_Set.finite} & @{term_type_only Finite_Set.finite "'a set\<Rightarrow>bool"}\\
402@{const Finite_Set.card} & @{term_type_only Finite_Set.card "'a set \<Rightarrow> nat"}\\
403@{const Finite_Set.fold} & @{term_type_only Finite_Set.fold "('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'b \<Rightarrow> 'a set \<Rightarrow> 'b"}\\
404\end{supertabular}
405
406
407\section*{Lattices\_Big}
408
409\begin{supertabular}{@ {} l @ {~::~} l l @ {}}
410@{const Lattices_Big.Min} & @{typeof Lattices_Big.Min}\\
411@{const Lattices_Big.Max} & @{typeof Lattices_Big.Max}\\
412@{const Lattices_Big.arg_min} & @{typeof Lattices_Big.arg_min}\\
413@{const Lattices_Big.is_arg_min} & @{typeof Lattices_Big.is_arg_min}\\
414@{const Lattices_Big.arg_max} & @{typeof Lattices_Big.arg_max}\\
415@{const Lattices_Big.is_arg_max} & @{typeof Lattices_Big.is_arg_max}\\
416\end{supertabular}
417
418\subsubsection*{Syntax}
419
420\begin{supertabular}{@ {} l @ {\quad$\equiv$\quad} l l @ {}}
421@{term "ARG_MIN f x. P"} & @{term[source]"arg_min f (\<lambda>x. P)"}\\
422@{term "ARG_MAX f x. P"} & @{term[source]"arg_max f (\<lambda>x. P)"}\\
423\end{supertabular}
424
425
426\section*{Groups\_Big}
427
428\begin{supertabular}{@ {} l @ {~::~} l @ {}}
429@{const Groups_Big.sum} & @{term_type_only Groups_Big.sum "('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'b::comm_monoid_add"}\\
430@{const Groups_Big.prod} & @{term_type_only Groups_Big.prod "('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'b::comm_monoid_mult"}\\
431\end{supertabular}
432
433
434\subsubsection*{Syntax}
435
436\begin{supertabular}{@ {} l @ {\quad$\equiv$\quad} l l @ {}}
437@{term "sum (\<lambda>x. x) A"} & @{term[source]"sum (\<lambda>x. x) A"} & (\<^verbatim>\<open>SUM\<close>)\\
438@{term "sum (\<lambda>x. t) A"} & @{term[source]"sum (\<lambda>x. t) A"}\\
439@{term[source] "\<Sum>x|P. t"} & @{term"\<Sum>x|P. t"}\\
440\multicolumn{2}{@ {}l@ {}}{Similarly for \<open>\<Prod>\<close> instead of \<open>\<Sum>\<close>} & (\<^verbatim>\<open>PROD\<close>)\\
441\end{supertabular}
442
443
444\section*{Wellfounded}
445
446\begin{supertabular}{@ {} l @ {~::~} l @ {}}
447@{const Wellfounded.wf} & @{term_type_only Wellfounded.wf "('a*'a)set\<Rightarrow>bool"}\\
448@{const Wellfounded.acc} & @{term_type_only Wellfounded.acc "('a*'a)set\<Rightarrow>'a set"}\\
449@{const Wellfounded.measure} & @{term_type_only Wellfounded.measure "('a\<Rightarrow>nat)\<Rightarrow>('a*'a)set"}\\
450@{const Wellfounded.lex_prod} & @{term_type_only Wellfounded.lex_prod "('a*'a)set\<Rightarrow>('b*'b)set\<Rightarrow>(('a*'b)*('a*'b))set"}\\
451@{const Wellfounded.mlex_prod} & @{term_type_only Wellfounded.mlex_prod "('a\<Rightarrow>nat)\<Rightarrow>('a*'a)set\<Rightarrow>('a*'a)set"}\\
452@{const Wellfounded.less_than} & @{term_type_only Wellfounded.less_than "(nat*nat)set"}\\
453@{const Wellfounded.pred_nat} & @{term_type_only Wellfounded.pred_nat "(nat*nat)set"}\\
454\end{supertabular}
455
456
457\section*{Set\_Interval} % @{theory HOL.Set_Interval}
458
459\begin{supertabular}{@ {} l @ {~::~} l @ {}}
460@{const lessThan} & @{term_type_only lessThan "'a::ord \<Rightarrow> 'a set"}\\
461@{const atMost} & @{term_type_only atMost "'a::ord \<Rightarrow> 'a set"}\\
462@{const greaterThan} & @{term_type_only greaterThan "'a::ord \<Rightarrow> 'a set"}\\
463@{const atLeast} & @{term_type_only atLeast "'a::ord \<Rightarrow> 'a set"}\\
464@{const greaterThanLessThan} & @{term_type_only greaterThanLessThan "'a::ord \<Rightarrow> 'a \<Rightarrow> 'a set"}\\
465@{const atLeastLessThan} & @{term_type_only atLeastLessThan "'a::ord \<Rightarrow> 'a \<Rightarrow> 'a set"}\\
466@{const greaterThanAtMost} & @{term_type_only greaterThanAtMost "'a::ord \<Rightarrow> 'a \<Rightarrow> 'a set"}\\
467@{const atLeastAtMost} & @{term_type_only atLeastAtMost "'a::ord \<Rightarrow> 'a \<Rightarrow> 'a set"}\\
468\end{supertabular}
469
470\subsubsection*{Syntax}
471
472\begin{supertabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
473@{term "lessThan y"} & @{term[source] "lessThan y"}\\
474@{term "atMost y"} & @{term[source] "atMost y"}\\
475@{term "greaterThan x"} & @{term[source] "greaterThan x"}\\
476@{term "atLeast x"} & @{term[source] "atLeast x"}\\
477@{term "greaterThanLessThan x y"} & @{term[source] "greaterThanLessThan x y"}\\
478@{term "atLeastLessThan x y"} & @{term[source] "atLeastLessThan x y"}\\
479@{term "greaterThanAtMost x y"} & @{term[source] "greaterThanAtMost x y"}\\
480@{term "atLeastAtMost x y"} & @{term[source] "atLeastAtMost x y"}\\
481@{term[source] "\<Union>i\<le>n. A"} & @{term[source] "\<Union>i \<in> {..n}. A"}\\
482@{term[source] "\<Union>i<n. A"} & @{term[source] "\<Union>i \<in> {..<n}. A"}\\
483\multicolumn{2}{@ {}l@ {}}{Similarly for \<open>\<Inter>\<close> instead of \<open>\<Union>\<close>}\\
484@{term "sum (\<lambda>x. t) {a..b}"} & @{term[source] "sum (\<lambda>x. t) {a..b}"}\\
485@{term "sum (\<lambda>x. t) {a..<b}"} & @{term[source] "sum (\<lambda>x. t) {a..<b}"}\\
486@{term "sum (\<lambda>x. t) {..b}"} & @{term[source] "sum (\<lambda>x. t) {..b}"}\\
487@{term "sum (\<lambda>x. t) {..<b}"} & @{term[source] "sum (\<lambda>x. t) {..<b}"}\\
488\multicolumn{2}{@ {}l@ {}}{Similarly for \<open>\<Prod>\<close> instead of \<open>\<Sum>\<close>}\\
489\end{supertabular}
490
491
492\section*{Power}
493
494\begin{tabular}{@ {} l @ {~::~} l @ {}}
495@{const Power.power} & @{typeof Power.power}
496\end{tabular}
497
498
499\section*{Option}
500
501@{datatype option}
502\<^bigskip>
503
504\begin{tabular}{@ {} l @ {~::~} l @ {}}
505@{const Option.the} & @{typeof Option.the}\\
506@{const map_option} & @{typ[source]"('a \<Rightarrow> 'b) \<Rightarrow> 'a option \<Rightarrow> 'b option"}\\
507@{const set_option} & @{term_type_only set_option "'a option \<Rightarrow> 'a set"}\\
508@{const Option.bind} & @{term_type_only Option.bind "'a option \<Rightarrow> ('a \<Rightarrow> 'b option) \<Rightarrow> 'b option"}
509\end{tabular}
510
511\section*{List}
512
513@{datatype list}
514\<^bigskip>
515
516\begin{supertabular}{@ {} l @ {~::~} l @ {}}
517@{const List.append} & @{typeof List.append}\\
518@{const List.butlast} & @{typeof List.butlast}\\
519@{const List.concat} & @{typeof List.concat}\\
520@{const List.distinct} & @{typeof List.distinct}\\
521@{const List.drop} & @{typeof List.drop}\\
522@{const List.dropWhile} & @{typeof List.dropWhile}\\
523@{const List.filter} & @{typeof List.filter}\\
524@{const List.find} & @{typeof List.find}\\
525@{const List.fold} & @{typeof List.fold}\\
526@{const List.foldr} & @{typeof List.foldr}\\
527@{const List.foldl} & @{typeof List.foldl}\\
528@{const List.hd} & @{typeof List.hd}\\
529@{const List.last} & @{typeof List.last}\\
530@{const List.length} & @{typeof List.length}\\
531@{const List.lenlex} & @{term_type_only List.lenlex "('a*'a)set\<Rightarrow>('a list * 'a list)set"}\\
532@{const List.lex} & @{term_type_only List.lex "('a*'a)set\<Rightarrow>('a list * 'a list)set"}\\
533@{const List.lexn} & @{term_type_only List.lexn "('a*'a)set\<Rightarrow>nat\<Rightarrow>('a list * 'a list)set"}\\
534@{const List.lexord} & @{term_type_only List.lexord "('a*'a)set\<Rightarrow>('a list * 'a list)set"}\\
535@{const List.listrel} & @{term_type_only List.listrel "('a*'b)set\<Rightarrow>('a list * 'b list)set"}\\
536@{const List.listrel1} & @{term_type_only List.listrel1 "('a*'a)set\<Rightarrow>('a list * 'a list)set"}\\
537@{const List.lists} & @{term_type_only List.lists "'a set\<Rightarrow>'a list set"}\\
538@{const List.listset} & @{term_type_only List.listset "'a set list \<Rightarrow> 'a list set"}\\
539@{const Groups_List.sum_list} & @{typeof Groups_List.sum_list}\\
540@{const Groups_List.prod_list} & @{typeof Groups_List.prod_list}\\
541@{const List.list_all2} & @{typeof List.list_all2}\\
542@{const List.list_update} & @{typeof List.list_update}\\
543@{const List.map} & @{typeof List.map}\\
544@{const List.measures} & @{term_type_only List.measures "('a\<Rightarrow>nat)list\<Rightarrow>('a*'a)set"}\\
545@{const List.nth} & @{typeof List.nth}\\
546@{const List.nths} & @{typeof List.nths}\\
547@{const List.remdups} & @{typeof List.remdups}\\
548@{const List.removeAll} & @{typeof List.removeAll}\\
549@{const List.remove1} & @{typeof List.remove1}\\
550@{const List.replicate} & @{typeof List.replicate}\\
551@{const List.rev} & @{typeof List.rev}\\
552@{const List.rotate} & @{typeof List.rotate}\\
553@{const List.rotate1} & @{typeof List.rotate1}\\
554@{const List.set} & @{term_type_only List.set "'a list \<Rightarrow> 'a set"}\\
555@{const List.shuffle} & @{typeof List.shuffle}\\
556@{const List.sort} & @{typeof List.sort}\\
557@{const List.sorted} & @{typeof List.sorted}\\
558@{const List.sorted_wrt} & @{typeof List.sorted_wrt}\\
559@{const List.splice} & @{typeof List.splice}\\
560@{const List.take} & @{typeof List.take}\\
561@{const List.takeWhile} & @{typeof List.takeWhile}\\
562@{const List.tl} & @{typeof List.tl}\\
563@{const List.upt} & @{typeof List.upt}\\
564@{const List.upto} & @{typeof List.upto}\\
565@{const List.zip} & @{typeof List.zip}\\
566\end{supertabular}
567
568\subsubsection*{Syntax}
569
570\begin{supertabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
571\<open>[x\<^sub>1,\<dots>,x\<^sub>n]\<close> & \<open>x\<^sub>1 # \<dots> # x\<^sub>n # []\<close>\\
572@{term"[m..<n]"} & @{term[source]"upt m n"}\\
573@{term"[i..j]"} & @{term[source]"upto i j"}\\
574@{term"xs[n := x]"} & @{term[source]"list_update xs n x"}\\
575@{term"\<Sum>x\<leftarrow>xs. e"} & @{term[source]"listsum (map (\<lambda>x. e) xs)"}\\
576\end{supertabular}
577\<^medskip>
578
579Filter input syntax \<open>[pat \<leftarrow> e. b]\<close>, where
580\<open>pat\<close> is a tuple pattern, which stands for @{term "filter (\<lambda>pat. b) e"}.
581
582List comprehension input syntax: \<open>[e. q\<^sub>1, \<dots>, q\<^sub>n]\<close> where each
583qualifier \<open>q\<^sub>i\<close> is either a generator \mbox{\<open>pat \<leftarrow> e\<close>} or a
584guard, i.e.\ boolean expression.
585
586\section*{Map}
587
588Maps model partial functions and are often used as finite tables. However,
589the domain of a map may be infinite.
590
591\begin{supertabular}{@ {} l @ {~::~} l @ {}}
592@{const Map.empty} & @{typeof Map.empty}\\
593@{const Map.map_add} & @{typeof Map.map_add}\\
594@{const Map.map_comp} & @{typeof Map.map_comp}\\
595@{const Map.restrict_map} & @{term_type_only Map.restrict_map "('a\<Rightarrow>'b option)\<Rightarrow>'a set\<Rightarrow>('a\<Rightarrow>'b option)"}\\
596@{const Map.dom} & @{term_type_only Map.dom "('a\<Rightarrow>'b option)\<Rightarrow>'a set"}\\
597@{const Map.ran} & @{term_type_only Map.ran "('a\<Rightarrow>'b option)\<Rightarrow>'b set"}\\
598@{const Map.map_le} & @{typeof Map.map_le}\\
599@{const Map.map_of} & @{typeof Map.map_of}\\
600@{const Map.map_upds} & @{typeof Map.map_upds}\\
601\end{supertabular}
602
603\subsubsection*{Syntax}
604
605\begin{tabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
606@{term"Map.empty"} & @{term"\<lambda>x. None"}\\
607@{term"m(x:=Some y)"} & @{term[source]"m(x:=Some y)"}\\
608\<open>m(x\<^sub>1\<mapsto>y\<^sub>1,\<dots>,x\<^sub>n\<mapsto>y\<^sub>n)\<close> & @{text[source]"m(x\<^sub>1\<mapsto>y\<^sub>1)\<dots>(x\<^sub>n\<mapsto>y\<^sub>n)"}\\
609\<open>[x\<^sub>1\<mapsto>y\<^sub>1,\<dots>,x\<^sub>n\<mapsto>y\<^sub>n]\<close> & @{text[source]"Map.empty(x\<^sub>1\<mapsto>y\<^sub>1,\<dots>,x\<^sub>n\<mapsto>y\<^sub>n)"}\\
610@{term"map_upds m xs ys"} & @{term[source]"map_upds m xs ys"}\\
611\end{tabular}
612
613\section*{Infix operators in Main} % @{theory Main}
614
615\begin{center}
616\begin{tabular}{llll}
617 & Operator & precedence & associativity \\
618\hline
619Meta-logic & \<open>\<Longrightarrow>\<close> & 1 & right \\
620& \<open>\<equiv>\<close> & 2 \\
621\hline
622Logic & \<open>\<and>\<close> & 35 & right \\
623&\<open>\<or>\<close> & 30 & right \\
624&\<open>\<longrightarrow>\<close>, \<open>\<longleftrightarrow>\<close> & 25 & right\\
625&\<open>=\<close>, \<open>\<noteq>\<close> & 50 & left\\
626\hline
627Orderings & \<open>\<le>\<close>, \<open><\<close>, \<open>\<ge>\<close>, \<open>>\<close> & 50 \\
628\hline
629Sets & \<open>\<subseteq>\<close>, \<open>\<subset>\<close>, \<open>\<supseteq>\<close>, \<open>\<supset>\<close> & 50 \\
630&\<open>\<in>\<close>, \<open>\<notin>\<close> & 50 \\
631&\<open>\<inter>\<close> & 70 & left \\
632&\<open>\<union>\<close> & 65 & left \\
633\hline
634Functions and Relations & \<open>\<circ>\<close> & 55 & left\\
635&\<open>`\<close> & 90 & right\\
636&\<open>O\<close> & 75 & right\\
637&\<open>``\<close> & 90 & right\\
638&\<open>^^\<close> & 80 & right\\
639\hline
640Numbers & \<open>+\<close>, \<open>-\<close> & 65 & left \\
641&\<open>*\<close>, \<open>/\<close> & 70 & left \\
642&\<open>div\<close>, \<open>mod\<close> & 70 & left\\
643&\<open>^\<close> & 80 & right\\
644&\<open>dvd\<close> & 50 \\
645\hline
646Lists & \<open>#\<close>, \<open>@\<close> & 65 & right\\
647&\<open>!\<close> & 100 & left
648\end{tabular}
649\end{center}
650\<close>
651(*<*)
652end
653(*>*)
654