machdep.c revision 9160:1517e6edbc6f
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24 * Use is subject to license terms.
25 */
26
27#include <sys/types.h>
28#include <sys/t_lock.h>
29#include <sys/param.h>
30#include <sys/segments.h>
31#include <sys/sysmacros.h>
32#include <sys/signal.h>
33#include <sys/systm.h>
34#include <sys/user.h>
35#include <sys/mman.h>
36#include <sys/vm.h>
37
38#include <sys/disp.h>
39#include <sys/class.h>
40
41#include <sys/proc.h>
42#include <sys/buf.h>
43#include <sys/kmem.h>
44
45#include <sys/reboot.h>
46#include <sys/uadmin.h>
47#include <sys/callb.h>
48
49#include <sys/cred.h>
50#include <sys/vnode.h>
51#include <sys/file.h>
52
53#include <sys/procfs.h>
54#include <sys/acct.h>
55
56#include <sys/vfs.h>
57#include <sys/dnlc.h>
58#include <sys/var.h>
59#include <sys/cmn_err.h>
60#include <sys/utsname.h>
61#include <sys/debug.h>
62
63#include <sys/dumphdr.h>
64#include <sys/bootconf.h>
65#include <sys/varargs.h>
66#include <sys/promif.h>
67#include <sys/modctl.h>
68
69#include <sys/consdev.h>
70#include <sys/frame.h>
71
72#include <sys/sunddi.h>
73#include <sys/ddidmareq.h>
74#include <sys/psw.h>
75#include <sys/regset.h>
76#include <sys/privregs.h>
77#include <sys/clock.h>
78#include <sys/tss.h>
79#include <sys/cpu.h>
80#include <sys/stack.h>
81#include <sys/trap.h>
82#include <sys/pic.h>
83#include <vm/hat.h>
84#include <vm/anon.h>
85#include <vm/as.h>
86#include <vm/page.h>
87#include <vm/seg.h>
88#include <vm/seg_kmem.h>
89#include <vm/seg_map.h>
90#include <vm/seg_vn.h>
91#include <vm/seg_kp.h>
92#include <vm/hat_i86.h>
93#include <sys/swap.h>
94#include <sys/thread.h>
95#include <sys/sysconf.h>
96#include <sys/vm_machparam.h>
97#include <sys/archsystm.h>
98#include <sys/machsystm.h>
99#include <sys/machlock.h>
100#include <sys/x_call.h>
101#include <sys/instance.h>
102
103#include <sys/time.h>
104#include <sys/smp_impldefs.h>
105#include <sys/psm_types.h>
106#include <sys/atomic.h>
107#include <sys/panic.h>
108#include <sys/cpuvar.h>
109#include <sys/dtrace.h>
110#include <sys/bl.h>
111#include <sys/nvpair.h>
112#include <sys/x86_archext.h>
113#include <sys/pool_pset.h>
114#include <sys/autoconf.h>
115#include <sys/mem.h>
116#include <sys/dumphdr.h>
117#include <sys/compress.h>
118#include <sys/cpu_module.h>
119#if defined(__xpv)
120#include <sys/hypervisor.h>
121#include <sys/xpv_panic.h>
122#endif
123
124#include <sys/fastboot.h>
125#include <sys/machelf.h>
126#include <sys/kobj.h>
127#include <sys/multiboot.h>
128
129#ifdef	TRAPTRACE
130#include <sys/traptrace.h>
131#endif	/* TRAPTRACE */
132
133extern void audit_enterprom(int);
134extern void audit_exitprom(int);
135
136/*
137 * Occassionally the kernel knows better whether to power-off or reboot.
138 */
139int force_shutdown_method = AD_UNKNOWN;
140
141/*
142 * The panicbuf array is used to record messages and state:
143 */
144char panicbuf[PANICBUFSIZE];
145
146/*
147 * maxphys - used during physio
148 * klustsize - used for klustering by swapfs and specfs
149 */
150int maxphys = 56 * 1024;    /* XXX See vm_subr.c - max b_count in physio */
151int klustsize = 56 * 1024;
152
153caddr_t	p0_va;		/* Virtual address for accessing physical page 0 */
154
155/*
156 * defined here, though unused on x86,
157 * to make kstat_fr.c happy.
158 */
159int vac;
160
161void stop_other_cpus();
162void debug_enter(char *);
163
164extern void pm_cfb_check_and_powerup(void);
165extern void pm_cfb_rele(void);
166
167extern fastboot_info_t newkernel;
168
169/*
170 * Machine dependent code to reboot.
171 * "mdep" is interpreted as a character pointer; if non-null, it is a pointer
172 * to a string to be used as the argument string when rebooting.
173 *
174 * "invoke_cb" is a boolean. It is set to true when mdboot() can safely
175 * invoke CB_CL_MDBOOT callbacks before shutting the system down, i.e. when
176 * we are in a normal shutdown sequence (interrupts are not blocked, the
177 * system is not panic'ing or being suspended).
178 */
179/*ARGSUSED*/
180void
181mdboot(int cmd, int fcn, char *mdep, boolean_t invoke_cb)
182{
183	processorid_t bootcpuid = 0;
184	static int is_first_quiesce = 1;
185	static int is_first_reset = 1;
186	int reset_status = 0;
187	static char fallback_str[] = "Falling back to regular reboot.\n";
188
189	if (fcn == AD_FASTREBOOT && !newkernel.fi_valid)
190		fcn = AD_BOOT;
191
192	if (!panicstr) {
193		kpreempt_disable();
194		if (fcn == AD_FASTREBOOT) {
195			mutex_enter(&cpu_lock);
196			if (CPU_ACTIVE(cpu_get(bootcpuid))) {
197				affinity_set(bootcpuid);
198			}
199			mutex_exit(&cpu_lock);
200		} else {
201			affinity_set(CPU_CURRENT);
202		}
203	}
204
205	if (force_shutdown_method != AD_UNKNOWN)
206		fcn = force_shutdown_method;
207
208	/*
209	 * XXX - rconsvp is set to NULL to ensure that output messages
210	 * are sent to the underlying "hardware" device using the
211	 * monitor's printf routine since we are in the process of
212	 * either rebooting or halting the machine.
213	 */
214	rconsvp = NULL;
215
216	/*
217	 * Print the reboot message now, before pausing other cpus.
218	 * There is a race condition in the printing support that
219	 * can deadlock multiprocessor machines.
220	 */
221	if (!(fcn == AD_HALT || fcn == AD_POWEROFF))
222		prom_printf("rebooting...\n");
223
224	if (IN_XPV_PANIC())
225		reset();
226
227	/*
228	 * We can't bring up the console from above lock level, so do it now
229	 */
230	pm_cfb_check_and_powerup();
231
232	/* make sure there are no more changes to the device tree */
233	devtree_freeze();
234
235	if (invoke_cb)
236		(void) callb_execute_class(CB_CL_MDBOOT, NULL);
237
238	/*
239	 * Clear any unresolved UEs from memory.
240	 */
241	page_retire_mdboot();
242
243#if defined(__xpv)
244	/*
245	 * XXPV	Should probably think some more about how we deal
246	 *	with panicing before it's really safe to panic.
247	 *	On hypervisors, we reboot very quickly..  Perhaps panic
248	 *	should only attempt to recover by rebooting if,
249	 *	say, we were able to mount the root filesystem,
250	 *	or if we successfully launched init(1m).
251	 */
252	if (panicstr && proc_init == NULL)
253		(void) HYPERVISOR_shutdown(SHUTDOWN_poweroff);
254#endif
255	/*
256	 * stop other cpus and raise our priority.  since there is only
257	 * one active cpu after this, and our priority will be too high
258	 * for us to be preempted, we're essentially single threaded
259	 * from here on out.
260	 */
261	(void) spl6();
262	if (!panicstr) {
263		mutex_enter(&cpu_lock);
264		pause_cpus(NULL);
265		mutex_exit(&cpu_lock);
266	}
267
268	/*
269	 * If the system is panicking, the preloaded kernel is valid,
270	 * and fastreboot_onpanic has been set, choose Fast Reboot.
271	 */
272	if (fcn == AD_BOOT && panicstr && newkernel.fi_valid &&
273	    fastreboot_onpanic)
274		fcn = AD_FASTREBOOT;
275
276	/*
277	 * Try to quiesce devices.
278	 */
279	if (is_first_quiesce) {
280		/*
281		 * Clear is_first_quiesce before calling quiesce_devices()
282		 * so that if quiesce_devices() causes panics, it will not
283		 * be invoked again.
284		 */
285		is_first_quiesce = 0;
286
287		quiesce_active = 1;
288		quiesce_devices(ddi_root_node(), &reset_status);
289		if (reset_status == -1) {
290			if (fcn == AD_FASTREBOOT && !force_fastreboot) {
291				prom_printf("Driver(s) not capable of fast "
292				    "reboot.\n");
293				prom_printf(fallback_str);
294				fastreboot_capable = 0;
295				fcn = AD_BOOT;
296			} else if (fcn != AD_FASTREBOOT)
297				fastreboot_capable = 0;
298		}
299		quiesce_active = 0;
300	}
301
302	/*
303	 * Try to reset devices. reset_leaves() should only be called
304	 * a) when there are no other threads that could be accessing devices,
305	 *    and
306	 * b) on a system that's not capable of fast reboot (fastreboot_capable
307	 *    being 0), or on a system where quiesce_devices() failed to
308	 *    complete (quiesce_active being 1).
309	 */
310	if (is_first_reset && (!fastreboot_capable || quiesce_active)) {
311		/*
312		 * Clear is_first_reset before calling reset_devices()
313		 * so that if reset_devices() causes panics, it will not
314		 * be invoked again.
315		 */
316		is_first_reset = 0;
317		reset_leaves();
318	}
319
320	/* Verify newkernel checksum */
321	if (fastreboot_capable && fcn == AD_FASTREBOOT &&
322	    fastboot_cksum_verify(&newkernel) != 0) {
323		fastreboot_capable = 0;
324		prom_printf("Fast reboot: checksum failed for the new "
325		    "kernel.\n");
326		prom_printf(fallback_str);
327	}
328
329	(void) spl8();
330
331	if (fastreboot_capable && fcn == AD_FASTREBOOT) {
332		/*
333		 * psm_shutdown is called within fast_reboot()
334		 */
335		fast_reboot();
336	} else {
337		(*psm_shutdownf)(cmd, fcn);
338
339		if (fcn == AD_HALT || fcn == AD_POWEROFF)
340			halt((char *)NULL);
341		else
342			prom_reboot("");
343	}
344	/*NOTREACHED*/
345}
346
347/* mdpreboot - may be called prior to mdboot while root fs still mounted */
348/*ARGSUSED*/
349void
350mdpreboot(int cmd, int fcn, char *mdep)
351{
352	if (fcn == AD_FASTREBOOT && !fastreboot_capable) {
353		fcn = AD_BOOT;
354#ifdef	__xpv
355		cmn_err(CE_WARN, "Fast reboot is not supported on xVM");
356#else
357		cmn_err(CE_WARN,
358		    "Fast reboot is not supported on this platform");
359#endif
360	}
361
362	if (fcn == AD_FASTREBOOT) {
363		fastboot_load_kernel(mdep);
364		if (!newkernel.fi_valid)
365			fcn = AD_BOOT;
366	}
367
368	(*psm_preshutdownf)(cmd, fcn);
369}
370
371void
372idle_other_cpus()
373{
374	int cpuid = CPU->cpu_id;
375	cpuset_t xcset;
376
377	ASSERT(cpuid < NCPU);
378	CPUSET_ALL_BUT(xcset, cpuid);
379	xc_capture_cpus(xcset);
380}
381
382void
383resume_other_cpus()
384{
385	ASSERT(CPU->cpu_id < NCPU);
386
387	xc_release_cpus();
388}
389
390void
391stop_other_cpus()
392{
393	int cpuid = CPU->cpu_id;
394	cpuset_t xcset;
395
396	ASSERT(cpuid < NCPU);
397
398	/*
399	 * xc_trycall will attempt to make all other CPUs execute mach_cpu_halt,
400	 * and will return immediately regardless of whether or not it was
401	 * able to make them do it.
402	 */
403	CPUSET_ALL_BUT(xcset, cpuid);
404	xc_trycall(NULL, NULL, NULL, xcset, (int (*)())mach_cpu_halt);
405}
406
407/*
408 *	Machine dependent abort sequence handling
409 */
410void
411abort_sequence_enter(char *msg)
412{
413	if (abort_enable == 0) {
414		if (audit_active)
415			audit_enterprom(0);
416		return;
417	}
418	if (audit_active)
419		audit_enterprom(1);
420	debug_enter(msg);
421	if (audit_active)
422		audit_exitprom(1);
423}
424
425/*
426 * Enter debugger.  Called when the user types ctrl-alt-d or whenever
427 * code wants to enter the debugger and possibly resume later.
428 */
429void
430debug_enter(
431	char	*msg)		/* message to print, possibly NULL */
432{
433	if (dtrace_debugger_init != NULL)
434		(*dtrace_debugger_init)();
435
436	if (msg)
437		prom_printf("%s\n", msg);
438
439	if (boothowto & RB_DEBUG)
440		kmdb_enter();
441
442	if (dtrace_debugger_fini != NULL)
443		(*dtrace_debugger_fini)();
444}
445
446void
447reset(void)
448{
449#if !defined(__xpv)
450	ushort_t *bios_memchk;
451
452	/*
453	 * Can't use psm_map_phys before the hat is initialized.
454	 */
455	if (khat_running) {
456		bios_memchk = (ushort_t *)psm_map_phys(0x472,
457		    sizeof (ushort_t), PROT_READ | PROT_WRITE);
458		if (bios_memchk)
459			*bios_memchk = 0x1234;	/* bios memory check disable */
460	}
461
462	if (ddi_prop_exists(DDI_DEV_T_ANY, ddi_root_node(), 0, "efi-systab"))
463		efi_reset();
464	pc_reset();
465#else
466	if (IN_XPV_PANIC())
467		pc_reset();
468	(void) HYPERVISOR_shutdown(SHUTDOWN_reboot);
469	panic("HYPERVISOR_shutdown() failed");
470#endif
471	/*NOTREACHED*/
472}
473
474/*
475 * Halt the machine and return to the monitor
476 */
477void
478halt(char *s)
479{
480	stop_other_cpus();	/* send stop signal to other CPUs */
481	if (s)
482		prom_printf("(%s) \n", s);
483	prom_exit_to_mon();
484	/*NOTREACHED*/
485}
486
487/*
488 * Initiate interrupt redistribution.
489 */
490void
491i_ddi_intr_redist_all_cpus()
492{
493}
494
495/*
496 * XXX These probably ought to live somewhere else
497 * XXX They are called from mem.c
498 */
499
500/*
501 * Convert page frame number to an OBMEM page frame number
502 * (i.e. put in the type bits -- zero for this implementation)
503 */
504pfn_t
505impl_obmem_pfnum(pfn_t pf)
506{
507	return (pf);
508}
509
510#ifdef	NM_DEBUG
511int nmi_test = 0;	/* checked in intentry.s during clock int */
512int nmtest = -1;
513nmfunc1(arg, rp)
514int	arg;
515struct regs *rp;
516{
517	printf("nmi called with arg = %x, regs = %x\n", arg, rp);
518	nmtest += 50;
519	if (arg == nmtest) {
520		printf("ip = %x\n", rp->r_pc);
521		return (1);
522	}
523	return (0);
524}
525
526#endif
527
528#include <sys/bootsvcs.h>
529
530/* Hacked up initialization for initial kernel check out is HERE. */
531/* The basic steps are: */
532/*	kernel bootfuncs definition/initialization for KADB */
533/*	kadb bootfuncs pointer initialization */
534/*	putchar/getchar (interrupts disabled) */
535
536/* kadb bootfuncs pointer initialization */
537
538int
539sysp_getchar()
540{
541	int i;
542	ulong_t s;
543
544	if (cons_polledio == NULL) {
545		/* Uh oh */
546		prom_printf("getchar called with no console\n");
547		for (;;)
548			/* LOOP FOREVER */;
549	}
550
551	s = clear_int_flag();
552	i = cons_polledio->cons_polledio_getchar(
553	    cons_polledio->cons_polledio_argument);
554	restore_int_flag(s);
555	return (i);
556}
557
558void
559sysp_putchar(int c)
560{
561	ulong_t s;
562
563	/*
564	 * We have no alternative but to drop the output on the floor.
565	 */
566	if (cons_polledio == NULL ||
567	    cons_polledio->cons_polledio_putchar == NULL)
568		return;
569
570	s = clear_int_flag();
571	cons_polledio->cons_polledio_putchar(
572	    cons_polledio->cons_polledio_argument, c);
573	restore_int_flag(s);
574}
575
576int
577sysp_ischar()
578{
579	int i;
580	ulong_t s;
581
582	if (cons_polledio == NULL ||
583	    cons_polledio->cons_polledio_ischar == NULL)
584		return (0);
585
586	s = clear_int_flag();
587	i = cons_polledio->cons_polledio_ischar(
588	    cons_polledio->cons_polledio_argument);
589	restore_int_flag(s);
590	return (i);
591}
592
593int
594goany(void)
595{
596	prom_printf("Type any key to continue ");
597	(void) prom_getchar();
598	prom_printf("\n");
599	return (1);
600}
601
602static struct boot_syscalls kern_sysp = {
603	sysp_getchar,	/*	unchar	(*getchar)();	7  */
604	sysp_putchar,	/*	int	(*putchar)();	8  */
605	sysp_ischar,	/*	int	(*ischar)();	9  */
606};
607
608#if defined(__xpv)
609int using_kern_polledio;
610#endif
611
612void
613kadb_uses_kernel()
614{
615	/*
616	 * This routine is now totally misnamed, since it does not in fact
617	 * control kadb's I/O; it only controls the kernel's prom_* I/O.
618	 */
619	sysp = &kern_sysp;
620#if defined(__xpv)
621	using_kern_polledio = 1;
622#endif
623}
624
625/*
626 *	the interface to the outside world
627 */
628
629/*
630 * poll_port -- wait for a register to achieve a
631 *		specific state.  Arguments are a mask of bits we care about,
632 *		and two sub-masks.  To return normally, all the bits in the
633 *		first sub-mask must be ON, all the bits in the second sub-
634 *		mask must be OFF.  If about seconds pass without the register
635 *		achieving the desired bit configuration, we return 1, else
636 *		0.
637 */
638int
639poll_port(ushort_t port, ushort_t mask, ushort_t onbits, ushort_t offbits)
640{
641	int i;
642	ushort_t maskval;
643
644	for (i = 500000; i; i--) {
645		maskval = inb(port) & mask;
646		if (((maskval & onbits) == onbits) &&
647		    ((maskval & offbits) == 0))
648			return (0);
649		drv_usecwait(10);
650	}
651	return (1);
652}
653
654/*
655 * set_idle_cpu is called from idle() when a CPU becomes idle.
656 */
657/*LINTED: static unused */
658static uint_t last_idle_cpu;
659
660/*ARGSUSED*/
661void
662set_idle_cpu(int cpun)
663{
664	last_idle_cpu = cpun;
665	(*psm_set_idle_cpuf)(cpun);
666}
667
668/*
669 * unset_idle_cpu is called from idle() when a CPU is no longer idle.
670 */
671/*ARGSUSED*/
672void
673unset_idle_cpu(int cpun)
674{
675	(*psm_unset_idle_cpuf)(cpun);
676}
677
678/*
679 * This routine is almost correct now, but not quite.  It still needs the
680 * equivalent concept of "hres_last_tick", just like on the sparc side.
681 * The idea is to take a snapshot of the hi-res timer while doing the
682 * hrestime_adj updates under hres_lock in locore, so that the small
683 * interval between interrupt assertion and interrupt processing is
684 * accounted for correctly.  Once we have this, the code below should
685 * be modified to subtract off hres_last_tick rather than hrtime_base.
686 *
687 * I'd have done this myself, but I don't have source to all of the
688 * vendor-specific hi-res timer routines (grrr...).  The generic hook I
689 * need is something like "gethrtime_unlocked()", which would be just like
690 * gethrtime() but would assume that you're already holding CLOCK_LOCK().
691 * This is what the GET_HRTIME() macro is for on sparc (although it also
692 * serves the function of making time available without a function call
693 * so you don't take a register window overflow while traps are disabled).
694 */
695void
696pc_gethrestime(timestruc_t *tp)
697{
698	int lock_prev;
699	timestruc_t now;
700	int nslt;		/* nsec since last tick */
701	int adj;		/* amount of adjustment to apply */
702
703loop:
704	lock_prev = hres_lock;
705	now = hrestime;
706	nslt = (int)(gethrtime() - hres_last_tick);
707	if (nslt < 0) {
708		/*
709		 * nslt < 0 means a tick came between sampling
710		 * gethrtime() and hres_last_tick; restart the loop
711		 */
712
713		goto loop;
714	}
715	now.tv_nsec += nslt;
716	if (hrestime_adj != 0) {
717		if (hrestime_adj > 0) {
718			adj = (nslt >> ADJ_SHIFT);
719			if (adj > hrestime_adj)
720				adj = (int)hrestime_adj;
721		} else {
722			adj = -(nslt >> ADJ_SHIFT);
723			if (adj < hrestime_adj)
724				adj = (int)hrestime_adj;
725		}
726		now.tv_nsec += adj;
727	}
728	while ((unsigned long)now.tv_nsec >= NANOSEC) {
729
730		/*
731		 * We might have a large adjustment or have been in the
732		 * debugger for a long time; take care of (at most) four
733		 * of those missed seconds (tv_nsec is 32 bits, so
734		 * anything >4s will be wrapping around).  However,
735		 * anything more than 2 seconds out of sync will trigger
736		 * timedelta from clock() to go correct the time anyway,
737		 * so do what we can, and let the big crowbar do the
738		 * rest.  A similar correction while loop exists inside
739		 * hres_tick(); in all cases we'd like tv_nsec to
740		 * satisfy 0 <= tv_nsec < NANOSEC to avoid confusing
741		 * user processes, but if tv_sec's a little behind for a
742		 * little while, that's OK; time still monotonically
743		 * increases.
744		 */
745
746		now.tv_nsec -= NANOSEC;
747		now.tv_sec++;
748	}
749	if ((hres_lock & ~1) != lock_prev)
750		goto loop;
751
752	*tp = now;
753}
754
755void
756gethrestime_lasttick(timespec_t *tp)
757{
758	int s;
759
760	s = hr_clock_lock();
761	*tp = hrestime;
762	hr_clock_unlock(s);
763}
764
765time_t
766gethrestime_sec(void)
767{
768	timestruc_t now;
769
770	gethrestime(&now);
771	return (now.tv_sec);
772}
773
774/*
775 * Initialize a kernel thread's stack
776 */
777
778caddr_t
779thread_stk_init(caddr_t stk)
780{
781	ASSERT(((uintptr_t)stk & (STACK_ALIGN - 1)) == 0);
782	return (stk - SA(MINFRAME));
783}
784
785/*
786 * Initialize lwp's kernel stack.
787 */
788
789#ifdef TRAPTRACE
790/*
791 * There's a tricky interdependency here between use of sysenter and
792 * TRAPTRACE which needs recording to avoid future confusion (this is
793 * about the third time I've re-figured this out ..)
794 *
795 * Here's how debugging lcall works with TRAPTRACE.
796 *
797 * 1 We're in userland with a breakpoint on the lcall instruction.
798 * 2 We execute the instruction - the instruction pushes the userland
799 *   %ss, %esp, %efl, %cs, %eip on the stack and zips into the kernel
800 *   via the call gate.
801 * 3 The hardware raises a debug trap in kernel mode, the hardware
802 *   pushes %efl, %cs, %eip and gets to dbgtrap via the idt.
803 * 4 dbgtrap pushes the error code and trapno and calls cmntrap
804 * 5 cmntrap finishes building a trap frame
805 * 6 The TRACE_REGS macros in cmntrap copy a REGSIZE worth chunk
806 *   off the stack into the traptrace buffer.
807 *
808 * This means that the traptrace buffer contains the wrong values in
809 * %esp and %ss, but everything else in there is correct.
810 *
811 * Here's how debugging sysenter works with TRAPTRACE.
812 *
813 * a We're in userland with a breakpoint on the sysenter instruction.
814 * b We execute the instruction - the instruction pushes -nothing-
815 *   on the stack, but sets %cs, %eip, %ss, %esp to prearranged
816 *   values to take us to sys_sysenter, at the top of the lwp's
817 *   stack.
818 * c goto 3
819 *
820 * At this point, because we got into the kernel without the requisite
821 * five pushes on the stack, if we didn't make extra room, we'd
822 * end up with the TRACE_REGS macro fetching the saved %ss and %esp
823 * values from negative (unmapped) stack addresses -- which really bites.
824 * That's why we do the '-= 8' below.
825 *
826 * XXX	Note that reading "up" lwp0's stack works because t0 is declared
827 *	right next to t0stack in locore.s
828 */
829#endif
830
831caddr_t
832lwp_stk_init(klwp_t *lwp, caddr_t stk)
833{
834	caddr_t oldstk;
835	struct pcb *pcb = &lwp->lwp_pcb;
836
837	oldstk = stk;
838	stk -= SA(sizeof (struct regs) + SA(MINFRAME));
839#ifdef TRAPTRACE
840	stk -= 2 * sizeof (greg_t); /* space for phony %ss:%sp (see above) */
841#endif
842	stk = (caddr_t)((uintptr_t)stk & ~(STACK_ALIGN - 1ul));
843	bzero(stk, oldstk - stk);
844	lwp->lwp_regs = (void *)(stk + SA(MINFRAME));
845
846	/*
847	 * Arrange that the virtualized %fs and %gs GDT descriptors
848	 * have a well-defined initial state (present, ring 3
849	 * and of type data).
850	 */
851#if defined(__amd64)
852	if (lwp_getdatamodel(lwp) == DATAMODEL_NATIVE)
853		pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_udesc;
854	else
855		pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_u32desc;
856#elif defined(__i386)
857	pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_udesc;
858#endif	/* __i386 */
859	lwp_installctx(lwp);
860	return (stk);
861}
862
863/*ARGSUSED*/
864void
865lwp_stk_fini(klwp_t *lwp)
866{}
867
868/*
869 * If we're not the panic CPU, we wait in panic_idle for reboot.
870 */
871static void
872panic_idle(void)
873{
874	splx(ipltospl(CLOCK_LEVEL));
875	(void) setjmp(&curthread->t_pcb);
876
877	for (;;)
878		;
879}
880
881/*
882 * Stop the other CPUs by cross-calling them and forcing them to enter
883 * the panic_idle() loop above.
884 */
885/*ARGSUSED*/
886void
887panic_stopcpus(cpu_t *cp, kthread_t *t, int spl)
888{
889	processorid_t i;
890	cpuset_t xcset;
891
892	/*
893	 * In the case of a Xen panic, the hypervisor has already stopped
894	 * all of the CPUs.
895	 */
896	if (!IN_XPV_PANIC()) {
897		(void) splzs();
898
899		CPUSET_ALL_BUT(xcset, cp->cpu_id);
900		xc_trycall(NULL, NULL, NULL, xcset, (int (*)())panic_idle);
901	}
902
903	for (i = 0; i < NCPU; i++) {
904		if (i != cp->cpu_id && cpu[i] != NULL &&
905		    (cpu[i]->cpu_flags & CPU_EXISTS))
906			cpu[i]->cpu_flags |= CPU_QUIESCED;
907	}
908}
909
910/*
911 * Platform callback following each entry to panicsys().
912 */
913/*ARGSUSED*/
914void
915panic_enter_hw(int spl)
916{
917	/* Nothing to do here */
918}
919
920/*
921 * Platform-specific code to execute after panicstr is set: we invoke
922 * the PSM entry point to indicate that a panic has occurred.
923 */
924/*ARGSUSED*/
925void
926panic_quiesce_hw(panic_data_t *pdp)
927{
928	psm_notifyf(PSM_PANIC_ENTER);
929
930	cmi_panic_callback();
931
932#ifdef	TRAPTRACE
933	/*
934	 * Turn off TRAPTRACE
935	 */
936	TRAPTRACE_FREEZE;
937#endif	/* TRAPTRACE */
938}
939
940/*
941 * Platform callback prior to writing crash dump.
942 */
943/*ARGSUSED*/
944void
945panic_dump_hw(int spl)
946{
947	/* Nothing to do here */
948}
949
950void *
951plat_traceback(void *fpreg)
952{
953#ifdef __xpv
954	if (IN_XPV_PANIC())
955		return (xpv_traceback(fpreg));
956#endif
957	return (fpreg);
958}
959
960/*ARGSUSED*/
961void
962plat_tod_fault(enum tod_fault_type tod_bad)
963{}
964
965/*ARGSUSED*/
966int
967blacklist(int cmd, const char *scheme, nvlist_t *fmri, const char *class)
968{
969	return (ENOTSUP);
970}
971
972/*
973 * The underlying console output routines are protected by raising IPL in case
974 * we are still calling into the early boot services.  Once we start calling
975 * the kernel console emulator, it will disable interrupts completely during
976 * character rendering (see sysp_putchar, for example).  Refer to the comments
977 * and code in common/os/console.c for more information on these callbacks.
978 */
979/*ARGSUSED*/
980int
981console_enter(int busy)
982{
983	return (splzs());
984}
985
986/*ARGSUSED*/
987void
988console_exit(int busy, int spl)
989{
990	splx(spl);
991}
992
993/*
994 * Allocate a region of virtual address space, unmapped.
995 * Stubbed out except on sparc, at least for now.
996 */
997/*ARGSUSED*/
998void *
999boot_virt_alloc(void *addr, size_t size)
1000{
1001	return (addr);
1002}
1003
1004volatile unsigned long	tenmicrodata;
1005
1006void
1007tenmicrosec(void)
1008{
1009	extern int gethrtime_hires;
1010
1011	if (gethrtime_hires) {
1012		hrtime_t start, end;
1013		start = end =  gethrtime();
1014		while ((end - start) < (10 * (NANOSEC / MICROSEC))) {
1015			SMT_PAUSE();
1016			end = gethrtime();
1017		}
1018	} else {
1019#if defined(__xpv)
1020		hrtime_t newtime;
1021
1022		newtime = xpv_gethrtime() + 10000; /* now + 10 us */
1023		while (xpv_gethrtime() < newtime)
1024			SMT_PAUSE();
1025#else	/* __xpv */
1026		int i;
1027
1028		/*
1029		 * Artificial loop to induce delay.
1030		 */
1031		for (i = 0; i < microdata; i++)
1032			tenmicrodata = microdata;
1033#endif	/* __xpv */
1034	}
1035}
1036
1037/*
1038 * get_cpu_mstate() is passed an array of timestamps, NCMSTATES
1039 * long, and it fills in the array with the time spent on cpu in
1040 * each of the mstates, where time is returned in nsec.
1041 *
1042 * No guarantee is made that the returned values in times[] will
1043 * monotonically increase on sequential calls, although this will
1044 * be true in the long run. Any such guarantee must be handled by
1045 * the caller, if needed. This can happen if we fail to account
1046 * for elapsed time due to a generation counter conflict, yet we
1047 * did account for it on a prior call (see below).
1048 *
1049 * The complication is that the cpu in question may be updating
1050 * its microstate at the same time that we are reading it.
1051 * Because the microstate is only updated when the CPU's state
1052 * changes, the values in cpu_intracct[] can be indefinitely out
1053 * of date. To determine true current values, it is necessary to
1054 * compare the current time with cpu_mstate_start, and add the
1055 * difference to times[cpu_mstate].
1056 *
1057 * This can be a problem if those values are changing out from
1058 * under us. Because the code path in new_cpu_mstate() is
1059 * performance critical, we have not added a lock to it. Instead,
1060 * we have added a generation counter. Before beginning
1061 * modifications, the counter is set to 0. After modifications,
1062 * it is set to the old value plus one.
1063 *
1064 * get_cpu_mstate() will not consider the values of cpu_mstate
1065 * and cpu_mstate_start to be usable unless the value of
1066 * cpu_mstate_gen is both non-zero and unchanged, both before and
1067 * after reading the mstate information. Note that we must
1068 * protect against out-of-order loads around accesses to the
1069 * generation counter. Also, this is a best effort approach in
1070 * that we do not retry should the counter be found to have
1071 * changed.
1072 *
1073 * cpu_intracct[] is used to identify time spent in each CPU
1074 * mstate while handling interrupts. Such time should be reported
1075 * against system time, and so is subtracted out from its
1076 * corresponding cpu_acct[] time and added to
1077 * cpu_acct[CMS_SYSTEM].
1078 */
1079
1080void
1081get_cpu_mstate(cpu_t *cpu, hrtime_t *times)
1082{
1083	int i;
1084	hrtime_t now, start;
1085	uint16_t gen;
1086	uint16_t state;
1087	hrtime_t intracct[NCMSTATES];
1088
1089	/*
1090	 * Load all volatile state under the protection of membar.
1091	 * cpu_acct[cpu_mstate] must be loaded to avoid double counting
1092	 * of (now - cpu_mstate_start) by a change in CPU mstate that
1093	 * arrives after we make our last check of cpu_mstate_gen.
1094	 */
1095
1096	now = gethrtime_unscaled();
1097	gen = cpu->cpu_mstate_gen;
1098
1099	membar_consumer();	/* guarantee load ordering */
1100	start = cpu->cpu_mstate_start;
1101	state = cpu->cpu_mstate;
1102	for (i = 0; i < NCMSTATES; i++) {
1103		intracct[i] = cpu->cpu_intracct[i];
1104		times[i] = cpu->cpu_acct[i];
1105	}
1106	membar_consumer();	/* guarantee load ordering */
1107
1108	if (gen != 0 && gen == cpu->cpu_mstate_gen && now > start)
1109		times[state] += now - start;
1110
1111	for (i = 0; i < NCMSTATES; i++) {
1112		if (i == CMS_SYSTEM)
1113			continue;
1114		times[i] -= intracct[i];
1115		if (times[i] < 0) {
1116			intracct[i] += times[i];
1117			times[i] = 0;
1118		}
1119		times[CMS_SYSTEM] += intracct[i];
1120		scalehrtime(&times[i]);
1121	}
1122	scalehrtime(&times[CMS_SYSTEM]);
1123}
1124
1125/*
1126 * This is a version of the rdmsr instruction that allows
1127 * an error code to be returned in the case of failure.
1128 */
1129int
1130checked_rdmsr(uint_t msr, uint64_t *value)
1131{
1132	if ((x86_feature & X86_MSR) == 0)
1133		return (ENOTSUP);
1134	*value = rdmsr(msr);
1135	return (0);
1136}
1137
1138/*
1139 * This is a version of the wrmsr instruction that allows
1140 * an error code to be returned in the case of failure.
1141 */
1142int
1143checked_wrmsr(uint_t msr, uint64_t value)
1144{
1145	if ((x86_feature & X86_MSR) == 0)
1146		return (ENOTSUP);
1147	wrmsr(msr, value);
1148	return (0);
1149}
1150
1151/*
1152 * The mem driver's usual method of using hat_devload() to establish a
1153 * temporary mapping will not work for foreign pages mapped into this
1154 * domain or for the special hypervisor-provided pages.  For the foreign
1155 * pages, we often don't know which domain owns them, so we can't ask the
1156 * hypervisor to set up a new mapping.  For the other pages, we don't have
1157 * a pfn, so we can't create a new PTE.  For these special cases, we do a
1158 * direct uiomove() from the existing kernel virtual address.
1159 */
1160/*ARGSUSED*/
1161int
1162plat_mem_do_mmio(struct uio *uio, enum uio_rw rw)
1163{
1164#if defined(__xpv)
1165	void *va = (void *)(uintptr_t)uio->uio_loffset;
1166	off_t pageoff = uio->uio_loffset & PAGEOFFSET;
1167	size_t nbytes = MIN((size_t)(PAGESIZE - pageoff),
1168	    (size_t)uio->uio_iov->iov_len);
1169
1170	if ((rw == UIO_READ &&
1171	    (va == HYPERVISOR_shared_info || va == xen_info)) ||
1172	    (pfn_is_foreign(hat_getpfnum(kas.a_hat, va))))
1173		return (uiomove(va, nbytes, rw, uio));
1174#endif
1175	return (ENOTSUP);
1176}
1177
1178pgcnt_t
1179num_phys_pages()
1180{
1181	pgcnt_t npages = 0;
1182	struct memlist *mp;
1183
1184#if defined(__xpv)
1185	if (DOMAIN_IS_INITDOMAIN(xen_info)) {
1186		xen_sysctl_t op;
1187
1188		op.cmd = XEN_SYSCTL_physinfo;
1189		op.interface_version = XEN_SYSCTL_INTERFACE_VERSION;
1190		if (HYPERVISOR_sysctl(&op) != 0)
1191			panic("physinfo op refused");
1192
1193		return ((pgcnt_t)op.u.physinfo.total_pages);
1194	}
1195#endif /* __xpv */
1196
1197	for (mp = phys_install; mp != NULL; mp = mp->next)
1198		npages += mp->size >> PAGESHIFT;
1199
1200	return (npages);
1201}
1202
1203int
1204dump_plat_addr()
1205{
1206#ifdef __xpv
1207	pfn_t pfn = mmu_btop(xen_info->shared_info) | PFN_IS_FOREIGN_MFN;
1208	mem_vtop_t mem_vtop;
1209	int cnt;
1210
1211	/*
1212	 * On the hypervisor, we want to dump the page with shared_info on it.
1213	 */
1214	if (!IN_XPV_PANIC()) {
1215		mem_vtop.m_as = &kas;
1216		mem_vtop.m_va = HYPERVISOR_shared_info;
1217		mem_vtop.m_pfn = pfn;
1218		dumpvp_write(&mem_vtop, sizeof (mem_vtop_t));
1219		cnt = 1;
1220	} else {
1221		cnt = dump_xpv_addr();
1222	}
1223	return (cnt);
1224#else
1225	return (0);
1226#endif
1227}
1228
1229void
1230dump_plat_pfn()
1231{
1232#ifdef __xpv
1233	pfn_t pfn = mmu_btop(xen_info->shared_info) | PFN_IS_FOREIGN_MFN;
1234
1235	if (!IN_XPV_PANIC())
1236		dumpvp_write(&pfn, sizeof (pfn));
1237	else
1238		dump_xpv_pfn();
1239#endif
1240}
1241
1242/*ARGSUSED*/
1243int
1244dump_plat_data(void *dump_cbuf)
1245{
1246#ifdef __xpv
1247	uint32_t csize;
1248	int cnt;
1249
1250	if (!IN_XPV_PANIC()) {
1251		csize = (uint32_t)compress(HYPERVISOR_shared_info, dump_cbuf,
1252		    PAGESIZE);
1253		dumpvp_write(&csize, sizeof (uint32_t));
1254		dumpvp_write(dump_cbuf, csize);
1255		cnt = 1;
1256	} else {
1257		cnt = dump_xpv_data(dump_cbuf);
1258	}
1259	return (cnt);
1260#else
1261	return (0);
1262#endif
1263}
1264
1265/*
1266 * Calculates a linear address, given the CS selector and PC values
1267 * by looking up the %cs selector process's LDT or the CPU's GDT.
1268 * proc->p_ldtlock must be held across this call.
1269 */
1270int
1271linear_pc(struct regs *rp, proc_t *p, caddr_t *linearp)
1272{
1273	user_desc_t	*descrp;
1274	caddr_t		baseaddr;
1275	uint16_t	idx = SELTOIDX(rp->r_cs);
1276
1277	ASSERT(rp->r_cs <= 0xFFFF);
1278	ASSERT(MUTEX_HELD(&p->p_ldtlock));
1279
1280	if (SELISLDT(rp->r_cs)) {
1281		/*
1282		 * Currently 64 bit processes cannot have private LDTs.
1283		 */
1284		ASSERT(p->p_model != DATAMODEL_LP64);
1285
1286		if (p->p_ldt == NULL)
1287			return (-1);
1288
1289		descrp = &p->p_ldt[idx];
1290		baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp);
1291
1292		/*
1293		 * Calculate the linear address (wraparound is not only ok,
1294		 * it's expected behavior).  The cast to uint32_t is because
1295		 * LDT selectors are only allowed in 32-bit processes.
1296		 */
1297		*linearp = (caddr_t)(uintptr_t)(uint32_t)((uintptr_t)baseaddr +
1298		    rp->r_pc);
1299	} else {
1300#ifdef DEBUG
1301		descrp = &CPU->cpu_gdt[idx];
1302		baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp);
1303		/* GDT-based descriptors' base addresses should always be 0 */
1304		ASSERT(baseaddr == 0);
1305#endif
1306		*linearp = (caddr_t)(uintptr_t)rp->r_pc;
1307	}
1308
1309	return (0);
1310}
1311
1312/*
1313 * The implementation of dtrace_linear_pc is similar to the that of
1314 * linear_pc, above, but here we acquire p_ldtlock before accessing
1315 * p_ldt.  This implementation is used by the pid provider; we prefix
1316 * it with "dtrace_" to avoid inducing spurious tracing events.
1317 */
1318int
1319dtrace_linear_pc(struct regs *rp, proc_t *p, caddr_t *linearp)
1320{
1321	user_desc_t	*descrp;
1322	caddr_t		baseaddr;
1323	uint16_t	idx = SELTOIDX(rp->r_cs);
1324
1325	ASSERT(rp->r_cs <= 0xFFFF);
1326
1327	if (SELISLDT(rp->r_cs)) {
1328		/*
1329		 * Currently 64 bit processes cannot have private LDTs.
1330		 */
1331		ASSERT(p->p_model != DATAMODEL_LP64);
1332
1333		mutex_enter(&p->p_ldtlock);
1334		if (p->p_ldt == NULL) {
1335			mutex_exit(&p->p_ldtlock);
1336			return (-1);
1337		}
1338		descrp = &p->p_ldt[idx];
1339		baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp);
1340		mutex_exit(&p->p_ldtlock);
1341
1342		/*
1343		 * Calculate the linear address (wraparound is not only ok,
1344		 * it's expected behavior).  The cast to uint32_t is because
1345		 * LDT selectors are only allowed in 32-bit processes.
1346		 */
1347		*linearp = (caddr_t)(uintptr_t)(uint32_t)((uintptr_t)baseaddr +
1348		    rp->r_pc);
1349	} else {
1350#ifdef DEBUG
1351		descrp = &CPU->cpu_gdt[idx];
1352		baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp);
1353		/* GDT-based descriptors' base addresses should always be 0 */
1354		ASSERT(baseaddr == 0);
1355#endif
1356		*linearp = (caddr_t)(uintptr_t)rp->r_pc;
1357	}
1358
1359	return (0);
1360}
1361