1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved.
23 */
24
25/*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
26/*	  All Rights Reserved  	*/
27
28#include <sys/param.h>
29#include <sys/types.h>
30#include <sys/vmparam.h>
31#include <sys/systm.h>
32#include <sys/signal.h>
33#include <sys/stack.h>
34#include <sys/regset.h>
35#include <sys/privregs.h>
36#include <sys/frame.h>
37#include <sys/proc.h>
38#include <sys/psw.h>
39#include <sys/siginfo.h>
40#include <sys/cpuvar.h>
41#include <sys/asm_linkage.h>
42#include <sys/kmem.h>
43#include <sys/errno.h>
44#include <sys/bootconf.h>
45#include <sys/archsystm.h>
46#include <sys/debug.h>
47#include <sys/elf.h>
48#include <sys/spl.h>
49#include <sys/time.h>
50#include <sys/atomic.h>
51#include <sys/sysmacros.h>
52#include <sys/cmn_err.h>
53#include <sys/modctl.h>
54#include <sys/kobj.h>
55#include <sys/panic.h>
56#include <sys/reboot.h>
57#include <sys/time.h>
58#include <sys/fp.h>
59#include <sys/x86_archext.h>
60#include <sys/auxv.h>
61#include <sys/auxv_386.h>
62#include <sys/dtrace.h>
63#include <sys/brand.h>
64#include <sys/machbrand.h>
65#include <sys/cmn_err.h>
66
67extern const struct fnsave_state x87_initial;
68extern const struct fxsave_state sse_initial;
69
70/*
71 * Map an fnsave-formatted save area into an fxsave-formatted save area.
72 *
73 * Most fields are the same width, content and semantics.  However
74 * the tag word is compressed.
75 */
76static void
77fnsave_to_fxsave(const struct fnsave_state *fn, struct fxsave_state *fx)
78{
79	uint_t i, tagbits;
80
81	fx->fx_fcw = fn->f_fcw;
82	fx->fx_fsw = fn->f_fsw;
83
84	/*
85	 * copy element by element (because of holes)
86	 */
87	for (i = 0; i < 8; i++)
88		bcopy(&fn->f_st[i].fpr_16[0], &fx->fx_st[i].fpr_16[0],
89		    sizeof (fn->f_st[0].fpr_16)); /* 80-bit x87-style floats */
90
91	/*
92	 * synthesize compressed tag bits
93	 */
94	fx->fx_fctw = 0;
95	for (tagbits = fn->f_ftw, i = 0; i < 8; i++, tagbits >>= 2)
96		if ((tagbits & 3) != 3)
97			fx->fx_fctw |= (1 << i);
98
99	fx->fx_fop = fn->f_fop;
100
101#if defined(__amd64)
102	fx->fx_rip = (uint64_t)fn->f_eip;
103	fx->fx_rdp = (uint64_t)fn->f_dp;
104#else
105	fx->fx_eip = fn->f_eip;
106	fx->fx_cs = fn->f_cs;
107	fx->__fx_ign0 = 0;
108	fx->fx_dp = fn->f_dp;
109	fx->fx_ds = fn->f_ds;
110	fx->__fx_ign1 = 0;
111#endif
112}
113
114/*
115 * Map from an fxsave-format save area to an fnsave-format save area.
116 */
117static void
118fxsave_to_fnsave(const struct fxsave_state *fx, struct fnsave_state *fn)
119{
120	uint_t i, top, tagbits;
121
122	fn->f_fcw = fx->fx_fcw;
123	fn->__f_ign0 = 0;
124	fn->f_fsw = fx->fx_fsw;
125	fn->__f_ign1 = 0;
126
127	top = (fx->fx_fsw & FPS_TOP) >> 11;
128
129	/*
130	 * copy element by element (because of holes)
131	 */
132	for (i = 0; i < 8; i++)
133		bcopy(&fx->fx_st[i].fpr_16[0], &fn->f_st[i].fpr_16[0],
134		    sizeof (fn->f_st[0].fpr_16)); /* 80-bit x87-style floats */
135
136	/*
137	 * synthesize uncompressed tag bits
138	 */
139	fn->f_ftw = 0;
140	for (tagbits = fx->fx_fctw, i = 0; i < 8; i++, tagbits >>= 1) {
141		uint_t ibit, expo;
142		const uint16_t *fpp;
143		static const uint16_t zero[5] = { 0, 0, 0, 0, 0 };
144
145		if ((tagbits & 1) == 0) {
146			fn->f_ftw |= 3 << (i << 1);	/* empty */
147			continue;
148		}
149
150		/*
151		 * (tags refer to *physical* registers)
152		 */
153		fpp = &fx->fx_st[(i - top + 8) & 7].fpr_16[0];
154		ibit = fpp[3] >> 15;
155		expo = fpp[4] & 0x7fff;
156
157		if (ibit && expo != 0 && expo != 0x7fff)
158			continue;			/* valid fp number */
159
160		if (bcmp(fpp, &zero, sizeof (zero)))
161			fn->f_ftw |= 2 << (i << 1);	/* NaN */
162		else
163			fn->f_ftw |= 1 << (i << 1);	/* fp zero */
164	}
165
166	fn->f_fop = fx->fx_fop;
167
168	fn->__f_ign2 = 0;
169#if defined(__amd64)
170	fn->f_eip = (uint32_t)fx->fx_rip;
171	fn->f_cs = U32CS_SEL;
172	fn->f_dp = (uint32_t)fx->fx_rdp;
173	fn->f_ds = UDS_SEL;
174#else
175	fn->f_eip = fx->fx_eip;
176	fn->f_cs = fx->fx_cs;
177	fn->f_dp = fx->fx_dp;
178	fn->f_ds = fx->fx_ds;
179#endif
180	fn->__f_ign3 = 0;
181}
182
183/*
184 * Map from an fpregset_t into an fxsave-format save area
185 */
186static void
187fpregset_to_fxsave(const fpregset_t *fp, struct fxsave_state *fx)
188{
189#if defined(__amd64)
190	bcopy(fp, fx, sizeof (*fx));
191#else
192	const struct fpchip_state *fc = &fp->fp_reg_set.fpchip_state;
193
194	fnsave_to_fxsave((const struct fnsave_state *)fc, fx);
195	fx->fx_mxcsr = fc->mxcsr;
196	bcopy(&fc->xmm[0], &fx->fx_xmm[0], sizeof (fc->xmm));
197#endif
198	/*
199	 * avoid useless #gp exceptions - mask reserved bits
200	 */
201	fx->fx_mxcsr &= sse_mxcsr_mask;
202}
203
204/*
205 * Map from an fxsave-format save area into a fpregset_t
206 */
207static void
208fxsave_to_fpregset(const struct fxsave_state *fx, fpregset_t *fp)
209{
210#if defined(__amd64)
211	bcopy(fx, fp, sizeof (*fx));
212#else
213	struct fpchip_state *fc = &fp->fp_reg_set.fpchip_state;
214
215	fxsave_to_fnsave(fx, (struct fnsave_state *)fc);
216	fc->mxcsr = fx->fx_mxcsr;
217	bcopy(&fx->fx_xmm[0], &fc->xmm[0], sizeof (fc->xmm));
218#endif
219}
220
221#if defined(_SYSCALL32_IMPL)
222static void
223fpregset32_to_fxsave(const fpregset32_t *fp, struct fxsave_state *fx)
224{
225	const struct fpchip32_state *fc = &fp->fp_reg_set.fpchip_state;
226
227	fnsave_to_fxsave((const struct fnsave_state *)fc, fx);
228	/*
229	 * avoid useless #gp exceptions - mask reserved bits
230	 */
231	fx->fx_mxcsr = sse_mxcsr_mask & fc->mxcsr;
232	bcopy(&fc->xmm[0], &fx->fx_xmm[0], sizeof (fc->xmm));
233}
234
235static void
236fxsave_to_fpregset32(const struct fxsave_state *fx, fpregset32_t *fp)
237{
238	struct fpchip32_state *fc = &fp->fp_reg_set.fpchip_state;
239
240	fxsave_to_fnsave(fx, (struct fnsave_state *)fc);
241	fc->mxcsr = fx->fx_mxcsr;
242	bcopy(&fx->fx_xmm[0], &fc->xmm[0], sizeof (fc->xmm));
243}
244
245static void
246fpregset_nto32(const fpregset_t *src, fpregset32_t *dst)
247{
248	fxsave_to_fpregset32((struct fxsave_state *)src, dst);
249	dst->fp_reg_set.fpchip_state.status =
250	    src->fp_reg_set.fpchip_state.status;
251	dst->fp_reg_set.fpchip_state.xstatus =
252	    src->fp_reg_set.fpchip_state.xstatus;
253}
254
255static void
256fpregset_32ton(const fpregset32_t *src, fpregset_t *dst)
257{
258	fpregset32_to_fxsave(src, (struct fxsave_state *)dst);
259	dst->fp_reg_set.fpchip_state.status =
260	    src->fp_reg_set.fpchip_state.status;
261	dst->fp_reg_set.fpchip_state.xstatus =
262	    src->fp_reg_set.fpchip_state.xstatus;
263}
264#endif
265
266/*
267 * Set floating-point registers from a native fpregset_t.
268 */
269void
270setfpregs(klwp_t *lwp, fpregset_t *fp)
271{
272	struct fpu_ctx *fpu = &lwp->lwp_pcb.pcb_fpu;
273
274	if (fpu->fpu_flags & FPU_EN) {
275		if (!(fpu->fpu_flags & FPU_VALID)) {
276			/*
277			 * FPU context is still active, release the
278			 * ownership.
279			 */
280			fp_free(fpu, 0);
281		}
282	}
283	/*
284	 * Else: if we are trying to change the FPU state of a thread which
285	 * hasn't yet initialized floating point, store the state in
286	 * the pcb and indicate that the state is valid.  When the
287	 * thread enables floating point, it will use this state instead
288	 * of the default state.
289	 */
290
291	switch (fp_save_mech) {
292#if defined(__i386)
293	case FP_FNSAVE:
294		bcopy(fp, &fpu->fpu_regs.kfpu_u.kfpu_fn,
295		    sizeof (fpu->fpu_regs.kfpu_u.kfpu_fn));
296		break;
297#endif
298	case FP_FXSAVE:
299		fpregset_to_fxsave(fp, &fpu->fpu_regs.kfpu_u.kfpu_fx);
300		fpu->fpu_regs.kfpu_xstatus =
301		    fp->fp_reg_set.fpchip_state.xstatus;
302		break;
303
304	case FP_XSAVE:
305		fpregset_to_fxsave(fp,
306		    &fpu->fpu_regs.kfpu_u.kfpu_xs.xs_fxsave);
307		fpu->fpu_regs.kfpu_xstatus =
308		    fp->fp_reg_set.fpchip_state.xstatus;
309		fpu->fpu_regs.kfpu_u.kfpu_xs.xs_xstate_bv |=
310		    (XFEATURE_LEGACY_FP | XFEATURE_SSE);
311		break;
312	default:
313		panic("Invalid fp_save_mech");
314		/*NOTREACHED*/
315	}
316
317	fpu->fpu_regs.kfpu_status = fp->fp_reg_set.fpchip_state.status;
318	fpu->fpu_flags |= FPU_VALID;
319}
320
321/*
322 * Get floating-point registers into a native fpregset_t.
323 */
324void
325getfpregs(klwp_t *lwp, fpregset_t *fp)
326{
327	struct fpu_ctx *fpu = &lwp->lwp_pcb.pcb_fpu;
328
329	kpreempt_disable();
330	if (fpu->fpu_flags & FPU_EN) {
331		/*
332		 * If we have FPU hw and the thread's pcb doesn't have
333		 * a valid FPU state then get the state from the hw.
334		 */
335		if (fpu_exists && ttolwp(curthread) == lwp &&
336		    !(fpu->fpu_flags & FPU_VALID))
337			fp_save(fpu); /* get the current FPU state */
338	}
339
340	/*
341	 * There are 3 possible cases we have to be aware of here:
342	 *
343	 * 1. FPU is enabled.  FPU state is stored in the current LWP.
344	 *
345	 * 2. FPU is not enabled, and there have been no intervening /proc
346	 *    modifications.  Return initial FPU state.
347	 *
348	 * 3. FPU is not enabled, but a /proc consumer has modified FPU state.
349	 *    FPU state is stored in the current LWP.
350	 */
351	if ((fpu->fpu_flags & FPU_EN) || (fpu->fpu_flags & FPU_VALID)) {
352		/*
353		 * Cases 1 and 3.
354		 */
355		switch (fp_save_mech) {
356#if defined(__i386)
357		case FP_FNSAVE:
358			bcopy(&fpu->fpu_regs.kfpu_u.kfpu_fn, fp,
359			    sizeof (fpu->fpu_regs.kfpu_u.kfpu_fn));
360			break;
361#endif
362		case FP_FXSAVE:
363			fxsave_to_fpregset(&fpu->fpu_regs.kfpu_u.kfpu_fx, fp);
364			fp->fp_reg_set.fpchip_state.xstatus =
365			    fpu->fpu_regs.kfpu_xstatus;
366			break;
367		case FP_XSAVE:
368			fxsave_to_fpregset(
369			    &fpu->fpu_regs.kfpu_u.kfpu_xs.xs_fxsave, fp);
370			fp->fp_reg_set.fpchip_state.xstatus =
371			    fpu->fpu_regs.kfpu_xstatus;
372			break;
373		default:
374			panic("Invalid fp_save_mech");
375			/*NOTREACHED*/
376		}
377		fp->fp_reg_set.fpchip_state.status = fpu->fpu_regs.kfpu_status;
378	} else {
379		/*
380		 * Case 2.
381		 */
382		switch (fp_save_mech) {
383#if defined(__i386)
384		case FP_FNSAVE:
385			bcopy(&x87_initial, fp, sizeof (x87_initial));
386			break;
387#endif
388		case FP_FXSAVE:
389		case FP_XSAVE:
390			/*
391			 * For now, we don't have any AVX specific field in ABI.
392			 * If we add any in the future, we need to initial them
393			 * as well.
394			 */
395			fxsave_to_fpregset(&sse_initial, fp);
396			fp->fp_reg_set.fpchip_state.xstatus =
397			    fpu->fpu_regs.kfpu_xstatus;
398			break;
399		default:
400			panic("Invalid fp_save_mech");
401			/*NOTREACHED*/
402		}
403		fp->fp_reg_set.fpchip_state.status = fpu->fpu_regs.kfpu_status;
404	}
405	kpreempt_enable();
406}
407
408#if defined(_SYSCALL32_IMPL)
409
410/*
411 * Set floating-point registers from an fpregset32_t.
412 */
413void
414setfpregs32(klwp_t *lwp, fpregset32_t *fp)
415{
416	fpregset_t fpregs;
417
418	fpregset_32ton(fp, &fpregs);
419	setfpregs(lwp, &fpregs);
420}
421
422/*
423 * Get floating-point registers into an fpregset32_t.
424 */
425void
426getfpregs32(klwp_t *lwp, fpregset32_t *fp)
427{
428	fpregset_t fpregs;
429
430	getfpregs(lwp, &fpregs);
431	fpregset_nto32(&fpregs, fp);
432}
433
434#endif	/* _SYSCALL32_IMPL */
435
436/*
437 * Return the general registers
438 */
439void
440getgregs(klwp_t *lwp, gregset_t grp)
441{
442	struct regs *rp = lwptoregs(lwp);
443#if defined(__amd64)
444	struct pcb *pcb = &lwp->lwp_pcb;
445	int thisthread = lwptot(lwp) == curthread;
446
447	grp[REG_RDI] = rp->r_rdi;
448	grp[REG_RSI] = rp->r_rsi;
449	grp[REG_RDX] = rp->r_rdx;
450	grp[REG_RCX] = rp->r_rcx;
451	grp[REG_R8] = rp->r_r8;
452	grp[REG_R9] = rp->r_r9;
453	grp[REG_RAX] = rp->r_rax;
454	grp[REG_RBX] = rp->r_rbx;
455	grp[REG_RBP] = rp->r_rbp;
456	grp[REG_R10] = rp->r_r10;
457	grp[REG_R11] = rp->r_r11;
458	grp[REG_R12] = rp->r_r12;
459	grp[REG_R13] = rp->r_r13;
460	grp[REG_R14] = rp->r_r14;
461	grp[REG_R15] = rp->r_r15;
462	grp[REG_FSBASE] = pcb->pcb_fsbase;
463	grp[REG_GSBASE] = pcb->pcb_gsbase;
464	if (thisthread)
465		kpreempt_disable();
466	if (pcb->pcb_rupdate == 1) {
467		grp[REG_DS] = pcb->pcb_ds;
468		grp[REG_ES] = pcb->pcb_es;
469		grp[REG_FS] = pcb->pcb_fs;
470		grp[REG_GS] = pcb->pcb_gs;
471	} else {
472		grp[REG_DS] = rp->r_ds;
473		grp[REG_ES] = rp->r_es;
474		grp[REG_FS] = rp->r_fs;
475		grp[REG_GS] = rp->r_gs;
476	}
477	if (thisthread)
478		kpreempt_enable();
479	grp[REG_TRAPNO] = rp->r_trapno;
480	grp[REG_ERR] = rp->r_err;
481	grp[REG_RIP] = rp->r_rip;
482	grp[REG_CS] = rp->r_cs;
483	grp[REG_SS] = rp->r_ss;
484	grp[REG_RFL] = rp->r_rfl;
485	grp[REG_RSP] = rp->r_rsp;
486#else
487	bcopy(&rp->r_gs, grp, sizeof (gregset_t));
488#endif
489}
490
491#if defined(_SYSCALL32_IMPL)
492
493void
494getgregs32(klwp_t *lwp, gregset32_t grp)
495{
496	struct regs *rp = lwptoregs(lwp);
497	struct pcb *pcb = &lwp->lwp_pcb;
498	int thisthread = lwptot(lwp) == curthread;
499
500	if (thisthread)
501		kpreempt_disable();
502	if (pcb->pcb_rupdate == 1) {
503		grp[GS] = (uint16_t)pcb->pcb_gs;
504		grp[FS] = (uint16_t)pcb->pcb_fs;
505		grp[DS] = (uint16_t)pcb->pcb_ds;
506		grp[ES] = (uint16_t)pcb->pcb_es;
507	} else {
508		grp[GS] = (uint16_t)rp->r_gs;
509		grp[FS] = (uint16_t)rp->r_fs;
510		grp[DS] = (uint16_t)rp->r_ds;
511		grp[ES] = (uint16_t)rp->r_es;
512	}
513	if (thisthread)
514		kpreempt_enable();
515	grp[EDI] = (greg32_t)rp->r_rdi;
516	grp[ESI] = (greg32_t)rp->r_rsi;
517	grp[EBP] = (greg32_t)rp->r_rbp;
518	grp[ESP] = 0;
519	grp[EBX] = (greg32_t)rp->r_rbx;
520	grp[EDX] = (greg32_t)rp->r_rdx;
521	grp[ECX] = (greg32_t)rp->r_rcx;
522	grp[EAX] = (greg32_t)rp->r_rax;
523	grp[TRAPNO] = (greg32_t)rp->r_trapno;
524	grp[ERR] = (greg32_t)rp->r_err;
525	grp[EIP] = (greg32_t)rp->r_rip;
526	grp[CS] = (uint16_t)rp->r_cs;
527	grp[EFL] = (greg32_t)rp->r_rfl;
528	grp[UESP] = (greg32_t)rp->r_rsp;
529	grp[SS] = (uint16_t)rp->r_ss;
530}
531
532void
533ucontext_32ton(const ucontext32_t *src, ucontext_t *dst)
534{
535	mcontext_t *dmc = &dst->uc_mcontext;
536	const mcontext32_t *smc = &src->uc_mcontext;
537
538	bzero(dst, sizeof (*dst));
539	dst->uc_flags = src->uc_flags;
540	dst->uc_link = (ucontext_t *)(uintptr_t)src->uc_link;
541
542	bcopy(&src->uc_sigmask, &dst->uc_sigmask, sizeof (dst->uc_sigmask));
543
544	dst->uc_stack.ss_sp = (void *)(uintptr_t)src->uc_stack.ss_sp;
545	dst->uc_stack.ss_size = (size_t)src->uc_stack.ss_size;
546	dst->uc_stack.ss_flags = src->uc_stack.ss_flags;
547
548	dmc->gregs[REG_GS] = (greg_t)(uint32_t)smc->gregs[GS];
549	dmc->gregs[REG_FS] = (greg_t)(uint32_t)smc->gregs[FS];
550	dmc->gregs[REG_ES] = (greg_t)(uint32_t)smc->gregs[ES];
551	dmc->gregs[REG_DS] = (greg_t)(uint32_t)smc->gregs[DS];
552	dmc->gregs[REG_RDI] = (greg_t)(uint32_t)smc->gregs[EDI];
553	dmc->gregs[REG_RSI] = (greg_t)(uint32_t)smc->gregs[ESI];
554	dmc->gregs[REG_RBP] = (greg_t)(uint32_t)smc->gregs[EBP];
555	dmc->gregs[REG_RBX] = (greg_t)(uint32_t)smc->gregs[EBX];
556	dmc->gregs[REG_RDX] = (greg_t)(uint32_t)smc->gregs[EDX];
557	dmc->gregs[REG_RCX] = (greg_t)(uint32_t)smc->gregs[ECX];
558	dmc->gregs[REG_RAX] = (greg_t)(uint32_t)smc->gregs[EAX];
559	dmc->gregs[REG_TRAPNO] = (greg_t)(uint32_t)smc->gregs[TRAPNO];
560	dmc->gregs[REG_ERR] = (greg_t)(uint32_t)smc->gregs[ERR];
561	dmc->gregs[REG_RIP] = (greg_t)(uint32_t)smc->gregs[EIP];
562	dmc->gregs[REG_CS] = (greg_t)(uint32_t)smc->gregs[CS];
563	dmc->gregs[REG_RFL] = (greg_t)(uint32_t)smc->gregs[EFL];
564	dmc->gregs[REG_RSP] = (greg_t)(uint32_t)smc->gregs[UESP];
565	dmc->gregs[REG_SS] = (greg_t)(uint32_t)smc->gregs[SS];
566
567	/*
568	 * A valid fpregs is only copied in if uc.uc_flags has UC_FPU set
569	 * otherwise there is no guarantee that anything in fpregs is valid.
570	 */
571	if (src->uc_flags & UC_FPU)
572		fpregset_32ton(&src->uc_mcontext.fpregs,
573		    &dst->uc_mcontext.fpregs);
574}
575
576#endif	/* _SYSCALL32_IMPL */
577
578/*
579 * Return the user-level PC.
580 * If in a system call, return the address of the syscall trap.
581 */
582greg_t
583getuserpc()
584{
585	greg_t upc = lwptoregs(ttolwp(curthread))->r_pc;
586	uint32_t insn;
587
588	if (curthread->t_sysnum == 0)
589		return (upc);
590
591	/*
592	 * We might've gotten here from sysenter (0xf 0x34),
593	 * syscall (0xf 0x5) or lcall (0x9a 0 0 0 0 0x27 0).
594	 *
595	 * Go peek at the binary to figure it out..
596	 */
597	if (fuword32((void *)(upc - 2), &insn) != -1 &&
598	    (insn & 0xffff) == 0x340f || (insn & 0xffff) == 0x050f)
599		return (upc - 2);
600	return (upc - 7);
601}
602
603/*
604 * Protect segment registers from non-user privilege levels and GDT selectors
605 * other than USER_CS, USER_DS and lwp FS and GS values.  If the segment
606 * selector is non-null and not USER_CS/USER_DS, we make sure that the
607 * TI bit is set to point into the LDT and that the RPL is set to 3.
608 *
609 * Since struct regs stores each 16-bit segment register as a 32-bit greg_t, we
610 * also explicitly zero the top 16 bits since they may be coming from the
611 * user's address space via setcontext(2) or /proc.
612 *
613 * Note about null selector. When running on the hypervisor if we allow a
614 * process to set its %cs to null selector with RPL of 0 the hypervisor will
615 * crash the domain. If running on bare metal we would get a #gp fault and
616 * be able to kill the process and continue on. Therefore we make sure to
617 * force RPL to SEL_UPL even for null selector when setting %cs.
618 */
619
620#if defined(IS_CS) || defined(IS_NOT_CS)
621#error	"IS_CS and IS_NOT_CS already defined"
622#endif
623
624#define	IS_CS		1
625#define	IS_NOT_CS	0
626
627/*ARGSUSED*/
628static greg_t
629fix_segreg(greg_t sr, int iscs, model_t datamodel)
630{
631	switch (sr &= 0xffff) {
632
633	case 0:
634		if (iscs == IS_CS)
635			return (0 | SEL_UPL);
636		else
637			return (0);
638
639#if defined(__amd64)
640	/*
641	 * If lwp attempts to switch data model then force their
642	 * code selector to be null selector.
643	 */
644	case U32CS_SEL:
645		if (datamodel == DATAMODEL_NATIVE)
646			return (0 | SEL_UPL);
647		else
648			return (sr);
649
650	case UCS_SEL:
651		if (datamodel == DATAMODEL_ILP32)
652			return (0 | SEL_UPL);
653#elif defined(__i386)
654	case UCS_SEL:
655#endif
656	/*FALLTHROUGH*/
657	case UDS_SEL:
658	case LWPFS_SEL:
659	case LWPGS_SEL:
660	case SEL_UPL:
661		return (sr);
662	default:
663		break;
664	}
665
666	/*
667	 * Force it into the LDT in ring 3 for 32-bit processes, which by
668	 * default do not have an LDT, so that any attempt to use an invalid
669	 * selector will reference the (non-existant) LDT, and cause a #gp
670	 * fault for the process.
671	 *
672	 * 64-bit processes get the null gdt selector since they
673	 * are not allowed to have a private LDT.
674	 */
675#if defined(__amd64)
676	if (datamodel == DATAMODEL_ILP32) {
677		return (sr | SEL_TI_LDT | SEL_UPL);
678	} else {
679		if (iscs == IS_CS)
680			return (0 | SEL_UPL);
681		else
682			return (0);
683	}
684
685#elif defined(__i386)
686	return (sr | SEL_TI_LDT | SEL_UPL);
687#endif
688}
689
690/*
691 * Set general registers.
692 */
693void
694setgregs(klwp_t *lwp, gregset_t grp)
695{
696	struct regs *rp = lwptoregs(lwp);
697	model_t	datamodel = lwp_getdatamodel(lwp);
698
699#if defined(__amd64)
700	struct pcb *pcb = &lwp->lwp_pcb;
701	int thisthread = lwptot(lwp) == curthread;
702
703	if (datamodel == DATAMODEL_NATIVE) {
704
705		if (thisthread)
706			(void) save_syscall_args();	/* copy the args */
707
708		rp->r_rdi = grp[REG_RDI];
709		rp->r_rsi = grp[REG_RSI];
710		rp->r_rdx = grp[REG_RDX];
711		rp->r_rcx = grp[REG_RCX];
712		rp->r_r8 = grp[REG_R8];
713		rp->r_r9 = grp[REG_R9];
714		rp->r_rax = grp[REG_RAX];
715		rp->r_rbx = grp[REG_RBX];
716		rp->r_rbp = grp[REG_RBP];
717		rp->r_r10 = grp[REG_R10];
718		rp->r_r11 = grp[REG_R11];
719		rp->r_r12 = grp[REG_R12];
720		rp->r_r13 = grp[REG_R13];
721		rp->r_r14 = grp[REG_R14];
722		rp->r_r15 = grp[REG_R15];
723		rp->r_trapno = grp[REG_TRAPNO];
724		rp->r_err = grp[REG_ERR];
725		rp->r_rip = grp[REG_RIP];
726		/*
727		 * Setting %cs or %ss to anything else is quietly but
728		 * quite definitely forbidden!
729		 */
730		rp->r_cs = UCS_SEL;
731		rp->r_ss = UDS_SEL;
732		rp->r_rsp = grp[REG_RSP];
733
734		if (thisthread)
735			kpreempt_disable();
736
737		pcb->pcb_ds = UDS_SEL;
738		pcb->pcb_es = UDS_SEL;
739
740		/*
741		 * 64-bit processes -are- allowed to set their fsbase/gsbase
742		 * values directly, but only if they're using the segment
743		 * selectors that allow that semantic.
744		 *
745		 * (32-bit processes must use lwp_set_private().)
746		 */
747		pcb->pcb_fsbase = grp[REG_FSBASE];
748		pcb->pcb_gsbase = grp[REG_GSBASE];
749		pcb->pcb_fs = fix_segreg(grp[REG_FS], IS_NOT_CS, datamodel);
750		pcb->pcb_gs = fix_segreg(grp[REG_GS], IS_NOT_CS, datamodel);
751
752		/*
753		 * Ensure that we go out via update_sregs
754		 */
755		pcb->pcb_rupdate = 1;
756		lwptot(lwp)->t_post_sys = 1;
757		if (thisthread)
758			kpreempt_enable();
759#if defined(_SYSCALL32_IMPL)
760	} else {
761		rp->r_rdi = (uint32_t)grp[REG_RDI];
762		rp->r_rsi = (uint32_t)grp[REG_RSI];
763		rp->r_rdx = (uint32_t)grp[REG_RDX];
764		rp->r_rcx = (uint32_t)grp[REG_RCX];
765		rp->r_rax = (uint32_t)grp[REG_RAX];
766		rp->r_rbx = (uint32_t)grp[REG_RBX];
767		rp->r_rbp = (uint32_t)grp[REG_RBP];
768		rp->r_trapno = (uint32_t)grp[REG_TRAPNO];
769		rp->r_err = (uint32_t)grp[REG_ERR];
770		rp->r_rip = (uint32_t)grp[REG_RIP];
771
772		rp->r_cs = fix_segreg(grp[REG_CS], IS_CS, datamodel);
773		rp->r_ss = fix_segreg(grp[REG_DS], IS_NOT_CS, datamodel);
774
775		rp->r_rsp = (uint32_t)grp[REG_RSP];
776
777		if (thisthread)
778			kpreempt_disable();
779
780		pcb->pcb_ds = fix_segreg(grp[REG_DS], IS_NOT_CS, datamodel);
781		pcb->pcb_es = fix_segreg(grp[REG_ES], IS_NOT_CS, datamodel);
782
783		/*
784		 * (See fsbase/gsbase commentary above)
785		 */
786		pcb->pcb_fs = fix_segreg(grp[REG_FS], IS_NOT_CS, datamodel);
787		pcb->pcb_gs = fix_segreg(grp[REG_GS], IS_NOT_CS, datamodel);
788
789		/*
790		 * Ensure that we go out via update_sregs
791		 */
792		pcb->pcb_rupdate = 1;
793		lwptot(lwp)->t_post_sys = 1;
794		if (thisthread)
795			kpreempt_enable();
796#endif
797	}
798
799	/*
800	 * Only certain bits of the flags register can be modified.
801	 */
802	rp->r_rfl = (rp->r_rfl & ~PSL_USERMASK) |
803	    (grp[REG_RFL] & PSL_USERMASK);
804
805#elif defined(__i386)
806
807	/*
808	 * Only certain bits of the flags register can be modified.
809	 */
810	grp[EFL] = (rp->r_efl & ~PSL_USERMASK) | (grp[EFL] & PSL_USERMASK);
811
812	/*
813	 * Copy saved registers from user stack.
814	 */
815	bcopy(grp, &rp->r_gs, sizeof (gregset_t));
816
817	rp->r_cs = fix_segreg(rp->r_cs, IS_CS, datamodel);
818	rp->r_ss = fix_segreg(rp->r_ss, IS_NOT_CS, datamodel);
819	rp->r_ds = fix_segreg(rp->r_ds, IS_NOT_CS, datamodel);
820	rp->r_es = fix_segreg(rp->r_es, IS_NOT_CS, datamodel);
821	rp->r_fs = fix_segreg(rp->r_fs, IS_NOT_CS, datamodel);
822	rp->r_gs = fix_segreg(rp->r_gs, IS_NOT_CS, datamodel);
823
824#endif	/* __i386 */
825}
826
827/*
828 * Determine whether eip is likely to have an interrupt frame
829 * on the stack.  We do this by comparing the address to the
830 * range of addresses spanned by several well-known routines.
831 */
832extern void _interrupt();
833extern void _allsyscalls();
834extern void _cmntrap();
835extern void fakesoftint();
836
837extern size_t _interrupt_size;
838extern size_t _allsyscalls_size;
839extern size_t _cmntrap_size;
840extern size_t _fakesoftint_size;
841
842/*
843 * Get a pc-only stacktrace.  Used for kmem_alloc() buffer ownership tracking.
844 * Returns MIN(current stack depth, pcstack_limit).
845 */
846int
847getpcstack(pc_t *pcstack, int pcstack_limit)
848{
849	struct frame *fp = (struct frame *)getfp();
850	struct frame *nextfp, *minfp, *stacktop;
851	int depth = 0;
852	int on_intr;
853	uintptr_t pc;
854
855	if ((on_intr = CPU_ON_INTR(CPU)) != 0)
856		stacktop = (struct frame *)(CPU->cpu_intr_stack + SA(MINFRAME));
857	else
858		stacktop = (struct frame *)curthread->t_stk;
859	minfp = fp;
860
861	pc = ((struct regs *)fp)->r_pc;
862
863	while (depth < pcstack_limit) {
864		nextfp = (struct frame *)fp->fr_savfp;
865		pc = fp->fr_savpc;
866		if (nextfp <= minfp || nextfp >= stacktop) {
867			if (on_intr) {
868				/*
869				 * Hop from interrupt stack to thread stack.
870				 */
871				stacktop = (struct frame *)curthread->t_stk;
872				minfp = (struct frame *)curthread->t_stkbase;
873				on_intr = 0;
874				continue;
875			}
876			break;
877		}
878		pcstack[depth++] = (pc_t)pc;
879		fp = nextfp;
880		minfp = fp;
881	}
882	return (depth);
883}
884
885/*
886 * The following ELF header fields are defined as processor-specific
887 * in the V8 ABI:
888 *
889 *	e_ident[EI_DATA]	encoding of the processor-specific
890 *				data in the object file
891 *	e_machine		processor identification
892 *	e_flags			processor-specific flags associated
893 *				with the file
894 */
895
896/*
897 * The value of at_flags reflects a platform's cpu module support.
898 * at_flags is used to check for allowing a binary to execute and
899 * is passed as the value of the AT_FLAGS auxiliary vector.
900 */
901int at_flags = 0;
902
903/*
904 * Check the processor-specific fields of an ELF header.
905 *
906 * returns 1 if the fields are valid, 0 otherwise
907 */
908/*ARGSUSED2*/
909int
910elfheadcheck(
911	unsigned char e_data,
912	Elf32_Half e_machine,
913	Elf32_Word e_flags)
914{
915	if (e_data != ELFDATA2LSB)
916		return (0);
917#if defined(__amd64)
918	if (e_machine == EM_AMD64)
919		return (1);
920#endif
921	return (e_machine == EM_386);
922}
923
924uint_t auxv_hwcap_include = 0;	/* patch to enable unrecognized features */
925uint_t auxv_hwcap_exclude = 0;	/* patch for broken cpus, debugging */
926#if defined(_SYSCALL32_IMPL)
927uint_t auxv_hwcap32_include = 0;	/* ditto for 32-bit apps */
928uint_t auxv_hwcap32_exclude = 0;	/* ditto for 32-bit apps */
929#endif
930
931/*
932 * Gather information about the processor and place it into auxv_hwcap
933 * so that it can be exported to the linker via the aux vector.
934 *
935 * We use this seemingly complicated mechanism so that we can ensure
936 * that /etc/system can be used to override what the system can or
937 * cannot discover for itself.
938 */
939void
940bind_hwcap(void)
941{
942	uint_t cpu_hwcap_flags = cpuid_pass4(NULL);
943
944	auxv_hwcap = (auxv_hwcap_include | cpu_hwcap_flags) &
945	    ~auxv_hwcap_exclude;
946
947#if defined(__amd64)
948	/*
949	 * On AMD processors, sysenter just doesn't work at all
950	 * when the kernel is in long mode.  On IA-32e processors
951	 * it does, but there's no real point in all the alternate
952	 * mechanism when syscall works on both.
953	 *
954	 * Besides, the kernel's sysenter handler is expecting a
955	 * 32-bit lwp ...
956	 */
957	auxv_hwcap &= ~AV_386_SEP;
958#else
959	/*
960	 * 32-bit processes can -always- use the lahf/sahf instructions
961	 */
962	auxv_hwcap |= AV_386_AHF;
963#endif
964
965	if (auxv_hwcap_include || auxv_hwcap_exclude)
966		cmn_err(CE_CONT, "?user ABI extensions: %b\n",
967		    auxv_hwcap, FMT_AV_386);
968
969#if defined(_SYSCALL32_IMPL)
970	auxv_hwcap32 = (auxv_hwcap32_include | cpu_hwcap_flags) &
971	    ~auxv_hwcap32_exclude;
972
973#if defined(__amd64)
974	/*
975	 * If this is an amd64 architecture machine from Intel, then
976	 * syscall -doesn't- work in compatibility mode, only sysenter does.
977	 *
978	 * Sigh.
979	 */
980	if (!cpuid_syscall32_insn(NULL))
981		auxv_hwcap32 &= ~AV_386_AMD_SYSC;
982
983	/*
984	 * 32-bit processes can -always- use the lahf/sahf instructions
985	 */
986	auxv_hwcap32 |= AV_386_AHF;
987#endif
988
989	if (auxv_hwcap32_include || auxv_hwcap32_exclude)
990		cmn_err(CE_CONT, "?32-bit user ABI extensions: %b\n",
991		    auxv_hwcap32, FMT_AV_386);
992#endif
993}
994
995/*
996 *	sync_icache() - this is called
997 *	in proc/fs/prusrio.c. x86 has an unified cache and therefore
998 *	this is a nop.
999 */
1000/* ARGSUSED */
1001void
1002sync_icache(caddr_t addr, uint_t len)
1003{
1004	/* Do nothing for now */
1005}
1006
1007/*ARGSUSED*/
1008void
1009sync_data_memory(caddr_t va, size_t len)
1010{
1011	/* Not implemented for this platform */
1012}
1013
1014int
1015__ipltospl(int ipl)
1016{
1017	return (ipltospl(ipl));
1018}
1019
1020/*
1021 * The panic code invokes panic_saveregs() to record the contents of a
1022 * regs structure into the specified panic_data structure for debuggers.
1023 */
1024void
1025panic_saveregs(panic_data_t *pdp, struct regs *rp)
1026{
1027	panic_nv_t *pnv = PANICNVGET(pdp);
1028
1029	struct cregs	creg;
1030
1031	getcregs(&creg);
1032
1033#if defined(__amd64)
1034	PANICNVADD(pnv, "rdi", rp->r_rdi);
1035	PANICNVADD(pnv, "rsi", rp->r_rsi);
1036	PANICNVADD(pnv, "rdx", rp->r_rdx);
1037	PANICNVADD(pnv, "rcx", rp->r_rcx);
1038	PANICNVADD(pnv, "r8", rp->r_r8);
1039	PANICNVADD(pnv, "r9", rp->r_r9);
1040	PANICNVADD(pnv, "rax", rp->r_rax);
1041	PANICNVADD(pnv, "rbx", rp->r_rbx);
1042	PANICNVADD(pnv, "rbp", rp->r_rbp);
1043	PANICNVADD(pnv, "r10", rp->r_r10);
1044	PANICNVADD(pnv, "r10", rp->r_r10);
1045	PANICNVADD(pnv, "r11", rp->r_r11);
1046	PANICNVADD(pnv, "r12", rp->r_r12);
1047	PANICNVADD(pnv, "r13", rp->r_r13);
1048	PANICNVADD(pnv, "r14", rp->r_r14);
1049	PANICNVADD(pnv, "r15", rp->r_r15);
1050	PANICNVADD(pnv, "fsbase", rdmsr(MSR_AMD_FSBASE));
1051	PANICNVADD(pnv, "gsbase", rdmsr(MSR_AMD_GSBASE));
1052	PANICNVADD(pnv, "ds", rp->r_ds);
1053	PANICNVADD(pnv, "es", rp->r_es);
1054	PANICNVADD(pnv, "fs", rp->r_fs);
1055	PANICNVADD(pnv, "gs", rp->r_gs);
1056	PANICNVADD(pnv, "trapno", rp->r_trapno);
1057	PANICNVADD(pnv, "err", rp->r_err);
1058	PANICNVADD(pnv, "rip", rp->r_rip);
1059	PANICNVADD(pnv, "cs", rp->r_cs);
1060	PANICNVADD(pnv, "rflags", rp->r_rfl);
1061	PANICNVADD(pnv, "rsp", rp->r_rsp);
1062	PANICNVADD(pnv, "ss", rp->r_ss);
1063	PANICNVADD(pnv, "gdt_hi", (uint64_t)(creg.cr_gdt._l[3]));
1064	PANICNVADD(pnv, "gdt_lo", (uint64_t)(creg.cr_gdt._l[0]));
1065	PANICNVADD(pnv, "idt_hi", (uint64_t)(creg.cr_idt._l[3]));
1066	PANICNVADD(pnv, "idt_lo", (uint64_t)(creg.cr_idt._l[0]));
1067#elif defined(__i386)
1068	PANICNVADD(pnv, "gs", (uint32_t)rp->r_gs);
1069	PANICNVADD(pnv, "fs", (uint32_t)rp->r_fs);
1070	PANICNVADD(pnv, "es", (uint32_t)rp->r_es);
1071	PANICNVADD(pnv, "ds", (uint32_t)rp->r_ds);
1072	PANICNVADD(pnv, "edi", (uint32_t)rp->r_edi);
1073	PANICNVADD(pnv, "esi", (uint32_t)rp->r_esi);
1074	PANICNVADD(pnv, "ebp", (uint32_t)rp->r_ebp);
1075	PANICNVADD(pnv, "esp", (uint32_t)rp->r_esp);
1076	PANICNVADD(pnv, "ebx", (uint32_t)rp->r_ebx);
1077	PANICNVADD(pnv, "edx", (uint32_t)rp->r_edx);
1078	PANICNVADD(pnv, "ecx", (uint32_t)rp->r_ecx);
1079	PANICNVADD(pnv, "eax", (uint32_t)rp->r_eax);
1080	PANICNVADD(pnv, "trapno", (uint32_t)rp->r_trapno);
1081	PANICNVADD(pnv, "err", (uint32_t)rp->r_err);
1082	PANICNVADD(pnv, "eip", (uint32_t)rp->r_eip);
1083	PANICNVADD(pnv, "cs", (uint32_t)rp->r_cs);
1084	PANICNVADD(pnv, "eflags", (uint32_t)rp->r_efl);
1085	PANICNVADD(pnv, "uesp", (uint32_t)rp->r_uesp);
1086	PANICNVADD(pnv, "ss", (uint32_t)rp->r_ss);
1087	PANICNVADD(pnv, "gdt", creg.cr_gdt);
1088	PANICNVADD(pnv, "idt", creg.cr_idt);
1089#endif	/* __i386 */
1090
1091	PANICNVADD(pnv, "ldt", creg.cr_ldt);
1092	PANICNVADD(pnv, "task", creg.cr_task);
1093	PANICNVADD(pnv, "cr0", creg.cr_cr0);
1094	PANICNVADD(pnv, "cr2", creg.cr_cr2);
1095	PANICNVADD(pnv, "cr3", creg.cr_cr3);
1096	if (creg.cr_cr4)
1097		PANICNVADD(pnv, "cr4", creg.cr_cr4);
1098
1099	PANICNVSET(pdp, pnv);
1100}
1101
1102#define	TR_ARG_MAX 6	/* Max args to print, same as SPARC */
1103
1104#if !defined(__amd64)
1105
1106/*
1107 * Given a return address (%eip), determine the likely number of arguments
1108 * that were pushed on the stack prior to its execution.  We do this by
1109 * expecting that a typical call sequence consists of pushing arguments on
1110 * the stack, executing a call instruction, and then performing an add
1111 * on %esp to restore it to the value prior to pushing the arguments for
1112 * the call.  We attempt to detect such an add, and divide the addend
1113 * by the size of a word to determine the number of pushed arguments.
1114 *
1115 * If we do not find such an add, we punt and return TR_ARG_MAX. It is not
1116 * possible to reliably determine if a function took no arguments (i.e. was
1117 * void) because assembler routines do not reliably perform an add on %esp
1118 * immediately upon returning (eg. _sys_call()), so returning TR_ARG_MAX is
1119 * safer than returning 0.
1120 */
1121static ulong_t
1122argcount(uintptr_t eip)
1123{
1124	const uint8_t *ins = (const uint8_t *)eip;
1125	ulong_t n;
1126
1127	enum {
1128		M_MODRM_ESP = 0xc4,	/* Mod/RM byte indicates %esp */
1129		M_ADD_IMM32 = 0x81,	/* ADD imm32 to r/m32 */
1130		M_ADD_IMM8  = 0x83	/* ADD imm8 to r/m32 */
1131	};
1132
1133	if (eip < KERNELBASE || ins[1] != M_MODRM_ESP)
1134		return (TR_ARG_MAX);
1135
1136	switch (ins[0]) {
1137	case M_ADD_IMM32:
1138		n = ins[2] + (ins[3] << 8) + (ins[4] << 16) + (ins[5] << 24);
1139		break;
1140
1141	case M_ADD_IMM8:
1142		n = ins[2];
1143		break;
1144
1145	default:
1146		return (TR_ARG_MAX);
1147	}
1148
1149	n /= sizeof (long);
1150	return (MIN(n, TR_ARG_MAX));
1151}
1152
1153#endif	/* !__amd64 */
1154
1155/*
1156 * Print a stack backtrace using the specified frame pointer.  We delay two
1157 * seconds before continuing, unless this is the panic traceback.
1158 * If we are in the process of panicking, we also attempt to write the
1159 * stack backtrace to a staticly assigned buffer, to allow the panic
1160 * code to find it and write it in to uncompressed pages within the
1161 * system crash dump.
1162 * Note that the frame for the starting stack pointer value is omitted because
1163 * the corresponding %eip is not known.
1164 */
1165
1166extern char *dump_stack_scratch;
1167
1168#if defined(__amd64)
1169
1170void
1171traceback(caddr_t fpreg)
1172{
1173	struct frame	*fp = (struct frame *)fpreg;
1174	struct frame	*nextfp;
1175	uintptr_t	pc, nextpc;
1176	ulong_t		off;
1177	char		args[TR_ARG_MAX * 2 + 16], *sym;
1178	uint_t	  offset = 0;
1179	uint_t	  next_offset = 0;
1180	char	    stack_buffer[1024];
1181
1182	if (!panicstr)
1183		printf("traceback: %%fp = %p\n", (void *)fp);
1184
1185	if (panicstr && !dump_stack_scratch) {
1186		printf("Warning - stack not written to the dump buffer\n");
1187	}
1188
1189	fp = (struct frame *)plat_traceback(fpreg);
1190	if ((uintptr_t)fp < KERNELBASE)
1191		goto out;
1192
1193	pc = fp->fr_savpc;
1194	fp = (struct frame *)fp->fr_savfp;
1195
1196	while ((uintptr_t)fp >= KERNELBASE) {
1197		/*
1198		 * XX64 Until port is complete tolerate 8-byte aligned
1199		 * frame pointers but flag with a warning so they can
1200		 * be fixed.
1201		 */
1202		if (((uintptr_t)fp & (STACK_ALIGN - 1)) != 0) {
1203			if (((uintptr_t)fp & (8 - 1)) == 0) {
1204				printf("  >> warning! 8-byte"
1205				    " aligned %%fp = %p\n", (void *)fp);
1206			} else {
1207				printf(
1208				    "  >> mis-aligned %%fp = %p\n", (void *)fp);
1209				break;
1210			}
1211		}
1212
1213		args[0] = '\0';
1214		nextpc = (uintptr_t)fp->fr_savpc;
1215		nextfp = (struct frame *)fp->fr_savfp;
1216		if ((sym = kobj_getsymname(pc, &off)) != NULL) {
1217			printf("%016lx %s:%s+%lx (%s)\n", (uintptr_t)fp,
1218			    mod_containing_pc((caddr_t)pc), sym, off, args);
1219			(void) snprintf(stack_buffer, sizeof (stack_buffer),
1220			    "%s:%s+%lx (%s) | ",
1221			    mod_containing_pc((caddr_t)pc), sym, off, args);
1222		} else {
1223			printf("%016lx %lx (%s)\n",
1224			    (uintptr_t)fp, pc, args);
1225			(void) snprintf(stack_buffer, sizeof (stack_buffer),
1226			    "%lx (%s) | ", pc, args);
1227		}
1228
1229		if (panicstr && dump_stack_scratch) {
1230			next_offset = offset + strlen(stack_buffer);
1231			if (next_offset < STACK_BUF_SIZE) {
1232				bcopy(stack_buffer, dump_stack_scratch + offset,
1233				    strlen(stack_buffer));
1234				offset = next_offset;
1235			} else {
1236				/*
1237				 * In attempting to save the panic stack
1238				 * to the dumpbuf we have overflowed that area.
1239				 * Print a warning and continue to printf the
1240				 * stack to the msgbuf
1241				 */
1242				printf("Warning: stack in the dump buffer"
1243				    " may be incomplete\n");
1244				offset = next_offset;
1245			}
1246		}
1247
1248		pc = nextpc;
1249		fp = nextfp;
1250	}
1251out:
1252	if (!panicstr) {
1253		printf("end of traceback\n");
1254		DELAY(2 * MICROSEC);
1255	} else if (dump_stack_scratch) {
1256		dump_stack_scratch[offset] = '\0';
1257	}
1258}
1259
1260#elif defined(__i386)
1261
1262void
1263traceback(caddr_t fpreg)
1264{
1265	struct frame *fp = (struct frame *)fpreg;
1266	struct frame *nextfp, *minfp, *stacktop;
1267	uintptr_t pc, nextpc;
1268	uint_t	  offset = 0;
1269	uint_t	  next_offset = 0;
1270	char	    stack_buffer[1024];
1271
1272	cpu_t *cpu;
1273
1274	/*
1275	 * args[] holds TR_ARG_MAX hex long args, plus ", " or '\0'.
1276	 */
1277	char args[TR_ARG_MAX * 2 + 8], *p;
1278
1279	int on_intr;
1280	ulong_t off;
1281	char *sym;
1282
1283	if (!panicstr)
1284		printf("traceback: %%fp = %p\n", (void *)fp);
1285
1286	if (panicstr && !dump_stack_scratch) {
1287		printf("Warning - stack not written to the dumpbuf\n");
1288	}
1289
1290	/*
1291	 * If we are panicking, all high-level interrupt information in
1292	 * CPU was overwritten.  panic_cpu has the correct values.
1293	 */
1294	kpreempt_disable();			/* prevent migration */
1295
1296	cpu = (panicstr && CPU->cpu_id == panic_cpu.cpu_id)? &panic_cpu : CPU;
1297
1298	if ((on_intr = CPU_ON_INTR(cpu)) != 0)
1299		stacktop = (struct frame *)(cpu->cpu_intr_stack + SA(MINFRAME));
1300	else
1301		stacktop = (struct frame *)curthread->t_stk;
1302
1303	kpreempt_enable();
1304
1305	fp = (struct frame *)plat_traceback(fpreg);
1306	if ((uintptr_t)fp < KERNELBASE)
1307		goto out;
1308
1309	minfp = fp;	/* Baseline minimum frame pointer */
1310	pc = fp->fr_savpc;
1311	fp = (struct frame *)fp->fr_savfp;
1312
1313	while ((uintptr_t)fp >= KERNELBASE) {
1314		ulong_t argc;
1315		long *argv;
1316
1317		if (fp <= minfp || fp >= stacktop) {
1318			if (on_intr) {
1319				/*
1320				 * Hop from interrupt stack to thread stack.
1321				 */
1322				stacktop = (struct frame *)curthread->t_stk;
1323				minfp = (struct frame *)curthread->t_stkbase;
1324				on_intr = 0;
1325				continue;
1326			}
1327			break; /* we're outside of the expected range */
1328		}
1329
1330		if ((uintptr_t)fp & (STACK_ALIGN - 1)) {
1331			printf("  >> mis-aligned %%fp = %p\n", (void *)fp);
1332			break;
1333		}
1334
1335		nextpc = fp->fr_savpc;
1336		nextfp = (struct frame *)fp->fr_savfp;
1337		argc = argcount(nextpc);
1338		argv = (long *)((char *)fp + sizeof (struct frame));
1339
1340		args[0] = '\0';
1341		p = args;
1342		while (argc-- > 0 && argv < (long *)stacktop) {
1343			p += snprintf(p, args + sizeof (args) - p,
1344			    "%s%lx", (p == args) ? "" : ", ", *argv++);
1345		}
1346
1347		if ((sym = kobj_getsymname(pc, &off)) != NULL) {
1348			printf("%08lx %s:%s+%lx (%s)\n", (uintptr_t)fp,
1349			    mod_containing_pc((caddr_t)pc), sym, off, args);
1350			(void) snprintf(stack_buffer, sizeof (stack_buffer),
1351			    "%s:%s+%lx (%s) | ",
1352			    mod_containing_pc((caddr_t)pc), sym, off, args);
1353
1354		} else {
1355			printf("%08lx %lx (%s)\n",
1356			    (uintptr_t)fp, pc, args);
1357			(void) snprintf(stack_buffer, sizeof (stack_buffer),
1358			    "%lx (%s) | ", pc, args);
1359
1360		}
1361
1362		if (panicstr && dump_stack_scratch) {
1363			next_offset = offset + strlen(stack_buffer);
1364			if (next_offset < STACK_BUF_SIZE) {
1365				bcopy(stack_buffer, dump_stack_scratch + offset,
1366				    strlen(stack_buffer));
1367				offset = next_offset;
1368			} else {
1369				/*
1370				 * In attempting to save the panic stack
1371				 * to the dumpbuf we have overflowed that area.
1372				 * Print a warning and continue to printf the
1373				 * stack to the msgbuf
1374				 */
1375				printf("Warning: stack in the dumpbuf"
1376				    " may be incomplete\n");
1377				offset = next_offset;
1378			}
1379		}
1380
1381		minfp = fp;
1382		pc = nextpc;
1383		fp = nextfp;
1384	}
1385out:
1386	if (!panicstr) {
1387		printf("end of traceback\n");
1388		DELAY(2 * MICROSEC);
1389	} else if (dump_stack_scratch) {
1390		dump_stack_scratch[offset] = '\0';
1391	}
1392
1393}
1394
1395#endif	/* __i386 */
1396
1397/*
1398 * Generate a stack backtrace from a saved register set.
1399 */
1400void
1401traceregs(struct regs *rp)
1402{
1403	traceback((caddr_t)rp->r_fp);
1404}
1405
1406void
1407exec_set_sp(size_t stksize)
1408{
1409	klwp_t *lwp = ttolwp(curthread);
1410
1411	lwptoregs(lwp)->r_sp = (uintptr_t)curproc->p_usrstack - stksize;
1412}
1413
1414hrtime_t
1415gethrtime_waitfree(void)
1416{
1417	return (dtrace_gethrtime());
1418}
1419
1420hrtime_t
1421gethrtime(void)
1422{
1423	return (gethrtimef());
1424}
1425
1426hrtime_t
1427gethrtime_unscaled(void)
1428{
1429	return (gethrtimeunscaledf());
1430}
1431
1432void
1433scalehrtime(hrtime_t *hrt)
1434{
1435	scalehrtimef(hrt);
1436}
1437
1438uint64_t
1439unscalehrtime(hrtime_t nsecs)
1440{
1441	return (unscalehrtimef(nsecs));
1442}
1443
1444void
1445gethrestime(timespec_t *tp)
1446{
1447	gethrestimef(tp);
1448}
1449
1450#if defined(__amd64)
1451/*
1452 * Part of the implementation of hres_tick(); this routine is
1453 * easier in C than assembler .. called with the hres_lock held.
1454 *
1455 * XX64	Many of these timekeeping variables need to be extern'ed in a header
1456 */
1457
1458#include <sys/time.h>
1459#include <sys/machlock.h>
1460
1461extern int one_sec;
1462extern int max_hres_adj;
1463
1464void
1465__adj_hrestime(void)
1466{
1467	long long adj;
1468
1469	if (hrestime_adj == 0)
1470		adj = 0;
1471	else if (hrestime_adj > 0) {
1472		if (hrestime_adj < max_hres_adj)
1473			adj = hrestime_adj;
1474		else
1475			adj = max_hres_adj;
1476	} else {
1477		if (hrestime_adj < -max_hres_adj)
1478			adj = -max_hres_adj;
1479		else
1480			adj = hrestime_adj;
1481	}
1482
1483	timedelta -= adj;
1484	hrestime_adj = timedelta;
1485	hrestime.tv_nsec += adj;
1486
1487	while (hrestime.tv_nsec >= NANOSEC) {
1488		one_sec++;
1489		hrestime.tv_sec++;
1490		hrestime.tv_nsec -= NANOSEC;
1491	}
1492}
1493#endif
1494
1495/*
1496 * Wrapper functions to maintain backwards compability
1497 */
1498int
1499xcopyin(const void *uaddr, void *kaddr, size_t count)
1500{
1501	return (xcopyin_nta(uaddr, kaddr, count, UIO_COPY_CACHED));
1502}
1503
1504int
1505xcopyout(const void *kaddr, void *uaddr, size_t count)
1506{
1507	return (xcopyout_nta(kaddr, uaddr, count, UIO_COPY_CACHED));
1508}
1509