trap.c revision 6336:4eaf084434c9
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24 * Use is subject to license terms.
25 */
26
27/*	Copyright (c) 1990, 1991 UNIX System Laboratories, Inc. */
28/*	Copyright (c) 1984, 1986, 1987, 1988, 1989, 1990 AT&T   */
29/*		All Rights Reserved   				*/
30/*								*/
31/*	Copyright (c) 1987, 1988 Microsoft Corporation  	*/
32/*		All Rights Reserved   				*/
33/*								*/
34
35#pragma ident	"%Z%%M%	%I%	%E% SMI"
36
37#include <sys/types.h>
38#include <sys/sysmacros.h>
39#include <sys/param.h>
40#include <sys/signal.h>
41#include <sys/systm.h>
42#include <sys/user.h>
43#include <sys/proc.h>
44#include <sys/disp.h>
45#include <sys/class.h>
46#include <sys/core.h>
47#include <sys/syscall.h>
48#include <sys/cpuvar.h>
49#include <sys/vm.h>
50#include <sys/sysinfo.h>
51#include <sys/fault.h>
52#include <sys/stack.h>
53#include <sys/psw.h>
54#include <sys/regset.h>
55#include <sys/fp.h>
56#include <sys/trap.h>
57#include <sys/kmem.h>
58#include <sys/vtrace.h>
59#include <sys/cmn_err.h>
60#include <sys/prsystm.h>
61#include <sys/mutex_impl.h>
62#include <sys/machsystm.h>
63#include <sys/archsystm.h>
64#include <sys/sdt.h>
65#include <sys/avintr.h>
66#include <sys/kobj.h>
67
68#include <vm/hat.h>
69
70#include <vm/seg_kmem.h>
71#include <vm/as.h>
72#include <vm/seg.h>
73#include <vm/hat_pte.h>
74#include <vm/hat_i86.h>
75
76#include <sys/procfs.h>
77
78#include <sys/reboot.h>
79#include <sys/debug.h>
80#include <sys/debugreg.h>
81#include <sys/modctl.h>
82#include <sys/aio_impl.h>
83#include <sys/tnf.h>
84#include <sys/tnf_probe.h>
85#include <sys/cred.h>
86#include <sys/mman.h>
87#include <sys/x86_archext.h>
88#include <sys/copyops.h>
89#include <c2/audit.h>
90#include <sys/ftrace.h>
91#include <sys/panic.h>
92#include <sys/traptrace.h>
93#include <sys/ontrap.h>
94#include <sys/cpc_impl.h>
95#include <sys/bootconf.h>
96#include <sys/bootinfo.h>
97#include <sys/promif.h>
98#include <sys/mach_mmu.h>
99#if defined(__xpv)
100#include <sys/hypervisor.h>
101#endif
102#include <sys/contract/process_impl.h>
103
104#define	USER	0x10000		/* user-mode flag added to trap type */
105
106static const char *trap_type_mnemonic[] = {
107	"de",	"db",	"2",	"bp",
108	"of",	"br",	"ud",	"nm",
109	"df",	"9",	"ts",	"np",
110	"ss",	"gp",	"pf",	"15",
111	"mf",	"ac",	"mc",	"xf"
112};
113
114static const char *trap_type[] = {
115	"Divide error",				/* trap id 0 	*/
116	"Debug",				/* trap id 1	*/
117	"NMI interrupt",			/* trap id 2	*/
118	"Breakpoint",				/* trap id 3 	*/
119	"Overflow",				/* trap id 4 	*/
120	"BOUND range exceeded",			/* trap id 5 	*/
121	"Invalid opcode",			/* trap id 6 	*/
122	"Device not available",			/* trap id 7 	*/
123	"Double fault",				/* trap id 8 	*/
124	"Coprocessor segment overrun",		/* trap id 9 	*/
125	"Invalid TSS",				/* trap id 10 	*/
126	"Segment not present",			/* trap id 11 	*/
127	"Stack segment fault",			/* trap id 12 	*/
128	"General protection",			/* trap id 13 	*/
129	"Page fault",				/* trap id 14 	*/
130	"Reserved",				/* trap id 15 	*/
131	"x87 floating point error",		/* trap id 16 	*/
132	"Alignment check",			/* trap id 17 	*/
133	"Machine check",			/* trap id 18	*/
134	"SIMD floating point exception",	/* trap id 19	*/
135};
136
137#define	TRAP_TYPES	(sizeof (trap_type) / sizeof (trap_type[0]))
138
139#define	SLOW_SCALL_SIZE	2
140#define	FAST_SCALL_SIZE	2
141
142int tudebug = 0;
143int tudebugbpt = 0;
144int tudebugfpe = 0;
145int tudebugsse = 0;
146
147#if defined(TRAPDEBUG) || defined(lint)
148int tdebug = 0;
149int lodebug = 0;
150int faultdebug = 0;
151#else
152#define	tdebug	0
153#define	lodebug	0
154#define	faultdebug	0
155#endif /* defined(TRAPDEBUG) || defined(lint) */
156
157#if defined(TRAPTRACE)
158/*
159 * trap trace record for cpu0 is allocated here.
160 * trap trace records for non-boot cpus are allocated in mp_startup_init().
161 */
162static trap_trace_rec_t trap_tr0[TRAPTR_NENT];
163trap_trace_ctl_t trap_trace_ctl[NCPU] = {
164	{
165	    (uintptr_t)trap_tr0,			/* next record */
166	    (uintptr_t)trap_tr0,			/* first record */
167	    (uintptr_t)(trap_tr0 + TRAPTR_NENT),	/* limit */
168	    (uintptr_t)0				/* current */
169	},
170};
171
172/*
173 * default trap buffer size
174 */
175size_t trap_trace_bufsize = TRAPTR_NENT * sizeof (trap_trace_rec_t);
176int trap_trace_freeze = 0;
177int trap_trace_off = 0;
178
179/*
180 * A dummy TRAPTRACE entry to use after death.
181 */
182trap_trace_rec_t trap_trace_postmort;
183
184static void dump_ttrace(void);
185#endif	/* TRAPTRACE */
186static void dumpregs(struct regs *);
187static void showregs(uint_t, struct regs *, caddr_t);
188static int kern_gpfault(struct regs *);
189
190/*ARGSUSED*/
191static int
192die(uint_t type, struct regs *rp, caddr_t addr, processorid_t cpuid)
193{
194	struct panic_trap_info ti;
195	const char *trap_name, *trap_mnemonic;
196
197	if (type < TRAP_TYPES) {
198		trap_name = trap_type[type];
199		trap_mnemonic = trap_type_mnemonic[type];
200	} else {
201		trap_name = "trap";
202		trap_mnemonic = "-";
203	}
204
205#ifdef TRAPTRACE
206	TRAPTRACE_FREEZE;
207#endif
208
209	ti.trap_regs = rp;
210	ti.trap_type = type & ~USER;
211	ti.trap_addr = addr;
212
213	curthread->t_panic_trap = &ti;
214
215	if (type == T_PGFLT && addr < (caddr_t)KERNELBASE) {
216		panic("BAD TRAP: type=%x (#%s %s) rp=%p addr=%p "
217		    "occurred in module \"%s\" due to %s",
218		    type, trap_mnemonic, trap_name, (void *)rp, (void *)addr,
219		    mod_containing_pc((caddr_t)rp->r_pc),
220		    addr < (caddr_t)PAGESIZE ?
221		    "a NULL pointer dereference" :
222		    "an illegal access to a user address");
223	} else
224		panic("BAD TRAP: type=%x (#%s %s) rp=%p addr=%p",
225		    type, trap_mnemonic, trap_name, (void *)rp, (void *)addr);
226	return (0);
227}
228
229/*
230 * Rewrite the instruction at pc to be an int $T_SYSCALLINT instruction.
231 *
232 * int <vector> is two bytes: 0xCD <vector>
233 */
234
235static int
236rewrite_syscall(caddr_t pc)
237{
238	uchar_t instr[SLOW_SCALL_SIZE] = { 0xCD, T_SYSCALLINT };
239
240	if (uwrite(curthread->t_procp, instr, SLOW_SCALL_SIZE,
241	    (uintptr_t)pc) != 0)
242		return (1);
243
244	return (0);
245}
246
247/*
248 * Test to see if the instruction at pc is sysenter or syscall. The second
249 * argument should be the x86 feature flag corresponding to the expected
250 * instruction.
251 *
252 * sysenter is two bytes: 0x0F 0x34
253 * syscall is two bytes:  0x0F 0x05
254 * int $T_SYSCALLINT is two bytes: 0xCD 0x91
255 */
256
257static int
258instr_is_other_syscall(caddr_t pc, int which)
259{
260	uchar_t instr[FAST_SCALL_SIZE];
261
262	ASSERT(which == X86_SEP || which == X86_ASYSC || which == 0xCD);
263
264	if (copyin_nowatch(pc, (caddr_t)instr, FAST_SCALL_SIZE) != 0)
265		return (0);
266
267	switch (which) {
268	case X86_SEP:
269		if (instr[0] == 0x0F && instr[1] == 0x34)
270			return (1);
271		break;
272	case X86_ASYSC:
273		if (instr[0] == 0x0F && instr[1] == 0x05)
274			return (1);
275		break;
276	case 0xCD:
277		if (instr[0] == 0xCD && instr[1] == T_SYSCALLINT)
278			return (1);
279		break;
280	}
281
282	return (0);
283}
284
285static const char *
286syscall_insn_string(int syscall_insn)
287{
288	switch (syscall_insn) {
289	case X86_SEP:
290		return ("sysenter");
291	case X86_ASYSC:
292		return ("syscall");
293	case 0xCD:
294		return ("int");
295	default:
296		return ("Unknown");
297	}
298}
299
300static int
301ldt_rewrite_syscall(struct regs *rp, proc_t *p, int syscall_insn)
302{
303	caddr_t	linearpc;
304	int return_code = 0;
305
306	mutex_enter(&p->p_ldtlock);	/* Must be held across linear_pc() */
307
308	if (linear_pc(rp, p, &linearpc) == 0) {
309
310		/*
311		 * If another thread beat us here, it already changed
312		 * this site to the slower (int) syscall instruction.
313		 */
314		if (instr_is_other_syscall(linearpc, 0xCD)) {
315			return_code = 1;
316		} else if (instr_is_other_syscall(linearpc, syscall_insn)) {
317
318			if (rewrite_syscall(linearpc) == 0) {
319				return_code = 1;
320			}
321#ifdef DEBUG
322			else
323				cmn_err(CE_WARN, "failed to rewrite %s "
324				    "instruction in process %d",
325				    syscall_insn_string(syscall_insn),
326				    p->p_pid);
327#endif /* DEBUG */
328		}
329	}
330
331	mutex_exit(&p->p_ldtlock);	/* Must be held across linear_pc() */
332
333	return (return_code);
334}
335
336/*
337 * Test to see if the instruction at pc is a system call instruction.
338 *
339 * The bytes of an lcall instruction used for the syscall trap.
340 * static uchar_t lcall[7] = { 0x9a, 0, 0, 0, 0, 0x7, 0 };
341 * static uchar_t lcallalt[7] = { 0x9a, 0, 0, 0, 0, 0x27, 0 };
342 */
343
344#define	LCALLSIZE	7
345
346static int
347instr_is_lcall_syscall(caddr_t pc)
348{
349	uchar_t instr[LCALLSIZE];
350
351	if (copyin_nowatch(pc, (caddr_t)instr, LCALLSIZE) == 0 &&
352	    instr[0] == 0x9a &&
353	    instr[1] == 0 &&
354	    instr[2] == 0 &&
355	    instr[3] == 0 &&
356	    instr[4] == 0 &&
357	    (instr[5] == 0x7 || instr[5] == 0x27) &&
358	    instr[6] == 0)
359		return (1);
360
361	return (0);
362}
363
364#ifdef __amd64
365
366/*
367 * In the first revisions of amd64 CPUs produced by AMD, the LAHF and
368 * SAHF instructions were not implemented in 64-bit mode. Later revisions
369 * did implement these instructions. An extension to the cpuid instruction
370 * was added to check for the capability of executing these instructions
371 * in 64-bit mode.
372 *
373 * Intel originally did not implement these instructions in EM64T either,
374 * but added them in later revisions.
375 *
376 * So, there are different chip revisions by both vendors out there that
377 * may or may not implement these instructions. The easy solution is to
378 * just always emulate these instructions on demand.
379 *
380 * SAHF == store %ah in the lower 8 bits of %rflags (opcode 0x9e)
381 * LAHF == load the lower 8 bits of %rflags into %ah (opcode 0x9f)
382 */
383
384#define	LSAHFSIZE 1
385
386static int
387instr_is_lsahf(caddr_t pc, uchar_t *instr)
388{
389	if (copyin_nowatch(pc, (caddr_t)instr, LSAHFSIZE) == 0 &&
390	    (*instr == 0x9e || *instr == 0x9f))
391		return (1);
392	return (0);
393}
394
395/*
396 * Emulate the LAHF and SAHF instructions. The reference manuals define
397 * these instructions to always load/store bit 1 as a 1, and bits 3 and 5
398 * as a 0. The other, defined, bits are copied (the PS_ICC bits and PS_P).
399 *
400 * Note that %ah is bits 8-15 of %rax.
401 */
402static void
403emulate_lsahf(struct regs *rp, uchar_t instr)
404{
405	if (instr == 0x9e) {
406		/* sahf. Copy bits from %ah to flags. */
407		rp->r_ps = (rp->r_ps & ~0xff) |
408		    ((rp->r_rax >> 8) & PSL_LSAHFMASK) | PS_MB1;
409	} else {
410		/* lahf. Copy bits from flags to %ah. */
411		rp->r_rax = (rp->r_rax & ~0xff00) |
412		    (((rp->r_ps & PSL_LSAHFMASK) | PS_MB1) << 8);
413	}
414	rp->r_pc += LSAHFSIZE;
415}
416#endif /* __amd64 */
417
418#ifdef OPTERON_ERRATUM_91
419
420/*
421 * Test to see if the instruction at pc is a prefetch instruction.
422 *
423 * The first byte of prefetch instructions is always 0x0F.
424 * The second byte is 0x18 for regular prefetch or 0x0D for AMD 3dnow prefetch.
425 * The third byte is between 0 and 3 inclusive.
426 */
427
428#define	PREFETCHSIZE 3
429
430static int
431cmp_to_prefetch(uchar_t *p)
432{
433	if (*p == 0x0F && (*(p+1) == 0x18 || *(p+1) == 0x0D) && *(p+2) <= 3)
434		return (1);
435	return (0);
436}
437
438static int
439instr_is_prefetch(caddr_t pc)
440{
441	uchar_t instr[PREFETCHSIZE];
442	int	error;
443
444	error = copyin_nowatch(pc, (caddr_t)instr, PREFETCHSIZE);
445
446	if (error == 0 && cmp_to_prefetch(instr))
447		return (1);
448	return (0);
449}
450
451#endif /* OPTERON_ERRATUM_91 */
452
453/*
454 * Called from the trap handler when a processor trap occurs.
455 *
456 * Note: All user-level traps that might call stop() must exit
457 * trap() by 'goto out' or by falling through.
458 * Note Also: trap() is usually called with interrupts enabled, (PS_IE == 1)
459 * however, there are paths that arrive here with PS_IE == 0 so special care
460 * must be taken in those cases.
461 */
462void
463trap(struct regs *rp, caddr_t addr, processorid_t cpuid)
464{
465	kthread_t *ct = curthread;
466	enum seg_rw rw;
467	unsigned type;
468	proc_t *p = ttoproc(ct);
469	klwp_t *lwp = ttolwp(ct);
470	uintptr_t lofault;
471	faultcode_t pagefault(), res, errcode;
472	enum fault_type fault_type;
473	k_siginfo_t siginfo;
474	uint_t fault = 0;
475	int mstate;
476	int sicode = 0;
477	int watchcode;
478	int watchpage;
479	caddr_t vaddr;
480	int singlestep_twiddle;
481	size_t sz;
482	int ta;
483#ifdef __amd64
484	uchar_t instr;
485#endif
486
487	ASSERT_STACK_ALIGNED();
488
489	type = rp->r_trapno;
490	CPU_STATS_ADDQ(CPU, sys, trap, 1);
491	ASSERT(ct->t_schedflag & TS_DONT_SWAP);
492
493	if (type == T_PGFLT) {
494
495		errcode = rp->r_err;
496		if (errcode & PF_ERR_WRITE)
497			rw = S_WRITE;
498		else if ((caddr_t)rp->r_pc == addr ||
499		    (mmu.pt_nx != 0 && (errcode & PF_ERR_EXEC)))
500			rw = S_EXEC;
501		else
502			rw = S_READ;
503
504#if defined(__i386)
505		/*
506		 * Pentium Pro work-around
507		 */
508		if ((errcode & PF_ERR_PROT) && pentiumpro_bug4046376) {
509			uint_t	attr;
510			uint_t	priv_violation;
511			uint_t	access_violation;
512
513			if (hat_getattr(addr < (caddr_t)kernelbase ?
514			    curproc->p_as->a_hat : kas.a_hat, addr, &attr)
515			    == -1) {
516				errcode &= ~PF_ERR_PROT;
517			} else {
518				priv_violation = (errcode & PF_ERR_USER) &&
519				    !(attr & PROT_USER);
520				access_violation = (errcode & PF_ERR_WRITE) &&
521				    !(attr & PROT_WRITE);
522				if (!priv_violation && !access_violation)
523					goto cleanup;
524			}
525		}
526#endif /* __i386 */
527
528	} else if (type == T_SGLSTP && lwp != NULL)
529		lwp->lwp_pcb.pcb_drstat = (uintptr_t)addr;
530
531	if (tdebug)
532		showregs(type, rp, addr);
533
534	if (USERMODE(rp->r_cs)) {
535		/*
536		 * Set up the current cred to use during this trap. u_cred
537		 * no longer exists.  t_cred is used instead.
538		 * The current process credential applies to the thread for
539		 * the entire trap.  If trapping from the kernel, this
540		 * should already be set up.
541		 */
542		if (ct->t_cred != p->p_cred) {
543			cred_t *oldcred = ct->t_cred;
544			/*
545			 * DTrace accesses t_cred in probe context.  t_cred
546			 * must always be either NULL, or point to a valid,
547			 * allocated cred structure.
548			 */
549			ct->t_cred = crgetcred();
550			crfree(oldcred);
551		}
552		ASSERT(lwp != NULL);
553		type |= USER;
554		ASSERT(lwptoregs(lwp) == rp);
555		lwp->lwp_state = LWP_SYS;
556
557		switch (type) {
558		case T_PGFLT + USER:
559			if ((caddr_t)rp->r_pc == addr)
560				mstate = LMS_TFAULT;
561			else
562				mstate = LMS_DFAULT;
563			break;
564		default:
565			mstate = LMS_TRAP;
566			break;
567		}
568		/* Kernel probe */
569		TNF_PROBE_1(thread_state, "thread", /* CSTYLED */,
570		    tnf_microstate, state, mstate);
571		mstate = new_mstate(ct, mstate);
572
573		bzero(&siginfo, sizeof (siginfo));
574	}
575
576	switch (type) {
577	case T_PGFLT + USER:
578	case T_SGLSTP:
579	case T_SGLSTP + USER:
580	case T_BPTFLT + USER:
581		break;
582
583	default:
584		FTRACE_2("trap(): type=0x%lx, regs=0x%lx",
585		    (ulong_t)type, (ulong_t)rp);
586		break;
587	}
588
589	switch (type) {
590	case T_SIMDFPE:
591		/* Make sure we enable interrupts before die()ing */
592		sti();	/* The SIMD exception comes in via cmninttrap */
593		/*FALLTHROUGH*/
594	default:
595		if (type & USER) {
596			if (tudebug)
597				showregs(type, rp, (caddr_t)0);
598			printf("trap: Unknown trap type %d in user mode\n",
599			    type & ~USER);
600			siginfo.si_signo = SIGILL;
601			siginfo.si_code  = ILL_ILLTRP;
602			siginfo.si_addr  = (caddr_t)rp->r_pc;
603			siginfo.si_trapno = type & ~USER;
604			fault = FLTILL;
605			break;
606		} else {
607			(void) die(type, rp, addr, cpuid);
608			/*NOTREACHED*/
609		}
610
611	case T_PGFLT:		/* system page fault */
612		/*
613		 * If we're under on_trap() protection (see <sys/ontrap.h>),
614		 * set ot_trap and bounce back to the on_trap() call site
615		 * via the installed trampoline.
616		 */
617		if ((ct->t_ontrap != NULL) &&
618		    (ct->t_ontrap->ot_prot & OT_DATA_ACCESS)) {
619			ct->t_ontrap->ot_trap |= OT_DATA_ACCESS;
620			rp->r_pc = ct->t_ontrap->ot_trampoline;
621			goto cleanup;
622		}
623
624		/*
625		 * See if we can handle as pagefault. Save lofault
626		 * across this. Here we assume that an address
627		 * less than KERNELBASE is a user fault.
628		 * We can do this as copy.s routines verify that the
629		 * starting address is less than KERNELBASE before
630		 * starting and because we know that we always have
631		 * KERNELBASE mapped as invalid to serve as a "barrier".
632		 */
633		lofault = ct->t_lofault;
634		ct->t_lofault = 0;
635
636		mstate = new_mstate(ct, LMS_KFAULT);
637
638		if (addr < (caddr_t)kernelbase) {
639			res = pagefault(addr,
640			    (errcode & PF_ERR_PROT)? F_PROT: F_INVAL, rw, 0);
641			if (res == FC_NOMAP &&
642			    addr < p->p_usrstack &&
643			    grow(addr))
644				res = 0;
645		} else {
646			res = pagefault(addr,
647			    (errcode & PF_ERR_PROT)? F_PROT: F_INVAL, rw, 1);
648		}
649		(void) new_mstate(ct, mstate);
650
651		/*
652		 * Restore lofault. If we resolved the fault, exit.
653		 * If we didn't and lofault wasn't set, die.
654		 */
655		ct->t_lofault = lofault;
656		if (res == 0)
657			goto cleanup;
658
659#if defined(OPTERON_ERRATUM_93) && defined(_LP64)
660		if (lofault == 0 && opteron_erratum_93) {
661			/*
662			 * Workaround for Opteron Erratum 93. On return from
663			 * a System Managment Interrupt at a HLT instruction
664			 * the %rip might be truncated to a 32 bit value.
665			 * BIOS is supposed to fix this, but some don't.
666			 * If this occurs we simply restore the high order bits.
667			 * The HLT instruction is 1 byte of 0xf4.
668			 */
669			uintptr_t	rip = rp->r_pc;
670
671			if ((rip & 0xfffffffful) == rip) {
672				rip |= 0xfffffffful << 32;
673				if (hat_getpfnum(kas.a_hat, (caddr_t)rip) !=
674				    PFN_INVALID &&
675				    (*(uchar_t *)rip == 0xf4 ||
676				    *(uchar_t *)(rip - 1) == 0xf4)) {
677					rp->r_pc = rip;
678					goto cleanup;
679				}
680			}
681		}
682#endif /* OPTERON_ERRATUM_93 && _LP64 */
683
684#ifdef OPTERON_ERRATUM_91
685		if (lofault == 0 && opteron_erratum_91) {
686			/*
687			 * Workaround for Opteron Erratum 91. Prefetches may
688			 * generate a page fault (they're not supposed to do
689			 * that!). If this occurs we simply return back to the
690			 * instruction.
691			 */
692			caddr_t		pc = (caddr_t)rp->r_pc;
693
694			/*
695			 * If the faulting PC is not mapped, this is a
696			 * legitimate kernel page fault that must result in a
697			 * panic. If the faulting PC is mapped, it could contain
698			 * a prefetch instruction. Check for that here.
699			 */
700			if (hat_getpfnum(kas.a_hat, pc) != PFN_INVALID) {
701				if (cmp_to_prefetch((uchar_t *)pc)) {
702#ifdef DEBUG
703					cmn_err(CE_WARN, "Opteron erratum 91 "
704					    "occurred: kernel prefetch"
705					    " at %p generated a page fault!",
706					    (void *)rp->r_pc);
707#endif /* DEBUG */
708					goto cleanup;
709				}
710			}
711			(void) die(type, rp, addr, cpuid);
712		}
713#endif /* OPTERON_ERRATUM_91 */
714
715		if (lofault == 0)
716			(void) die(type, rp, addr, cpuid);
717
718		/*
719		 * Cannot resolve fault.  Return to lofault.
720		 */
721		if (lodebug) {
722			showregs(type, rp, addr);
723			traceregs(rp);
724		}
725		if (FC_CODE(res) == FC_OBJERR)
726			res = FC_ERRNO(res);
727		else
728			res = EFAULT;
729		rp->r_r0 = res;
730		rp->r_pc = ct->t_lofault;
731		goto cleanup;
732
733	case T_PGFLT + USER:	/* user page fault */
734		if (faultdebug) {
735			char *fault_str;
736
737			switch (rw) {
738			case S_READ:
739				fault_str = "read";
740				break;
741			case S_WRITE:
742				fault_str = "write";
743				break;
744			case S_EXEC:
745				fault_str = "exec";
746				break;
747			default:
748				fault_str = "";
749				break;
750			}
751			printf("user %s fault:  addr=0x%lx errcode=0x%x\n",
752			    fault_str, (uintptr_t)addr, errcode);
753		}
754
755#if defined(OPTERON_ERRATUM_100) && defined(_LP64)
756		/*
757		 * Workaround for AMD erratum 100
758		 *
759		 * A 32-bit process may receive a page fault on a non
760		 * 32-bit address by mistake. The range of the faulting
761		 * address will be
762		 *
763		 *	0xffffffff80000000 .. 0xffffffffffffffff or
764		 *	0x0000000100000000 .. 0x000000017fffffff
765		 *
766		 * The fault is always due to an instruction fetch, however
767		 * the value of r_pc should be correct (in 32 bit range),
768		 * so we ignore the page fault on the bogus address.
769		 */
770		if (p->p_model == DATAMODEL_ILP32 &&
771		    (0xffffffff80000000 <= (uintptr_t)addr ||
772		    (0x100000000 <= (uintptr_t)addr &&
773		    (uintptr_t)addr <= 0x17fffffff))) {
774			if (!opteron_erratum_100)
775				panic("unexpected erratum #100");
776			if (rp->r_pc <= 0xffffffff)
777				goto out;
778		}
779#endif /* OPTERON_ERRATUM_100 && _LP64 */
780
781		ASSERT(!(curthread->t_flag & T_WATCHPT));
782		watchpage = (pr_watch_active(p) && pr_is_watchpage(addr, rw));
783#ifdef __i386
784		/*
785		 * In 32-bit mode, the lcall (system call) instruction fetches
786		 * one word from the stack, at the stack pointer, because of the
787		 * way the call gate is constructed.  This is a bogus
788		 * read and should not be counted as a read watchpoint.
789		 * We work around the problem here by testing to see if
790		 * this situation applies and, if so, simply jumping to
791		 * the code in locore.s that fields the system call trap.
792		 * The registers on the stack are already set up properly
793		 * due to the match between the call gate sequence and the
794		 * trap gate sequence.  We just have to adjust the pc.
795		 */
796		if (watchpage && addr == (caddr_t)rp->r_sp &&
797		    rw == S_READ && instr_is_lcall_syscall((caddr_t)rp->r_pc)) {
798			extern void watch_syscall(void);
799
800			rp->r_pc += LCALLSIZE;
801			watch_syscall();	/* never returns */
802			/* NOTREACHED */
803		}
804#endif /* __i386 */
805		vaddr = addr;
806		if (!watchpage || (sz = instr_size(rp, &vaddr, rw)) <= 0)
807			fault_type = (errcode & PF_ERR_PROT)? F_PROT: F_INVAL;
808		else if ((watchcode = pr_is_watchpoint(&vaddr, &ta,
809		    sz, NULL, rw)) != 0) {
810			if (ta) {
811				do_watch_step(vaddr, sz, rw,
812				    watchcode, rp->r_pc);
813				fault_type = F_INVAL;
814			} else {
815				bzero(&siginfo, sizeof (siginfo));
816				siginfo.si_signo = SIGTRAP;
817				siginfo.si_code = watchcode;
818				siginfo.si_addr = vaddr;
819				siginfo.si_trapafter = 0;
820				siginfo.si_pc = (caddr_t)rp->r_pc;
821				fault = FLTWATCH;
822				break;
823			}
824		} else {
825			/* XXX pr_watch_emul() never succeeds (for now) */
826			if (rw != S_EXEC && pr_watch_emul(rp, vaddr, rw))
827				goto out;
828			do_watch_step(vaddr, sz, rw, 0, 0);
829			fault_type = F_INVAL;
830		}
831
832		res = pagefault(addr, fault_type, rw, 0);
833
834		/*
835		 * If pagefault() succeeded, ok.
836		 * Otherwise attempt to grow the stack.
837		 */
838		if (res == 0 ||
839		    (res == FC_NOMAP &&
840		    addr < p->p_usrstack &&
841		    grow(addr))) {
842			lwp->lwp_lastfault = FLTPAGE;
843			lwp->lwp_lastfaddr = addr;
844			if (prismember(&p->p_fltmask, FLTPAGE)) {
845				bzero(&siginfo, sizeof (siginfo));
846				siginfo.si_addr = addr;
847				(void) stop_on_fault(FLTPAGE, &siginfo);
848			}
849			goto out;
850		} else if (res == FC_PROT && addr < p->p_usrstack &&
851		    (mmu.pt_nx != 0 && (errcode & PF_ERR_EXEC))) {
852			report_stack_exec(p, addr);
853		}
854
855#ifdef OPTERON_ERRATUM_91
856		/*
857		 * Workaround for Opteron Erratum 91. Prefetches may generate a
858		 * page fault (they're not supposed to do that!). If this
859		 * occurs we simply return back to the instruction.
860		 *
861		 * We rely on copyin to properly fault in the page with r_pc.
862		 */
863		if (opteron_erratum_91 &&
864		    addr != (caddr_t)rp->r_pc &&
865		    instr_is_prefetch((caddr_t)rp->r_pc)) {
866#ifdef DEBUG
867			cmn_err(CE_WARN, "Opteron erratum 91 occurred: "
868			    "prefetch at %p in pid %d generated a trap!",
869			    (void *)rp->r_pc, p->p_pid);
870#endif /* DEBUG */
871			goto out;
872		}
873#endif /* OPTERON_ERRATUM_91 */
874
875		if (tudebug)
876			showregs(type, rp, addr);
877		/*
878		 * In the case where both pagefault and grow fail,
879		 * set the code to the value provided by pagefault.
880		 * We map all errors returned from pagefault() to SIGSEGV.
881		 */
882		bzero(&siginfo, sizeof (siginfo));
883		siginfo.si_addr = addr;
884		switch (FC_CODE(res)) {
885		case FC_HWERR:
886		case FC_NOSUPPORT:
887			siginfo.si_signo = SIGBUS;
888			siginfo.si_code = BUS_ADRERR;
889			fault = FLTACCESS;
890			break;
891		case FC_ALIGN:
892			siginfo.si_signo = SIGBUS;
893			siginfo.si_code = BUS_ADRALN;
894			fault = FLTACCESS;
895			break;
896		case FC_OBJERR:
897			if ((siginfo.si_errno = FC_ERRNO(res)) != EINTR) {
898				siginfo.si_signo = SIGBUS;
899				siginfo.si_code = BUS_OBJERR;
900				fault = FLTACCESS;
901			}
902			break;
903		default:	/* FC_NOMAP or FC_PROT */
904			siginfo.si_signo = SIGSEGV;
905			siginfo.si_code =
906			    (res == FC_NOMAP)? SEGV_MAPERR : SEGV_ACCERR;
907			fault = FLTBOUNDS;
908			break;
909		}
910		break;
911
912	case T_ILLINST + USER:	/* invalid opcode fault */
913		/*
914		 * If the syscall instruction is disabled due to LDT usage, a
915		 * user program that attempts to execute it will trigger a #ud
916		 * trap. Check for that case here. If this occurs on a CPU which
917		 * doesn't even support syscall, the result of all of this will
918		 * be to emulate that particular instruction.
919		 */
920		if (p->p_ldt != NULL &&
921		    ldt_rewrite_syscall(rp, p, X86_ASYSC))
922			goto out;
923
924#ifdef __amd64
925		/*
926		 * Emulate the LAHF and SAHF instructions if needed.
927		 * See the instr_is_lsahf function for details.
928		 */
929		if (p->p_model == DATAMODEL_LP64 &&
930		    instr_is_lsahf((caddr_t)rp->r_pc, &instr)) {
931			emulate_lsahf(rp, instr);
932			goto out;
933		}
934#endif
935
936		/*FALLTHROUGH*/
937
938		if (tudebug)
939			showregs(type, rp, (caddr_t)0);
940		siginfo.si_signo = SIGILL;
941		siginfo.si_code  = ILL_ILLOPC;
942		siginfo.si_addr  = (caddr_t)rp->r_pc;
943		fault = FLTILL;
944		break;
945
946	case T_ZERODIV + USER:		/* integer divide by zero */
947		if (tudebug && tudebugfpe)
948			showregs(type, rp, (caddr_t)0);
949		siginfo.si_signo = SIGFPE;
950		siginfo.si_code  = FPE_INTDIV;
951		siginfo.si_addr  = (caddr_t)rp->r_pc;
952		fault = FLTIZDIV;
953		break;
954
955	case T_OVFLW + USER:	/* integer overflow */
956		if (tudebug && tudebugfpe)
957			showregs(type, rp, (caddr_t)0);
958		siginfo.si_signo = SIGFPE;
959		siginfo.si_code  = FPE_INTOVF;
960		siginfo.si_addr  = (caddr_t)rp->r_pc;
961		fault = FLTIOVF;
962		break;
963
964	case T_NOEXTFLT + USER:	/* math coprocessor not available */
965		if (tudebug && tudebugfpe)
966			showregs(type, rp, addr);
967		if (fpnoextflt(rp)) {
968			siginfo.si_signo = SIGFPE;
969			siginfo.si_code  = ILL_ILLOPC;
970			siginfo.si_addr  = (caddr_t)rp->r_pc;
971			fault = FLTFPE;
972		}
973		break;
974
975	case T_EXTOVRFLT:	/* extension overrun fault */
976		/* check if we took a kernel trap on behalf of user */
977		{
978			extern  void ndptrap_frstor(void);
979			if (rp->r_pc != (uintptr_t)ndptrap_frstor) {
980				sti(); /* T_EXTOVRFLT comes in via cmninttrap */
981				(void) die(type, rp, addr, cpuid);
982			}
983			type |= USER;
984		}
985		/*FALLTHROUGH*/
986	case T_EXTOVRFLT + USER:	/* extension overrun fault */
987		if (tudebug && tudebugfpe)
988			showregs(type, rp, addr);
989		if (fpextovrflt(rp)) {
990			siginfo.si_signo = SIGSEGV;
991			siginfo.si_code  = SEGV_MAPERR;
992			siginfo.si_addr  = (caddr_t)rp->r_pc;
993			fault = FLTBOUNDS;
994		}
995		break;
996
997	case T_EXTERRFLT:	/* x87 floating point exception pending */
998		/* check if we took a kernel trap on behalf of user */
999		{
1000			extern  void ndptrap_frstor(void);
1001			if (rp->r_pc != (uintptr_t)ndptrap_frstor) {
1002				sti(); /* T_EXTERRFLT comes in via cmninttrap */
1003				(void) die(type, rp, addr, cpuid);
1004			}
1005			type |= USER;
1006		}
1007		/*FALLTHROUGH*/
1008
1009	case T_EXTERRFLT + USER: /* x87 floating point exception pending */
1010		if (tudebug && tudebugfpe)
1011			showregs(type, rp, addr);
1012		if (sicode = fpexterrflt(rp)) {
1013			siginfo.si_signo = SIGFPE;
1014			siginfo.si_code  = sicode;
1015			siginfo.si_addr  = (caddr_t)rp->r_pc;
1016			fault = FLTFPE;
1017		}
1018		break;
1019
1020	case T_SIMDFPE + USER:		/* SSE and SSE2 exceptions */
1021		if (tudebug && tudebugsse)
1022			showregs(type, rp, addr);
1023		if ((x86_feature & (X86_SSE|X86_SSE2)) == 0) {
1024			/*
1025			 * There are rumours that some user instructions
1026			 * on older CPUs can cause this trap to occur; in
1027			 * which case send a SIGILL instead of a SIGFPE.
1028			 */
1029			siginfo.si_signo = SIGILL;
1030			siginfo.si_code  = ILL_ILLTRP;
1031			siginfo.si_addr  = (caddr_t)rp->r_pc;
1032			siginfo.si_trapno = type & ~USER;
1033			fault = FLTILL;
1034		} else if ((sicode = fpsimderrflt(rp)) != 0) {
1035			siginfo.si_signo = SIGFPE;
1036			siginfo.si_code = sicode;
1037			siginfo.si_addr = (caddr_t)rp->r_pc;
1038			fault = FLTFPE;
1039		}
1040
1041		sti();	/* The SIMD exception comes in via cmninttrap */
1042		break;
1043
1044	case T_BPTFLT:	/* breakpoint trap */
1045		/*
1046		 * Kernel breakpoint traps should only happen when kmdb is
1047		 * active, and even then, it'll have interposed on the IDT, so
1048		 * control won't get here.  If it does, we've hit a breakpoint
1049		 * without the debugger, which is very strange, and very
1050		 * fatal.
1051		 */
1052		if (tudebug && tudebugbpt)
1053			showregs(type, rp, (caddr_t)0);
1054
1055		(void) die(type, rp, addr, cpuid);
1056		break;
1057
1058	case T_SGLSTP: /* single step/hw breakpoint exception */
1059
1060		/* Now evaluate how we got here */
1061		if (lwp != NULL && (lwp->lwp_pcb.pcb_drstat & DR_SINGLESTEP)) {
1062			/*
1063			 * i386 single-steps even through lcalls which
1064			 * change the privilege level. So we take a trap at
1065			 * the first instruction in privileged mode.
1066			 *
1067			 * Set a flag to indicate that upon completion of
1068			 * the system call, deal with the single-step trap.
1069			 *
1070			 * The same thing happens for sysenter, too.
1071			 */
1072			singlestep_twiddle = 0;
1073			if (rp->r_pc == (uintptr_t)sys_sysenter ||
1074			    rp->r_pc == (uintptr_t)brand_sys_sysenter) {
1075				singlestep_twiddle = 1;
1076#if defined(__amd64)
1077				/*
1078				 * Since we are already on the kernel's
1079				 * %gs, on 64-bit systems the sysenter case
1080				 * needs to adjust the pc to avoid
1081				 * executing the swapgs instruction at the
1082				 * top of the handler.
1083				 */
1084				if (rp->r_pc == (uintptr_t)sys_sysenter)
1085					rp->r_pc = (uintptr_t)
1086					    _sys_sysenter_post_swapgs;
1087				else
1088					rp->r_pc = (uintptr_t)
1089					    _brand_sys_sysenter_post_swapgs;
1090#endif
1091			}
1092#if defined(__i386)
1093			else if (rp->r_pc == (uintptr_t)sys_call ||
1094			    rp->r_pc == (uintptr_t)brand_sys_call) {
1095				singlestep_twiddle = 1;
1096			}
1097#endif
1098			else {
1099				/* not on sysenter/syscall; uregs available */
1100				if (tudebug && tudebugbpt)
1101					showregs(type, rp, (caddr_t)0);
1102			}
1103			if (singlestep_twiddle) {
1104				rp->r_ps &= ~PS_T; /* turn off trace */
1105				lwp->lwp_pcb.pcb_flags |= DEBUG_PENDING;
1106				ct->t_post_sys = 1;
1107				aston(curthread);
1108				goto cleanup;
1109			}
1110		}
1111		/* XXX - needs review on debugger interface? */
1112		if (boothowto & RB_DEBUG)
1113			debug_enter((char *)NULL);
1114		else
1115			(void) die(type, rp, addr, cpuid);
1116		break;
1117
1118	case T_NMIFLT:	/* NMI interrupt */
1119		printf("Unexpected NMI in system mode\n");
1120		goto cleanup;
1121
1122	case T_NMIFLT + USER:	/* NMI interrupt */
1123		printf("Unexpected NMI in user mode\n");
1124		break;
1125
1126	case T_GPFLT:	/* general protection violation */
1127		/*
1128		 * Any #GP that occurs during an on_trap .. no_trap bracket
1129		 * with OT_DATA_ACCESS or OT_SEGMENT_ACCESS protection,
1130		 * or in a on_fault .. no_fault bracket, is forgiven
1131		 * and we trampoline.  This protection is given regardless
1132		 * of whether we are 32/64 bit etc - if a distinction is
1133		 * required then define new on_trap protection types.
1134		 *
1135		 * On amd64, we can get a #gp from referencing addresses
1136		 * in the virtual address hole e.g. from a copyin or in
1137		 * update_sregs while updating user segment registers.
1138		 *
1139		 * On the 32-bit hypervisor we could also generate one in
1140		 * mfn_to_pfn by reaching around or into where the hypervisor
1141		 * lives which is protected by segmentation.
1142		 */
1143
1144		/*
1145		 * If we're under on_trap() protection (see <sys/ontrap.h>),
1146		 * set ot_trap and trampoline back to the on_trap() call site
1147		 * for OT_DATA_ACCESS or OT_SEGMENT_ACCESS.
1148		 */
1149		if (ct->t_ontrap != NULL) {
1150			int ttype =  ct->t_ontrap->ot_prot &
1151			    (OT_DATA_ACCESS | OT_SEGMENT_ACCESS);
1152
1153			if (ttype != 0) {
1154				ct->t_ontrap->ot_trap |= ttype;
1155				if (tudebug)
1156					showregs(type, rp, (caddr_t)0);
1157				rp->r_pc = ct->t_ontrap->ot_trampoline;
1158				goto cleanup;
1159			}
1160		}
1161
1162		/*
1163		 * If we're under lofault protection (copyin etc.),
1164		 * longjmp back to lofault with an EFAULT.
1165		 */
1166		if (ct->t_lofault) {
1167			/*
1168			 * Fault is not resolvable, so just return to lofault
1169			 */
1170			if (lodebug) {
1171				showregs(type, rp, addr);
1172				traceregs(rp);
1173			}
1174			rp->r_r0 = EFAULT;
1175			rp->r_pc = ct->t_lofault;
1176			goto cleanup;
1177		}
1178
1179		/*
1180		 * We fall through to the next case, which repeats
1181		 * the OT_SEGMENT_ACCESS check which we've already
1182		 * done, so we'll always fall through to the
1183		 * T_STKFLT case.
1184		 */
1185		/*FALLTHROUGH*/
1186	case T_SEGFLT:	/* segment not present fault */
1187		/*
1188		 * One example of this is #NP in update_sregs while
1189		 * attempting to update a user segment register
1190		 * that points to a descriptor that is marked not
1191		 * present.
1192		 */
1193		if (ct->t_ontrap != NULL &&
1194		    ct->t_ontrap->ot_prot & OT_SEGMENT_ACCESS) {
1195			ct->t_ontrap->ot_trap |= OT_SEGMENT_ACCESS;
1196			if (tudebug)
1197				showregs(type, rp, (caddr_t)0);
1198			rp->r_pc = ct->t_ontrap->ot_trampoline;
1199			goto cleanup;
1200		}
1201		/*FALLTHROUGH*/
1202	case T_STKFLT:	/* stack fault */
1203	case T_TSSFLT:	/* invalid TSS fault */
1204		if (tudebug)
1205			showregs(type, rp, (caddr_t)0);
1206		if (kern_gpfault(rp))
1207			(void) die(type, rp, addr, cpuid);
1208		goto cleanup;
1209
1210	/*
1211	 * ONLY 32-bit PROCESSES can USE a PRIVATE LDT! 64-bit apps
1212	 * should have no need for them, so we put a stop to it here.
1213	 *
1214	 * So: not-present fault is ONLY valid for 32-bit processes with
1215	 * a private LDT trying to do a system call. Emulate it.
1216	 *
1217	 * #gp fault is ONLY valid for 32-bit processes also, which DO NOT
1218	 * have a private LDT, and are trying to do a system call. Emulate it.
1219	 */
1220
1221	case T_SEGFLT + USER:	/* segment not present fault */
1222	case T_GPFLT + USER:	/* general protection violation */
1223#ifdef _SYSCALL32_IMPL
1224		if (p->p_model != DATAMODEL_NATIVE) {
1225#endif /* _SYSCALL32_IMPL */
1226		if (instr_is_lcall_syscall((caddr_t)rp->r_pc)) {
1227			if (type == T_SEGFLT + USER)
1228				ASSERT(p->p_ldt != NULL);
1229
1230			if ((p->p_ldt == NULL && type == T_GPFLT + USER) ||
1231			    type == T_SEGFLT + USER) {
1232
1233			/*
1234			 * The user attempted a system call via the obsolete
1235			 * call gate mechanism. Because the process doesn't have
1236			 * an LDT (i.e. the ldtr contains 0), a #gp results.
1237			 * Emulate the syscall here, just as we do above for a
1238			 * #np trap.
1239			 */
1240
1241			/*
1242			 * Since this is a not-present trap, rp->r_pc points to
1243			 * the trapping lcall instruction. We need to bump it
1244			 * to the next insn so the app can continue on.
1245			 */
1246			rp->r_pc += LCALLSIZE;
1247			lwp->lwp_regs = rp;
1248
1249			/*
1250			 * Normally the microstate of the LWP is forced back to
1251			 * LMS_USER by the syscall handlers. Emulate that
1252			 * behavior here.
1253			 */
1254			mstate = LMS_USER;
1255
1256			dosyscall();
1257			goto out;
1258			}
1259		}
1260#ifdef _SYSCALL32_IMPL
1261		}
1262#endif /* _SYSCALL32_IMPL */
1263		/*
1264		 * If the current process is using a private LDT and the
1265		 * trapping instruction is sysenter, the sysenter instruction
1266		 * has been disabled on the CPU because it destroys segment
1267		 * registers. If this is the case, rewrite the instruction to
1268		 * be a safe system call and retry it. If this occurs on a CPU
1269		 * which doesn't even support sysenter, the result of all of
1270		 * this will be to emulate that particular instruction.
1271		 */
1272		if (p->p_ldt != NULL &&
1273		    ldt_rewrite_syscall(rp, p, X86_SEP))
1274			goto out;
1275
1276		/*FALLTHROUGH*/
1277
1278	case T_BOUNDFLT + USER:	/* bound fault */
1279	case T_STKFLT + USER:	/* stack fault */
1280	case T_TSSFLT + USER:	/* invalid TSS fault */
1281		if (tudebug)
1282			showregs(type, rp, (caddr_t)0);
1283		siginfo.si_signo = SIGSEGV;
1284		siginfo.si_code  = SEGV_MAPERR;
1285		siginfo.si_addr  = (caddr_t)rp->r_pc;
1286		fault = FLTBOUNDS;
1287		break;
1288
1289	case T_ALIGNMENT + USER:	/* user alignment error (486) */
1290		if (tudebug)
1291			showregs(type, rp, (caddr_t)0);
1292		bzero(&siginfo, sizeof (siginfo));
1293		siginfo.si_signo = SIGBUS;
1294		siginfo.si_code = BUS_ADRALN;
1295		siginfo.si_addr = (caddr_t)rp->r_pc;
1296		fault = FLTACCESS;
1297		break;
1298
1299	case T_SGLSTP + USER: /* single step/hw breakpoint exception */
1300		if (tudebug && tudebugbpt)
1301			showregs(type, rp, (caddr_t)0);
1302
1303		/* Was it single-stepping? */
1304		if (lwp->lwp_pcb.pcb_drstat & DR_SINGLESTEP) {
1305			pcb_t *pcb = &lwp->lwp_pcb;
1306
1307			rp->r_ps &= ~PS_T;
1308			/*
1309			 * If both NORMAL_STEP and WATCH_STEP are in effect,
1310			 * give precedence to WATCH_STEP.  If neither is set,
1311			 * user must have set the PS_T bit in %efl; treat this
1312			 * as NORMAL_STEP.
1313			 */
1314			if ((fault = undo_watch_step(&siginfo)) == 0 &&
1315			    ((pcb->pcb_flags & NORMAL_STEP) ||
1316			    !(pcb->pcb_flags & WATCH_STEP))) {
1317				siginfo.si_signo = SIGTRAP;
1318				siginfo.si_code = TRAP_TRACE;
1319				siginfo.si_addr = (caddr_t)rp->r_pc;
1320				fault = FLTTRACE;
1321			}
1322			pcb->pcb_flags &= ~(NORMAL_STEP|WATCH_STEP);
1323		} else {
1324			cmn_err(CE_WARN,
1325			    "Unexpected INT 1 in user mode, dr6=%lx",
1326			    lwp->lwp_pcb.pcb_drstat);
1327		}
1328		break;
1329
1330	case T_BPTFLT + USER:	/* breakpoint trap */
1331		if (tudebug && tudebugbpt)
1332			showregs(type, rp, (caddr_t)0);
1333		/*
1334		 * int 3 (the breakpoint instruction) leaves the pc referring
1335		 * to the address one byte after the breakpointed address.
1336		 * If the P_PR_BPTADJ flag has been set via /proc, We adjust
1337		 * it back so it refers to the breakpointed address.
1338		 */
1339		if (p->p_proc_flag & P_PR_BPTADJ)
1340			rp->r_pc--;
1341		siginfo.si_signo = SIGTRAP;
1342		siginfo.si_code  = TRAP_BRKPT;
1343		siginfo.si_addr  = (caddr_t)rp->r_pc;
1344		fault = FLTBPT;
1345		break;
1346
1347	case T_AST:
1348		/*
1349		 * This occurs only after the cs register has been made to
1350		 * look like a kernel selector, either through debugging or
1351		 * possibly by functions like setcontext().  The thread is
1352		 * about to cause a general protection fault at common_iret()
1353		 * in locore.  We let that happen immediately instead of
1354		 * doing the T_AST processing.
1355		 */
1356		goto cleanup;
1357
1358	case T_AST + USER:	/* profiling, resched, h/w error pseudo trap */
1359		if (lwp->lwp_pcb.pcb_flags & ASYNC_HWERR) {
1360			proc_t *p = ttoproc(curthread);
1361
1362			lwp->lwp_pcb.pcb_flags &= ~ASYNC_HWERR;
1363			contract_process_hwerr(p->p_ct_process, p);
1364			siginfo.si_signo = SIGKILL;
1365			siginfo.si_code = SI_NOINFO;
1366		} else if (lwp->lwp_pcb.pcb_flags & CPC_OVERFLOW) {
1367			lwp->lwp_pcb.pcb_flags &= ~CPC_OVERFLOW;
1368			if (kcpc_overflow_ast()) {
1369				/*
1370				 * Signal performance counter overflow
1371				 */
1372				if (tudebug)
1373					showregs(type, rp, (caddr_t)0);
1374				bzero(&siginfo, sizeof (siginfo));
1375				siginfo.si_signo = SIGEMT;
1376				siginfo.si_code = EMT_CPCOVF;
1377				siginfo.si_addr = (caddr_t)rp->r_pc;
1378				fault = FLTCPCOVF;
1379			}
1380		}
1381
1382		break;
1383	}
1384
1385	/*
1386	 * We can't get here from a system trap
1387	 */
1388	ASSERT(type & USER);
1389
1390	if (fault) {
1391		/* We took a fault so abort single step. */
1392		lwp->lwp_pcb.pcb_flags &= ~(NORMAL_STEP|WATCH_STEP);
1393		/*
1394		 * Remember the fault and fault adddress
1395		 * for real-time (SIGPROF) profiling.
1396		 */
1397		lwp->lwp_lastfault = fault;
1398		lwp->lwp_lastfaddr = siginfo.si_addr;
1399
1400		DTRACE_PROC2(fault, int, fault, ksiginfo_t *, &siginfo);
1401
1402		/*
1403		 * If a debugger has declared this fault to be an
1404		 * event of interest, stop the lwp.  Otherwise just
1405		 * deliver the associated signal.
1406		 */
1407		if (siginfo.si_signo != SIGKILL &&
1408		    prismember(&p->p_fltmask, fault) &&
1409		    stop_on_fault(fault, &siginfo) == 0)
1410			siginfo.si_signo = 0;
1411	}
1412
1413	if (siginfo.si_signo)
1414		trapsig(&siginfo, (fault == FLTCPCOVF)? 0 : 1);
1415
1416	if (lwp->lwp_oweupc)
1417		profil_tick(rp->r_pc);
1418
1419	if (ct->t_astflag | ct->t_sig_check) {
1420		/*
1421		 * Turn off the AST flag before checking all the conditions that
1422		 * may have caused an AST.  This flag is on whenever a signal or
1423		 * unusual condition should be handled after the next trap or
1424		 * syscall.
1425		 */
1426		astoff(ct);
1427		/*
1428		 * If a single-step trap occurred on a syscall (see above)
1429		 * recognize it now.  Do this before checking for signals
1430		 * because deferred_singlestep_trap() may generate a SIGTRAP to
1431		 * the LWP or may otherwise mark the LWP to call issig(FORREAL).
1432		 */
1433		if (lwp->lwp_pcb.pcb_flags & DEBUG_PENDING)
1434			deferred_singlestep_trap((caddr_t)rp->r_pc);
1435
1436		ct->t_sig_check = 0;
1437
1438		mutex_enter(&p->p_lock);
1439		if (curthread->t_proc_flag & TP_CHANGEBIND) {
1440			timer_lwpbind();
1441			curthread->t_proc_flag &= ~TP_CHANGEBIND;
1442		}
1443		mutex_exit(&p->p_lock);
1444
1445		/*
1446		 * for kaio requests that are on the per-process poll queue,
1447		 * aiop->aio_pollq, they're AIO_POLL bit is set, the kernel
1448		 * should copyout their result_t to user memory. by copying
1449		 * out the result_t, the user can poll on memory waiting
1450		 * for the kaio request to complete.
1451		 */
1452		if (p->p_aio)
1453			aio_cleanup(0);
1454		/*
1455		 * If this LWP was asked to hold, call holdlwp(), which will
1456		 * stop.  holdlwps() sets this up and calls pokelwps() which
1457		 * sets the AST flag.
1458		 *
1459		 * Also check TP_EXITLWP, since this is used by fresh new LWPs
1460		 * through lwp_rtt().  That flag is set if the lwp_create(2)
1461		 * syscall failed after creating the LWP.
1462		 */
1463		if (ISHOLD(p))
1464			holdlwp();
1465
1466		/*
1467		 * All code that sets signals and makes ISSIG evaluate true must
1468		 * set t_astflag afterwards.
1469		 */
1470		if (ISSIG_PENDING(ct, lwp, p)) {
1471			if (issig(FORREAL))
1472				psig();
1473			ct->t_sig_check = 1;
1474		}
1475
1476		if (ct->t_rprof != NULL) {
1477			realsigprof(0, 0);
1478			ct->t_sig_check = 1;
1479		}
1480
1481		/*
1482		 * /proc can't enable/disable the trace bit itself
1483		 * because that could race with the call gate used by
1484		 * system calls via "lcall". If that happened, an
1485		 * invalid EFLAGS would result. prstep()/prnostep()
1486		 * therefore schedule an AST for the purpose.
1487		 */
1488		if (lwp->lwp_pcb.pcb_flags & REQUEST_STEP) {
1489			lwp->lwp_pcb.pcb_flags &= ~REQUEST_STEP;
1490			rp->r_ps |= PS_T;
1491		}
1492		if (lwp->lwp_pcb.pcb_flags & REQUEST_NOSTEP) {
1493			lwp->lwp_pcb.pcb_flags &= ~REQUEST_NOSTEP;
1494			rp->r_ps &= ~PS_T;
1495		}
1496	}
1497
1498out:	/* We can't get here from a system trap */
1499	ASSERT(type & USER);
1500
1501	if (ISHOLD(p))
1502		holdlwp();
1503
1504	/*
1505	 * Set state to LWP_USER here so preempt won't give us a kernel
1506	 * priority if it occurs after this point.  Call CL_TRAPRET() to
1507	 * restore the user-level priority.
1508	 *
1509	 * It is important that no locks (other than spinlocks) be entered
1510	 * after this point before returning to user mode (unless lwp_state
1511	 * is set back to LWP_SYS).
1512	 */
1513	lwp->lwp_state = LWP_USER;
1514
1515	if (ct->t_trapret) {
1516		ct->t_trapret = 0;
1517		thread_lock(ct);
1518		CL_TRAPRET(ct);
1519		thread_unlock(ct);
1520	}
1521	if (CPU->cpu_runrun || curthread->t_schedflag & TS_ANYWAITQ)
1522		preempt();
1523	(void) new_mstate(ct, mstate);
1524
1525	/* Kernel probe */
1526	TNF_PROBE_1(thread_state, "thread", /* CSTYLED */,
1527	    tnf_microstate, state, LMS_USER);
1528
1529	return;
1530
1531cleanup:	/* system traps end up here */
1532	ASSERT(!(type & USER));
1533}
1534
1535/*
1536 * Patch non-zero to disable preemption of threads in the kernel.
1537 */
1538int IGNORE_KERNEL_PREEMPTION = 0;	/* XXX - delete this someday */
1539
1540struct kpreempt_cnts {		/* kernel preemption statistics */
1541	int	kpc_idle;	/* executing idle thread */
1542	int	kpc_intr;	/* executing interrupt thread */
1543	int	kpc_clock;	/* executing clock thread */
1544	int	kpc_blocked;	/* thread has blocked preemption (t_preempt) */
1545	int	kpc_notonproc;	/* thread is surrendering processor */
1546	int	kpc_inswtch;	/* thread has ratified scheduling decision */
1547	int	kpc_prilevel;	/* processor interrupt level is too high */
1548	int	kpc_apreempt;	/* asynchronous preemption */
1549	int	kpc_spreempt;	/* synchronous preemption */
1550} kpreempt_cnts;
1551
1552/*
1553 * kernel preemption: forced rescheduling, preempt the running kernel thread.
1554 *	the argument is old PIL for an interrupt,
1555 *	or the distingished value KPREEMPT_SYNC.
1556 */
1557void
1558kpreempt(int asyncspl)
1559{
1560	kthread_t *ct = curthread;
1561
1562	if (IGNORE_KERNEL_PREEMPTION) {
1563		aston(CPU->cpu_dispthread);
1564		return;
1565	}
1566
1567	/*
1568	 * Check that conditions are right for kernel preemption
1569	 */
1570	do {
1571		if (ct->t_preempt) {
1572			/*
1573			 * either a privileged thread (idle, panic, interrupt)
1574			 *	or will check when t_preempt is lowered
1575			 */
1576			if (ct->t_pri < 0)
1577				kpreempt_cnts.kpc_idle++;
1578			else if (ct->t_flag & T_INTR_THREAD) {
1579				kpreempt_cnts.kpc_intr++;
1580				if (ct->t_pil == CLOCK_LEVEL)
1581					kpreempt_cnts.kpc_clock++;
1582			} else
1583				kpreempt_cnts.kpc_blocked++;
1584			aston(CPU->cpu_dispthread);
1585			return;
1586		}
1587		if (ct->t_state != TS_ONPROC ||
1588		    ct->t_disp_queue != CPU->cpu_disp) {
1589			/* this thread will be calling swtch() shortly */
1590			kpreempt_cnts.kpc_notonproc++;
1591			if (CPU->cpu_thread != CPU->cpu_dispthread) {
1592				/* already in swtch(), force another */
1593				kpreempt_cnts.kpc_inswtch++;
1594				siron();
1595			}
1596			return;
1597		}
1598		if (getpil() >= DISP_LEVEL) {
1599			/*
1600			 * We can't preempt this thread if it is at
1601			 * a PIL >= DISP_LEVEL since it may be holding
1602			 * a spin lock (like sched_lock).
1603			 */
1604			siron();	/* check back later */
1605			kpreempt_cnts.kpc_prilevel++;
1606			return;
1607		}
1608		if (!interrupts_enabled()) {
1609			/*
1610			 * Can't preempt while running with ints disabled
1611			 */
1612			kpreempt_cnts.kpc_prilevel++;
1613			return;
1614		}
1615		if (asyncspl != KPREEMPT_SYNC)
1616			kpreempt_cnts.kpc_apreempt++;
1617		else
1618			kpreempt_cnts.kpc_spreempt++;
1619
1620		ct->t_preempt++;
1621		preempt();
1622		ct->t_preempt--;
1623	} while (CPU->cpu_kprunrun);
1624}
1625
1626/*
1627 * Print out debugging info.
1628 */
1629static void
1630showregs(uint_t type, struct regs *rp, caddr_t addr)
1631{
1632	int s;
1633
1634	s = spl7();
1635	type &= ~USER;
1636	if (PTOU(curproc)->u_comm[0])
1637		printf("%s: ", PTOU(curproc)->u_comm);
1638	if (type < TRAP_TYPES)
1639		printf("#%s %s\n", trap_type_mnemonic[type], trap_type[type]);
1640	else
1641		switch (type) {
1642		case T_SYSCALL:
1643			printf("Syscall Trap:\n");
1644			break;
1645		case T_AST:
1646			printf("AST\n");
1647			break;
1648		default:
1649			printf("Bad Trap = %d\n", type);
1650			break;
1651		}
1652	if (type == T_PGFLT) {
1653		printf("Bad %s fault at addr=0x%lx\n",
1654		    USERMODE(rp->r_cs) ? "user": "kernel", (uintptr_t)addr);
1655	} else if (addr) {
1656		printf("addr=0x%lx\n", (uintptr_t)addr);
1657	}
1658
1659	printf("pid=%d, pc=0x%lx, sp=0x%lx, eflags=0x%lx\n",
1660	    (ttoproc(curthread) && ttoproc(curthread)->p_pidp) ?
1661	    ttoproc(curthread)->p_pid : 0, rp->r_pc, rp->r_sp, rp->r_ps);
1662
1663#if defined(__lint)
1664	/*
1665	 * this clause can be deleted when lint bug 4870403 is fixed
1666	 * (lint thinks that bit 32 is illegal in a %b format string)
1667	 */
1668	printf("cr0: %x cr4: %b\n",
1669	    (uint_t)getcr0(), (uint_t)getcr4(), FMT_CR4);
1670#else
1671	printf("cr0: %b cr4: %b\n",
1672	    (uint_t)getcr0(), FMT_CR0, (uint_t)getcr4(), FMT_CR4);
1673#endif	/* __lint */
1674
1675	printf("cr2: %lx", getcr2());
1676#if !defined(__xpv)
1677	printf("cr3: %lx", getcr3());
1678#if defined(__amd64)
1679	printf("cr8: %lx\n", getcr8());
1680#endif
1681#endif
1682	printf("\n");
1683
1684	dumpregs(rp);
1685	splx(s);
1686}
1687
1688static void
1689dumpregs(struct regs *rp)
1690{
1691#if defined(__amd64)
1692	const char fmt[] = "\t%3s: %16lx %3s: %16lx %3s: %16lx\n";
1693
1694	printf(fmt, "rdi", rp->r_rdi, "rsi", rp->r_rsi, "rdx", rp->r_rdx);
1695	printf(fmt, "rcx", rp->r_rcx, " r8", rp->r_r8, " r9", rp->r_r9);
1696	printf(fmt, "rax", rp->r_rax, "rbx", rp->r_rbx, "rbp", rp->r_rbp);
1697	printf(fmt, "r10", rp->r_r10, "r11", rp->r_r11, "r12", rp->r_r12);
1698	printf(fmt, "r13", rp->r_r13, "r14", rp->r_r14, "r15", rp->r_r15);
1699
1700	printf(fmt, "fsb", rdmsr(MSR_AMD_FSBASE), "gsb", rdmsr(MSR_AMD_GSBASE),
1701	    " ds", rp->r_ds);
1702	printf(fmt, " es", rp->r_es, " fs", rp->r_fs, " gs", rp->r_gs);
1703
1704	printf(fmt, "trp", rp->r_trapno, "err", rp->r_err, "rip", rp->r_rip);
1705	printf(fmt, " cs", rp->r_cs, "rfl", rp->r_rfl, "rsp", rp->r_rsp);
1706
1707	printf("\t%3s: %16lx\n", " ss", rp->r_ss);
1708
1709#elif defined(__i386)
1710	const char fmt[] = "\t%3s: %8lx %3s: %8lx %3s: %8lx %3s: %8lx\n";
1711
1712	printf(fmt, " gs", rp->r_gs, " fs", rp->r_fs,
1713	    " es", rp->r_es, " ds", rp->r_ds);
1714	printf(fmt, "edi", rp->r_edi, "esi", rp->r_esi,
1715	    "ebp", rp->r_ebp, "esp", rp->r_esp);
1716	printf(fmt, "ebx", rp->r_ebx, "edx", rp->r_edx,
1717	    "ecx", rp->r_ecx, "eax", rp->r_eax);
1718	printf(fmt, "trp", rp->r_trapno, "err", rp->r_err,
1719	    "eip", rp->r_eip, " cs", rp->r_cs);
1720	printf("\t%3s: %8lx %3s: %8lx %3s: %8lx\n",
1721	    "efl", rp->r_efl, "usp", rp->r_uesp, " ss", rp->r_ss);
1722
1723#endif	/* __i386 */
1724}
1725
1726/*
1727 * Test to see if the instruction is iret on i386 or iretq on amd64.
1728 *
1729 * On the hypervisor we can only test for nopop_sys_rtt_syscall. If true
1730 * then we are in the context of hypervisor's failsafe handler because it
1731 * tried to iret and failed due to a bad selector. See xen_failsafe_callback.
1732 */
1733static int
1734instr_is_iret(caddr_t pc)
1735{
1736
1737#if defined(__xpv)
1738	extern void nopop_sys_rtt_syscall(void);
1739	return ((pc == (caddr_t)nopop_sys_rtt_syscall) ? 1 : 0);
1740
1741#else
1742
1743#if defined(__amd64)
1744	static const uint8_t iret_insn[2] = { 0x48, 0xcf };	/* iretq */
1745
1746#elif defined(__i386)
1747	static const uint8_t iret_insn[1] = { 0xcf };		/* iret */
1748#endif	/* __i386 */
1749	return (bcmp(pc, iret_insn, sizeof (iret_insn)) == 0);
1750
1751#endif	/* __xpv */
1752}
1753
1754#if defined(__i386)
1755
1756/*
1757 * Test to see if the instruction is part of __SEGREGS_POP
1758 *
1759 * Note carefully the appallingly awful dependency between
1760 * the instruction sequence used in __SEGREGS_POP and these
1761 * instructions encoded here.
1762 */
1763static int
1764instr_is_segregs_pop(caddr_t pc)
1765{
1766	static const uint8_t movw_0_esp_gs[4] = { 0x8e, 0x6c, 0x24, 0x0 };
1767	static const uint8_t movw_4_esp_fs[4] = { 0x8e, 0x64, 0x24, 0x4 };
1768	static const uint8_t movw_8_esp_es[4] = { 0x8e, 0x44, 0x24, 0x8 };
1769	static const uint8_t movw_c_esp_ds[4] = { 0x8e, 0x5c, 0x24, 0xc };
1770
1771	if (bcmp(pc, movw_0_esp_gs, sizeof (movw_0_esp_gs)) == 0 ||
1772	    bcmp(pc, movw_4_esp_fs, sizeof (movw_4_esp_fs)) == 0 ||
1773	    bcmp(pc, movw_8_esp_es, sizeof (movw_8_esp_es)) == 0 ||
1774	    bcmp(pc, movw_c_esp_ds, sizeof (movw_c_esp_ds)) == 0)
1775		return (1);
1776
1777	return (0);
1778}
1779
1780#endif	/* __i386 */
1781
1782/*
1783 * Test to see if the instruction is part of _sys_rtt.
1784 *
1785 * Again on the hypervisor if we try to IRET to user land with a bad code
1786 * or stack selector we will get vectored through xen_failsafe_callback.
1787 * In which case we assume we got here via _sys_rtt since we only allow
1788 * IRET to user land to take place in _sys_rtt.
1789 */
1790static int
1791instr_is_sys_rtt(caddr_t pc)
1792{
1793	extern void _sys_rtt(), _sys_rtt_end();
1794
1795	if ((uintptr_t)pc < (uintptr_t)_sys_rtt ||
1796	    (uintptr_t)pc > (uintptr_t)_sys_rtt_end)
1797		return (0);
1798
1799	return (1);
1800}
1801
1802/*
1803 * Handle #gp faults in kernel mode.
1804 *
1805 * One legitimate way this can happen is if we attempt to update segment
1806 * registers to naughty values on the way out of the kernel.
1807 *
1808 * This can happen in a couple of ways: someone - either accidentally or
1809 * on purpose - creates (setcontext(2), lwp_create(2)) or modifies
1810 * (signal(2)) a ucontext that contains silly segment register values.
1811 * Or someone - either accidentally or on purpose - modifies the prgregset_t
1812 * of a subject process via /proc to contain silly segment register values.
1813 *
1814 * (The unfortunate part is that we can end up discovering the bad segment
1815 * register value in the middle of an 'iret' after we've popped most of the
1816 * stack.  So it becomes quite difficult to associate an accurate ucontext
1817 * with the lwp, because the act of taking the #gp trap overwrites most of
1818 * what we were going to send the lwp.)
1819 *
1820 * OTOH if it turns out that's -not- the problem, and we're -not- an lwp
1821 * trying to return to user mode and we get a #gp fault, then we need
1822 * to die() -- which will happen if we return non-zero from this routine.
1823 */
1824static int
1825kern_gpfault(struct regs *rp)
1826{
1827	kthread_t *t = curthread;
1828	proc_t *p = ttoproc(t);
1829	klwp_t *lwp = ttolwp(t);
1830	struct regs tmpregs, *trp = NULL;
1831	caddr_t pc = (caddr_t)rp->r_pc;
1832	int v;
1833
1834	/*
1835	 * if we're not an lwp, or in the case of running native the
1836	 * pc range is outside _sys_rtt, then we should immediately
1837	 * be die()ing horribly.
1838	 */
1839	if (lwp == NULL || !instr_is_sys_rtt(pc))
1840		return (1);
1841
1842	/*
1843	 * So at least we're in the right part of the kernel.
1844	 *
1845	 * Disassemble the instruction at the faulting pc.
1846	 * Once we know what it is, we carefully reconstruct the stack
1847	 * based on the order in which the stack is deconstructed in
1848	 * _sys_rtt. Ew.
1849	 */
1850	if (instr_is_iret(pc)) {
1851		/*
1852		 * We took the #gp while trying to perform the IRET.
1853		 * This means that either %cs or %ss are bad.
1854		 * All we know for sure is that most of the general
1855		 * registers have been restored, including the
1856		 * segment registers, and all we have left on the
1857		 * topmost part of the lwp's stack are the
1858		 * registers that the iretq was unable to consume.
1859		 *
1860		 * All the rest of the state was crushed by the #gp
1861		 * which pushed -its- registers atop our old save area
1862		 * (because we had to decrement the stack pointer, sigh) so
1863		 * all that we can try and do is to reconstruct the
1864		 * crushed frame from the #gp trap frame itself.
1865		 */
1866		trp = &tmpregs;
1867		trp->r_ss = lwptoregs(lwp)->r_ss;
1868		trp->r_sp = lwptoregs(lwp)->r_sp;
1869		trp->r_ps = lwptoregs(lwp)->r_ps;
1870		trp->r_cs = lwptoregs(lwp)->r_cs;
1871		trp->r_pc = lwptoregs(lwp)->r_pc;
1872		bcopy(rp, trp, offsetof(struct regs, r_pc));
1873
1874		/*
1875		 * Validate simple math
1876		 */
1877		ASSERT(trp->r_pc == lwptoregs(lwp)->r_pc);
1878		ASSERT(trp->r_err == rp->r_err);
1879
1880
1881
1882	}
1883
1884#if defined(__amd64)
1885	if (trp == NULL && lwp->lwp_pcb.pcb_rupdate != 0) {
1886
1887		/*
1888		 * This is the common case -- we're trying to load
1889		 * a bad segment register value in the only section
1890		 * of kernel code that ever loads segment registers.
1891		 *
1892		 * We don't need to do anything at this point because
1893		 * the pcb contains all the pending segment register
1894		 * state, and the regs are still intact because we
1895		 * didn't adjust the stack pointer yet.  Given the fidelity
1896		 * of all this, we could conceivably send a signal
1897		 * to the lwp, rather than core-ing.
1898		 */
1899		trp = lwptoregs(lwp);
1900		ASSERT((caddr_t)trp == (caddr_t)rp->r_sp);
1901	}
1902
1903#elif defined(__i386)
1904
1905	if (trp == NULL && instr_is_segregs_pop(pc))
1906		trp = lwptoregs(lwp);
1907
1908#endif	/* __i386 */
1909
1910	if (trp == NULL)
1911		return (1);
1912
1913	/*
1914	 * If we get to here, we're reasonably confident that we've
1915	 * correctly decoded what happened on the way out of the kernel.
1916	 * Rewrite the lwp's registers so that we can create a core dump
1917	 * the (at least vaguely) represents the mcontext we were
1918	 * being asked to restore when things went so terribly wrong.
1919	 */
1920
1921	/*
1922	 * Make sure that we have a meaningful %trapno and %err.
1923	 */
1924	trp->r_trapno = rp->r_trapno;
1925	trp->r_err = rp->r_err;
1926
1927	if ((caddr_t)trp != (caddr_t)lwptoregs(lwp))
1928		bcopy(trp, lwptoregs(lwp), sizeof (*trp));
1929
1930
1931	mutex_enter(&p->p_lock);
1932	lwp->lwp_cursig = SIGSEGV;
1933	mutex_exit(&p->p_lock);
1934
1935	/*
1936	 * Terminate all LWPs but don't discard them.  If another lwp beat
1937	 * us to the punch by calling exit(), evaporate now.
1938	 */
1939	proc_is_exiting(p);
1940	if (exitlwps(1) != 0) {
1941		mutex_enter(&p->p_lock);
1942		lwp_exit();
1943	}
1944
1945	if (audit_active)		/* audit core dump */
1946		audit_core_start(SIGSEGV);
1947	v = core(SIGSEGV, B_FALSE);
1948	if (audit_active)		/* audit core dump */
1949		audit_core_finish(v ? CLD_KILLED : CLD_DUMPED);
1950	exit(v ? CLD_KILLED : CLD_DUMPED, SIGSEGV);
1951	return (0);
1952}
1953
1954/*
1955 * dump_tss() - Display the TSS structure
1956 */
1957
1958#if !defined(__xpv)
1959#if defined(__amd64)
1960
1961static void
1962dump_tss(void)
1963{
1964	const char tss_fmt[] = "tss.%s:\t0x%p\n";  /* Format string */
1965	struct tss *tss = CPU->cpu_tss;
1966
1967	printf(tss_fmt, "tss_rsp0", (void *)tss->tss_rsp0);
1968	printf(tss_fmt, "tss_rsp1", (void *)tss->tss_rsp1);
1969	printf(tss_fmt, "tss_rsp2", (void *)tss->tss_rsp2);
1970
1971	printf(tss_fmt, "tss_ist1", (void *)tss->tss_ist1);
1972	printf(tss_fmt, "tss_ist2", (void *)tss->tss_ist2);
1973	printf(tss_fmt, "tss_ist3", (void *)tss->tss_ist3);
1974	printf(tss_fmt, "tss_ist4", (void *)tss->tss_ist4);
1975	printf(tss_fmt, "tss_ist5", (void *)tss->tss_ist5);
1976	printf(tss_fmt, "tss_ist6", (void *)tss->tss_ist6);
1977	printf(tss_fmt, "tss_ist7", (void *)tss->tss_ist7);
1978}
1979
1980#elif defined(__i386)
1981
1982static void
1983dump_tss(void)
1984{
1985	const char tss_fmt[] = "tss.%s:\t0x%p\n";  /* Format string */
1986	struct tss *tss = CPU->cpu_tss;
1987
1988	printf(tss_fmt, "tss_link", (void *)(uintptr_t)tss->tss_link);
1989	printf(tss_fmt, "tss_esp0", (void *)(uintptr_t)tss->tss_esp0);
1990	printf(tss_fmt, "tss_ss0", (void *)(uintptr_t)tss->tss_ss0);
1991	printf(tss_fmt, "tss_esp1", (void *)(uintptr_t)tss->tss_esp1);
1992	printf(tss_fmt, "tss_ss1", (void *)(uintptr_t)tss->tss_ss1);
1993	printf(tss_fmt, "tss_esp2", (void *)(uintptr_t)tss->tss_esp2);
1994	printf(tss_fmt, "tss_ss2", (void *)(uintptr_t)tss->tss_ss2);
1995	printf(tss_fmt, "tss_cr3", (void *)(uintptr_t)tss->tss_cr3);
1996	printf(tss_fmt, "tss_eip", (void *)(uintptr_t)tss->tss_eip);
1997	printf(tss_fmt, "tss_eflags", (void *)(uintptr_t)tss->tss_eflags);
1998	printf(tss_fmt, "tss_eax", (void *)(uintptr_t)tss->tss_eax);
1999	printf(tss_fmt, "tss_ebx", (void *)(uintptr_t)tss->tss_ebx);
2000	printf(tss_fmt, "tss_ecx", (void *)(uintptr_t)tss->tss_ecx);
2001	printf(tss_fmt, "tss_edx", (void *)(uintptr_t)tss->tss_edx);
2002	printf(tss_fmt, "tss_esp", (void *)(uintptr_t)tss->tss_esp);
2003}
2004
2005#endif	/* __amd64 */
2006#endif	/* !__xpv */
2007
2008#if defined(TRAPTRACE)
2009
2010int ttrace_nrec = 10;		/* number of records to dump out */
2011int ttrace_dump_nregs = 0;	/* dump out this many records with regs too */
2012
2013/*
2014 * Dump out the last ttrace_nrec traptrace records on each CPU
2015 */
2016static void
2017dump_ttrace(void)
2018{
2019	trap_trace_ctl_t *ttc;
2020	trap_trace_rec_t *rec;
2021	uintptr_t current;
2022	int i, j, k;
2023	int n = NCPU;
2024#if defined(__amd64)
2025	const char banner[] =
2026	    "\ncpu          address    timestamp "
2027	    "type  vc  handler   pc\n";
2028	const char fmt1[] = "%3d %016lx %12llx ";
2029#elif defined(__i386)
2030	const char banner[] =
2031	    "\ncpu  address     timestamp type  vc  handler   pc\n";
2032	const char fmt1[] = "%3d %08lx %12llx ";
2033#endif
2034	const char fmt2[] = "%4s %3x ";
2035	const char fmt3[] = "%8s ";
2036
2037	if (ttrace_nrec == 0)
2038		return;
2039
2040	printf(banner);
2041
2042	for (i = 0; i < n; i++) {
2043		ttc = &trap_trace_ctl[i];
2044		if (ttc->ttc_first == NULL)
2045			continue;
2046
2047		current = ttc->ttc_next - sizeof (trap_trace_rec_t);
2048		for (j = 0; j < ttrace_nrec; j++) {
2049			struct sysent	*sys;
2050			struct autovec	*vec;
2051			extern struct av_head autovect[];
2052			int type;
2053			ulong_t	off;
2054			char *sym, *stype;
2055
2056			if (current < ttc->ttc_first)
2057				current =
2058				    ttc->ttc_limit - sizeof (trap_trace_rec_t);
2059
2060			if (current == NULL)
2061				continue;
2062
2063			rec = (trap_trace_rec_t *)current;
2064
2065			if (rec->ttr_stamp == 0)
2066				break;
2067
2068			printf(fmt1, i, (uintptr_t)rec, rec->ttr_stamp);
2069
2070			switch (rec->ttr_marker) {
2071			case TT_SYSCALL:
2072			case TT_SYSENTER:
2073			case TT_SYSC:
2074			case TT_SYSC64:
2075#if defined(__amd64)
2076				sys = &sysent32[rec->ttr_sysnum];
2077				switch (rec->ttr_marker) {
2078				case TT_SYSC64:
2079					sys = &sysent[rec->ttr_sysnum];
2080					/*FALLTHROUGH*/
2081#elif defined(__i386)
2082				sys = &sysent[rec->ttr_sysnum];
2083				switch (rec->ttr_marker) {
2084				case TT_SYSC64:
2085#endif
2086				case TT_SYSC:
2087					stype = "sysc";	/* syscall */
2088					break;
2089				case TT_SYSCALL:
2090					stype = "lcal";	/* lcall */
2091					break;
2092				case TT_SYSENTER:
2093					stype = "syse";	/* sysenter */
2094					break;
2095				default:
2096					break;
2097				}
2098				printf(fmt2, "sysc", rec->ttr_sysnum);
2099				if (sys != NULL) {
2100					sym = kobj_getsymname(
2101					    (uintptr_t)sys->sy_callc,
2102					    &off);
2103					if (sym != NULL)
2104						printf(fmt3, sym);
2105					else
2106						printf("%p ", sys->sy_callc);
2107				} else {
2108					printf(fmt3, "unknown");
2109				}
2110				break;
2111
2112			case TT_INTERRUPT:
2113				printf(fmt2, "intr", rec->ttr_vector);
2114				vec = (&autovect[rec->ttr_vector])->avh_link;
2115				if (vec != NULL) {
2116					sym = kobj_getsymname(
2117					    (uintptr_t)vec->av_vector, &off);
2118					if (sym != NULL)
2119						printf(fmt3, sym);
2120					else
2121						printf("%p ", vec->av_vector);
2122				} else {
2123					printf(fmt3, "unknown ");
2124				}
2125				break;
2126
2127			case TT_TRAP:
2128			case TT_EVENT:
2129				type = rec->ttr_regs.r_trapno;
2130				printf(fmt2, "trap", type);
2131				if (type < TRAP_TYPES)
2132					printf("     #%s ",
2133					    trap_type_mnemonic[type]);
2134				else
2135					switch (type) {
2136					case T_AST:
2137						printf(fmt3, "ast");
2138						break;
2139					default:
2140						printf(fmt3, "");
2141						break;
2142					}
2143				break;
2144
2145			case TT_XCALL:
2146				printf(fmt2, "xcal",
2147				    rec->ttr_info.xc_entry.xce_marker);
2148				printf(fmt3, "");
2149				break;
2150
2151			default:
2152				break;
2153			}
2154
2155			sym = kobj_getsymname(rec->ttr_regs.r_pc, &off);
2156			if (sym != NULL)
2157				printf("%s+%lx\n", sym, off);
2158			else
2159				printf("%lx\n", rec->ttr_regs.r_pc);
2160
2161			if (ttrace_dump_nregs-- > 0) {
2162				int s;
2163
2164				if (rec->ttr_marker == TT_INTERRUPT)
2165					printf(
2166					    "\t\tipl %x spl %x pri %x\n",
2167					    rec->ttr_ipl,
2168					    rec->ttr_spl,
2169					    rec->ttr_pri);
2170
2171				dumpregs(&rec->ttr_regs);
2172
2173				printf("\t%3s: %p\n\n", " ct",
2174				    (void *)rec->ttr_curthread);
2175
2176				/*
2177				 * print out the pc stack that we recorded
2178				 * at trap time (if any)
2179				 */
2180				for (s = 0; s < rec->ttr_sdepth; s++) {
2181					uintptr_t fullpc;
2182
2183					if (s >= TTR_STACK_DEPTH) {
2184						printf("ttr_sdepth corrupt\n");
2185						break;
2186					}
2187
2188					fullpc = (uintptr_t)rec->ttr_stack[s];
2189
2190					sym = kobj_getsymname(fullpc, &off);
2191					if (sym != NULL)
2192						printf("-> %s+0x%lx()\n",
2193						    sym, off);
2194					else
2195						printf("-> 0x%lx()\n", fullpc);
2196				}
2197				printf("\n");
2198			}
2199			current -= sizeof (trap_trace_rec_t);
2200		}
2201	}
2202}
2203
2204/*
2205 * Help with constructing traptrace records in C
2206 */
2207trap_trace_rec_t *
2208trap_trace_get_traceptr(uint8_t marker, ulong_t pc, ulong_t sp)
2209{
2210	trap_trace_rec_t *ttr;
2211
2212	if (trap_trace_freeze)
2213		ttr = &trap_trace_postmort;
2214	else {
2215		trap_trace_ctl_t *ttc = &trap_trace_ctl[CPU->cpu_id];
2216
2217		ttr = (void *)ttc->ttc_next;
2218
2219		if (ttc->ttc_next >= ttc->ttc_limit)
2220			ttc->ttc_next = ttc->ttc_first;
2221		else
2222			ttc->ttc_next += sizeof (trap_trace_rec_t);
2223	}
2224
2225	ttr->ttr_regs.r_sp = sp;
2226	ttr->ttr_regs.r_pc = pc;
2227	ttr->ttr_cr2 = getcr2();
2228	ttr->ttr_curthread = (uintptr_t)curthread;
2229	ttr->ttr_stamp = tsc_read();
2230	ttr->ttr_marker = marker;
2231	return (ttr);
2232}
2233
2234#endif	/* TRAPTRACE */
2235
2236void
2237panic_showtrap(struct panic_trap_info *tip)
2238{
2239	showregs(tip->trap_type, tip->trap_regs, tip->trap_addr);
2240
2241#if defined(TRAPTRACE)
2242	dump_ttrace();
2243#endif
2244
2245#if !defined(__xpv)
2246	if (tip->trap_type == T_DBLFLT)
2247		dump_tss();
2248#endif
2249}
2250
2251void
2252panic_savetrap(panic_data_t *pdp, struct panic_trap_info *tip)
2253{
2254	panic_saveregs(pdp, tip->trap_regs);
2255}
2256