1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved.
24 */
25
26/*	Copyright (c) 1990, 1991 UNIX System Laboratories, Inc. */
27/*	Copyright (c) 1984, 1986, 1987, 1988, 1989, 1990 AT&T   */
28/*		All Rights Reserved   				*/
29/*								*/
30/*	Copyright (c) 1987, 1988 Microsoft Corporation  	*/
31/*		All Rights Reserved   				*/
32/*								*/
33
34#include <sys/types.h>
35#include <sys/sysmacros.h>
36#include <sys/param.h>
37#include <sys/signal.h>
38#include <sys/systm.h>
39#include <sys/user.h>
40#include <sys/proc.h>
41#include <sys/disp.h>
42#include <sys/class.h>
43#include <sys/core.h>
44#include <sys/syscall.h>
45#include <sys/cpuvar.h>
46#include <sys/vm.h>
47#include <sys/sysinfo.h>
48#include <sys/fault.h>
49#include <sys/stack.h>
50#include <sys/psw.h>
51#include <sys/regset.h>
52#include <sys/fp.h>
53#include <sys/trap.h>
54#include <sys/kmem.h>
55#include <sys/vtrace.h>
56#include <sys/cmn_err.h>
57#include <sys/prsystm.h>
58#include <sys/mutex_impl.h>
59#include <sys/machsystm.h>
60#include <sys/archsystm.h>
61#include <sys/sdt.h>
62#include <sys/avintr.h>
63#include <sys/kobj.h>
64
65#include <vm/hat.h>
66
67#include <vm/seg_kmem.h>
68#include <vm/as.h>
69#include <vm/seg.h>
70#include <vm/hat_pte.h>
71#include <vm/hat_i86.h>
72
73#include <sys/procfs.h>
74
75#include <sys/reboot.h>
76#include <sys/debug.h>
77#include <sys/debugreg.h>
78#include <sys/modctl.h>
79#include <sys/aio_impl.h>
80#include <sys/tnf.h>
81#include <sys/tnf_probe.h>
82#include <sys/cred.h>
83#include <sys/mman.h>
84#include <sys/x86_archext.h>
85#include <sys/copyops.h>
86#include <c2/audit.h>
87#include <sys/ftrace.h>
88#include <sys/panic.h>
89#include <sys/traptrace.h>
90#include <sys/ontrap.h>
91#include <sys/cpc_impl.h>
92#include <sys/bootconf.h>
93#include <sys/bootinfo.h>
94#include <sys/promif.h>
95#include <sys/mach_mmu.h>
96#if defined(__xpv)
97#include <sys/hypervisor.h>
98#endif
99#include <sys/contract/process_impl.h>
100
101#define	USER	0x10000		/* user-mode flag added to trap type */
102
103static const char *trap_type_mnemonic[] = {
104	"de",	"db",	"2",	"bp",
105	"of",	"br",	"ud",	"nm",
106	"df",	"9",	"ts",	"np",
107	"ss",	"gp",	"pf",	"15",
108	"mf",	"ac",	"mc",	"xf"
109};
110
111static const char *trap_type[] = {
112	"Divide error",				/* trap id 0 	*/
113	"Debug",				/* trap id 1	*/
114	"NMI interrupt",			/* trap id 2	*/
115	"Breakpoint",				/* trap id 3 	*/
116	"Overflow",				/* trap id 4 	*/
117	"BOUND range exceeded",			/* trap id 5 	*/
118	"Invalid opcode",			/* trap id 6 	*/
119	"Device not available",			/* trap id 7 	*/
120	"Double fault",				/* trap id 8 	*/
121	"Coprocessor segment overrun",		/* trap id 9 	*/
122	"Invalid TSS",				/* trap id 10 	*/
123	"Segment not present",			/* trap id 11 	*/
124	"Stack segment fault",			/* trap id 12 	*/
125	"General protection",			/* trap id 13 	*/
126	"Page fault",				/* trap id 14 	*/
127	"Reserved",				/* trap id 15 	*/
128	"x87 floating point error",		/* trap id 16 	*/
129	"Alignment check",			/* trap id 17 	*/
130	"Machine check",			/* trap id 18	*/
131	"SIMD floating point exception",	/* trap id 19	*/
132};
133
134#define	TRAP_TYPES	(sizeof (trap_type) / sizeof (trap_type[0]))
135
136#define	SLOW_SCALL_SIZE	2
137#define	FAST_SCALL_SIZE	2
138
139int tudebug = 0;
140int tudebugbpt = 0;
141int tudebugfpe = 0;
142int tudebugsse = 0;
143
144#if defined(TRAPDEBUG) || defined(lint)
145int tdebug = 0;
146int lodebug = 0;
147int faultdebug = 0;
148#else
149#define	tdebug	0
150#define	lodebug	0
151#define	faultdebug	0
152#endif /* defined(TRAPDEBUG) || defined(lint) */
153
154#if defined(TRAPTRACE)
155/*
156 * trap trace record for cpu0 is allocated here.
157 * trap trace records for non-boot cpus are allocated in mp_startup_init().
158 */
159static trap_trace_rec_t trap_tr0[TRAPTR_NENT];
160trap_trace_ctl_t trap_trace_ctl[NCPU] = {
161	{
162	    (uintptr_t)trap_tr0,			/* next record */
163	    (uintptr_t)trap_tr0,			/* first record */
164	    (uintptr_t)(trap_tr0 + TRAPTR_NENT),	/* limit */
165	    (uintptr_t)0				/* current */
166	},
167};
168
169/*
170 * default trap buffer size
171 */
172size_t trap_trace_bufsize = TRAPTR_NENT * sizeof (trap_trace_rec_t);
173int trap_trace_freeze = 0;
174int trap_trace_off = 0;
175
176/*
177 * A dummy TRAPTRACE entry to use after death.
178 */
179trap_trace_rec_t trap_trace_postmort;
180
181static void dump_ttrace(void);
182#endif	/* TRAPTRACE */
183static void dumpregs(struct regs *);
184static void showregs(uint_t, struct regs *, caddr_t);
185static int kern_gpfault(struct regs *);
186
187/*ARGSUSED*/
188static int
189die(uint_t type, struct regs *rp, caddr_t addr, processorid_t cpuid)
190{
191	struct panic_trap_info ti;
192	const char *trap_name, *trap_mnemonic;
193
194	if (type < TRAP_TYPES) {
195		trap_name = trap_type[type];
196		trap_mnemonic = trap_type_mnemonic[type];
197	} else {
198		trap_name = "trap";
199		trap_mnemonic = "-";
200	}
201
202#ifdef TRAPTRACE
203	TRAPTRACE_FREEZE;
204#endif
205
206	ti.trap_regs = rp;
207	ti.trap_type = type & ~USER;
208	ti.trap_addr = addr;
209
210	curthread->t_panic_trap = &ti;
211
212	if (type == T_PGFLT && addr < (caddr_t)KERNELBASE) {
213		panic("BAD TRAP: type=%x (#%s %s) rp=%p addr=%p "
214		    "occurred in module \"%s\" due to %s",
215		    type, trap_mnemonic, trap_name, (void *)rp, (void *)addr,
216		    mod_containing_pc((caddr_t)rp->r_pc),
217		    addr < (caddr_t)PAGESIZE ?
218		    "a NULL pointer dereference" :
219		    "an illegal access to a user address");
220	} else
221		panic("BAD TRAP: type=%x (#%s %s) rp=%p addr=%p",
222		    type, trap_mnemonic, trap_name, (void *)rp, (void *)addr);
223	return (0);
224}
225
226/*
227 * Rewrite the instruction at pc to be an int $T_SYSCALLINT instruction.
228 *
229 * int <vector> is two bytes: 0xCD <vector>
230 */
231
232static int
233rewrite_syscall(caddr_t pc)
234{
235	uchar_t instr[SLOW_SCALL_SIZE] = { 0xCD, T_SYSCALLINT };
236
237	if (uwrite(curthread->t_procp, instr, SLOW_SCALL_SIZE,
238	    (uintptr_t)pc) != 0)
239		return (1);
240
241	return (0);
242}
243
244/*
245 * Test to see if the instruction at pc is sysenter or syscall. The second
246 * argument should be the x86 feature flag corresponding to the expected
247 * instruction.
248 *
249 * sysenter is two bytes: 0x0F 0x34
250 * syscall is two bytes:  0x0F 0x05
251 * int $T_SYSCALLINT is two bytes: 0xCD 0x91
252 */
253
254static int
255instr_is_other_syscall(caddr_t pc, int which)
256{
257	uchar_t instr[FAST_SCALL_SIZE];
258
259	ASSERT(which == X86FSET_SEP || which == X86FSET_ASYSC || which == 0xCD);
260
261	if (copyin_nowatch(pc, (caddr_t)instr, FAST_SCALL_SIZE) != 0)
262		return (0);
263
264	switch (which) {
265	case X86FSET_SEP:
266		if (instr[0] == 0x0F && instr[1] == 0x34)
267			return (1);
268		break;
269	case X86FSET_ASYSC:
270		if (instr[0] == 0x0F && instr[1] == 0x05)
271			return (1);
272		break;
273	case 0xCD:
274		if (instr[0] == 0xCD && instr[1] == T_SYSCALLINT)
275			return (1);
276		break;
277	}
278
279	return (0);
280}
281
282static const char *
283syscall_insn_string(int syscall_insn)
284{
285	switch (syscall_insn) {
286	case X86FSET_SEP:
287		return ("sysenter");
288	case X86FSET_ASYSC:
289		return ("syscall");
290	case 0xCD:
291		return ("int");
292	default:
293		return ("Unknown");
294	}
295}
296
297static int
298ldt_rewrite_syscall(struct regs *rp, proc_t *p, int syscall_insn)
299{
300	caddr_t	linearpc;
301	int return_code = 0;
302
303	mutex_enter(&p->p_ldtlock);	/* Must be held across linear_pc() */
304
305	if (linear_pc(rp, p, &linearpc) == 0) {
306
307		/*
308		 * If another thread beat us here, it already changed
309		 * this site to the slower (int) syscall instruction.
310		 */
311		if (instr_is_other_syscall(linearpc, 0xCD)) {
312			return_code = 1;
313		} else if (instr_is_other_syscall(linearpc, syscall_insn)) {
314
315			if (rewrite_syscall(linearpc) == 0) {
316				return_code = 1;
317			}
318#ifdef DEBUG
319			else
320				cmn_err(CE_WARN, "failed to rewrite %s "
321				    "instruction in process %d",
322				    syscall_insn_string(syscall_insn),
323				    p->p_pid);
324#endif /* DEBUG */
325		}
326	}
327
328	mutex_exit(&p->p_ldtlock);	/* Must be held across linear_pc() */
329
330	return (return_code);
331}
332
333/*
334 * Test to see if the instruction at pc is a system call instruction.
335 *
336 * The bytes of an lcall instruction used for the syscall trap.
337 * static uchar_t lcall[7] = { 0x9a, 0, 0, 0, 0, 0x7, 0 };
338 * static uchar_t lcallalt[7] = { 0x9a, 0, 0, 0, 0, 0x27, 0 };
339 */
340
341#define	LCALLSIZE	7
342
343static int
344instr_is_lcall_syscall(caddr_t pc)
345{
346	uchar_t instr[LCALLSIZE];
347
348	if (copyin_nowatch(pc, (caddr_t)instr, LCALLSIZE) == 0 &&
349	    instr[0] == 0x9a &&
350	    instr[1] == 0 &&
351	    instr[2] == 0 &&
352	    instr[3] == 0 &&
353	    instr[4] == 0 &&
354	    (instr[5] == 0x7 || instr[5] == 0x27) &&
355	    instr[6] == 0)
356		return (1);
357
358	return (0);
359}
360
361#ifdef __amd64
362
363/*
364 * In the first revisions of amd64 CPUs produced by AMD, the LAHF and
365 * SAHF instructions were not implemented in 64-bit mode. Later revisions
366 * did implement these instructions. An extension to the cpuid instruction
367 * was added to check for the capability of executing these instructions
368 * in 64-bit mode.
369 *
370 * Intel originally did not implement these instructions in EM64T either,
371 * but added them in later revisions.
372 *
373 * So, there are different chip revisions by both vendors out there that
374 * may or may not implement these instructions. The easy solution is to
375 * just always emulate these instructions on demand.
376 *
377 * SAHF == store %ah in the lower 8 bits of %rflags (opcode 0x9e)
378 * LAHF == load the lower 8 bits of %rflags into %ah (opcode 0x9f)
379 */
380
381#define	LSAHFSIZE 1
382
383static int
384instr_is_lsahf(caddr_t pc, uchar_t *instr)
385{
386	if (copyin_nowatch(pc, (caddr_t)instr, LSAHFSIZE) == 0 &&
387	    (*instr == 0x9e || *instr == 0x9f))
388		return (1);
389	return (0);
390}
391
392/*
393 * Emulate the LAHF and SAHF instructions. The reference manuals define
394 * these instructions to always load/store bit 1 as a 1, and bits 3 and 5
395 * as a 0. The other, defined, bits are copied (the PS_ICC bits and PS_P).
396 *
397 * Note that %ah is bits 8-15 of %rax.
398 */
399static void
400emulate_lsahf(struct regs *rp, uchar_t instr)
401{
402	if (instr == 0x9e) {
403		/* sahf. Copy bits from %ah to flags. */
404		rp->r_ps = (rp->r_ps & ~0xff) |
405		    ((rp->r_rax >> 8) & PSL_LSAHFMASK) | PS_MB1;
406	} else {
407		/* lahf. Copy bits from flags to %ah. */
408		rp->r_rax = (rp->r_rax & ~0xff00) |
409		    (((rp->r_ps & PSL_LSAHFMASK) | PS_MB1) << 8);
410	}
411	rp->r_pc += LSAHFSIZE;
412}
413#endif /* __amd64 */
414
415#ifdef OPTERON_ERRATUM_91
416
417/*
418 * Test to see if the instruction at pc is a prefetch instruction.
419 *
420 * The first byte of prefetch instructions is always 0x0F.
421 * The second byte is 0x18 for regular prefetch or 0x0D for AMD 3dnow prefetch.
422 * The third byte (ModRM) contains the register field bits (bits 3-5).
423 * These bits must be between 0 and 3 inclusive for regular prefetch and
424 * 0 and 1 inclusive for AMD 3dnow prefetch.
425 *
426 * In 64-bit mode, there may be a one-byte REX prefex (0x40-0x4F).
427 */
428
429static int
430cmp_to_prefetch(uchar_t *p)
431{
432#ifdef _LP64
433	if ((p[0] & 0xF0) == 0x40)	/* 64-bit REX prefix */
434		p++;
435#endif
436	return ((p[0] == 0x0F && p[1] == 0x18 && ((p[2] >> 3) & 7) <= 3) ||
437	    (p[0] == 0x0F && p[1] == 0x0D && ((p[2] >> 3) & 7) <= 1));
438}
439
440static int
441instr_is_prefetch(caddr_t pc)
442{
443	uchar_t instr[4];	/* optional REX prefix plus 3-byte opcode */
444
445	return (copyin_nowatch(pc, instr, sizeof (instr)) == 0 &&
446	    cmp_to_prefetch(instr));
447}
448
449#endif /* OPTERON_ERRATUM_91 */
450
451/*
452 * Called from the trap handler when a processor trap occurs.
453 *
454 * Note: All user-level traps that might call stop() must exit
455 * trap() by 'goto out' or by falling through.
456 * Note Also: trap() is usually called with interrupts enabled, (PS_IE == 1)
457 * however, there are paths that arrive here with PS_IE == 0 so special care
458 * must be taken in those cases.
459 */
460void
461trap(struct regs *rp, caddr_t addr, processorid_t cpuid)
462{
463	kthread_t *ct = curthread;
464	enum seg_rw rw;
465	unsigned type;
466	proc_t *p = ttoproc(ct);
467	klwp_t *lwp = ttolwp(ct);
468	uintptr_t lofault;
469	faultcode_t pagefault(), res, errcode;
470	enum fault_type fault_type;
471	k_siginfo_t siginfo;
472	uint_t fault = 0;
473	int mstate;
474	int sicode = 0;
475	int watchcode;
476	int watchpage;
477	caddr_t vaddr;
478	int singlestep_twiddle;
479	size_t sz;
480	int ta;
481#ifdef __amd64
482	uchar_t instr;
483#endif
484
485	ASSERT_STACK_ALIGNED();
486
487	type = rp->r_trapno;
488	CPU_STATS_ADDQ(CPU, sys, trap, 1);
489	ASSERT(ct->t_schedflag & TS_DONT_SWAP);
490
491	if (type == T_PGFLT) {
492
493		errcode = rp->r_err;
494		if (errcode & PF_ERR_WRITE)
495			rw = S_WRITE;
496		else if ((caddr_t)rp->r_pc == addr ||
497		    (mmu.pt_nx != 0 && (errcode & PF_ERR_EXEC)))
498			rw = S_EXEC;
499		else
500			rw = S_READ;
501
502#if defined(__i386)
503		/*
504		 * Pentium Pro work-around
505		 */
506		if ((errcode & PF_ERR_PROT) && pentiumpro_bug4046376) {
507			uint_t	attr;
508			uint_t	priv_violation;
509			uint_t	access_violation;
510
511			if (hat_getattr(addr < (caddr_t)kernelbase ?
512			    curproc->p_as->a_hat : kas.a_hat, addr, &attr)
513			    == -1) {
514				errcode &= ~PF_ERR_PROT;
515			} else {
516				priv_violation = (errcode & PF_ERR_USER) &&
517				    !(attr & PROT_USER);
518				access_violation = (errcode & PF_ERR_WRITE) &&
519				    !(attr & PROT_WRITE);
520				if (!priv_violation && !access_violation)
521					goto cleanup;
522			}
523		}
524#endif /* __i386 */
525
526	} else if (type == T_SGLSTP && lwp != NULL)
527		lwp->lwp_pcb.pcb_drstat = (uintptr_t)addr;
528
529	if (tdebug)
530		showregs(type, rp, addr);
531
532	if (USERMODE(rp->r_cs)) {
533		/*
534		 * Set up the current cred to use during this trap. u_cred
535		 * no longer exists.  t_cred is used instead.
536		 * The current process credential applies to the thread for
537		 * the entire trap.  If trapping from the kernel, this
538		 * should already be set up.
539		 */
540		if (ct->t_cred != p->p_cred) {
541			cred_t *oldcred = ct->t_cred;
542			/*
543			 * DTrace accesses t_cred in probe context.  t_cred
544			 * must always be either NULL, or point to a valid,
545			 * allocated cred structure.
546			 */
547			ct->t_cred = crgetcred();
548			crfree(oldcred);
549		}
550		ASSERT(lwp != NULL);
551		type |= USER;
552		ASSERT(lwptoregs(lwp) == rp);
553		lwp->lwp_state = LWP_SYS;
554
555		switch (type) {
556		case T_PGFLT + USER:
557			if ((caddr_t)rp->r_pc == addr)
558				mstate = LMS_TFAULT;
559			else
560				mstate = LMS_DFAULT;
561			break;
562		default:
563			mstate = LMS_TRAP;
564			break;
565		}
566		/* Kernel probe */
567		TNF_PROBE_1(thread_state, "thread", /* CSTYLED */,
568		    tnf_microstate, state, mstate);
569		mstate = new_mstate(ct, mstate);
570
571		bzero(&siginfo, sizeof (siginfo));
572	}
573
574	switch (type) {
575	case T_PGFLT + USER:
576	case T_SGLSTP:
577	case T_SGLSTP + USER:
578	case T_BPTFLT + USER:
579		break;
580
581	default:
582		FTRACE_2("trap(): type=0x%lx, regs=0x%lx",
583		    (ulong_t)type, (ulong_t)rp);
584		break;
585	}
586
587	switch (type) {
588	case T_SIMDFPE:
589		/* Make sure we enable interrupts before die()ing */
590		sti();	/* The SIMD exception comes in via cmninttrap */
591		/*FALLTHROUGH*/
592	default:
593		if (type & USER) {
594			if (tudebug)
595				showregs(type, rp, (caddr_t)0);
596			printf("trap: Unknown trap type %d in user mode\n",
597			    type & ~USER);
598			siginfo.si_signo = SIGILL;
599			siginfo.si_code  = ILL_ILLTRP;
600			siginfo.si_addr  = (caddr_t)rp->r_pc;
601			siginfo.si_trapno = type & ~USER;
602			fault = FLTILL;
603			break;
604		} else {
605			(void) die(type, rp, addr, cpuid);
606			/*NOTREACHED*/
607		}
608
609	case T_PGFLT:		/* system page fault */
610		/*
611		 * If we're under on_trap() protection (see <sys/ontrap.h>),
612		 * set ot_trap and bounce back to the on_trap() call site
613		 * via the installed trampoline.
614		 */
615		if ((ct->t_ontrap != NULL) &&
616		    (ct->t_ontrap->ot_prot & OT_DATA_ACCESS)) {
617			ct->t_ontrap->ot_trap |= OT_DATA_ACCESS;
618			rp->r_pc = ct->t_ontrap->ot_trampoline;
619			goto cleanup;
620		}
621
622		/*
623		 * See if we can handle as pagefault. Save lofault
624		 * across this. Here we assume that an address
625		 * less than KERNELBASE is a user fault.
626		 * We can do this as copy.s routines verify that the
627		 * starting address is less than KERNELBASE before
628		 * starting and because we know that we always have
629		 * KERNELBASE mapped as invalid to serve as a "barrier".
630		 */
631		lofault = ct->t_lofault;
632		ct->t_lofault = 0;
633
634		mstate = new_mstate(ct, LMS_KFAULT);
635
636		if (addr < (caddr_t)kernelbase) {
637			res = pagefault(addr,
638			    (errcode & PF_ERR_PROT)? F_PROT: F_INVAL, rw, 0);
639			if (res == FC_NOMAP &&
640			    addr < p->p_usrstack &&
641			    grow(addr))
642				res = 0;
643		} else {
644			res = pagefault(addr,
645			    (errcode & PF_ERR_PROT)? F_PROT: F_INVAL, rw, 1);
646		}
647		(void) new_mstate(ct, mstate);
648
649		/*
650		 * Restore lofault. If we resolved the fault, exit.
651		 * If we didn't and lofault wasn't set, die.
652		 */
653		ct->t_lofault = lofault;
654		if (res == 0)
655			goto cleanup;
656
657#if defined(OPTERON_ERRATUM_93) && defined(_LP64)
658		if (lofault == 0 && opteron_erratum_93) {
659			/*
660			 * Workaround for Opteron Erratum 93. On return from
661			 * a System Managment Interrupt at a HLT instruction
662			 * the %rip might be truncated to a 32 bit value.
663			 * BIOS is supposed to fix this, but some don't.
664			 * If this occurs we simply restore the high order bits.
665			 * The HLT instruction is 1 byte of 0xf4.
666			 */
667			uintptr_t	rip = rp->r_pc;
668
669			if ((rip & 0xfffffffful) == rip) {
670				rip |= 0xfffffffful << 32;
671				if (hat_getpfnum(kas.a_hat, (caddr_t)rip) !=
672				    PFN_INVALID &&
673				    (*(uchar_t *)rip == 0xf4 ||
674				    *(uchar_t *)(rip - 1) == 0xf4)) {
675					rp->r_pc = rip;
676					goto cleanup;
677				}
678			}
679		}
680#endif /* OPTERON_ERRATUM_93 && _LP64 */
681
682#ifdef OPTERON_ERRATUM_91
683		if (lofault == 0 && opteron_erratum_91) {
684			/*
685			 * Workaround for Opteron Erratum 91. Prefetches may
686			 * generate a page fault (they're not supposed to do
687			 * that!). If this occurs we simply return back to the
688			 * instruction.
689			 */
690			caddr_t		pc = (caddr_t)rp->r_pc;
691
692			/*
693			 * If the faulting PC is not mapped, this is a
694			 * legitimate kernel page fault that must result in a
695			 * panic. If the faulting PC is mapped, it could contain
696			 * a prefetch instruction. Check for that here.
697			 */
698			if (hat_getpfnum(kas.a_hat, pc) != PFN_INVALID) {
699				if (cmp_to_prefetch((uchar_t *)pc)) {
700#ifdef DEBUG
701					cmn_err(CE_WARN, "Opteron erratum 91 "
702					    "occurred: kernel prefetch"
703					    " at %p generated a page fault!",
704					    (void *)rp->r_pc);
705#endif /* DEBUG */
706					goto cleanup;
707				}
708			}
709			(void) die(type, rp, addr, cpuid);
710		}
711#endif /* OPTERON_ERRATUM_91 */
712
713		if (lofault == 0)
714			(void) die(type, rp, addr, cpuid);
715
716		/*
717		 * Cannot resolve fault.  Return to lofault.
718		 */
719		if (lodebug) {
720			showregs(type, rp, addr);
721			traceregs(rp);
722		}
723		if (FC_CODE(res) == FC_OBJERR)
724			res = FC_ERRNO(res);
725		else
726			res = EFAULT;
727		rp->r_r0 = res;
728		rp->r_pc = ct->t_lofault;
729		goto cleanup;
730
731	case T_PGFLT + USER:	/* user page fault */
732		if (faultdebug) {
733			char *fault_str;
734
735			switch (rw) {
736			case S_READ:
737				fault_str = "read";
738				break;
739			case S_WRITE:
740				fault_str = "write";
741				break;
742			case S_EXEC:
743				fault_str = "exec";
744				break;
745			default:
746				fault_str = "";
747				break;
748			}
749			printf("user %s fault:  addr=0x%lx errcode=0x%x\n",
750			    fault_str, (uintptr_t)addr, errcode);
751		}
752
753#if defined(OPTERON_ERRATUM_100) && defined(_LP64)
754		/*
755		 * Workaround for AMD erratum 100
756		 *
757		 * A 32-bit process may receive a page fault on a non
758		 * 32-bit address by mistake. The range of the faulting
759		 * address will be
760		 *
761		 *	0xffffffff80000000 .. 0xffffffffffffffff or
762		 *	0x0000000100000000 .. 0x000000017fffffff
763		 *
764		 * The fault is always due to an instruction fetch, however
765		 * the value of r_pc should be correct (in 32 bit range),
766		 * so we ignore the page fault on the bogus address.
767		 */
768		if (p->p_model == DATAMODEL_ILP32 &&
769		    (0xffffffff80000000 <= (uintptr_t)addr ||
770		    (0x100000000 <= (uintptr_t)addr &&
771		    (uintptr_t)addr <= 0x17fffffff))) {
772			if (!opteron_erratum_100)
773				panic("unexpected erratum #100");
774			if (rp->r_pc <= 0xffffffff)
775				goto out;
776		}
777#endif /* OPTERON_ERRATUM_100 && _LP64 */
778
779		ASSERT(!(curthread->t_flag & T_WATCHPT));
780		watchpage = (pr_watch_active(p) && pr_is_watchpage(addr, rw));
781#ifdef __i386
782		/*
783		 * In 32-bit mode, the lcall (system call) instruction fetches
784		 * one word from the stack, at the stack pointer, because of the
785		 * way the call gate is constructed.  This is a bogus
786		 * read and should not be counted as a read watchpoint.
787		 * We work around the problem here by testing to see if
788		 * this situation applies and, if so, simply jumping to
789		 * the code in locore.s that fields the system call trap.
790		 * The registers on the stack are already set up properly
791		 * due to the match between the call gate sequence and the
792		 * trap gate sequence.  We just have to adjust the pc.
793		 */
794		if (watchpage && addr == (caddr_t)rp->r_sp &&
795		    rw == S_READ && instr_is_lcall_syscall((caddr_t)rp->r_pc)) {
796			extern void watch_syscall(void);
797
798			rp->r_pc += LCALLSIZE;
799			watch_syscall();	/* never returns */
800			/* NOTREACHED */
801		}
802#endif /* __i386 */
803		vaddr = addr;
804		if (!watchpage || (sz = instr_size(rp, &vaddr, rw)) <= 0)
805			fault_type = (errcode & PF_ERR_PROT)? F_PROT: F_INVAL;
806		else if ((watchcode = pr_is_watchpoint(&vaddr, &ta,
807		    sz, NULL, rw)) != 0) {
808			if (ta) {
809				do_watch_step(vaddr, sz, rw,
810				    watchcode, rp->r_pc);
811				fault_type = F_INVAL;
812			} else {
813				bzero(&siginfo, sizeof (siginfo));
814				siginfo.si_signo = SIGTRAP;
815				siginfo.si_code = watchcode;
816				siginfo.si_addr = vaddr;
817				siginfo.si_trapafter = 0;
818				siginfo.si_pc = (caddr_t)rp->r_pc;
819				fault = FLTWATCH;
820				break;
821			}
822		} else {
823			/* XXX pr_watch_emul() never succeeds (for now) */
824			if (rw != S_EXEC && pr_watch_emul(rp, vaddr, rw))
825				goto out;
826			do_watch_step(vaddr, sz, rw, 0, 0);
827			fault_type = F_INVAL;
828		}
829
830		res = pagefault(addr, fault_type, rw, 0);
831
832		/*
833		 * If pagefault() succeeded, ok.
834		 * Otherwise attempt to grow the stack.
835		 */
836		if (res == 0 ||
837		    (res == FC_NOMAP &&
838		    addr < p->p_usrstack &&
839		    grow(addr))) {
840			lwp->lwp_lastfault = FLTPAGE;
841			lwp->lwp_lastfaddr = addr;
842			if (prismember(&p->p_fltmask, FLTPAGE)) {
843				bzero(&siginfo, sizeof (siginfo));
844				siginfo.si_addr = addr;
845				(void) stop_on_fault(FLTPAGE, &siginfo);
846			}
847			goto out;
848		} else if (res == FC_PROT && addr < p->p_usrstack &&
849		    (mmu.pt_nx != 0 && (errcode & PF_ERR_EXEC))) {
850			report_stack_exec(p, addr);
851		}
852
853#ifdef OPTERON_ERRATUM_91
854		/*
855		 * Workaround for Opteron Erratum 91. Prefetches may generate a
856		 * page fault (they're not supposed to do that!). If this
857		 * occurs we simply return back to the instruction.
858		 *
859		 * We rely on copyin to properly fault in the page with r_pc.
860		 */
861		if (opteron_erratum_91 &&
862		    addr != (caddr_t)rp->r_pc &&
863		    instr_is_prefetch((caddr_t)rp->r_pc)) {
864#ifdef DEBUG
865			cmn_err(CE_WARN, "Opteron erratum 91 occurred: "
866			    "prefetch at %p in pid %d generated a trap!",
867			    (void *)rp->r_pc, p->p_pid);
868#endif /* DEBUG */
869			goto out;
870		}
871#endif /* OPTERON_ERRATUM_91 */
872
873		if (tudebug)
874			showregs(type, rp, addr);
875		/*
876		 * In the case where both pagefault and grow fail,
877		 * set the code to the value provided by pagefault.
878		 * We map all errors returned from pagefault() to SIGSEGV.
879		 */
880		bzero(&siginfo, sizeof (siginfo));
881		siginfo.si_addr = addr;
882		switch (FC_CODE(res)) {
883		case FC_HWERR:
884		case FC_NOSUPPORT:
885			siginfo.si_signo = SIGBUS;
886			siginfo.si_code = BUS_ADRERR;
887			fault = FLTACCESS;
888			break;
889		case FC_ALIGN:
890			siginfo.si_signo = SIGBUS;
891			siginfo.si_code = BUS_ADRALN;
892			fault = FLTACCESS;
893			break;
894		case FC_OBJERR:
895			if ((siginfo.si_errno = FC_ERRNO(res)) != EINTR) {
896				siginfo.si_signo = SIGBUS;
897				siginfo.si_code = BUS_OBJERR;
898				fault = FLTACCESS;
899			}
900			break;
901		default:	/* FC_NOMAP or FC_PROT */
902			siginfo.si_signo = SIGSEGV;
903			siginfo.si_code =
904			    (res == FC_NOMAP)? SEGV_MAPERR : SEGV_ACCERR;
905			fault = FLTBOUNDS;
906			break;
907		}
908		break;
909
910	case T_ILLINST + USER:	/* invalid opcode fault */
911		/*
912		 * If the syscall instruction is disabled due to LDT usage, a
913		 * user program that attempts to execute it will trigger a #ud
914		 * trap. Check for that case here. If this occurs on a CPU which
915		 * doesn't even support syscall, the result of all of this will
916		 * be to emulate that particular instruction.
917		 */
918		if (p->p_ldt != NULL &&
919		    ldt_rewrite_syscall(rp, p, X86FSET_ASYSC))
920			goto out;
921
922#ifdef __amd64
923		/*
924		 * Emulate the LAHF and SAHF instructions if needed.
925		 * See the instr_is_lsahf function for details.
926		 */
927		if (p->p_model == DATAMODEL_LP64 &&
928		    instr_is_lsahf((caddr_t)rp->r_pc, &instr)) {
929			emulate_lsahf(rp, instr);
930			goto out;
931		}
932#endif
933
934		/*FALLTHROUGH*/
935
936		if (tudebug)
937			showregs(type, rp, (caddr_t)0);
938		siginfo.si_signo = SIGILL;
939		siginfo.si_code  = ILL_ILLOPC;
940		siginfo.si_addr  = (caddr_t)rp->r_pc;
941		fault = FLTILL;
942		break;
943
944	case T_ZERODIV + USER:		/* integer divide by zero */
945		if (tudebug && tudebugfpe)
946			showregs(type, rp, (caddr_t)0);
947		siginfo.si_signo = SIGFPE;
948		siginfo.si_code  = FPE_INTDIV;
949		siginfo.si_addr  = (caddr_t)rp->r_pc;
950		fault = FLTIZDIV;
951		break;
952
953	case T_OVFLW + USER:	/* integer overflow */
954		if (tudebug && tudebugfpe)
955			showregs(type, rp, (caddr_t)0);
956		siginfo.si_signo = SIGFPE;
957		siginfo.si_code  = FPE_INTOVF;
958		siginfo.si_addr  = (caddr_t)rp->r_pc;
959		fault = FLTIOVF;
960		break;
961
962	case T_NOEXTFLT + USER:	/* math coprocessor not available */
963		if (tudebug && tudebugfpe)
964			showregs(type, rp, addr);
965		if (fpnoextflt(rp)) {
966			siginfo.si_signo = SIGILL;
967			siginfo.si_code  = ILL_ILLOPC;
968			siginfo.si_addr  = (caddr_t)rp->r_pc;
969			fault = FLTILL;
970		}
971		break;
972
973	case T_EXTOVRFLT:	/* extension overrun fault */
974		/* check if we took a kernel trap on behalf of user */
975		{
976			extern  void ndptrap_frstor(void);
977			if (rp->r_pc != (uintptr_t)ndptrap_frstor) {
978				sti(); /* T_EXTOVRFLT comes in via cmninttrap */
979				(void) die(type, rp, addr, cpuid);
980			}
981			type |= USER;
982		}
983		/*FALLTHROUGH*/
984	case T_EXTOVRFLT + USER:	/* extension overrun fault */
985		if (tudebug && tudebugfpe)
986			showregs(type, rp, addr);
987		if (fpextovrflt(rp)) {
988			siginfo.si_signo = SIGSEGV;
989			siginfo.si_code  = SEGV_MAPERR;
990			siginfo.si_addr  = (caddr_t)rp->r_pc;
991			fault = FLTBOUNDS;
992		}
993		break;
994
995	case T_EXTERRFLT:	/* x87 floating point exception pending */
996		/* check if we took a kernel trap on behalf of user */
997		{
998			extern  void ndptrap_frstor(void);
999			if (rp->r_pc != (uintptr_t)ndptrap_frstor) {
1000				sti(); /* T_EXTERRFLT comes in via cmninttrap */
1001				(void) die(type, rp, addr, cpuid);
1002			}
1003			type |= USER;
1004		}
1005		/*FALLTHROUGH*/
1006
1007	case T_EXTERRFLT + USER: /* x87 floating point exception pending */
1008		if (tudebug && tudebugfpe)
1009			showregs(type, rp, addr);
1010		if (sicode = fpexterrflt(rp)) {
1011			siginfo.si_signo = SIGFPE;
1012			siginfo.si_code  = sicode;
1013			siginfo.si_addr  = (caddr_t)rp->r_pc;
1014			fault = FLTFPE;
1015		}
1016		break;
1017
1018	case T_SIMDFPE + USER:		/* SSE and SSE2 exceptions */
1019		if (tudebug && tudebugsse)
1020			showregs(type, rp, addr);
1021		if (!is_x86_feature(x86_featureset, X86FSET_SSE) &&
1022		    !is_x86_feature(x86_featureset, X86FSET_SSE2)) {
1023			/*
1024			 * There are rumours that some user instructions
1025			 * on older CPUs can cause this trap to occur; in
1026			 * which case send a SIGILL instead of a SIGFPE.
1027			 */
1028			siginfo.si_signo = SIGILL;
1029			siginfo.si_code  = ILL_ILLTRP;
1030			siginfo.si_addr  = (caddr_t)rp->r_pc;
1031			siginfo.si_trapno = type & ~USER;
1032			fault = FLTILL;
1033		} else if ((sicode = fpsimderrflt(rp)) != 0) {
1034			siginfo.si_signo = SIGFPE;
1035			siginfo.si_code = sicode;
1036			siginfo.si_addr = (caddr_t)rp->r_pc;
1037			fault = FLTFPE;
1038		}
1039
1040		sti();	/* The SIMD exception comes in via cmninttrap */
1041		break;
1042
1043	case T_BPTFLT:	/* breakpoint trap */
1044		/*
1045		 * Kernel breakpoint traps should only happen when kmdb is
1046		 * active, and even then, it'll have interposed on the IDT, so
1047		 * control won't get here.  If it does, we've hit a breakpoint
1048		 * without the debugger, which is very strange, and very
1049		 * fatal.
1050		 */
1051		if (tudebug && tudebugbpt)
1052			showregs(type, rp, (caddr_t)0);
1053
1054		(void) die(type, rp, addr, cpuid);
1055		break;
1056
1057	case T_SGLSTP: /* single step/hw breakpoint exception */
1058
1059		/* Now evaluate how we got here */
1060		if (lwp != NULL && (lwp->lwp_pcb.pcb_drstat & DR_SINGLESTEP)) {
1061			/*
1062			 * i386 single-steps even through lcalls which
1063			 * change the privilege level. So we take a trap at
1064			 * the first instruction in privileged mode.
1065			 *
1066			 * Set a flag to indicate that upon completion of
1067			 * the system call, deal with the single-step trap.
1068			 *
1069			 * The same thing happens for sysenter, too.
1070			 */
1071			singlestep_twiddle = 0;
1072			if (rp->r_pc == (uintptr_t)sys_sysenter ||
1073			    rp->r_pc == (uintptr_t)brand_sys_sysenter) {
1074				singlestep_twiddle = 1;
1075#if defined(__amd64)
1076				/*
1077				 * Since we are already on the kernel's
1078				 * %gs, on 64-bit systems the sysenter case
1079				 * needs to adjust the pc to avoid
1080				 * executing the swapgs instruction at the
1081				 * top of the handler.
1082				 */
1083				if (rp->r_pc == (uintptr_t)sys_sysenter)
1084					rp->r_pc = (uintptr_t)
1085					    _sys_sysenter_post_swapgs;
1086				else
1087					rp->r_pc = (uintptr_t)
1088					    _brand_sys_sysenter_post_swapgs;
1089#endif
1090			}
1091#if defined(__i386)
1092			else if (rp->r_pc == (uintptr_t)sys_call ||
1093			    rp->r_pc == (uintptr_t)brand_sys_call) {
1094				singlestep_twiddle = 1;
1095			}
1096#endif
1097			else {
1098				/* not on sysenter/syscall; uregs available */
1099				if (tudebug && tudebugbpt)
1100					showregs(type, rp, (caddr_t)0);
1101			}
1102			if (singlestep_twiddle) {
1103				rp->r_ps &= ~PS_T; /* turn off trace */
1104				lwp->lwp_pcb.pcb_flags |= DEBUG_PENDING;
1105				ct->t_post_sys = 1;
1106				aston(curthread);
1107				goto cleanup;
1108			}
1109		}
1110		/* XXX - needs review on debugger interface? */
1111		if (boothowto & RB_DEBUG)
1112			debug_enter((char *)NULL);
1113		else
1114			(void) die(type, rp, addr, cpuid);
1115		break;
1116
1117	case T_NMIFLT:	/* NMI interrupt */
1118		printf("Unexpected NMI in system mode\n");
1119		goto cleanup;
1120
1121	case T_NMIFLT + USER:	/* NMI interrupt */
1122		printf("Unexpected NMI in user mode\n");
1123		break;
1124
1125	case T_GPFLT:	/* general protection violation */
1126		/*
1127		 * Any #GP that occurs during an on_trap .. no_trap bracket
1128		 * with OT_DATA_ACCESS or OT_SEGMENT_ACCESS protection,
1129		 * or in a on_fault .. no_fault bracket, is forgiven
1130		 * and we trampoline.  This protection is given regardless
1131		 * of whether we are 32/64 bit etc - if a distinction is
1132		 * required then define new on_trap protection types.
1133		 *
1134		 * On amd64, we can get a #gp from referencing addresses
1135		 * in the virtual address hole e.g. from a copyin or in
1136		 * update_sregs while updating user segment registers.
1137		 *
1138		 * On the 32-bit hypervisor we could also generate one in
1139		 * mfn_to_pfn by reaching around or into where the hypervisor
1140		 * lives which is protected by segmentation.
1141		 */
1142
1143		/*
1144		 * If we're under on_trap() protection (see <sys/ontrap.h>),
1145		 * set ot_trap and trampoline back to the on_trap() call site
1146		 * for OT_DATA_ACCESS or OT_SEGMENT_ACCESS.
1147		 */
1148		if (ct->t_ontrap != NULL) {
1149			int ttype =  ct->t_ontrap->ot_prot &
1150			    (OT_DATA_ACCESS | OT_SEGMENT_ACCESS);
1151
1152			if (ttype != 0) {
1153				ct->t_ontrap->ot_trap |= ttype;
1154				if (tudebug)
1155					showregs(type, rp, (caddr_t)0);
1156				rp->r_pc = ct->t_ontrap->ot_trampoline;
1157				goto cleanup;
1158			}
1159		}
1160
1161		/*
1162		 * If we're under lofault protection (copyin etc.),
1163		 * longjmp back to lofault with an EFAULT.
1164		 */
1165		if (ct->t_lofault) {
1166			/*
1167			 * Fault is not resolvable, so just return to lofault
1168			 */
1169			if (lodebug) {
1170				showregs(type, rp, addr);
1171				traceregs(rp);
1172			}
1173			rp->r_r0 = EFAULT;
1174			rp->r_pc = ct->t_lofault;
1175			goto cleanup;
1176		}
1177
1178		/*
1179		 * We fall through to the next case, which repeats
1180		 * the OT_SEGMENT_ACCESS check which we've already
1181		 * done, so we'll always fall through to the
1182		 * T_STKFLT case.
1183		 */
1184		/*FALLTHROUGH*/
1185	case T_SEGFLT:	/* segment not present fault */
1186		/*
1187		 * One example of this is #NP in update_sregs while
1188		 * attempting to update a user segment register
1189		 * that points to a descriptor that is marked not
1190		 * present.
1191		 */
1192		if (ct->t_ontrap != NULL &&
1193		    ct->t_ontrap->ot_prot & OT_SEGMENT_ACCESS) {
1194			ct->t_ontrap->ot_trap |= OT_SEGMENT_ACCESS;
1195			if (tudebug)
1196				showregs(type, rp, (caddr_t)0);
1197			rp->r_pc = ct->t_ontrap->ot_trampoline;
1198			goto cleanup;
1199		}
1200		/*FALLTHROUGH*/
1201	case T_STKFLT:	/* stack fault */
1202	case T_TSSFLT:	/* invalid TSS fault */
1203		if (tudebug)
1204			showregs(type, rp, (caddr_t)0);
1205		if (kern_gpfault(rp))
1206			(void) die(type, rp, addr, cpuid);
1207		goto cleanup;
1208
1209	/*
1210	 * ONLY 32-bit PROCESSES can USE a PRIVATE LDT! 64-bit apps
1211	 * should have no need for them, so we put a stop to it here.
1212	 *
1213	 * So: not-present fault is ONLY valid for 32-bit processes with
1214	 * a private LDT trying to do a system call. Emulate it.
1215	 *
1216	 * #gp fault is ONLY valid for 32-bit processes also, which DO NOT
1217	 * have a private LDT, and are trying to do a system call. Emulate it.
1218	 */
1219
1220	case T_SEGFLT + USER:	/* segment not present fault */
1221	case T_GPFLT + USER:	/* general protection violation */
1222#ifdef _SYSCALL32_IMPL
1223		if (p->p_model != DATAMODEL_NATIVE) {
1224#endif /* _SYSCALL32_IMPL */
1225		if (instr_is_lcall_syscall((caddr_t)rp->r_pc)) {
1226			if (type == T_SEGFLT + USER)
1227				ASSERT(p->p_ldt != NULL);
1228
1229			if ((p->p_ldt == NULL && type == T_GPFLT + USER) ||
1230			    type == T_SEGFLT + USER) {
1231
1232			/*
1233			 * The user attempted a system call via the obsolete
1234			 * call gate mechanism. Because the process doesn't have
1235			 * an LDT (i.e. the ldtr contains 0), a #gp results.
1236			 * Emulate the syscall here, just as we do above for a
1237			 * #np trap.
1238			 */
1239
1240			/*
1241			 * Since this is a not-present trap, rp->r_pc points to
1242			 * the trapping lcall instruction. We need to bump it
1243			 * to the next insn so the app can continue on.
1244			 */
1245			rp->r_pc += LCALLSIZE;
1246			lwp->lwp_regs = rp;
1247
1248			/*
1249			 * Normally the microstate of the LWP is forced back to
1250			 * LMS_USER by the syscall handlers. Emulate that
1251			 * behavior here.
1252			 */
1253			mstate = LMS_USER;
1254
1255			dosyscall();
1256			goto out;
1257			}
1258		}
1259#ifdef _SYSCALL32_IMPL
1260		}
1261#endif /* _SYSCALL32_IMPL */
1262		/*
1263		 * If the current process is using a private LDT and the
1264		 * trapping instruction is sysenter, the sysenter instruction
1265		 * has been disabled on the CPU because it destroys segment
1266		 * registers. If this is the case, rewrite the instruction to
1267		 * be a safe system call and retry it. If this occurs on a CPU
1268		 * which doesn't even support sysenter, the result of all of
1269		 * this will be to emulate that particular instruction.
1270		 */
1271		if (p->p_ldt != NULL &&
1272		    ldt_rewrite_syscall(rp, p, X86FSET_SEP))
1273			goto out;
1274
1275		/*FALLTHROUGH*/
1276
1277	case T_BOUNDFLT + USER:	/* bound fault */
1278	case T_STKFLT + USER:	/* stack fault */
1279	case T_TSSFLT + USER:	/* invalid TSS fault */
1280		if (tudebug)
1281			showregs(type, rp, (caddr_t)0);
1282		siginfo.si_signo = SIGSEGV;
1283		siginfo.si_code  = SEGV_MAPERR;
1284		siginfo.si_addr  = (caddr_t)rp->r_pc;
1285		fault = FLTBOUNDS;
1286		break;
1287
1288	case T_ALIGNMENT + USER:	/* user alignment error (486) */
1289		if (tudebug)
1290			showregs(type, rp, (caddr_t)0);
1291		bzero(&siginfo, sizeof (siginfo));
1292		siginfo.si_signo = SIGBUS;
1293		siginfo.si_code = BUS_ADRALN;
1294		siginfo.si_addr = (caddr_t)rp->r_pc;
1295		fault = FLTACCESS;
1296		break;
1297
1298	case T_SGLSTP + USER: /* single step/hw breakpoint exception */
1299		if (tudebug && tudebugbpt)
1300			showregs(type, rp, (caddr_t)0);
1301
1302		/* Was it single-stepping? */
1303		if (lwp->lwp_pcb.pcb_drstat & DR_SINGLESTEP) {
1304			pcb_t *pcb = &lwp->lwp_pcb;
1305
1306			rp->r_ps &= ~PS_T;
1307			/*
1308			 * If both NORMAL_STEP and WATCH_STEP are in effect,
1309			 * give precedence to WATCH_STEP.  If neither is set,
1310			 * user must have set the PS_T bit in %efl; treat this
1311			 * as NORMAL_STEP.
1312			 */
1313			if ((fault = undo_watch_step(&siginfo)) == 0 &&
1314			    ((pcb->pcb_flags & NORMAL_STEP) ||
1315			    !(pcb->pcb_flags & WATCH_STEP))) {
1316				siginfo.si_signo = SIGTRAP;
1317				siginfo.si_code = TRAP_TRACE;
1318				siginfo.si_addr = (caddr_t)rp->r_pc;
1319				fault = FLTTRACE;
1320			}
1321			pcb->pcb_flags &= ~(NORMAL_STEP|WATCH_STEP);
1322		}
1323		break;
1324
1325	case T_BPTFLT + USER:	/* breakpoint trap */
1326		if (tudebug && tudebugbpt)
1327			showregs(type, rp, (caddr_t)0);
1328		/*
1329		 * int 3 (the breakpoint instruction) leaves the pc referring
1330		 * to the address one byte after the breakpointed address.
1331		 * If the P_PR_BPTADJ flag has been set via /proc, We adjust
1332		 * it back so it refers to the breakpointed address.
1333		 */
1334		if (p->p_proc_flag & P_PR_BPTADJ)
1335			rp->r_pc--;
1336		siginfo.si_signo = SIGTRAP;
1337		siginfo.si_code  = TRAP_BRKPT;
1338		siginfo.si_addr  = (caddr_t)rp->r_pc;
1339		fault = FLTBPT;
1340		break;
1341
1342	case T_AST:
1343		/*
1344		 * This occurs only after the cs register has been made to
1345		 * look like a kernel selector, either through debugging or
1346		 * possibly by functions like setcontext().  The thread is
1347		 * about to cause a general protection fault at common_iret()
1348		 * in locore.  We let that happen immediately instead of
1349		 * doing the T_AST processing.
1350		 */
1351		goto cleanup;
1352
1353	case T_AST + USER:	/* profiling, resched, h/w error pseudo trap */
1354		if (lwp->lwp_pcb.pcb_flags & ASYNC_HWERR) {
1355			proc_t *p = ttoproc(curthread);
1356			extern void print_msg_hwerr(ctid_t ct_id, proc_t *p);
1357
1358			lwp->lwp_pcb.pcb_flags &= ~ASYNC_HWERR;
1359			print_msg_hwerr(p->p_ct_process->conp_contract.ct_id,
1360			    p);
1361			contract_process_hwerr(p->p_ct_process, p);
1362			siginfo.si_signo = SIGKILL;
1363			siginfo.si_code = SI_NOINFO;
1364		} else if (lwp->lwp_pcb.pcb_flags & CPC_OVERFLOW) {
1365			lwp->lwp_pcb.pcb_flags &= ~CPC_OVERFLOW;
1366			if (kcpc_overflow_ast()) {
1367				/*
1368				 * Signal performance counter overflow
1369				 */
1370				if (tudebug)
1371					showregs(type, rp, (caddr_t)0);
1372				bzero(&siginfo, sizeof (siginfo));
1373				siginfo.si_signo = SIGEMT;
1374				siginfo.si_code = EMT_CPCOVF;
1375				siginfo.si_addr = (caddr_t)rp->r_pc;
1376				fault = FLTCPCOVF;
1377			}
1378		}
1379
1380		break;
1381	}
1382
1383	/*
1384	 * We can't get here from a system trap
1385	 */
1386	ASSERT(type & USER);
1387
1388	if (fault) {
1389		/* We took a fault so abort single step. */
1390		lwp->lwp_pcb.pcb_flags &= ~(NORMAL_STEP|WATCH_STEP);
1391		/*
1392		 * Remember the fault and fault adddress
1393		 * for real-time (SIGPROF) profiling.
1394		 */
1395		lwp->lwp_lastfault = fault;
1396		lwp->lwp_lastfaddr = siginfo.si_addr;
1397
1398		DTRACE_PROC2(fault, int, fault, ksiginfo_t *, &siginfo);
1399
1400		/*
1401		 * If a debugger has declared this fault to be an
1402		 * event of interest, stop the lwp.  Otherwise just
1403		 * deliver the associated signal.
1404		 */
1405		if (siginfo.si_signo != SIGKILL &&
1406		    prismember(&p->p_fltmask, fault) &&
1407		    stop_on_fault(fault, &siginfo) == 0)
1408			siginfo.si_signo = 0;
1409	}
1410
1411	if (siginfo.si_signo)
1412		trapsig(&siginfo, (fault != FLTFPE && fault != FLTCPCOVF));
1413
1414	if (lwp->lwp_oweupc)
1415		profil_tick(rp->r_pc);
1416
1417	if (ct->t_astflag | ct->t_sig_check) {
1418		/*
1419		 * Turn off the AST flag before checking all the conditions that
1420		 * may have caused an AST.  This flag is on whenever a signal or
1421		 * unusual condition should be handled after the next trap or
1422		 * syscall.
1423		 */
1424		astoff(ct);
1425		/*
1426		 * If a single-step trap occurred on a syscall (see above)
1427		 * recognize it now.  Do this before checking for signals
1428		 * because deferred_singlestep_trap() may generate a SIGTRAP to
1429		 * the LWP or may otherwise mark the LWP to call issig(FORREAL).
1430		 */
1431		if (lwp->lwp_pcb.pcb_flags & DEBUG_PENDING)
1432			deferred_singlestep_trap((caddr_t)rp->r_pc);
1433
1434		ct->t_sig_check = 0;
1435
1436		mutex_enter(&p->p_lock);
1437		if (curthread->t_proc_flag & TP_CHANGEBIND) {
1438			timer_lwpbind();
1439			curthread->t_proc_flag &= ~TP_CHANGEBIND;
1440		}
1441		mutex_exit(&p->p_lock);
1442
1443		/*
1444		 * for kaio requests that are on the per-process poll queue,
1445		 * aiop->aio_pollq, they're AIO_POLL bit is set, the kernel
1446		 * should copyout their result_t to user memory. by copying
1447		 * out the result_t, the user can poll on memory waiting
1448		 * for the kaio request to complete.
1449		 */
1450		if (p->p_aio)
1451			aio_cleanup(0);
1452		/*
1453		 * If this LWP was asked to hold, call holdlwp(), which will
1454		 * stop.  holdlwps() sets this up and calls pokelwps() which
1455		 * sets the AST flag.
1456		 *
1457		 * Also check TP_EXITLWP, since this is used by fresh new LWPs
1458		 * through lwp_rtt().  That flag is set if the lwp_create(2)
1459		 * syscall failed after creating the LWP.
1460		 */
1461		if (ISHOLD(p))
1462			holdlwp();
1463
1464		/*
1465		 * All code that sets signals and makes ISSIG evaluate true must
1466		 * set t_astflag afterwards.
1467		 */
1468		if (ISSIG_PENDING(ct, lwp, p)) {
1469			if (issig(FORREAL))
1470				psig();
1471			ct->t_sig_check = 1;
1472		}
1473
1474		if (ct->t_rprof != NULL) {
1475			realsigprof(0, 0, 0);
1476			ct->t_sig_check = 1;
1477		}
1478
1479		/*
1480		 * /proc can't enable/disable the trace bit itself
1481		 * because that could race with the call gate used by
1482		 * system calls via "lcall". If that happened, an
1483		 * invalid EFLAGS would result. prstep()/prnostep()
1484		 * therefore schedule an AST for the purpose.
1485		 */
1486		if (lwp->lwp_pcb.pcb_flags & REQUEST_STEP) {
1487			lwp->lwp_pcb.pcb_flags &= ~REQUEST_STEP;
1488			rp->r_ps |= PS_T;
1489		}
1490		if (lwp->lwp_pcb.pcb_flags & REQUEST_NOSTEP) {
1491			lwp->lwp_pcb.pcb_flags &= ~REQUEST_NOSTEP;
1492			rp->r_ps &= ~PS_T;
1493		}
1494	}
1495
1496out:	/* We can't get here from a system trap */
1497	ASSERT(type & USER);
1498
1499	if (ISHOLD(p))
1500		holdlwp();
1501
1502	/*
1503	 * Set state to LWP_USER here so preempt won't give us a kernel
1504	 * priority if it occurs after this point.  Call CL_TRAPRET() to
1505	 * restore the user-level priority.
1506	 *
1507	 * It is important that no locks (other than spinlocks) be entered
1508	 * after this point before returning to user mode (unless lwp_state
1509	 * is set back to LWP_SYS).
1510	 */
1511	lwp->lwp_state = LWP_USER;
1512
1513	if (ct->t_trapret) {
1514		ct->t_trapret = 0;
1515		thread_lock(ct);
1516		CL_TRAPRET(ct);
1517		thread_unlock(ct);
1518	}
1519	if (CPU->cpu_runrun || curthread->t_schedflag & TS_ANYWAITQ)
1520		preempt();
1521	prunstop();
1522	(void) new_mstate(ct, mstate);
1523
1524	/* Kernel probe */
1525	TNF_PROBE_1(thread_state, "thread", /* CSTYLED */,
1526	    tnf_microstate, state, LMS_USER);
1527
1528	return;
1529
1530cleanup:	/* system traps end up here */
1531	ASSERT(!(type & USER));
1532}
1533
1534/*
1535 * Patch non-zero to disable preemption of threads in the kernel.
1536 */
1537int IGNORE_KERNEL_PREEMPTION = 0;	/* XXX - delete this someday */
1538
1539struct kpreempt_cnts {		/* kernel preemption statistics */
1540	int	kpc_idle;	/* executing idle thread */
1541	int	kpc_intr;	/* executing interrupt thread */
1542	int	kpc_clock;	/* executing clock thread */
1543	int	kpc_blocked;	/* thread has blocked preemption (t_preempt) */
1544	int	kpc_notonproc;	/* thread is surrendering processor */
1545	int	kpc_inswtch;	/* thread has ratified scheduling decision */
1546	int	kpc_prilevel;	/* processor interrupt level is too high */
1547	int	kpc_apreempt;	/* asynchronous preemption */
1548	int	kpc_spreempt;	/* synchronous preemption */
1549} kpreempt_cnts;
1550
1551/*
1552 * kernel preemption: forced rescheduling, preempt the running kernel thread.
1553 *	the argument is old PIL for an interrupt,
1554 *	or the distingished value KPREEMPT_SYNC.
1555 */
1556void
1557kpreempt(int asyncspl)
1558{
1559	kthread_t *ct = curthread;
1560
1561	if (IGNORE_KERNEL_PREEMPTION) {
1562		aston(CPU->cpu_dispthread);
1563		return;
1564	}
1565
1566	/*
1567	 * Check that conditions are right for kernel preemption
1568	 */
1569	do {
1570		if (ct->t_preempt) {
1571			/*
1572			 * either a privileged thread (idle, panic, interrupt)
1573			 * or will check when t_preempt is lowered
1574			 * We need to specifically handle the case where
1575			 * the thread is in the middle of swtch (resume has
1576			 * been called) and has its t_preempt set
1577			 * [idle thread and a thread which is in kpreempt
1578			 * already] and then a high priority thread is
1579			 * available in the local dispatch queue.
1580			 * In this case the resumed thread needs to take a
1581			 * trap so that it can call kpreempt. We achieve
1582			 * this by using siron().
1583			 * How do we detect this condition:
1584			 * idle thread is running and is in the midst of
1585			 * resume: curthread->t_pri == -1 && CPU->dispthread
1586			 * != CPU->thread
1587			 * Need to ensure that this happens only at high pil
1588			 * resume is called at high pil
1589			 * Only in resume_from_idle is the pil changed.
1590			 */
1591			if (ct->t_pri < 0) {
1592				kpreempt_cnts.kpc_idle++;
1593				if (CPU->cpu_dispthread != CPU->cpu_thread)
1594					siron();
1595			} else if (ct->t_flag & T_INTR_THREAD) {
1596				kpreempt_cnts.kpc_intr++;
1597				if (ct->t_pil == CLOCK_LEVEL)
1598					kpreempt_cnts.kpc_clock++;
1599			} else {
1600				kpreempt_cnts.kpc_blocked++;
1601				if (CPU->cpu_dispthread != CPU->cpu_thread)
1602					siron();
1603			}
1604			aston(CPU->cpu_dispthread);
1605			return;
1606		}
1607		if (ct->t_state != TS_ONPROC ||
1608		    ct->t_disp_queue != CPU->cpu_disp) {
1609			/* this thread will be calling swtch() shortly */
1610			kpreempt_cnts.kpc_notonproc++;
1611			if (CPU->cpu_thread != CPU->cpu_dispthread) {
1612				/* already in swtch(), force another */
1613				kpreempt_cnts.kpc_inswtch++;
1614				siron();
1615			}
1616			return;
1617		}
1618		if (getpil() >= DISP_LEVEL) {
1619			/*
1620			 * We can't preempt this thread if it is at
1621			 * a PIL >= DISP_LEVEL since it may be holding
1622			 * a spin lock (like sched_lock).
1623			 */
1624			siron();	/* check back later */
1625			kpreempt_cnts.kpc_prilevel++;
1626			return;
1627		}
1628		if (!interrupts_enabled()) {
1629			/*
1630			 * Can't preempt while running with ints disabled
1631			 */
1632			kpreempt_cnts.kpc_prilevel++;
1633			return;
1634		}
1635		if (asyncspl != KPREEMPT_SYNC)
1636			kpreempt_cnts.kpc_apreempt++;
1637		else
1638			kpreempt_cnts.kpc_spreempt++;
1639
1640		ct->t_preempt++;
1641		preempt();
1642		ct->t_preempt--;
1643	} while (CPU->cpu_kprunrun);
1644}
1645
1646/*
1647 * Print out debugging info.
1648 */
1649static void
1650showregs(uint_t type, struct regs *rp, caddr_t addr)
1651{
1652	int s;
1653
1654	s = spl7();
1655	type &= ~USER;
1656	if (PTOU(curproc)->u_comm[0])
1657		printf("%s: ", PTOU(curproc)->u_comm);
1658	if (type < TRAP_TYPES)
1659		printf("#%s %s\n", trap_type_mnemonic[type], trap_type[type]);
1660	else
1661		switch (type) {
1662		case T_SYSCALL:
1663			printf("Syscall Trap:\n");
1664			break;
1665		case T_AST:
1666			printf("AST\n");
1667			break;
1668		default:
1669			printf("Bad Trap = %d\n", type);
1670			break;
1671		}
1672	if (type == T_PGFLT) {
1673		printf("Bad %s fault at addr=0x%lx\n",
1674		    USERMODE(rp->r_cs) ? "user": "kernel", (uintptr_t)addr);
1675	} else if (addr) {
1676		printf("addr=0x%lx\n", (uintptr_t)addr);
1677	}
1678
1679	printf("pid=%d, pc=0x%lx, sp=0x%lx, eflags=0x%lx\n",
1680	    (ttoproc(curthread) && ttoproc(curthread)->p_pidp) ?
1681	    ttoproc(curthread)->p_pid : 0, rp->r_pc, rp->r_sp, rp->r_ps);
1682
1683#if defined(__lint)
1684	/*
1685	 * this clause can be deleted when lint bug 4870403 is fixed
1686	 * (lint thinks that bit 32 is illegal in a %b format string)
1687	 */
1688	printf("cr0: %x cr4: %b\n",
1689	    (uint_t)getcr0(), (uint_t)getcr4(), FMT_CR4);
1690#else
1691	printf("cr0: %b cr4: %b\n",
1692	    (uint_t)getcr0(), FMT_CR0, (uint_t)getcr4(), FMT_CR4);
1693#endif	/* __lint */
1694
1695	printf("cr2: %lx", getcr2());
1696#if !defined(__xpv)
1697	printf("cr3: %lx", getcr3());
1698#if defined(__amd64)
1699	printf("cr8: %lx\n", getcr8());
1700#endif
1701#endif
1702	printf("\n");
1703
1704	dumpregs(rp);
1705	splx(s);
1706}
1707
1708static void
1709dumpregs(struct regs *rp)
1710{
1711#if defined(__amd64)
1712	const char fmt[] = "\t%3s: %16lx %3s: %16lx %3s: %16lx\n";
1713
1714	printf(fmt, "rdi", rp->r_rdi, "rsi", rp->r_rsi, "rdx", rp->r_rdx);
1715	printf(fmt, "rcx", rp->r_rcx, " r8", rp->r_r8, " r9", rp->r_r9);
1716	printf(fmt, "rax", rp->r_rax, "rbx", rp->r_rbx, "rbp", rp->r_rbp);
1717	printf(fmt, "r10", rp->r_r10, "r11", rp->r_r11, "r12", rp->r_r12);
1718	printf(fmt, "r13", rp->r_r13, "r14", rp->r_r14, "r15", rp->r_r15);
1719
1720	printf(fmt, "fsb", rdmsr(MSR_AMD_FSBASE), "gsb", rdmsr(MSR_AMD_GSBASE),
1721	    " ds", rp->r_ds);
1722	printf(fmt, " es", rp->r_es, " fs", rp->r_fs, " gs", rp->r_gs);
1723
1724	printf(fmt, "trp", rp->r_trapno, "err", rp->r_err, "rip", rp->r_rip);
1725	printf(fmt, " cs", rp->r_cs, "rfl", rp->r_rfl, "rsp", rp->r_rsp);
1726
1727	printf("\t%3s: %16lx\n", " ss", rp->r_ss);
1728
1729#elif defined(__i386)
1730	const char fmt[] = "\t%3s: %8lx %3s: %8lx %3s: %8lx %3s: %8lx\n";
1731
1732	printf(fmt, " gs", rp->r_gs, " fs", rp->r_fs,
1733	    " es", rp->r_es, " ds", rp->r_ds);
1734	printf(fmt, "edi", rp->r_edi, "esi", rp->r_esi,
1735	    "ebp", rp->r_ebp, "esp", rp->r_esp);
1736	printf(fmt, "ebx", rp->r_ebx, "edx", rp->r_edx,
1737	    "ecx", rp->r_ecx, "eax", rp->r_eax);
1738	printf(fmt, "trp", rp->r_trapno, "err", rp->r_err,
1739	    "eip", rp->r_eip, " cs", rp->r_cs);
1740	printf("\t%3s: %8lx %3s: %8lx %3s: %8lx\n",
1741	    "efl", rp->r_efl, "usp", rp->r_uesp, " ss", rp->r_ss);
1742
1743#endif	/* __i386 */
1744}
1745
1746/*
1747 * Test to see if the instruction is iret on i386 or iretq on amd64.
1748 *
1749 * On the hypervisor we can only test for nopop_sys_rtt_syscall. If true
1750 * then we are in the context of hypervisor's failsafe handler because it
1751 * tried to iret and failed due to a bad selector. See xen_failsafe_callback.
1752 */
1753static int
1754instr_is_iret(caddr_t pc)
1755{
1756
1757#if defined(__xpv)
1758	extern void nopop_sys_rtt_syscall(void);
1759	return ((pc == (caddr_t)nopop_sys_rtt_syscall) ? 1 : 0);
1760
1761#else
1762
1763#if defined(__amd64)
1764	static const uint8_t iret_insn[2] = { 0x48, 0xcf };	/* iretq */
1765
1766#elif defined(__i386)
1767	static const uint8_t iret_insn[1] = { 0xcf };		/* iret */
1768#endif	/* __i386 */
1769	return (bcmp(pc, iret_insn, sizeof (iret_insn)) == 0);
1770
1771#endif	/* __xpv */
1772}
1773
1774#if defined(__i386)
1775
1776/*
1777 * Test to see if the instruction is part of __SEGREGS_POP
1778 *
1779 * Note carefully the appallingly awful dependency between
1780 * the instruction sequence used in __SEGREGS_POP and these
1781 * instructions encoded here.
1782 */
1783static int
1784instr_is_segregs_pop(caddr_t pc)
1785{
1786	static const uint8_t movw_0_esp_gs[4] = { 0x8e, 0x6c, 0x24, 0x0 };
1787	static const uint8_t movw_4_esp_fs[4] = { 0x8e, 0x64, 0x24, 0x4 };
1788	static const uint8_t movw_8_esp_es[4] = { 0x8e, 0x44, 0x24, 0x8 };
1789	static const uint8_t movw_c_esp_ds[4] = { 0x8e, 0x5c, 0x24, 0xc };
1790
1791	if (bcmp(pc, movw_0_esp_gs, sizeof (movw_0_esp_gs)) == 0 ||
1792	    bcmp(pc, movw_4_esp_fs, sizeof (movw_4_esp_fs)) == 0 ||
1793	    bcmp(pc, movw_8_esp_es, sizeof (movw_8_esp_es)) == 0 ||
1794	    bcmp(pc, movw_c_esp_ds, sizeof (movw_c_esp_ds)) == 0)
1795		return (1);
1796
1797	return (0);
1798}
1799
1800#endif	/* __i386 */
1801
1802/*
1803 * Test to see if the instruction is part of _sys_rtt.
1804 *
1805 * Again on the hypervisor if we try to IRET to user land with a bad code
1806 * or stack selector we will get vectored through xen_failsafe_callback.
1807 * In which case we assume we got here via _sys_rtt since we only allow
1808 * IRET to user land to take place in _sys_rtt.
1809 */
1810static int
1811instr_is_sys_rtt(caddr_t pc)
1812{
1813	extern void _sys_rtt(), _sys_rtt_end();
1814
1815	if ((uintptr_t)pc < (uintptr_t)_sys_rtt ||
1816	    (uintptr_t)pc > (uintptr_t)_sys_rtt_end)
1817		return (0);
1818
1819	return (1);
1820}
1821
1822/*
1823 * Handle #gp faults in kernel mode.
1824 *
1825 * One legitimate way this can happen is if we attempt to update segment
1826 * registers to naughty values on the way out of the kernel.
1827 *
1828 * This can happen in a couple of ways: someone - either accidentally or
1829 * on purpose - creates (setcontext(2), lwp_create(2)) or modifies
1830 * (signal(2)) a ucontext that contains silly segment register values.
1831 * Or someone - either accidentally or on purpose - modifies the prgregset_t
1832 * of a subject process via /proc to contain silly segment register values.
1833 *
1834 * (The unfortunate part is that we can end up discovering the bad segment
1835 * register value in the middle of an 'iret' after we've popped most of the
1836 * stack.  So it becomes quite difficult to associate an accurate ucontext
1837 * with the lwp, because the act of taking the #gp trap overwrites most of
1838 * what we were going to send the lwp.)
1839 *
1840 * OTOH if it turns out that's -not- the problem, and we're -not- an lwp
1841 * trying to return to user mode and we get a #gp fault, then we need
1842 * to die() -- which will happen if we return non-zero from this routine.
1843 */
1844static int
1845kern_gpfault(struct regs *rp)
1846{
1847	kthread_t *t = curthread;
1848	proc_t *p = ttoproc(t);
1849	klwp_t *lwp = ttolwp(t);
1850	struct regs tmpregs, *trp = NULL;
1851	caddr_t pc = (caddr_t)rp->r_pc;
1852	int v;
1853	uint32_t auditing = AU_AUDITING();
1854
1855	/*
1856	 * if we're not an lwp, or in the case of running native the
1857	 * pc range is outside _sys_rtt, then we should immediately
1858	 * be die()ing horribly.
1859	 */
1860	if (lwp == NULL || !instr_is_sys_rtt(pc))
1861		return (1);
1862
1863	/*
1864	 * So at least we're in the right part of the kernel.
1865	 *
1866	 * Disassemble the instruction at the faulting pc.
1867	 * Once we know what it is, we carefully reconstruct the stack
1868	 * based on the order in which the stack is deconstructed in
1869	 * _sys_rtt. Ew.
1870	 */
1871	if (instr_is_iret(pc)) {
1872		/*
1873		 * We took the #gp while trying to perform the IRET.
1874		 * This means that either %cs or %ss are bad.
1875		 * All we know for sure is that most of the general
1876		 * registers have been restored, including the
1877		 * segment registers, and all we have left on the
1878		 * topmost part of the lwp's stack are the
1879		 * registers that the iretq was unable to consume.
1880		 *
1881		 * All the rest of the state was crushed by the #gp
1882		 * which pushed -its- registers atop our old save area
1883		 * (because we had to decrement the stack pointer, sigh) so
1884		 * all that we can try and do is to reconstruct the
1885		 * crushed frame from the #gp trap frame itself.
1886		 */
1887		trp = &tmpregs;
1888		trp->r_ss = lwptoregs(lwp)->r_ss;
1889		trp->r_sp = lwptoregs(lwp)->r_sp;
1890		trp->r_ps = lwptoregs(lwp)->r_ps;
1891		trp->r_cs = lwptoregs(lwp)->r_cs;
1892		trp->r_pc = lwptoregs(lwp)->r_pc;
1893		bcopy(rp, trp, offsetof(struct regs, r_pc));
1894
1895		/*
1896		 * Validate simple math
1897		 */
1898		ASSERT(trp->r_pc == lwptoregs(lwp)->r_pc);
1899		ASSERT(trp->r_err == rp->r_err);
1900
1901
1902
1903	}
1904
1905#if defined(__amd64)
1906	if (trp == NULL && lwp->lwp_pcb.pcb_rupdate != 0) {
1907
1908		/*
1909		 * This is the common case -- we're trying to load
1910		 * a bad segment register value in the only section
1911		 * of kernel code that ever loads segment registers.
1912		 *
1913		 * We don't need to do anything at this point because
1914		 * the pcb contains all the pending segment register
1915		 * state, and the regs are still intact because we
1916		 * didn't adjust the stack pointer yet.  Given the fidelity
1917		 * of all this, we could conceivably send a signal
1918		 * to the lwp, rather than core-ing.
1919		 */
1920		trp = lwptoregs(lwp);
1921		ASSERT((caddr_t)trp == (caddr_t)rp->r_sp);
1922	}
1923
1924#elif defined(__i386)
1925
1926	if (trp == NULL && instr_is_segregs_pop(pc))
1927		trp = lwptoregs(lwp);
1928
1929#endif	/* __i386 */
1930
1931	if (trp == NULL)
1932		return (1);
1933
1934	/*
1935	 * If we get to here, we're reasonably confident that we've
1936	 * correctly decoded what happened on the way out of the kernel.
1937	 * Rewrite the lwp's registers so that we can create a core dump
1938	 * the (at least vaguely) represents the mcontext we were
1939	 * being asked to restore when things went so terribly wrong.
1940	 */
1941
1942	/*
1943	 * Make sure that we have a meaningful %trapno and %err.
1944	 */
1945	trp->r_trapno = rp->r_trapno;
1946	trp->r_err = rp->r_err;
1947
1948	if ((caddr_t)trp != (caddr_t)lwptoregs(lwp))
1949		bcopy(trp, lwptoregs(lwp), sizeof (*trp));
1950
1951
1952	mutex_enter(&p->p_lock);
1953	lwp->lwp_cursig = SIGSEGV;
1954	mutex_exit(&p->p_lock);
1955
1956	/*
1957	 * Terminate all LWPs but don't discard them.  If another lwp beat
1958	 * us to the punch by calling exit(), evaporate now.
1959	 */
1960	proc_is_exiting(p);
1961	if (exitlwps(1) != 0) {
1962		mutex_enter(&p->p_lock);
1963		lwp_exit();
1964	}
1965
1966	if (auditing)		/* audit core dump */
1967		audit_core_start(SIGSEGV);
1968	v = core(SIGSEGV, B_FALSE);
1969	if (auditing)		/* audit core dump */
1970		audit_core_finish(v ? CLD_KILLED : CLD_DUMPED);
1971	exit(v ? CLD_KILLED : CLD_DUMPED, SIGSEGV);
1972	return (0);
1973}
1974
1975/*
1976 * dump_tss() - Display the TSS structure
1977 */
1978
1979#if !defined(__xpv)
1980#if defined(__amd64)
1981
1982static void
1983dump_tss(void)
1984{
1985	const char tss_fmt[] = "tss.%s:\t0x%p\n";  /* Format string */
1986	struct tss *tss = CPU->cpu_tss;
1987
1988	printf(tss_fmt, "tss_rsp0", (void *)tss->tss_rsp0);
1989	printf(tss_fmt, "tss_rsp1", (void *)tss->tss_rsp1);
1990	printf(tss_fmt, "tss_rsp2", (void *)tss->tss_rsp2);
1991
1992	printf(tss_fmt, "tss_ist1", (void *)tss->tss_ist1);
1993	printf(tss_fmt, "tss_ist2", (void *)tss->tss_ist2);
1994	printf(tss_fmt, "tss_ist3", (void *)tss->tss_ist3);
1995	printf(tss_fmt, "tss_ist4", (void *)tss->tss_ist4);
1996	printf(tss_fmt, "tss_ist5", (void *)tss->tss_ist5);
1997	printf(tss_fmt, "tss_ist6", (void *)tss->tss_ist6);
1998	printf(tss_fmt, "tss_ist7", (void *)tss->tss_ist7);
1999}
2000
2001#elif defined(__i386)
2002
2003static void
2004dump_tss(void)
2005{
2006	const char tss_fmt[] = "tss.%s:\t0x%p\n";  /* Format string */
2007	struct tss *tss = CPU->cpu_tss;
2008
2009	printf(tss_fmt, "tss_link", (void *)(uintptr_t)tss->tss_link);
2010	printf(tss_fmt, "tss_esp0", (void *)(uintptr_t)tss->tss_esp0);
2011	printf(tss_fmt, "tss_ss0", (void *)(uintptr_t)tss->tss_ss0);
2012	printf(tss_fmt, "tss_esp1", (void *)(uintptr_t)tss->tss_esp1);
2013	printf(tss_fmt, "tss_ss1", (void *)(uintptr_t)tss->tss_ss1);
2014	printf(tss_fmt, "tss_esp2", (void *)(uintptr_t)tss->tss_esp2);
2015	printf(tss_fmt, "tss_ss2", (void *)(uintptr_t)tss->tss_ss2);
2016	printf(tss_fmt, "tss_cr3", (void *)(uintptr_t)tss->tss_cr3);
2017	printf(tss_fmt, "tss_eip", (void *)(uintptr_t)tss->tss_eip);
2018	printf(tss_fmt, "tss_eflags", (void *)(uintptr_t)tss->tss_eflags);
2019	printf(tss_fmt, "tss_eax", (void *)(uintptr_t)tss->tss_eax);
2020	printf(tss_fmt, "tss_ebx", (void *)(uintptr_t)tss->tss_ebx);
2021	printf(tss_fmt, "tss_ecx", (void *)(uintptr_t)tss->tss_ecx);
2022	printf(tss_fmt, "tss_edx", (void *)(uintptr_t)tss->tss_edx);
2023	printf(tss_fmt, "tss_esp", (void *)(uintptr_t)tss->tss_esp);
2024}
2025
2026#endif	/* __amd64 */
2027#endif	/* !__xpv */
2028
2029#if defined(TRAPTRACE)
2030
2031int ttrace_nrec = 10;		/* number of records to dump out */
2032int ttrace_dump_nregs = 0;	/* dump out this many records with regs too */
2033
2034/*
2035 * Dump out the last ttrace_nrec traptrace records on each CPU
2036 */
2037static void
2038dump_ttrace(void)
2039{
2040	trap_trace_ctl_t *ttc;
2041	trap_trace_rec_t *rec;
2042	uintptr_t current;
2043	int i, j, k;
2044	int n = NCPU;
2045#if defined(__amd64)
2046	const char banner[] =
2047	    "\ncpu          address    timestamp "
2048	    "type  vc  handler   pc\n";
2049	const char fmt1[] = "%3d %016lx %12llx ";
2050#elif defined(__i386)
2051	const char banner[] =
2052	    "\ncpu  address     timestamp type  vc  handler   pc\n";
2053	const char fmt1[] = "%3d %08lx %12llx ";
2054#endif
2055	const char fmt2[] = "%4s %3x ";
2056	const char fmt3[] = "%8s ";
2057
2058	if (ttrace_nrec == 0)
2059		return;
2060
2061	printf(banner);
2062
2063	for (i = 0; i < n; i++) {
2064		ttc = &trap_trace_ctl[i];
2065		if (ttc->ttc_first == NULL)
2066			continue;
2067
2068		current = ttc->ttc_next - sizeof (trap_trace_rec_t);
2069		for (j = 0; j < ttrace_nrec; j++) {
2070			struct sysent	*sys;
2071			struct autovec	*vec;
2072			extern struct av_head autovect[];
2073			int type;
2074			ulong_t	off;
2075			char *sym, *stype;
2076
2077			if (current < ttc->ttc_first)
2078				current =
2079				    ttc->ttc_limit - sizeof (trap_trace_rec_t);
2080
2081			if (current == NULL)
2082				continue;
2083
2084			rec = (trap_trace_rec_t *)current;
2085
2086			if (rec->ttr_stamp == 0)
2087				break;
2088
2089			printf(fmt1, i, (uintptr_t)rec, rec->ttr_stamp);
2090
2091			switch (rec->ttr_marker) {
2092			case TT_SYSCALL:
2093			case TT_SYSENTER:
2094			case TT_SYSC:
2095			case TT_SYSC64:
2096#if defined(__amd64)
2097				sys = &sysent32[rec->ttr_sysnum];
2098				switch (rec->ttr_marker) {
2099				case TT_SYSC64:
2100					sys = &sysent[rec->ttr_sysnum];
2101					/*FALLTHROUGH*/
2102#elif defined(__i386)
2103				sys = &sysent[rec->ttr_sysnum];
2104				switch (rec->ttr_marker) {
2105				case TT_SYSC64:
2106#endif
2107				case TT_SYSC:
2108					stype = "sysc";	/* syscall */
2109					break;
2110				case TT_SYSCALL:
2111					stype = "lcal";	/* lcall */
2112					break;
2113				case TT_SYSENTER:
2114					stype = "syse";	/* sysenter */
2115					break;
2116				default:
2117					break;
2118				}
2119				printf(fmt2, "sysc", rec->ttr_sysnum);
2120				if (sys != NULL) {
2121					sym = kobj_getsymname(
2122					    (uintptr_t)sys->sy_callc,
2123					    &off);
2124					if (sym != NULL)
2125						printf(fmt3, sym);
2126					else
2127						printf("%p ", sys->sy_callc);
2128				} else {
2129					printf(fmt3, "unknown");
2130				}
2131				break;
2132
2133			case TT_INTERRUPT:
2134				printf(fmt2, "intr", rec->ttr_vector);
2135				if (get_intr_handler != NULL)
2136					vec = (struct autovec *)
2137					    (*get_intr_handler)
2138					    (rec->ttr_cpuid, rec->ttr_vector);
2139				else
2140					vec =
2141					    autovect[rec->ttr_vector].avh_link;
2142
2143				if (vec != NULL) {
2144					sym = kobj_getsymname(
2145					    (uintptr_t)vec->av_vector, &off);
2146					if (sym != NULL)
2147						printf(fmt3, sym);
2148					else
2149						printf("%p ", vec->av_vector);
2150				} else {
2151					printf(fmt3, "unknown ");
2152				}
2153				break;
2154
2155			case TT_TRAP:
2156			case TT_EVENT:
2157				type = rec->ttr_regs.r_trapno;
2158				printf(fmt2, "trap", type);
2159				if (type < TRAP_TYPES)
2160					printf("     #%s ",
2161					    trap_type_mnemonic[type]);
2162				else
2163					switch (type) {
2164					case T_AST:
2165						printf(fmt3, "ast");
2166						break;
2167					default:
2168						printf(fmt3, "");
2169						break;
2170					}
2171				break;
2172
2173			default:
2174				break;
2175			}
2176
2177			sym = kobj_getsymname(rec->ttr_regs.r_pc, &off);
2178			if (sym != NULL)
2179				printf("%s+%lx\n", sym, off);
2180			else
2181				printf("%lx\n", rec->ttr_regs.r_pc);
2182
2183			if (ttrace_dump_nregs-- > 0) {
2184				int s;
2185
2186				if (rec->ttr_marker == TT_INTERRUPT)
2187					printf(
2188					    "\t\tipl %x spl %x pri %x\n",
2189					    rec->ttr_ipl,
2190					    rec->ttr_spl,
2191					    rec->ttr_pri);
2192
2193				dumpregs(&rec->ttr_regs);
2194
2195				printf("\t%3s: %p\n\n", " ct",
2196				    (void *)rec->ttr_curthread);
2197
2198				/*
2199				 * print out the pc stack that we recorded
2200				 * at trap time (if any)
2201				 */
2202				for (s = 0; s < rec->ttr_sdepth; s++) {
2203					uintptr_t fullpc;
2204
2205					if (s >= TTR_STACK_DEPTH) {
2206						printf("ttr_sdepth corrupt\n");
2207						break;
2208					}
2209
2210					fullpc = (uintptr_t)rec->ttr_stack[s];
2211
2212					sym = kobj_getsymname(fullpc, &off);
2213					if (sym != NULL)
2214						printf("-> %s+0x%lx()\n",
2215						    sym, off);
2216					else
2217						printf("-> 0x%lx()\n", fullpc);
2218				}
2219				printf("\n");
2220			}
2221			current -= sizeof (trap_trace_rec_t);
2222		}
2223	}
2224}
2225
2226#endif	/* TRAPTRACE */
2227
2228void
2229panic_showtrap(struct panic_trap_info *tip)
2230{
2231	showregs(tip->trap_type, tip->trap_regs, tip->trap_addr);
2232
2233#if defined(TRAPTRACE)
2234	dump_ttrace();
2235#endif
2236
2237#if !defined(__xpv)
2238	if (tip->trap_type == T_DBLFLT)
2239		dump_tss();
2240#endif
2241}
2242
2243void
2244panic_savetrap(panic_data_t *pdp, struct panic_trap_info *tip)
2245{
2246	panic_saveregs(pdp, tip->trap_regs);
2247}
2248