1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
24 */
25
26#include <sys/types.h>
27#include <sys/systm.h>
28#include <sys/archsystm.h>
29#include <sys/machparam.h>
30#include <sys/machsystm.h>
31#include <sys/cpu.h>
32#include <sys/elf_SPARC.h>
33#include <vm/hat_sfmmu.h>
34#include <vm/page.h>
35#include <vm/vm_dep.h>
36#include <sys/cpuvar.h>
37#include <sys/async.h>
38#include <sys/cmn_err.h>
39#include <sys/debug.h>
40#include <sys/dditypes.h>
41#include <sys/sunddi.h>
42#include <sys/cpu_module.h>
43#include <sys/prom_debug.h>
44#include <sys/vmsystm.h>
45#include <sys/prom_plat.h>
46#include <sys/sysmacros.h>
47#include <sys/intreg.h>
48#include <sys/machtrap.h>
49#include <sys/ontrap.h>
50#include <sys/ivintr.h>
51#include <sys/atomic.h>
52#include <sys/panic.h>
53#include <sys/dtrace.h>
54#include <sys/simulate.h>
55#include <sys/fault.h>
56#include <sys/niagara2regs.h>
57#include <sys/hsvc.h>
58#include <sys/trapstat.h>
59#include <sys/mutex_impl.h>
60
61uint_t root_phys_addr_lo_mask = 0xffffffffU;
62#if defined(NIAGARA2_IMPL)
63char cpu_module_name[] = "SUNW,UltraSPARC-T2";
64#elif defined(VFALLS_IMPL)
65char cpu_module_name[] = "SUNW,UltraSPARC-T2+";
66#elif defined(KT_IMPL)
67char cpu_module_name[] = "SPARC-T3";
68#endif
69
70/*
71 * Hypervisor services information for the NIAGARA2 and Victoria Falls
72 * CPU module
73 */
74static boolean_t cpu_hsvc_available = B_TRUE;
75static uint64_t cpu_sup_minor;		/* Supported minor number */
76#if defined(NIAGARA2_IMPL)
77static hsvc_info_t cpu_hsvc = {
78	HSVC_REV_1, NULL, HSVC_GROUP_NIAGARA2_CPU, NIAGARA2_HSVC_MAJOR,
79	NIAGARA2_HSVC_MINOR, cpu_module_name
80};
81#elif defined(VFALLS_IMPL)
82static hsvc_info_t cpu_hsvc = {
83	HSVC_REV_1, NULL, HSVC_GROUP_VFALLS_CPU, VFALLS_HSVC_MAJOR,
84	VFALLS_HSVC_MINOR, cpu_module_name
85};
86#elif defined(KT_IMPL)
87static hsvc_info_t cpu_hsvc = {
88	HSVC_REV_1, NULL, HSVC_GROUP_KT_CPU, KT_HSVC_MAJOR,
89	KT_HSVC_MINOR, cpu_module_name
90};
91#endif
92
93void
94cpu_setup(void)
95{
96	extern int mmu_exported_pagesize_mask;
97	extern int cpc_has_overflow_intr;
98	extern size_t contig_mem_prealloc_base_size;
99	int status;
100
101	/*
102	 * Negotiate the API version for Niagara2 specific hypervisor
103	 * services.
104	 */
105	status = hsvc_register(&cpu_hsvc, &cpu_sup_minor);
106	if (status != 0) {
107		cmn_err(CE_WARN, "%s: cannot negotiate hypervisor services "
108		    "group: 0x%lx major: 0x%lx minor: 0x%lx errno: %d",
109		    cpu_hsvc.hsvc_modname, cpu_hsvc.hsvc_group,
110		    cpu_hsvc.hsvc_major, cpu_hsvc.hsvc_minor, status);
111		cpu_hsvc_available = B_FALSE;
112	}
113
114	/*
115	 * The setup common to all CPU modules is done in cpu_setup_common
116	 * routine.
117	 */
118	cpu_setup_common(NULL);
119
120	/*
121	 * Initialize the cpu_hwcap_flags for N2 and VF if it is not already
122	 * set in cpu_setup_common() by the hwcap MD info. Note that this MD
123	 * info may not be available for N2/VF.
124	 */
125	if (cpu_hwcap_flags == 0) {
126#ifdef KT_IMPL
127		/*
128		 * This should not happen since hwcap MD info is always
129		 * available for KT platforms.
130		 */
131		ASSERT(cpu_hwcap_flags != 0);	/* panic in DEBUG mode */
132		cpu_hwcap_flags |= AV_SPARC_VIS3 | AV_SPARC_HPC | AV_SPARC_FMAF;
133#endif /* KT_IMPL */
134		cpu_hwcap_flags |= AV_SPARC_VIS | AV_SPARC_VIS2 |
135		    AV_SPARC_ASI_BLK_INIT | AV_SPARC_POPC;
136	}
137
138	cache |= (CACHE_PTAG | CACHE_IOCOHERENT);
139
140	if ((mmu_exported_pagesize_mask &
141	    DEFAULT_SUN4V_MMU_PAGESIZE_MASK) !=
142	    DEFAULT_SUN4V_MMU_PAGESIZE_MASK)
143		cmn_err(CE_PANIC, "machine description"
144		    " does not have required sun4v page sizes"
145		    " 8K, 64K and 4M: MD mask is 0x%x",
146		    mmu_exported_pagesize_mask);
147
148	/*
149	 * Niagara2 supports a 48-bit subset of the full 64-bit virtual
150	 * address space. Virtual addresses between 0x0000800000000000
151	 * and 0xffff.7fff.ffff.ffff inclusive lie within a "VA Hole"
152	 * and must never be mapped. In addition, software must not use
153	 * pages within 4GB of the VA hole as instruction pages to
154	 * avoid problems with prefetching into the VA hole.
155	 */
156	hole_start = (caddr_t)((1ull << (va_bits - 1)) - (1ull << 32));
157	hole_end = (caddr_t)((0ull - (1ull << (va_bits - 1))) + (1ull << 32));
158
159	/*
160	 * Niagara2 has a performance counter overflow interrupt
161	 */
162	cpc_has_overflow_intr = 1;
163
164	/*
165	 * Enable 4M pages for OOB.
166	 */
167	max_uheap_lpsize = MMU_PAGESIZE4M;
168	max_ustack_lpsize = MMU_PAGESIZE4M;
169	max_privmap_lpsize = MMU_PAGESIZE4M;
170
171#ifdef SUN4V_CONTIG_MEM_PREALLOC_SIZE_MB
172	/*
173	 * Use CPU Makefile specific compile time define (if exists)
174	 * to add to the contig preallocation size.
175	 */
176	contig_mem_prealloc_base_size = MB(SUN4V_CONTIG_MEM_PREALLOC_SIZE_MB);
177#endif
178}
179
180/*
181 * Set the magic constants of the implementation.
182 */
183void
184cpu_fiximp(struct cpu_node *cpunode)
185{
186	/*
187	 * The Cache node is optional in MD. Therefore in case "Cache"
188	 * node does not exists in MD, set the default L2 cache associativity,
189	 * size, linesize.
190	 */
191	if (cpunode->ecache_size == 0)
192		cpunode->ecache_size = L2CACHE_SIZE;
193	if (cpunode->ecache_linesize == 0)
194		cpunode->ecache_linesize = L2CACHE_LINESIZE;
195	if (cpunode->ecache_associativity == 0)
196		cpunode->ecache_associativity = L2CACHE_ASSOCIATIVITY;
197}
198
199void
200cpu_map_exec_units(struct cpu *cp)
201{
202	ASSERT(MUTEX_HELD(&cpu_lock));
203
204	/*
205	 * The cpu_ipipe and cpu_fpu fields are initialized based on
206	 * the execution unit sharing information from the MD. They
207	 * default to the CPU id in the absence of such information.
208	 */
209	cp->cpu_m.cpu_ipipe = cpunodes[cp->cpu_id].exec_unit_mapping;
210	if (cp->cpu_m.cpu_ipipe == NO_EU_MAPPING_FOUND)
211		cp->cpu_m.cpu_ipipe = (id_t)(cp->cpu_id);
212
213	cp->cpu_m.cpu_fpu = cpunodes[cp->cpu_id].fpu_mapping;
214	if (cp->cpu_m.cpu_fpu == NO_EU_MAPPING_FOUND)
215		cp->cpu_m.cpu_fpu = (id_t)(cp->cpu_id);
216
217	/*
218	 * Niagara 2 defines the core to be at the FPU level
219	 */
220	cp->cpu_m.cpu_core = cp->cpu_m.cpu_fpu;
221
222	/*
223	 * The cpu_chip field is initialized based on the information
224	 * in the MD and assume that all cpus within a chip
225	 * share the same L2 cache. If no such info is available, we
226	 * set the cpu to belong to the defacto chip 0.
227	 */
228	cp->cpu_m.cpu_mpipe = cpunodes[cp->cpu_id].l2_cache_mapping;
229	if (cp->cpu_m.cpu_mpipe == NO_L2_CACHE_MAPPING_FOUND)
230		cp->cpu_m.cpu_mpipe = CPU_L2_CACHEID_INVALID;
231
232	cp->cpu_m.cpu_chip = cpunodes[cp->cpu_id].l2_cache_mapping;
233	if (cp->cpu_m.cpu_chip == NO_L2_CACHE_MAPPING_FOUND)
234		cp->cpu_m.cpu_chip = CPU_CHIPID_INVALID;
235}
236
237static int cpucnt;
238
239void
240cpu_init_private(struct cpu *cp)
241{
242	extern void niagara_kstat_init(void);
243
244	ASSERT(MUTEX_HELD(&cpu_lock));
245
246	cpu_map_exec_units(cp);
247
248	if ((cpucnt++ == 0) && (cpu_hsvc_available == B_TRUE))
249		(void) niagara_kstat_init();
250
251	mutex_delay = rdccr_delay;
252}
253
254/*ARGSUSED*/
255void
256cpu_uninit_private(struct cpu *cp)
257{
258	extern void niagara_kstat_fini(void);
259
260	ASSERT(MUTEX_HELD(&cpu_lock));
261	if ((--cpucnt == 0) && (cpu_hsvc_available == B_TRUE))
262		(void) niagara_kstat_fini();
263}
264
265/*
266 * On Niagara2, any flush will cause all preceding stores to be
267 * synchronized wrt the i$, regardless of address or ASI.  In fact,
268 * the address is ignored, so we always flush address 0.
269 */
270/*ARGSUSED*/
271void
272dtrace_flush_sec(uintptr_t addr)
273{
274	doflush(0);
275}
276
277/*
278 * Trapstat support for Niagara2 processor
279 * The Niagara2 provides HWTW support for TSB lookup and with HWTW
280 * enabled no TSB hit information will be available. Therefore setting
281 * the time spent in TLB miss handler for TSB hits to 0.
282 */
283int
284cpu_trapstat_conf(int cmd)
285{
286	int status = 0;
287
288	switch (cmd) {
289	case CPU_TSTATCONF_INIT:
290	case CPU_TSTATCONF_FINI:
291	case CPU_TSTATCONF_ENABLE:
292	case CPU_TSTATCONF_DISABLE:
293		break;
294	default:
295		status = EINVAL;
296		break;
297	}
298	return (status);
299}
300
301void
302cpu_trapstat_data(void *buf, uint_t tstat_pgszs)
303{
304	tstat_pgszdata_t	*tstatp = (tstat_pgszdata_t *)buf;
305	int	i;
306
307	for (i = 0; i < tstat_pgszs; i++, tstatp++) {
308		tstatp->tpgsz_kernel.tmode_itlb.ttlb_tlb.tmiss_count = 0;
309		tstatp->tpgsz_kernel.tmode_itlb.ttlb_tlb.tmiss_time = 0;
310		tstatp->tpgsz_user.tmode_itlb.ttlb_tlb.tmiss_count = 0;
311		tstatp->tpgsz_user.tmode_itlb.ttlb_tlb.tmiss_time = 0;
312		tstatp->tpgsz_kernel.tmode_dtlb.ttlb_tlb.tmiss_count = 0;
313		tstatp->tpgsz_kernel.tmode_dtlb.ttlb_tlb.tmiss_time = 0;
314		tstatp->tpgsz_user.tmode_dtlb.ttlb_tlb.tmiss_count = 0;
315		tstatp->tpgsz_user.tmode_dtlb.ttlb_tlb.tmiss_time = 0;
316	}
317}
318
319/*
320 * Page coloring support for hashed cache index mode
321 */
322
323/*
324 * Node id bits from machine description (MD).  Node id distinguishes
325 * local versus remote memory. Because of MPO, page allocation does
326 * not cross node boundaries. Therefore, remove the node id bits from
327 * the color, since they are fixed. Either bit 30, or 31:30 in
328 * Victoria Falls processors.
329 * The number of node id bits is always 0 in Niagara2.
330 */
331typedef struct n2color {
332	uchar_t nnbits;	/* number of node id bits */
333	uchar_t nnmask; /* mask for node id bits */
334	uchar_t	lomask;	/* mask for bits below node id */
335	uchar_t lobits;	/* number of bits below node id */
336} n2color_t;
337
338n2color_t n2color[MMU_PAGE_SIZES];
339static uchar_t nhbits[] = {7, 7, 6, 5, 5, 5};
340
341/*
342 * Remove node id bits from color bits 32:28.
343 * This will reduce the number of colors.
344 * No change if number of node bits is zero.
345 */
346static inline uint_t
347n2_hash2color(uint_t color, uchar_t szc)
348{
349	n2color_t m = n2color[szc];
350
351	if (m.nnbits > 0) {
352		color = ((color >> m.nnbits) & ~m.lomask) | (color & m.lomask);
353		ASSERT((color & ~(hw_page_array[szc].hp_colors - 1)) == 0);
354	}
355
356	return (color);
357}
358
359/*
360 * Restore node id bits into page color.
361 * This will increase the number of colors to match N2.
362 * No change if number of node bits is zero.
363 */
364static inline uint_t
365n2_color2hash(uint_t color, uchar_t szc, uint_t node)
366{
367	n2color_t m = n2color[szc];
368
369	if (m.nnbits > 0) {
370		color = ((color & ~m.lomask) << m.nnbits) | (color & m.lomask);
371		color |= (node & m.nnmask) << m.lobits;
372	}
373
374	return (color);
375}
376
377/* NI2 L2$ index is pa[32:28]^pa[17:13].pa[19:18]^pa[12:11].pa[10:6] */
378
379/*
380 * iterator NULL means pfn is VA, do not adjust ra_to_pa
381 * iterator (-1) means pfn is RA, need to convert to PA
382 * iterator non-null means pfn is RA, use ra_to_pa
383 */
384uint_t
385page_pfn_2_color_cpu(pfn_t pfn, uchar_t szc, void *cookie)
386{
387	mem_node_iterator_t *it = cookie;
388	uint_t color;
389
390	ASSERT(szc <= TTE256M);
391
392	if (it == ((mem_node_iterator_t *)(-1))) {
393		pfn = plat_rapfn_to_papfn(pfn);
394	} else if (it != NULL) {
395		ASSERT(pfn >= it->mi_mblock_base && pfn <= it->mi_mblock_end);
396		pfn = pfn + it->mi_ra_to_pa;
397	}
398	pfn = PFN_BASE(pfn, szc);
399	color = ((pfn >> 15) ^ pfn) & 0x1f;
400	if (szc < TTE4M) {
401		/* 19:18 */
402		color = (color << 2) | ((pfn >> 5) & 0x3);
403		if (szc > TTE64K)
404			color >>= 1;    /* 19 */
405	}
406	return (n2_hash2color(color, szc));
407}
408
409static uint_t
410page_papfn_2_color_cpu(pfn_t papfn, uchar_t szc)
411{
412	uint_t color;
413
414	ASSERT(szc <= TTE256M);
415
416	papfn = PFN_BASE(papfn, szc);
417	color = ((papfn >> 15) ^ papfn) & 0x1f;
418	if (szc < TTE4M) {
419		/* 19:18 */
420		color = (color << 2) | ((papfn >> 5) & 0x3);
421		if (szc > TTE64K)
422			color >>= 1;    /* 19 */
423	}
424	return (color);
425}
426
427#if TTE256M != 5
428#error TTE256M is not 5
429#endif
430
431uint_t
432page_get_nsz_color_mask_cpu(uchar_t szc, uint_t mask)
433{
434	static uint_t ni2_color_masks[5] = {0x63, 0x1e, 0x3e, 0x1f, 0x1f};
435	ASSERT(szc < TTE256M);
436	mask = n2_color2hash(mask, szc, 0);
437	mask &= ni2_color_masks[szc];
438	if (szc == TTE64K || szc == TTE512K)
439		mask >>= 1;
440	return (n2_hash2color(mask, szc + 1));
441}
442
443uint_t
444page_get_nsz_color_cpu(uchar_t szc, uint_t color)
445{
446	ASSERT(szc < TTE256M);
447	color = n2_color2hash(color, szc, 0);
448	if (szc == TTE64K || szc == TTE512K)
449		color >>= 1;
450	return (n2_hash2color(color, szc + 1));
451}
452
453uint_t
454page_get_color_shift_cpu(uchar_t szc, uchar_t nszc)
455{
456	uint_t s;
457	ASSERT(nszc >= szc);
458	ASSERT(nszc <= TTE256M);
459
460	s = nhbits[szc] - n2color[szc].nnbits;
461	s -= nhbits[nszc] - n2color[nszc].nnbits;
462
463	return (s);
464}
465
466uint_t
467page_convert_color_cpu(uint_t ncolor, uchar_t szc, uchar_t nszc)
468{
469	uint_t color;
470
471	ASSERT(nszc > szc);
472	ASSERT(nszc <= TTE256M);
473	ncolor = n2_color2hash(ncolor, nszc, 0);
474	color = ncolor << (nhbits[szc] - nhbits[nszc]);
475	color = n2_hash2color(color, szc);
476	return (color);
477}
478
479#define	PAPFN_2_MNODE(pfn) \
480	(((pfn) & it->mi_mnode_pfn_mask) >> it->mi_mnode_pfn_shift)
481
482/*ARGSUSED*/
483pfn_t
484page_next_pfn_for_color_cpu(pfn_t pfn, uchar_t szc, uint_t color,
485    uint_t ceq_mask, uint_t color_mask, void *cookie)
486{
487	mem_node_iterator_t *it = cookie;
488	pfn_t pstep = PNUM_SIZE(szc);
489	pfn_t npfn, pfn_ceq_mask, pfn_color;
490	pfn_t tmpmask, mask = (pfn_t)-1;
491	uint_t pfnmn;
492
493	ASSERT((color & ~ceq_mask) == 0);
494	ASSERT(pfn >= it->mi_mblock_base && pfn <= it->mi_mblock_end);
495
496	/* convert RA to PA for accurate color calculation */
497	if (it->mi_init) {
498		/* first call after it, so cache these values */
499		it->mi_hash_ceq_mask =
500		    n2_color2hash(ceq_mask, szc, it->mi_mnode_mask);
501		it->mi_hash_color =
502		    n2_color2hash(color, szc, it->mi_mnode);
503		it->mi_init = 0;
504	} else {
505		ASSERT(it->mi_hash_ceq_mask ==
506		    n2_color2hash(ceq_mask, szc, it->mi_mnode_mask));
507		ASSERT(it->mi_hash_color ==
508		    n2_color2hash(color, szc, it->mi_mnode));
509	}
510	ceq_mask = it->mi_hash_ceq_mask;
511	color = it->mi_hash_color;
512	pfn += it->mi_ra_to_pa;
513
514	/* restart here when we switch memblocks */
515next_mem_block:
516	pfnmn = PAPFN_2_MNODE(pfn);
517	if ((((page_papfn_2_color_cpu(pfn, szc) ^ color) & ceq_mask) == 0) &&
518	    (pfnmn == it->mi_mnode)) {
519
520		/* we start from the page with correct color and mnode */
521		if (szc >= TTE512K) {
522			if (szc >= TTE4M) {
523				/* page color is PA[32:28] */
524				pfn_ceq_mask = ceq_mask << 15;
525			} else {
526				/* page color is PA[32:28].PA[19:19] */
527				pfn_ceq_mask = ((ceq_mask & 1) << 6) |
528				    ((ceq_mask >> 1) << 15);
529			}
530			/*
531			 * Preserve mnode bits in case they are not part of the
532			 * color mask (eg., 8GB interleave, mnode bits 34:33).
533			 */
534			pfn_ceq_mask |= it->mi_mnode_pfn_mask;
535			npfn = ADD_MASKED(pfn, pstep, pfn_ceq_mask, mask);
536			goto done;
537		} else {
538			/*
539			 * We deal 64K or 8K page. Check if we could the
540			 * satisfy the request without changing PA[32:28]
541			 */
542			pfn_ceq_mask = ((ceq_mask & 3) << 5) | (ceq_mask >> 2);
543			pfn_ceq_mask |= it->mi_mnode_pfn_mask;
544			npfn = ADD_MASKED(pfn, pstep, pfn_ceq_mask, mask);
545
546			if ((((npfn ^ pfn) >> 15) & 0x1f) == 0)
547				goto done;
548
549			/*
550			 * for next pfn we have to change bits PA[32:28]
551			 * set PA[63:28] and PA[19:18] of the next pfn
552			 */
553			npfn = (pfn >> 15) << 15;
554			npfn |= (ceq_mask & color & 3) << 5;
555			pfn_ceq_mask = (szc == TTE8K) ? 0 :
556			    (ceq_mask & 0x1c) << 13;
557			pfn_ceq_mask |= it->mi_mnode_pfn_mask;
558			npfn = ADD_MASKED(npfn, (1 << 15), pfn_ceq_mask, mask);
559
560			/*
561			 * set bits PA[17:13] to match the color
562			 */
563			npfn |= ((npfn >> 15) ^ (color >> 2)) & (ceq_mask >> 2);
564			goto done;
565		}
566	}
567
568	/*
569	 * we start from the page with incorrect color - rare case
570	 */
571	if (szc >= TTE512K) {
572		if (szc >= TTE4M) {
573			/* page color is in bits PA[32:28] */
574			npfn = ((pfn >> 20) << 20) | (color << 15);
575			pfn_ceq_mask = (ceq_mask << 15) | 0x7fff;
576		} else {
577			/* try get the right color by changing bit PA[19:19] */
578			npfn = pfn + pstep;
579			pfnmn = PAPFN_2_MNODE(npfn);
580			if ((((page_papfn_2_color_cpu(npfn, szc) ^ color) &
581			    ceq_mask) == 0) && (pfnmn == it->mi_mnode))
582				goto done;
583
584			/* page color is PA[32:28].PA[19:19] */
585			pfn_ceq_mask = ((ceq_mask & 1) << 6) |
586			    ((ceq_mask >> 1) << 15) | (0xff << 7);
587			pfn_color = ((color & 1) << 6) | ((color >> 1) << 15);
588			npfn = ((pfn >> 20) << 20) | pfn_color;
589		}
590
591		/* Fix mnode if necessary */
592		if ((pfnmn = PAPFN_2_MNODE(npfn)) != it->mi_mnode)
593			npfn += ((it->mi_mnode - pfnmn) & it->mi_mnode_mask) <<
594			    it->mi_mnode_pfn_shift;
595
596		/*
597		 * Preserve mnode bits in case they are not part of the color
598		 * mask eg 8GB interleave, mnode bits 34:33).
599		 */
600		pfn_ceq_mask |= it->mi_mnode_pfn_mask;
601		while (npfn <= pfn) {
602			npfn = ADD_MASKED(npfn, pstep, pfn_ceq_mask, mask);
603		}
604		goto done;
605	}
606
607	/*
608	 *  We deal 64K or 8K page of incorrect color.
609	 * Try correcting color without changing PA[32:28]
610	 */
611	pfn_ceq_mask = ((ceq_mask & 3) << 5) | (ceq_mask >> 2);
612	pfn_color = ((color & 3) << 5) | (color >> 2);
613	if (pfnmn == it->mi_mnode) {
614		npfn = (pfn & ~(pfn_t)0x7f);
615		npfn |= (((pfn >> 15) & 0x1f) ^ pfn_color) & pfn_ceq_mask;
616		npfn = (szc == TTE64K) ? (npfn & ~(pfn_t)0x7) : npfn;
617
618		if (((page_papfn_2_color_cpu(npfn, szc) ^ color) &
619		    ceq_mask) == 0) {
620			/* the color is fixed - find the next page */
621			pfn_ceq_mask |= it->mi_mnode_pfn_mask;
622			while (npfn <= pfn) {
623				npfn = ADD_MASKED(npfn, pstep, pfn_ceq_mask,
624				    mask);
625			}
626			if ((((npfn ^ pfn) >> 15) & 0x1f) == 0)
627				goto done;
628		}
629	}
630
631	/* to fix the color need to touch PA[32:28] */
632	npfn = (szc == TTE8K) ? ((pfn >> 15) << 15) :
633	    (((pfn >> 18) << 18) | ((color & 0x1c) << 13));
634
635	/* fix mnode if input pfn is in the wrong mnode. */
636	if ((pfnmn = PAPFN_2_MNODE(npfn)) != it->mi_mnode) {
637		npfn += ((it->mi_mnode - pfnmn) & it->mi_mnode_mask) <<
638		    it->mi_mnode_pfn_shift;
639	}
640
641	tmpmask = (szc == TTE8K) ? 0 : (ceq_mask & 0x1c) << 13;
642	tmpmask |= it->mi_mnode_pfn_mask;
643
644	while (npfn <= pfn) {
645		npfn = ADD_MASKED(npfn, (1 << 15), tmpmask, mask);
646	}
647
648	/* set bits PA[19:13] to match the color */
649	npfn |= (((npfn >> 15) & 0x1f) ^ pfn_color) & pfn_ceq_mask;
650	npfn = (szc == TTE64K) ? (npfn & ~(pfn_t)0x7) : npfn;
651
652done:
653	ASSERT(((page_papfn_2_color_cpu(npfn, szc) ^ color) & ceq_mask) == 0);
654	ASSERT(PAPFN_2_MNODE(npfn) == it->mi_mnode);
655
656	/* PA to RA */
657	npfn -= it->mi_ra_to_pa;
658
659	/* check for possible memblock switch */
660	if (npfn > it->mi_mblock_end) {
661		pfn = plat_mem_node_iterator_init(npfn, it->mi_mnode, szc, it,
662		    0);
663		if (pfn == (pfn_t)-1)
664			return (pfn);
665		ASSERT(pfn >= it->mi_mblock_base && pfn <= it->mi_mblock_end);
666		pfn += it->mi_ra_to_pa;
667		goto next_mem_block;
668	}
669
670	return (npfn);
671}
672
673/*
674 * init page coloring
675 * VF encodes node_id for an L-group in either bit 30 or 31:30,
676 * which effectively reduces the number of colors available per mnode.
677 */
678void
679page_coloring_init_cpu()
680{
681	int i;
682	uchar_t id;
683	uchar_t lo;
684	uchar_t hi;
685	n2color_t m;
686	mem_node_iterator_t it;
687	static uchar_t idmask[] = {0, 0x7, 0x1f, 0x1f, 0x1f, 0x1f};
688
689	for (i = 0; i < max_mem_nodes; i++) {
690		memset(&it, 0, sizeof (it));
691		if (plat_mem_node_iterator_init(0, i, 0, &it, 1) != (pfn_t)-1)
692			break;
693	}
694	ASSERT(i < max_mem_nodes);
695	for (i = 0; i < mmu_page_sizes; i++) {
696		(void) memset(&m, 0, sizeof (m));
697		id = it.mi_mnode_pfn_mask >> 15;	/* node id mask */
698		id &= idmask[i];
699		lo = lowbit(id);
700		if (lo > 0) {
701			hi = highbit(id);
702			m.nnbits = hi - lo + 1;
703			m.nnmask = (1 << m.nnbits) - 1;
704			lo += nhbits[i] - 5;
705			m.lomask = (1 << (lo - 1)) - 1;
706			m.lobits = lo - 1;
707		}
708		hw_page_array[i].hp_colors = 1 << (nhbits[i] - m.nnbits);
709		n2color[i] = m;
710	}
711}
712
713/*
714 * group colorequiv colors on N2 by low order bits of the color first
715 */
716void
717page_set_colorequiv_arr_cpu(void)
718{
719	static uint_t nequiv_shades_log2[MMU_PAGE_SIZES] = {2, 5, 0, 0, 0, 0};
720
721	nequiv_shades_log2[1] -= n2color[1].nnbits;
722	if (colorequiv > 1) {
723		int i;
724		uint_t sv_a = lowbit(colorequiv) - 1;
725
726		if (sv_a > 15)
727			sv_a = 15;
728
729		for (i = 0; i < MMU_PAGE_SIZES; i++) {
730			uint_t colors;
731			uint_t a = sv_a;
732
733			if ((colors = hw_page_array[i].hp_colors) <= 1)
734				continue;
735			while ((colors >> a) == 0)
736				a--;
737			if (a > (colorequivszc[i] & 0xf) +
738			    (colorequivszc[i] >> 4)) {
739				if (a <= nequiv_shades_log2[i]) {
740					colorequivszc[i] = (uchar_t)a;
741				} else {
742					colorequivszc[i] =
743					    ((a - nequiv_shades_log2[i]) << 4) |
744					    nequiv_shades_log2[i];
745				}
746			}
747		}
748	}
749}
750