1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved.
24 */
25/*
26 * Copyright (c) 2010, Intel Corporation.
27 * All rights reserved.
28 */
29
30#include <sys/types.h>
31#include <sys/t_lock.h>
32#include <sys/param.h>
33#include <sys/segments.h>
34#include <sys/sysmacros.h>
35#include <sys/signal.h>
36#include <sys/systm.h>
37#include <sys/user.h>
38#include <sys/mman.h>
39#include <sys/vm.h>
40
41#include <sys/disp.h>
42#include <sys/class.h>
43
44#include <sys/proc.h>
45#include <sys/buf.h>
46#include <sys/kmem.h>
47
48#include <sys/reboot.h>
49#include <sys/uadmin.h>
50#include <sys/callb.h>
51
52#include <sys/cred.h>
53#include <sys/vnode.h>
54#include <sys/file.h>
55
56#include <sys/procfs.h>
57#include <sys/acct.h>
58
59#include <sys/vfs.h>
60#include <sys/dnlc.h>
61#include <sys/var.h>
62#include <sys/cmn_err.h>
63#include <sys/utsname.h>
64#include <sys/debug.h>
65
66#include <sys/dumphdr.h>
67#include <sys/bootconf.h>
68#include <sys/varargs.h>
69#include <sys/promif.h>
70#include <sys/modctl.h>
71
72#include <sys/consdev.h>
73#include <sys/frame.h>
74
75#include <sys/sunddi.h>
76#include <sys/ddidmareq.h>
77#include <sys/psw.h>
78#include <sys/regset.h>
79#include <sys/privregs.h>
80#include <sys/clock.h>
81#include <sys/tss.h>
82#include <sys/cpu.h>
83#include <sys/stack.h>
84#include <sys/trap.h>
85#include <sys/pic.h>
86#include <vm/hat.h>
87#include <vm/anon.h>
88#include <vm/as.h>
89#include <vm/page.h>
90#include <vm/seg.h>
91#include <vm/seg_kmem.h>
92#include <vm/seg_map.h>
93#include <vm/seg_vn.h>
94#include <vm/seg_kp.h>
95#include <vm/hat_i86.h>
96#include <sys/swap.h>
97#include <sys/thread.h>
98#include <sys/sysconf.h>
99#include <sys/vm_machparam.h>
100#include <sys/archsystm.h>
101#include <sys/machsystm.h>
102#include <sys/machlock.h>
103#include <sys/x_call.h>
104#include <sys/instance.h>
105
106#include <sys/time.h>
107#include <sys/smp_impldefs.h>
108#include <sys/psm_types.h>
109#include <sys/atomic.h>
110#include <sys/panic.h>
111#include <sys/cpuvar.h>
112#include <sys/dtrace.h>
113#include <sys/bl.h>
114#include <sys/nvpair.h>
115#include <sys/x86_archext.h>
116#include <sys/pool_pset.h>
117#include <sys/autoconf.h>
118#include <sys/mem.h>
119#include <sys/dumphdr.h>
120#include <sys/compress.h>
121#include <sys/cpu_module.h>
122#if defined(__xpv)
123#include <sys/hypervisor.h>
124#include <sys/xpv_panic.h>
125#endif
126
127#include <sys/fastboot.h>
128#include <sys/machelf.h>
129#include <sys/kobj.h>
130#include <sys/multiboot.h>
131
132#ifdef	TRAPTRACE
133#include <sys/traptrace.h>
134#endif	/* TRAPTRACE */
135
136#include <c2/audit.h>
137#include <sys/clock_impl.h>
138
139extern void audit_enterprom(int);
140extern void audit_exitprom(int);
141
142/*
143 * Tunable to enable apix PSM; if set to 0, pcplusmp PSM will be used.
144 */
145int	apix_enable = 1;
146
147int	apic_nvidia_io_max = 0;	/* no. of NVIDIA i/o apics */
148
149/*
150 * Occassionally the kernel knows better whether to power-off or reboot.
151 */
152int force_shutdown_method = AD_UNKNOWN;
153
154/*
155 * The panicbuf array is used to record messages and state:
156 */
157char panicbuf[PANICBUFSIZE];
158
159/*
160 * Flags to control Dynamic Reconfiguration features.
161 */
162uint64_t plat_dr_options;
163
164/*
165 * Maximum physical address for memory DR operations.
166 */
167uint64_t plat_dr_physmax;
168
169/*
170 * maxphys - used during physio
171 * klustsize - used for klustering by swapfs and specfs
172 */
173int maxphys = 56 * 1024;    /* XXX See vm_subr.c - max b_count in physio */
174int klustsize = 56 * 1024;
175
176caddr_t	p0_va;		/* Virtual address for accessing physical page 0 */
177
178/*
179 * defined here, though unused on x86,
180 * to make kstat_fr.c happy.
181 */
182int vac;
183
184void debug_enter(char *);
185
186extern void pm_cfb_check_and_powerup(void);
187extern void pm_cfb_rele(void);
188
189extern fastboot_info_t newkernel;
190
191/*
192 * Machine dependent code to reboot.
193 * "mdep" is interpreted as a character pointer; if non-null, it is a pointer
194 * to a string to be used as the argument string when rebooting.
195 *
196 * "invoke_cb" is a boolean. It is set to true when mdboot() can safely
197 * invoke CB_CL_MDBOOT callbacks before shutting the system down, i.e. when
198 * we are in a normal shutdown sequence (interrupts are not blocked, the
199 * system is not panic'ing or being suspended).
200 */
201/*ARGSUSED*/
202void
203mdboot(int cmd, int fcn, char *mdep, boolean_t invoke_cb)
204{
205	processorid_t bootcpuid = 0;
206	static int is_first_quiesce = 1;
207	static int is_first_reset = 1;
208	int reset_status = 0;
209	static char fallback_str[] = "Falling back to regular reboot.\n";
210
211	if (fcn == AD_FASTREBOOT && !newkernel.fi_valid)
212		fcn = AD_BOOT;
213
214	if (!panicstr) {
215		kpreempt_disable();
216		if (fcn == AD_FASTREBOOT) {
217			mutex_enter(&cpu_lock);
218			if (CPU_ACTIVE(cpu_get(bootcpuid))) {
219				affinity_set(bootcpuid);
220			}
221			mutex_exit(&cpu_lock);
222		} else {
223			affinity_set(CPU_CURRENT);
224		}
225	}
226
227	if (force_shutdown_method != AD_UNKNOWN)
228		fcn = force_shutdown_method;
229
230	/*
231	 * XXX - rconsvp is set to NULL to ensure that output messages
232	 * are sent to the underlying "hardware" device using the
233	 * monitor's printf routine since we are in the process of
234	 * either rebooting or halting the machine.
235	 */
236	rconsvp = NULL;
237
238	/*
239	 * Print the reboot message now, before pausing other cpus.
240	 * There is a race condition in the printing support that
241	 * can deadlock multiprocessor machines.
242	 */
243	if (!(fcn == AD_HALT || fcn == AD_POWEROFF))
244		prom_printf("rebooting...\n");
245
246	if (IN_XPV_PANIC())
247		reset();
248
249	/*
250	 * We can't bring up the console from above lock level, so do it now
251	 */
252	pm_cfb_check_and_powerup();
253
254	/* make sure there are no more changes to the device tree */
255	devtree_freeze();
256
257	if (invoke_cb)
258		(void) callb_execute_class(CB_CL_MDBOOT, NULL);
259
260	/*
261	 * Clear any unresolved UEs from memory.
262	 */
263	page_retire_mdboot();
264
265#if defined(__xpv)
266	/*
267	 * XXPV	Should probably think some more about how we deal
268	 *	with panicing before it's really safe to panic.
269	 *	On hypervisors, we reboot very quickly..  Perhaps panic
270	 *	should only attempt to recover by rebooting if,
271	 *	say, we were able to mount the root filesystem,
272	 *	or if we successfully launched init(1m).
273	 */
274	if (panicstr && proc_init == NULL)
275		(void) HYPERVISOR_shutdown(SHUTDOWN_poweroff);
276#endif
277	/*
278	 * stop other cpus and raise our priority.  since there is only
279	 * one active cpu after this, and our priority will be too high
280	 * for us to be preempted, we're essentially single threaded
281	 * from here on out.
282	 */
283	(void) spl6();
284	if (!panicstr) {
285		mutex_enter(&cpu_lock);
286		pause_cpus(NULL);
287		mutex_exit(&cpu_lock);
288	}
289
290	/*
291	 * If the system is panicking, the preloaded kernel is valid, and
292	 * fastreboot_onpanic has been set, and the system has been up for
293	 * longer than fastreboot_onpanic_uptime (default to 10 minutes),
294	 * choose Fast Reboot.
295	 */
296	if (fcn == AD_BOOT && panicstr && newkernel.fi_valid &&
297	    fastreboot_onpanic &&
298	    (panic_lbolt - lbolt_at_boot) > fastreboot_onpanic_uptime) {
299		fcn = AD_FASTREBOOT;
300	}
301
302	/*
303	 * Try to quiesce devices.
304	 */
305	if (is_first_quiesce) {
306		/*
307		 * Clear is_first_quiesce before calling quiesce_devices()
308		 * so that if quiesce_devices() causes panics, it will not
309		 * be invoked again.
310		 */
311		is_first_quiesce = 0;
312
313		quiesce_active = 1;
314		quiesce_devices(ddi_root_node(), &reset_status);
315		if (reset_status == -1) {
316			if (fcn == AD_FASTREBOOT && !force_fastreboot) {
317				prom_printf("Driver(s) not capable of fast "
318				    "reboot.\n");
319				prom_printf(fallback_str);
320				fastreboot_capable = 0;
321				fcn = AD_BOOT;
322			} else if (fcn != AD_FASTREBOOT)
323				fastreboot_capable = 0;
324		}
325		quiesce_active = 0;
326	}
327
328	/*
329	 * Try to reset devices. reset_leaves() should only be called
330	 * a) when there are no other threads that could be accessing devices,
331	 *    and
332	 * b) on a system that's not capable of fast reboot (fastreboot_capable
333	 *    being 0), or on a system where quiesce_devices() failed to
334	 *    complete (quiesce_active being 1).
335	 */
336	if (is_first_reset && (!fastreboot_capable || quiesce_active)) {
337		/*
338		 * Clear is_first_reset before calling reset_devices()
339		 * so that if reset_devices() causes panics, it will not
340		 * be invoked again.
341		 */
342		is_first_reset = 0;
343		reset_leaves();
344	}
345
346	/* Verify newkernel checksum */
347	if (fastreboot_capable && fcn == AD_FASTREBOOT &&
348	    fastboot_cksum_verify(&newkernel) != 0) {
349		fastreboot_capable = 0;
350		prom_printf("Fast reboot: checksum failed for the new "
351		    "kernel.\n");
352		prom_printf(fallback_str);
353	}
354
355	(void) spl8();
356
357	if (fastreboot_capable && fcn == AD_FASTREBOOT) {
358		/*
359		 * psm_shutdown is called within fast_reboot()
360		 */
361		fast_reboot();
362	} else {
363		(*psm_shutdownf)(cmd, fcn);
364
365		if (fcn == AD_HALT || fcn == AD_POWEROFF)
366			halt((char *)NULL);
367		else
368			prom_reboot("");
369	}
370	/*NOTREACHED*/
371}
372
373/* mdpreboot - may be called prior to mdboot while root fs still mounted */
374/*ARGSUSED*/
375void
376mdpreboot(int cmd, int fcn, char *mdep)
377{
378	if (fcn == AD_FASTREBOOT && !fastreboot_capable) {
379		fcn = AD_BOOT;
380#ifdef	__xpv
381		cmn_err(CE_WARN, "Fast reboot is not supported on xVM");
382#else
383		cmn_err(CE_WARN,
384		    "Fast reboot is not supported on this platform%s",
385		    fastreboot_nosup_message());
386#endif
387	}
388
389	if (fcn == AD_FASTREBOOT) {
390		fastboot_load_kernel(mdep);
391		if (!newkernel.fi_valid)
392			fcn = AD_BOOT;
393	}
394
395	(*psm_preshutdownf)(cmd, fcn);
396}
397
398static void
399stop_other_cpus(void)
400{
401	ulong_t s = clear_int_flag(); /* fast way to keep CPU from changing */
402	cpuset_t xcset;
403
404	CPUSET_ALL_BUT(xcset, CPU->cpu_id);
405	xc_priority(0, 0, 0, CPUSET2BV(xcset), (xc_func_t)mach_cpu_halt);
406	restore_int_flag(s);
407}
408
409/*
410 *	Machine dependent abort sequence handling
411 */
412void
413abort_sequence_enter(char *msg)
414{
415	if (abort_enable == 0) {
416		if (AU_ZONE_AUDITING(GET_KCTX_GZ))
417			audit_enterprom(0);
418		return;
419	}
420	if (AU_ZONE_AUDITING(GET_KCTX_GZ))
421		audit_enterprom(1);
422	debug_enter(msg);
423	if (AU_ZONE_AUDITING(GET_KCTX_GZ))
424		audit_exitprom(1);
425}
426
427/*
428 * Enter debugger.  Called when the user types ctrl-alt-d or whenever
429 * code wants to enter the debugger and possibly resume later.
430 */
431void
432debug_enter(
433	char	*msg)		/* message to print, possibly NULL */
434{
435	if (dtrace_debugger_init != NULL)
436		(*dtrace_debugger_init)();
437
438	if (msg)
439		prom_printf("%s\n", msg);
440
441	if (boothowto & RB_DEBUG)
442		kmdb_enter();
443
444	if (dtrace_debugger_fini != NULL)
445		(*dtrace_debugger_fini)();
446}
447
448void
449reset(void)
450{
451	extern	void acpi_reset_system();
452#if !defined(__xpv)
453	ushort_t *bios_memchk;
454
455	/*
456	 * Can't use psm_map_phys or acpi_reset_system before the hat is
457	 * initialized.
458	 */
459	if (khat_running) {
460		bios_memchk = (ushort_t *)psm_map_phys(0x472,
461		    sizeof (ushort_t), PROT_READ | PROT_WRITE);
462		if (bios_memchk)
463			*bios_memchk = 0x1234;	/* bios memory check disable */
464
465		if (options_dip != NULL &&
466		    ddi_prop_exists(DDI_DEV_T_ANY, ddi_root_node(), 0,
467		    "efi-systab")) {
468			efi_reset();
469		}
470
471		/*
472		 * The problem with using stubs is that we can call
473		 * acpi_reset_system only after the kernel is up and running.
474		 *
475		 * We should create a global state to keep track of how far
476		 * up the kernel is but for the time being we will depend on
477		 * bootops. bootops cleared in startup_end().
478		 */
479		if (bootops == NULL)
480			acpi_reset_system();
481	}
482
483	pc_reset();
484#else
485	if (IN_XPV_PANIC()) {
486		if (khat_running && bootops == NULL) {
487			acpi_reset_system();
488		}
489
490		pc_reset();
491	}
492
493	(void) HYPERVISOR_shutdown(SHUTDOWN_reboot);
494	panic("HYPERVISOR_shutdown() failed");
495#endif
496	/*NOTREACHED*/
497}
498
499/*
500 * Halt the machine and return to the monitor
501 */
502void
503halt(char *s)
504{
505	stop_other_cpus();	/* send stop signal to other CPUs */
506	if (s)
507		prom_printf("(%s) \n", s);
508	prom_exit_to_mon();
509	/*NOTREACHED*/
510}
511
512/*
513 * Initiate interrupt redistribution.
514 */
515void
516i_ddi_intr_redist_all_cpus()
517{
518}
519
520/*
521 * XXX These probably ought to live somewhere else
522 * XXX They are called from mem.c
523 */
524
525/*
526 * Convert page frame number to an OBMEM page frame number
527 * (i.e. put in the type bits -- zero for this implementation)
528 */
529pfn_t
530impl_obmem_pfnum(pfn_t pf)
531{
532	return (pf);
533}
534
535#ifdef	NM_DEBUG
536int nmi_test = 0;	/* checked in intentry.s during clock int */
537int nmtest = -1;
538nmfunc1(arg, rp)
539int	arg;
540struct regs *rp;
541{
542	printf("nmi called with arg = %x, regs = %x\n", arg, rp);
543	nmtest += 50;
544	if (arg == nmtest) {
545		printf("ip = %x\n", rp->r_pc);
546		return (1);
547	}
548	return (0);
549}
550
551#endif
552
553#include <sys/bootsvcs.h>
554
555/* Hacked up initialization for initial kernel check out is HERE. */
556/* The basic steps are: */
557/*	kernel bootfuncs definition/initialization for KADB */
558/*	kadb bootfuncs pointer initialization */
559/*	putchar/getchar (interrupts disabled) */
560
561/* kadb bootfuncs pointer initialization */
562
563int
564sysp_getchar()
565{
566	int i;
567	ulong_t s;
568
569	if (cons_polledio == NULL) {
570		/* Uh oh */
571		prom_printf("getchar called with no console\n");
572		for (;;)
573			/* LOOP FOREVER */;
574	}
575
576	s = clear_int_flag();
577	i = cons_polledio->cons_polledio_getchar(
578	    cons_polledio->cons_polledio_argument);
579	restore_int_flag(s);
580	return (i);
581}
582
583void
584sysp_putchar(int c)
585{
586	ulong_t s;
587
588	/*
589	 * We have no alternative but to drop the output on the floor.
590	 */
591	if (cons_polledio == NULL ||
592	    cons_polledio->cons_polledio_putchar == NULL)
593		return;
594
595	s = clear_int_flag();
596	cons_polledio->cons_polledio_putchar(
597	    cons_polledio->cons_polledio_argument, c);
598	restore_int_flag(s);
599}
600
601int
602sysp_ischar()
603{
604	int i;
605	ulong_t s;
606
607	if (cons_polledio == NULL ||
608	    cons_polledio->cons_polledio_ischar == NULL)
609		return (0);
610
611	s = clear_int_flag();
612	i = cons_polledio->cons_polledio_ischar(
613	    cons_polledio->cons_polledio_argument);
614	restore_int_flag(s);
615	return (i);
616}
617
618int
619goany(void)
620{
621	prom_printf("Type any key to continue ");
622	(void) prom_getchar();
623	prom_printf("\n");
624	return (1);
625}
626
627static struct boot_syscalls kern_sysp = {
628	sysp_getchar,	/*	unchar	(*getchar)();	7  */
629	sysp_putchar,	/*	int	(*putchar)();	8  */
630	sysp_ischar,	/*	int	(*ischar)();	9  */
631};
632
633#if defined(__xpv)
634int using_kern_polledio;
635#endif
636
637void
638kadb_uses_kernel()
639{
640	/*
641	 * This routine is now totally misnamed, since it does not in fact
642	 * control kadb's I/O; it only controls the kernel's prom_* I/O.
643	 */
644	sysp = &kern_sysp;
645#if defined(__xpv)
646	using_kern_polledio = 1;
647#endif
648}
649
650/*
651 *	the interface to the outside world
652 */
653
654/*
655 * poll_port -- wait for a register to achieve a
656 *		specific state.  Arguments are a mask of bits we care about,
657 *		and two sub-masks.  To return normally, all the bits in the
658 *		first sub-mask must be ON, all the bits in the second sub-
659 *		mask must be OFF.  If about seconds pass without the register
660 *		achieving the desired bit configuration, we return 1, else
661 *		0.
662 */
663int
664poll_port(ushort_t port, ushort_t mask, ushort_t onbits, ushort_t offbits)
665{
666	int i;
667	ushort_t maskval;
668
669	for (i = 500000; i; i--) {
670		maskval = inb(port) & mask;
671		if (((maskval & onbits) == onbits) &&
672		    ((maskval & offbits) == 0))
673			return (0);
674		drv_usecwait(10);
675	}
676	return (1);
677}
678
679/*
680 * set_idle_cpu is called from idle() when a CPU becomes idle.
681 */
682/*LINTED: static unused */
683static uint_t last_idle_cpu;
684
685/*ARGSUSED*/
686void
687set_idle_cpu(int cpun)
688{
689	last_idle_cpu = cpun;
690	(*psm_set_idle_cpuf)(cpun);
691}
692
693/*
694 * unset_idle_cpu is called from idle() when a CPU is no longer idle.
695 */
696/*ARGSUSED*/
697void
698unset_idle_cpu(int cpun)
699{
700	(*psm_unset_idle_cpuf)(cpun);
701}
702
703/*
704 * This routine is almost correct now, but not quite.  It still needs the
705 * equivalent concept of "hres_last_tick", just like on the sparc side.
706 * The idea is to take a snapshot of the hi-res timer while doing the
707 * hrestime_adj updates under hres_lock in locore, so that the small
708 * interval between interrupt assertion and interrupt processing is
709 * accounted for correctly.  Once we have this, the code below should
710 * be modified to subtract off hres_last_tick rather than hrtime_base.
711 *
712 * I'd have done this myself, but I don't have source to all of the
713 * vendor-specific hi-res timer routines (grrr...).  The generic hook I
714 * need is something like "gethrtime_unlocked()", which would be just like
715 * gethrtime() but would assume that you're already holding CLOCK_LOCK().
716 * This is what the GET_HRTIME() macro is for on sparc (although it also
717 * serves the function of making time available without a function call
718 * so you don't take a register window overflow while traps are disabled).
719 */
720void
721pc_gethrestime(timestruc_t *tp)
722{
723	int lock_prev;
724	timestruc_t now;
725	int nslt;		/* nsec since last tick */
726	int adj;		/* amount of adjustment to apply */
727
728loop:
729	lock_prev = hres_lock;
730	now = hrestime;
731	nslt = (int)(gethrtime() - hres_last_tick);
732	if (nslt < 0) {
733		/*
734		 * nslt < 0 means a tick came between sampling
735		 * gethrtime() and hres_last_tick; restart the loop
736		 */
737
738		goto loop;
739	}
740	now.tv_nsec += nslt;
741	if (hrestime_adj != 0) {
742		if (hrestime_adj > 0) {
743			adj = (nslt >> ADJ_SHIFT);
744			if (adj > hrestime_adj)
745				adj = (int)hrestime_adj;
746		} else {
747			adj = -(nslt >> ADJ_SHIFT);
748			if (adj < hrestime_adj)
749				adj = (int)hrestime_adj;
750		}
751		now.tv_nsec += adj;
752	}
753	while ((unsigned long)now.tv_nsec >= NANOSEC) {
754
755		/*
756		 * We might have a large adjustment or have been in the
757		 * debugger for a long time; take care of (at most) four
758		 * of those missed seconds (tv_nsec is 32 bits, so
759		 * anything >4s will be wrapping around).  However,
760		 * anything more than 2 seconds out of sync will trigger
761		 * timedelta from clock() to go correct the time anyway,
762		 * so do what we can, and let the big crowbar do the
763		 * rest.  A similar correction while loop exists inside
764		 * hres_tick(); in all cases we'd like tv_nsec to
765		 * satisfy 0 <= tv_nsec < NANOSEC to avoid confusing
766		 * user processes, but if tv_sec's a little behind for a
767		 * little while, that's OK; time still monotonically
768		 * increases.
769		 */
770
771		now.tv_nsec -= NANOSEC;
772		now.tv_sec++;
773	}
774	if ((hres_lock & ~1) != lock_prev)
775		goto loop;
776
777	*tp = now;
778}
779
780void
781gethrestime_lasttick(timespec_t *tp)
782{
783	int s;
784
785	s = hr_clock_lock();
786	*tp = hrestime;
787	hr_clock_unlock(s);
788}
789
790time_t
791gethrestime_sec(void)
792{
793	timestruc_t now;
794
795	gethrestime(&now);
796	return (now.tv_sec);
797}
798
799/*
800 * Initialize a kernel thread's stack
801 */
802
803caddr_t
804thread_stk_init(caddr_t stk)
805{
806	ASSERT(((uintptr_t)stk & (STACK_ALIGN - 1)) == 0);
807	return (stk - SA(MINFRAME));
808}
809
810/*
811 * Initialize lwp's kernel stack.
812 */
813
814#ifdef TRAPTRACE
815/*
816 * There's a tricky interdependency here between use of sysenter and
817 * TRAPTRACE which needs recording to avoid future confusion (this is
818 * about the third time I've re-figured this out ..)
819 *
820 * Here's how debugging lcall works with TRAPTRACE.
821 *
822 * 1 We're in userland with a breakpoint on the lcall instruction.
823 * 2 We execute the instruction - the instruction pushes the userland
824 *   %ss, %esp, %efl, %cs, %eip on the stack and zips into the kernel
825 *   via the call gate.
826 * 3 The hardware raises a debug trap in kernel mode, the hardware
827 *   pushes %efl, %cs, %eip and gets to dbgtrap via the idt.
828 * 4 dbgtrap pushes the error code and trapno and calls cmntrap
829 * 5 cmntrap finishes building a trap frame
830 * 6 The TRACE_REGS macros in cmntrap copy a REGSIZE worth chunk
831 *   off the stack into the traptrace buffer.
832 *
833 * This means that the traptrace buffer contains the wrong values in
834 * %esp and %ss, but everything else in there is correct.
835 *
836 * Here's how debugging sysenter works with TRAPTRACE.
837 *
838 * a We're in userland with a breakpoint on the sysenter instruction.
839 * b We execute the instruction - the instruction pushes -nothing-
840 *   on the stack, but sets %cs, %eip, %ss, %esp to prearranged
841 *   values to take us to sys_sysenter, at the top of the lwp's
842 *   stack.
843 * c goto 3
844 *
845 * At this point, because we got into the kernel without the requisite
846 * five pushes on the stack, if we didn't make extra room, we'd
847 * end up with the TRACE_REGS macro fetching the saved %ss and %esp
848 * values from negative (unmapped) stack addresses -- which really bites.
849 * That's why we do the '-= 8' below.
850 *
851 * XXX	Note that reading "up" lwp0's stack works because t0 is declared
852 *	right next to t0stack in locore.s
853 */
854#endif
855
856caddr_t
857lwp_stk_init(klwp_t *lwp, caddr_t stk)
858{
859	caddr_t oldstk;
860	struct pcb *pcb = &lwp->lwp_pcb;
861
862	oldstk = stk;
863	stk -= SA(sizeof (struct regs) + SA(MINFRAME));
864#ifdef TRAPTRACE
865	stk -= 2 * sizeof (greg_t); /* space for phony %ss:%sp (see above) */
866#endif
867	stk = (caddr_t)((uintptr_t)stk & ~(STACK_ALIGN - 1ul));
868	bzero(stk, oldstk - stk);
869	lwp->lwp_regs = (void *)(stk + SA(MINFRAME));
870
871	/*
872	 * Arrange that the virtualized %fs and %gs GDT descriptors
873	 * have a well-defined initial state (present, ring 3
874	 * and of type data).
875	 */
876#if defined(__amd64)
877	if (lwp_getdatamodel(lwp) == DATAMODEL_NATIVE)
878		pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_udesc;
879	else
880		pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_u32desc;
881#elif defined(__i386)
882	pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_udesc;
883#endif	/* __i386 */
884	lwp_installctx(lwp);
885	return (stk);
886}
887
888/*ARGSUSED*/
889void
890lwp_stk_fini(klwp_t *lwp)
891{}
892
893/*
894 * If we're not the panic CPU, we wait in panic_idle for reboot.
895 */
896void
897panic_idle(void)
898{
899	splx(ipltospl(CLOCK_LEVEL));
900	(void) setjmp(&curthread->t_pcb);
901
902	dumpsys_helper();
903
904#ifndef __xpv
905	for (;;)
906		i86_halt();
907#else
908	for (;;)
909		;
910#endif
911}
912
913/*
914 * Stop the other CPUs by cross-calling them and forcing them to enter
915 * the panic_idle() loop above.
916 */
917/*ARGSUSED*/
918void
919panic_stopcpus(cpu_t *cp, kthread_t *t, int spl)
920{
921	processorid_t i;
922	cpuset_t xcset;
923
924	/*
925	 * In the case of a Xen panic, the hypervisor has already stopped
926	 * all of the CPUs.
927	 */
928	if (!IN_XPV_PANIC()) {
929		(void) splzs();
930
931		CPUSET_ALL_BUT(xcset, cp->cpu_id);
932		xc_priority(0, 0, 0, CPUSET2BV(xcset), (xc_func_t)panic_idle);
933	}
934
935	for (i = 0; i < NCPU; i++) {
936		if (i != cp->cpu_id && cpu[i] != NULL &&
937		    (cpu[i]->cpu_flags & CPU_EXISTS))
938			cpu[i]->cpu_flags |= CPU_QUIESCED;
939	}
940}
941
942/*
943 * Platform callback following each entry to panicsys().
944 */
945/*ARGSUSED*/
946void
947panic_enter_hw(int spl)
948{
949	/* Nothing to do here */
950}
951
952/*
953 * Platform-specific code to execute after panicstr is set: we invoke
954 * the PSM entry point to indicate that a panic has occurred.
955 */
956/*ARGSUSED*/
957void
958panic_quiesce_hw(panic_data_t *pdp)
959{
960	psm_notifyf(PSM_PANIC_ENTER);
961
962	cmi_panic_callback();
963
964#ifdef	TRAPTRACE
965	/*
966	 * Turn off TRAPTRACE
967	 */
968	TRAPTRACE_FREEZE;
969#endif	/* TRAPTRACE */
970}
971
972/*
973 * Platform callback prior to writing crash dump.
974 */
975/*ARGSUSED*/
976void
977panic_dump_hw(int spl)
978{
979	/* Nothing to do here */
980}
981
982void *
983plat_traceback(void *fpreg)
984{
985#ifdef __xpv
986	if (IN_XPV_PANIC())
987		return (xpv_traceback(fpreg));
988#endif
989	return (fpreg);
990}
991
992/*ARGSUSED*/
993void
994plat_tod_fault(enum tod_fault_type tod_bad)
995{}
996
997/*ARGSUSED*/
998int
999blacklist(int cmd, const char *scheme, nvlist_t *fmri, const char *class)
1000{
1001	return (ENOTSUP);
1002}
1003
1004/*
1005 * The underlying console output routines are protected by raising IPL in case
1006 * we are still calling into the early boot services.  Once we start calling
1007 * the kernel console emulator, it will disable interrupts completely during
1008 * character rendering (see sysp_putchar, for example).  Refer to the comments
1009 * and code in common/os/console.c for more information on these callbacks.
1010 */
1011/*ARGSUSED*/
1012int
1013console_enter(int busy)
1014{
1015	return (splzs());
1016}
1017
1018/*ARGSUSED*/
1019void
1020console_exit(int busy, int spl)
1021{
1022	splx(spl);
1023}
1024
1025/*
1026 * Allocate a region of virtual address space, unmapped.
1027 * Stubbed out except on sparc, at least for now.
1028 */
1029/*ARGSUSED*/
1030void *
1031boot_virt_alloc(void *addr, size_t size)
1032{
1033	return (addr);
1034}
1035
1036volatile unsigned long	tenmicrodata;
1037
1038void
1039tenmicrosec(void)
1040{
1041	extern int gethrtime_hires;
1042
1043	if (gethrtime_hires) {
1044		hrtime_t start, end;
1045		start = end =  gethrtime();
1046		while ((end - start) < (10 * (NANOSEC / MICROSEC))) {
1047			SMT_PAUSE();
1048			end = gethrtime();
1049		}
1050	} else {
1051#if defined(__xpv)
1052		hrtime_t newtime;
1053
1054		newtime = xpv_gethrtime() + 10000; /* now + 10 us */
1055		while (xpv_gethrtime() < newtime)
1056			SMT_PAUSE();
1057#else	/* __xpv */
1058		int i;
1059
1060		/*
1061		 * Artificial loop to induce delay.
1062		 */
1063		for (i = 0; i < microdata; i++)
1064			tenmicrodata = microdata;
1065#endif	/* __xpv */
1066	}
1067}
1068
1069/*
1070 * get_cpu_mstate() is passed an array of timestamps, NCMSTATES
1071 * long, and it fills in the array with the time spent on cpu in
1072 * each of the mstates, where time is returned in nsec.
1073 *
1074 * No guarantee is made that the returned values in times[] will
1075 * monotonically increase on sequential calls, although this will
1076 * be true in the long run. Any such guarantee must be handled by
1077 * the caller, if needed. This can happen if we fail to account
1078 * for elapsed time due to a generation counter conflict, yet we
1079 * did account for it on a prior call (see below).
1080 *
1081 * The complication is that the cpu in question may be updating
1082 * its microstate at the same time that we are reading it.
1083 * Because the microstate is only updated when the CPU's state
1084 * changes, the values in cpu_intracct[] can be indefinitely out
1085 * of date. To determine true current values, it is necessary to
1086 * compare the current time with cpu_mstate_start, and add the
1087 * difference to times[cpu_mstate].
1088 *
1089 * This can be a problem if those values are changing out from
1090 * under us. Because the code path in new_cpu_mstate() is
1091 * performance critical, we have not added a lock to it. Instead,
1092 * we have added a generation counter. Before beginning
1093 * modifications, the counter is set to 0. After modifications,
1094 * it is set to the old value plus one.
1095 *
1096 * get_cpu_mstate() will not consider the values of cpu_mstate
1097 * and cpu_mstate_start to be usable unless the value of
1098 * cpu_mstate_gen is both non-zero and unchanged, both before and
1099 * after reading the mstate information. Note that we must
1100 * protect against out-of-order loads around accesses to the
1101 * generation counter. Also, this is a best effort approach in
1102 * that we do not retry should the counter be found to have
1103 * changed.
1104 *
1105 * cpu_intracct[] is used to identify time spent in each CPU
1106 * mstate while handling interrupts. Such time should be reported
1107 * against system time, and so is subtracted out from its
1108 * corresponding cpu_acct[] time and added to
1109 * cpu_acct[CMS_SYSTEM].
1110 */
1111
1112void
1113get_cpu_mstate(cpu_t *cpu, hrtime_t *times)
1114{
1115	int i;
1116	hrtime_t now, start;
1117	uint16_t gen;
1118	uint16_t state;
1119	hrtime_t intracct[NCMSTATES];
1120
1121	/*
1122	 * Load all volatile state under the protection of membar.
1123	 * cpu_acct[cpu_mstate] must be loaded to avoid double counting
1124	 * of (now - cpu_mstate_start) by a change in CPU mstate that
1125	 * arrives after we make our last check of cpu_mstate_gen.
1126	 */
1127
1128	now = gethrtime_unscaled();
1129	gen = cpu->cpu_mstate_gen;
1130
1131	membar_consumer();	/* guarantee load ordering */
1132	start = cpu->cpu_mstate_start;
1133	state = cpu->cpu_mstate;
1134	for (i = 0; i < NCMSTATES; i++) {
1135		intracct[i] = cpu->cpu_intracct[i];
1136		times[i] = cpu->cpu_acct[i];
1137	}
1138	membar_consumer();	/* guarantee load ordering */
1139
1140	if (gen != 0 && gen == cpu->cpu_mstate_gen && now > start)
1141		times[state] += now - start;
1142
1143	for (i = 0; i < NCMSTATES; i++) {
1144		if (i == CMS_SYSTEM)
1145			continue;
1146		times[i] -= intracct[i];
1147		if (times[i] < 0) {
1148			intracct[i] += times[i];
1149			times[i] = 0;
1150		}
1151		times[CMS_SYSTEM] += intracct[i];
1152		scalehrtime(&times[i]);
1153	}
1154	scalehrtime(&times[CMS_SYSTEM]);
1155}
1156
1157/*
1158 * This is a version of the rdmsr instruction that allows
1159 * an error code to be returned in the case of failure.
1160 */
1161int
1162checked_rdmsr(uint_t msr, uint64_t *value)
1163{
1164	if (!is_x86_feature(x86_featureset, X86FSET_MSR))
1165		return (ENOTSUP);
1166	*value = rdmsr(msr);
1167	return (0);
1168}
1169
1170/*
1171 * This is a version of the wrmsr instruction that allows
1172 * an error code to be returned in the case of failure.
1173 */
1174int
1175checked_wrmsr(uint_t msr, uint64_t value)
1176{
1177	if (!is_x86_feature(x86_featureset, X86FSET_MSR))
1178		return (ENOTSUP);
1179	wrmsr(msr, value);
1180	return (0);
1181}
1182
1183/*
1184 * The mem driver's usual method of using hat_devload() to establish a
1185 * temporary mapping will not work for foreign pages mapped into this
1186 * domain or for the special hypervisor-provided pages.  For the foreign
1187 * pages, we often don't know which domain owns them, so we can't ask the
1188 * hypervisor to set up a new mapping.  For the other pages, we don't have
1189 * a pfn, so we can't create a new PTE.  For these special cases, we do a
1190 * direct uiomove() from the existing kernel virtual address.
1191 */
1192/*ARGSUSED*/
1193int
1194plat_mem_do_mmio(struct uio *uio, enum uio_rw rw)
1195{
1196#if defined(__xpv)
1197	void *va = (void *)(uintptr_t)uio->uio_loffset;
1198	off_t pageoff = uio->uio_loffset & PAGEOFFSET;
1199	size_t nbytes = MIN((size_t)(PAGESIZE - pageoff),
1200	    (size_t)uio->uio_iov->iov_len);
1201
1202	if ((rw == UIO_READ &&
1203	    (va == HYPERVISOR_shared_info || va == xen_info)) ||
1204	    (pfn_is_foreign(hat_getpfnum(kas.a_hat, va))))
1205		return (uiomove(va, nbytes, rw, uio));
1206#endif
1207	return (ENOTSUP);
1208}
1209
1210pgcnt_t
1211num_phys_pages()
1212{
1213	pgcnt_t npages = 0;
1214	struct memlist *mp;
1215
1216#if defined(__xpv)
1217	if (DOMAIN_IS_INITDOMAIN(xen_info))
1218		return (xpv_nr_phys_pages());
1219#endif /* __xpv */
1220
1221	for (mp = phys_install; mp != NULL; mp = mp->ml_next)
1222		npages += mp->ml_size >> PAGESHIFT;
1223
1224	return (npages);
1225}
1226
1227/* cpu threshold for compressed dumps */
1228#ifdef _LP64
1229uint_t dump_plat_mincpu_default = DUMP_PLAT_X86_64_MINCPU;
1230#else
1231uint_t dump_plat_mincpu_default = DUMP_PLAT_X86_32_MINCPU;
1232#endif
1233
1234int
1235dump_plat_addr()
1236{
1237#ifdef __xpv
1238	pfn_t pfn = mmu_btop(xen_info->shared_info) | PFN_IS_FOREIGN_MFN;
1239	mem_vtop_t mem_vtop;
1240	int cnt;
1241
1242	/*
1243	 * On the hypervisor, we want to dump the page with shared_info on it.
1244	 */
1245	if (!IN_XPV_PANIC()) {
1246		mem_vtop.m_as = &kas;
1247		mem_vtop.m_va = HYPERVISOR_shared_info;
1248		mem_vtop.m_pfn = pfn;
1249		dumpvp_write(&mem_vtop, sizeof (mem_vtop_t));
1250		cnt = 1;
1251	} else {
1252		cnt = dump_xpv_addr();
1253	}
1254	return (cnt);
1255#else
1256	return (0);
1257#endif
1258}
1259
1260void
1261dump_plat_pfn()
1262{
1263#ifdef __xpv
1264	pfn_t pfn = mmu_btop(xen_info->shared_info) | PFN_IS_FOREIGN_MFN;
1265
1266	if (!IN_XPV_PANIC())
1267		dumpvp_write(&pfn, sizeof (pfn));
1268	else
1269		dump_xpv_pfn();
1270#endif
1271}
1272
1273/*ARGSUSED*/
1274int
1275dump_plat_data(void *dump_cbuf)
1276{
1277#ifdef __xpv
1278	uint32_t csize;
1279	int cnt;
1280
1281	if (!IN_XPV_PANIC()) {
1282		csize = (uint32_t)compress(HYPERVISOR_shared_info, dump_cbuf,
1283		    PAGESIZE);
1284		dumpvp_write(&csize, sizeof (uint32_t));
1285		dumpvp_write(dump_cbuf, csize);
1286		cnt = 1;
1287	} else {
1288		cnt = dump_xpv_data(dump_cbuf);
1289	}
1290	return (cnt);
1291#else
1292	return (0);
1293#endif
1294}
1295
1296/*
1297 * Calculates a linear address, given the CS selector and PC values
1298 * by looking up the %cs selector process's LDT or the CPU's GDT.
1299 * proc->p_ldtlock must be held across this call.
1300 */
1301int
1302linear_pc(struct regs *rp, proc_t *p, caddr_t *linearp)
1303{
1304	user_desc_t	*descrp;
1305	caddr_t		baseaddr;
1306	uint16_t	idx = SELTOIDX(rp->r_cs);
1307
1308	ASSERT(rp->r_cs <= 0xFFFF);
1309	ASSERT(MUTEX_HELD(&p->p_ldtlock));
1310
1311	if (SELISLDT(rp->r_cs)) {
1312		/*
1313		 * Currently 64 bit processes cannot have private LDTs.
1314		 */
1315		ASSERT(p->p_model != DATAMODEL_LP64);
1316
1317		if (p->p_ldt == NULL)
1318			return (-1);
1319
1320		descrp = &p->p_ldt[idx];
1321		baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp);
1322
1323		/*
1324		 * Calculate the linear address (wraparound is not only ok,
1325		 * it's expected behavior).  The cast to uint32_t is because
1326		 * LDT selectors are only allowed in 32-bit processes.
1327		 */
1328		*linearp = (caddr_t)(uintptr_t)(uint32_t)((uintptr_t)baseaddr +
1329		    rp->r_pc);
1330	} else {
1331#ifdef DEBUG
1332		descrp = &CPU->cpu_gdt[idx];
1333		baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp);
1334		/* GDT-based descriptors' base addresses should always be 0 */
1335		ASSERT(baseaddr == 0);
1336#endif
1337		*linearp = (caddr_t)(uintptr_t)rp->r_pc;
1338	}
1339
1340	return (0);
1341}
1342
1343/*
1344 * The implementation of dtrace_linear_pc is similar to the that of
1345 * linear_pc, above, but here we acquire p_ldtlock before accessing
1346 * p_ldt.  This implementation is used by the pid provider; we prefix
1347 * it with "dtrace_" to avoid inducing spurious tracing events.
1348 */
1349int
1350dtrace_linear_pc(struct regs *rp, proc_t *p, caddr_t *linearp)
1351{
1352	user_desc_t	*descrp;
1353	caddr_t		baseaddr;
1354	uint16_t	idx = SELTOIDX(rp->r_cs);
1355
1356	ASSERT(rp->r_cs <= 0xFFFF);
1357
1358	if (SELISLDT(rp->r_cs)) {
1359		/*
1360		 * Currently 64 bit processes cannot have private LDTs.
1361		 */
1362		ASSERT(p->p_model != DATAMODEL_LP64);
1363
1364		mutex_enter(&p->p_ldtlock);
1365		if (p->p_ldt == NULL) {
1366			mutex_exit(&p->p_ldtlock);
1367			return (-1);
1368		}
1369		descrp = &p->p_ldt[idx];
1370		baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp);
1371		mutex_exit(&p->p_ldtlock);
1372
1373		/*
1374		 * Calculate the linear address (wraparound is not only ok,
1375		 * it's expected behavior).  The cast to uint32_t is because
1376		 * LDT selectors are only allowed in 32-bit processes.
1377		 */
1378		*linearp = (caddr_t)(uintptr_t)(uint32_t)((uintptr_t)baseaddr +
1379		    rp->r_pc);
1380	} else {
1381#ifdef DEBUG
1382		descrp = &CPU->cpu_gdt[idx];
1383		baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp);
1384		/* GDT-based descriptors' base addresses should always be 0 */
1385		ASSERT(baseaddr == 0);
1386#endif
1387		*linearp = (caddr_t)(uintptr_t)rp->r_pc;
1388	}
1389
1390	return (0);
1391}
1392
1393/*
1394 * We need to post a soft interrupt to reprogram the lbolt cyclic when
1395 * switching from event to cyclic driven lbolt. The following code adds
1396 * and posts the softint for x86.
1397 */
1398static ddi_softint_hdl_impl_t lbolt_softint_hdl =
1399	{0, NULL, NULL, NULL, 0, NULL, NULL, NULL};
1400
1401void
1402lbolt_softint_add(void)
1403{
1404	(void) add_avsoftintr((void *)&lbolt_softint_hdl, LOCK_LEVEL,
1405	    (avfunc)lbolt_ev_to_cyclic, "lbolt_ev_to_cyclic", NULL, NULL);
1406}
1407
1408void
1409lbolt_softint_post(void)
1410{
1411	(*setsoftint)(CBE_LOCK_PIL, lbolt_softint_hdl.ih_pending);
1412}
1413
1414boolean_t
1415plat_dr_check_capability(uint64_t features)
1416{
1417	return ((plat_dr_options & features) == features);
1418}
1419
1420boolean_t
1421plat_dr_support_cpu(void)
1422{
1423	return (plat_dr_options & PLAT_DR_FEATURE_CPU);
1424}
1425
1426boolean_t
1427plat_dr_support_memory(void)
1428{
1429	return (plat_dr_options & PLAT_DR_FEATURE_MEMORY);
1430}
1431
1432void
1433plat_dr_enable_capability(uint64_t features)
1434{
1435	atomic_or_64(&plat_dr_options, features);
1436}
1437
1438void
1439plat_dr_disable_capability(uint64_t features)
1440{
1441	atomic_and_64(&plat_dr_options, ~features);
1442}
1443