1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
24 */
25
26/*
27 * This file contains the functions for performing Fast Reboot -- a
28 * reboot which bypasses the firmware and bootloader, considerably
29 * reducing downtime.
30 *
31 * fastboot_load_kernel(): This function is invoked by mdpreboot() in the
32 * reboot path.  It loads the new kernel and boot archive into memory, builds
33 * the data structure containing sufficient information about the new
34 * kernel and boot archive to be passed to the fast reboot switcher
35 * (see fb_swtch_src.s for details).  When invoked the switcher relocates
36 * the new kernel and boot archive to physically contiguous low memory,
37 * similar to where the boot loader would have loaded them, and jumps to
38 * the new kernel.
39 *
40 * If fastreboot_onpanic is enabled, fastboot_load_kernel() is called
41 * by fastreboot_post_startup() to load the back up kernel in case of
42 * panic.
43 *
44 * The physical addresses of the memory allocated for the new kernel, boot
45 * archive and their page tables must be above where the boot archive ends
46 * after it has been relocated by the switcher, otherwise the new files
47 * and their page tables could be overridden during relocation.
48 *
49 * fast_reboot(): This function is invoked by mdboot() once it's determined
50 * that the system is capable of fast reboot.  It jumps to the fast reboot
51 * switcher with the data structure built by fastboot_load_kernel() as the
52 * argument.
53 */
54
55#include <sys/types.h>
56#include <sys/param.h>
57#include <sys/segments.h>
58#include <sys/sysmacros.h>
59#include <sys/vm.h>
60
61#include <sys/proc.h>
62#include <sys/buf.h>
63#include <sys/kmem.h>
64
65#include <sys/reboot.h>
66#include <sys/uadmin.h>
67
68#include <sys/cred.h>
69#include <sys/vnode.h>
70#include <sys/file.h>
71
72#include <sys/cmn_err.h>
73#include <sys/dumphdr.h>
74#include <sys/bootconf.h>
75#include <sys/ddidmareq.h>
76#include <sys/varargs.h>
77#include <sys/promif.h>
78#include <sys/modctl.h>
79
80#include <vm/hat.h>
81#include <vm/as.h>
82#include <vm/page.h>
83#include <vm/seg.h>
84#include <vm/hat_i86.h>
85#include <sys/vm_machparam.h>
86#include <sys/archsystm.h>
87#include <sys/machsystm.h>
88#include <sys/mman.h>
89#include <sys/x86_archext.h>
90#include <sys/smp_impldefs.h>
91#include <sys/spl.h>
92
93#include <sys/fastboot_impl.h>
94#include <sys/machelf.h>
95#include <sys/kobj.h>
96#include <sys/multiboot.h>
97#include <sys/kobj_lex.h>
98
99/*
100 * Macro to determine how many pages are needed for PTEs to map a particular
101 * file.  Allocate one extra page table entry for terminating the list.
102 */
103#define	FASTBOOT_PTE_LIST_SIZE(fsize)	\
104	P2ROUNDUP((((fsize) >> PAGESHIFT) + 1) * sizeof (x86pte_t), PAGESIZE)
105
106/*
107 * Data structure containing necessary information for the fast reboot
108 * switcher to jump to the new kernel.
109 */
110fastboot_info_t newkernel = { 0 };
111char		fastboot_args[OBP_MAXPATHLEN];
112
113static char fastboot_filename[2][OBP_MAXPATHLEN] = { { 0 }, { 0 }};
114static x86pte_t ptp_bits = PT_VALID | PT_REF | PT_USER | PT_WRITABLE;
115static x86pte_t pte_bits =
116    PT_VALID | PT_REF | PT_MOD | PT_NOCONSIST | PT_WRITABLE;
117static uint_t fastboot_shift_amt_pae[] = {12, 21, 30, 39};
118
119/* Index into Fast Reboot not supported message array */
120static uint32_t fastreboot_nosup_id = FBNS_DEFAULT;
121
122/* Fast Reboot not supported message array */
123static const char * const fastreboot_nosup_desc[FBNS_END] = {
124#define	fastboot_nosup_msg(id, str)	str,
125#include <sys/fastboot_msg.h>
126};
127
128int fastboot_debug = 0;
129int fastboot_contig = 0;
130
131/*
132 * Fake starting va for new kernel and boot archive.
133 */
134static uintptr_t fake_va = FASTBOOT_FAKE_VA;
135
136/*
137 * Reserve memory below PA 1G in preparation of fast reboot.
138 *
139 * This variable is only checked when fastreboot_capable is set, but
140 * fastreboot_onpanic is not set.  The amount of memory reserved
141 * is negligible, but just in case we are really short of low memory,
142 * this variable will give us a backdoor to not consume memory at all.
143 */
144int reserve_mem_enabled = 1;
145
146/*
147 * Mutex to protect fastreboot_onpanic.
148 */
149kmutex_t fastreboot_config_mutex;
150
151/*
152 * Amount of memory below PA 1G to reserve for constructing the multiboot
153 * data structure and the page tables as we tend to run out of those
154 * when more drivers are loaded.
155 */
156static size_t fastboot_mbi_size = 0x2000;	/* 8K */
157static size_t fastboot_pagetable_size = 0x5000;	/* 20K */
158
159/*
160 * Minimum system uptime in clock_t before Fast Reboot should be used
161 * on panic.  Will be initialized in fastboot_post_startup().
162 */
163clock_t fastreboot_onpanic_uptime = LONG_MAX;
164
165/*
166 * lbolt value when the system booted.  This value will be used if the system
167 * panics to calculate how long the system has been up.  If the uptime is less
168 * than fastreboot_onpanic_uptime, a reboot through BIOS will be performed to
169 * avoid a potential panic/reboot loop.
170 */
171clock_t lbolt_at_boot = LONG_MAX;
172
173/*
174 * Use below 1G for page tables as
175 *	1. we are only doing 1:1 mapping of the bottom 1G of physical memory.
176 *	2. we are using 2G as the fake virtual address for the new kernel and
177 *	boot archive.
178 */
179static ddi_dma_attr_t fastboot_below_1G_dma_attr = {
180	DMA_ATTR_V0,
181	0x0000000008000000ULL,	/* dma_attr_addr_lo: 128MB */
182	0x000000003FFFFFFFULL,	/* dma_attr_addr_hi: 1G */
183	0x00000000FFFFFFFFULL,	/* dma_attr_count_max */
184	0x0000000000001000ULL,	/* dma_attr_align: 4KB */
185	1,			/* dma_attr_burstsize */
186	1,			/* dma_attr_minxfer */
187	0x00000000FFFFFFFFULL,	/* dma_attr_maxxfer */
188	0x00000000FFFFFFFFULL,	/* dma_attr_seg */
189	1,			/* dma_attr_sgllen */
190	0x1000ULL,		/* dma_attr_granular */
191	0,			/* dma_attr_flags */
192};
193
194static ddi_dma_attr_t fastboot_dma_attr = {
195	DMA_ATTR_V0,
196	0x0000000008000000ULL,	/* dma_attr_addr_lo: 128MB */
197#ifdef	__amd64
198	0xFFFFFFFFFFFFFFFFULL,	/* dma_attr_addr_hi: 2^64B */
199#else
200	0x0000000FFFFFFFFFULL,	/* dma_attr_addr_hi: 64GB */
201#endif	/* __amd64 */
202	0x00000000FFFFFFFFULL,	/* dma_attr_count_max */
203	0x0000000000001000ULL,	/* dma_attr_align: 4KB */
204	1,			/* dma_attr_burstsize */
205	1,			/* dma_attr_minxfer */
206	0x00000000FFFFFFFFULL,	/* dma_attr_maxxfer */
207	0x00000000FFFFFFFFULL,	/* dma_attr_seg */
208	1,			/* dma_attr_sgllen */
209	0x1000ULL,		/* dma_attr_granular */
210	0,			/* dma_attr_flags */
211};
212
213/*
214 * Various information saved from the previous boot to reconstruct
215 * multiboot_info.
216 */
217extern multiboot_info_t saved_mbi;
218extern mb_memory_map_t saved_mmap[FASTBOOT_SAVED_MMAP_COUNT];
219extern uint8_t saved_drives[FASTBOOT_SAVED_DRIVES_SIZE];
220extern char saved_cmdline[FASTBOOT_SAVED_CMDLINE_LEN];
221extern int saved_cmdline_len;
222extern size_t saved_file_size[];
223
224extern void* contig_alloc(size_t size, ddi_dma_attr_t *attr,
225    uintptr_t align, int cansleep);
226extern void contig_free(void *addr, size_t size);
227
228
229/* PRINTLIKE */
230extern void vprintf(const char *, va_list);
231
232
233/*
234 * Need to be able to get boot_archives from other places
235 */
236#define	BOOTARCHIVE64	"/platform/i86pc/amd64/boot_archive"
237#define	BOOTARCHIVE32	"/platform/i86pc/boot_archive"
238#define	BOOTARCHIVE32_FAILSAFE	"/boot/x86.miniroot-safe"
239#define	BOOTARCHIVE64_FAILSAFE	"/boot/amd64/x86.miniroot-safe"
240#define	FAILSAFE_BOOTFILE32	"/boot/platform/i86pc/kernel/unix"
241#define	FAILSAFE_BOOTFILE64	"/boot/platform/i86pc/kernel/amd64/unix"
242
243static uint_t fastboot_vatoindex(fastboot_info_t *, uintptr_t, int);
244static void fastboot_map_with_size(fastboot_info_t *, uintptr_t,
245    paddr_t, size_t, int);
246static void fastboot_build_pagetables(fastboot_info_t *);
247static int fastboot_build_mbi(char *, fastboot_info_t *);
248static void fastboot_free_file(fastboot_file_t *);
249
250static const char fastboot_enomem_msg[] = "!Fastboot: Couldn't allocate 0x%"
251	PRIx64" bytes below %s to do fast reboot";
252
253static void
254dprintf(char *fmt, ...)
255{
256	va_list adx;
257
258	if (!fastboot_debug)
259		return;
260
261	va_start(adx, fmt);
262	vprintf(fmt, adx);
263	va_end(adx);
264}
265
266
267/*
268 * Return the index corresponding to a virt address at a given page table level.
269 */
270static uint_t
271fastboot_vatoindex(fastboot_info_t *nk, uintptr_t va, int level)
272{
273	return ((va >> nk->fi_shift_amt[level]) & (nk->fi_ptes_per_table - 1));
274}
275
276
277/*
278 * Add mapping from vstart to pstart for the specified size.
279 * vstart, pstart and size should all have been aligned at 2M boundaries.
280 */
281static void
282fastboot_map_with_size(fastboot_info_t *nk, uintptr_t vstart, paddr_t pstart,
283    size_t size, int level)
284{
285	x86pte_t	pteval, *table;
286	uintptr_t	vaddr;
287	paddr_t		paddr;
288	int		index, l;
289
290	table = (x86pte_t *)(nk->fi_pagetable_va);
291
292	for (l = nk->fi_top_level; l >= level; l--) {
293
294		index = fastboot_vatoindex(nk, vstart, l);
295
296		if (l == level) {
297			/*
298			 * Last level.  Program the page table entries.
299			 */
300			for (vaddr = vstart, paddr = pstart;
301			    vaddr < vstart + size;
302			    vaddr += (1ULL << nk->fi_shift_amt[l]),
303			    paddr += (1ULL << nk->fi_shift_amt[l])) {
304
305				uint_t index = fastboot_vatoindex(nk, vaddr, l);
306
307				if (l > 0)
308					pteval = paddr | pte_bits | PT_PAGESIZE;
309				else
310					pteval = paddr | pte_bits;
311
312				table[index] = pteval;
313			}
314		} else if (table[index] & PT_VALID) {
315
316			table = (x86pte_t *)
317			    ((uintptr_t)(((paddr_t)table[index] & MMU_PAGEMASK)
318			    - nk->fi_pagetable_pa) + nk->fi_pagetable_va);
319		} else {
320			/*
321			 * Intermediate levels.
322			 * Program with either valid bit or PTP bits.
323			 */
324			if (l == nk->fi_top_level) {
325#ifdef	__amd64
326				ASSERT(nk->fi_top_level == 3);
327				table[index] = nk->fi_next_table_pa | ptp_bits;
328#else
329				table[index] = nk->fi_next_table_pa | PT_VALID;
330#endif	/* __amd64 */
331			} else {
332				table[index] = nk->fi_next_table_pa | ptp_bits;
333			}
334			table = (x86pte_t *)(nk->fi_next_table_va);
335			nk->fi_next_table_va += MMU_PAGESIZE;
336			nk->fi_next_table_pa += MMU_PAGESIZE;
337		}
338	}
339}
340
341/*
342 * Build page tables for the lower 1G of physical memory using 2M
343 * pages, and prepare page tables for mapping new kernel and boot
344 * archive pages using 4K pages.
345 */
346static void
347fastboot_build_pagetables(fastboot_info_t *nk)
348{
349	/*
350	 * Map lower 1G physical memory.  Use large pages.
351	 */
352	fastboot_map_with_size(nk, 0, 0, ONE_GIG, 1);
353
354	/*
355	 * Map one 4K page to get the middle page tables set up.
356	 */
357	fake_va = P2ALIGN_TYPED(fake_va, nk->fi_lpagesize, uintptr_t);
358	fastboot_map_with_size(nk, fake_va,
359	    nk->fi_files[0].fb_pte_list_va[0] & MMU_PAGEMASK, PAGESIZE, 0);
360}
361
362
363/*
364 * Sanity check.  Look for dboot offset.
365 */
366static int
367fastboot_elf64_find_dboot_load_offset(void *img, off_t imgsz, uint32_t *offp)
368{
369	Elf64_Ehdr	*ehdr = (Elf64_Ehdr *)img;
370	Elf64_Phdr	*phdr;
371	uint8_t		*phdrbase;
372	int		i;
373
374	if ((ehdr->e_phoff + ehdr->e_phnum * ehdr->e_phentsize) >= imgsz)
375		return (-1);
376
377	phdrbase = (uint8_t *)img + ehdr->e_phoff;
378
379	for (i = 0; i < ehdr->e_phnum; i++) {
380		phdr = (Elf64_Phdr *)(phdrbase + ehdr->e_phentsize * i);
381
382		if (phdr->p_type == PT_LOAD) {
383			if (phdr->p_vaddr == phdr->p_paddr &&
384			    phdr->p_vaddr == DBOOT_ENTRY_ADDRESS) {
385				ASSERT(phdr->p_offset <= UINT32_MAX);
386				*offp = (uint32_t)phdr->p_offset;
387				return (0);
388			}
389		}
390	}
391
392	return (-1);
393}
394
395
396/*
397 * Initialize text and data section information for 32-bit kernel.
398 * sectcntp - is both input/output parameter.
399 * On entry, *sectcntp contains maximum allowable number of sections;
400 * on return, it contains the actual number of sections filled.
401 */
402static int
403fastboot_elf32_find_loadables(void *img, off_t imgsz, fastboot_section_t *sectp,
404    int *sectcntp, uint32_t *offp)
405{
406	Elf32_Ehdr	*ehdr = (Elf32_Ehdr *)img;
407	Elf32_Phdr	*phdr;
408	uint8_t		*phdrbase;
409	int		i;
410	int		used_sections = 0;
411	const int	max_sectcnt = *sectcntp;
412
413	if ((ehdr->e_phoff + ehdr->e_phnum * ehdr->e_phentsize) >= imgsz)
414		return (-1);
415
416	phdrbase = (uint8_t *)img + ehdr->e_phoff;
417
418	for (i = 0; i < ehdr->e_phnum; i++) {
419		phdr = (Elf32_Phdr *)(phdrbase + ehdr->e_phentsize * i);
420
421		if (phdr->p_type == PT_INTERP)
422			return (-1);
423
424		if (phdr->p_type != PT_LOAD)
425			continue;
426
427		if (phdr->p_vaddr == phdr->p_paddr &&
428		    phdr->p_paddr == DBOOT_ENTRY_ADDRESS) {
429			*offp = (uint32_t)phdr->p_offset;
430		} else {
431			if (max_sectcnt <= used_sections)
432				return (-1);
433
434			sectp[used_sections].fb_sec_offset = phdr->p_offset;
435			sectp[used_sections].fb_sec_paddr = phdr->p_paddr;
436			sectp[used_sections].fb_sec_size = phdr->p_filesz;
437			sectp[used_sections].fb_sec_bss_size =
438			    (phdr->p_filesz < phdr->p_memsz) ?
439			    (phdr->p_memsz - phdr->p_filesz) : 0;
440
441			/* Extra sanity check for the input object file */
442			if (sectp[used_sections].fb_sec_paddr +
443			    sectp[used_sections].fb_sec_size +
444			    sectp[used_sections].fb_sec_bss_size >=
445			    DBOOT_ENTRY_ADDRESS)
446				return (-1);
447
448			used_sections++;
449		}
450	}
451
452	*sectcntp = used_sections;
453	return (0);
454}
455
456/*
457 * Create multiboot info structure (mbi) base on the saved mbi.
458 * Recalculate values of the pointer type fields in the data
459 * structure based on the new starting physical address of the
460 * data structure.
461 */
462static int
463fastboot_build_mbi(char *mdep, fastboot_info_t *nk)
464{
465	mb_module_t	*mbp;
466	multiboot_info_t	*mbi;	/* pointer to multiboot structure */
467	uintptr_t	start_addr_va;	/* starting VA of mbi */
468	uintptr_t	start_addr_pa;	/* starting PA of mbi */
469	size_t		offs = 0;	/* offset from the starting address */
470	size_t		arglen;		/* length of the command line arg */
471	size_t		size;	/* size of the memory reserved for mbi */
472	size_t		mdnsz;	/* length of the boot archive name */
473
474	/*
475	 * If mdep is not NULL or empty, use the length of mdep + 1
476	 * (for NULL terminating) as the length of the new command
477	 * line; else use the saved command line length as the
478	 * length for the new command line.
479	 */
480	if (mdep != NULL && strlen(mdep) != 0) {
481		arglen = strlen(mdep) + 1;
482	} else {
483		arglen = saved_cmdline_len;
484	}
485
486	/*
487	 * Allocate memory for the new multiboot info structure (mbi).
488	 * If we have reserved memory for mbi but it's not enough,
489	 * free it and reallocate.
490	 */
491	size = PAGESIZE + P2ROUNDUP(arglen, PAGESIZE);
492	if (nk->fi_mbi_size && nk->fi_mbi_size < size) {
493		contig_free((void *)nk->fi_new_mbi_va, nk->fi_mbi_size);
494		nk->fi_mbi_size = 0;
495	}
496
497	if (nk->fi_mbi_size == 0) {
498		if ((nk->fi_new_mbi_va =
499		    (uintptr_t)contig_alloc(size, &fastboot_below_1G_dma_attr,
500		    PAGESIZE, 0)) == NULL) {
501			cmn_err(CE_NOTE, fastboot_enomem_msg,
502			    (uint64_t)size, "1G");
503			return (-1);
504		}
505		/*
506		 * fi_mbi_size must be set after the allocation succeeds
507		 * as it's used to determine how much memory to free.
508		 */
509		nk->fi_mbi_size = size;
510	}
511
512	/*
513	 * Initalize memory
514	 */
515	bzero((void *)nk->fi_new_mbi_va, nk->fi_mbi_size);
516
517	/*
518	 * Get PA for the new mbi
519	 */
520	start_addr_va = nk->fi_new_mbi_va;
521	start_addr_pa = mmu_ptob((uint64_t)hat_getpfnum(kas.a_hat,
522	    (caddr_t)start_addr_va));
523	nk->fi_new_mbi_pa = (paddr_t)start_addr_pa;
524
525	/*
526	 * Populate the rest of the fields in the data structure
527	 */
528
529	/*
530	 * Copy from the saved mbi to preserve all non-pointer type fields.
531	 */
532	mbi = (multiboot_info_t *)start_addr_va;
533	bcopy(&saved_mbi, mbi, sizeof (*mbi));
534
535	/*
536	 * Recalculate mods_addr.  Set mod_start and mod_end based on
537	 * the physical address of the new boot archive.  Set mod_name
538	 * to the name of the new boto archive.
539	 */
540	offs += sizeof (multiboot_info_t);
541	mbi->mods_addr = start_addr_pa + offs;
542	mbp = (mb_module_t *)(start_addr_va + offs);
543	mbp->mod_start = nk->fi_files[FASTBOOT_BOOTARCHIVE].fb_dest_pa;
544	mbp->mod_end = nk->fi_files[FASTBOOT_BOOTARCHIVE].fb_next_pa;
545
546	offs += sizeof (mb_module_t);
547	mdnsz = strlen(fastboot_filename[FASTBOOT_NAME_BOOTARCHIVE]) + 1;
548	bcopy(fastboot_filename[FASTBOOT_NAME_BOOTARCHIVE],
549	    (void *)(start_addr_va + offs), mdnsz);
550	mbp->mod_name = start_addr_pa + offs;
551	mbp->reserved = 0;
552
553	/*
554	 * Make sure the offset is 16-byte aligned to avoid unaligned access.
555	 */
556	offs += mdnsz;
557	offs = P2ROUNDUP_TYPED(offs, 16, size_t);
558
559	/*
560	 * Recalculate mmap_addr
561	 */
562	mbi->mmap_addr = start_addr_pa + offs;
563	bcopy((void *)(uintptr_t)saved_mmap, (void *)(start_addr_va + offs),
564	    saved_mbi.mmap_length);
565	offs += saved_mbi.mmap_length;
566
567	/*
568	 * Recalculate drives_addr
569	 */
570	mbi->drives_addr = start_addr_pa + offs;
571	bcopy((void *)(uintptr_t)saved_drives, (void *)(start_addr_va + offs),
572	    saved_mbi.drives_length);
573	offs += saved_mbi.drives_length;
574
575	/*
576	 * Recalculate the address of cmdline.  Set cmdline to contain the
577	 * new boot argument.
578	 */
579	mbi->cmdline = start_addr_pa + offs;
580
581	if (mdep != NULL && strlen(mdep) != 0) {
582		bcopy(mdep, (void *)(start_addr_va + offs), arglen);
583	} else {
584		bcopy((void *)saved_cmdline, (void *)(start_addr_va + offs),
585		    arglen);
586	}
587
588	/* clear fields and flags that are not copied */
589	bzero(&mbi->config_table,
590	    sizeof (*mbi) - offsetof(multiboot_info_t, config_table));
591	mbi->flags &= ~(MB_INFO_CONFIG_TABLE | MB_INFO_BOOT_LOADER_NAME |
592	    MB_INFO_APM_TABLE | MB_INFO_VIDEO_INFO);
593
594	return (0);
595}
596
597/*
598 * Initialize HAT related fields
599 */
600static void
601fastboot_init_fields(fastboot_info_t *nk)
602{
603	if (is_x86_feature(x86_featureset, X86FSET_PAE)) {
604		nk->fi_has_pae = 1;
605		nk->fi_shift_amt = fastboot_shift_amt_pae;
606		nk->fi_ptes_per_table = 512;
607		nk->fi_lpagesize = (2 << 20);	/* 2M */
608#ifdef	__amd64
609		nk->fi_top_level = 3;
610#else
611		nk->fi_top_level = 2;
612#endif	/* __amd64 */
613	}
614}
615
616/*
617 * Process boot argument
618 */
619static void
620fastboot_parse_mdep(char *mdep, char *kern_bootpath, int *bootpath_len,
621    char *bootargs)
622{
623	int	i;
624
625	/*
626	 * If mdep is not NULL, it comes in the format of
627	 *	mountpoint unix args
628	 */
629	if (mdep != NULL && strlen(mdep) != 0) {
630		if (mdep[0] != '-') {
631			/* First get the root argument */
632			i = 0;
633			while (mdep[i] != '\0' && mdep[i] != ' ') {
634				i++;
635			}
636
637			if (i < 4 || strncmp(&mdep[i-4], "unix", 4) != 0) {
638				/* mount point */
639				bcopy(mdep, kern_bootpath, i);
640				kern_bootpath[i] = '\0';
641				*bootpath_len = i;
642
643				/*
644				 * Get the next argument. It should be unix as
645				 * we have validated in in halt.c.
646				 */
647				if (strlen(mdep) > i) {
648					mdep += (i + 1);
649					i = 0;
650					while (mdep[i] != '\0' &&
651					    mdep[i] != ' ') {
652						i++;
653					}
654				}
655
656			}
657			bcopy(mdep, kern_bootfile, i);
658			kern_bootfile[i] = '\0';
659			bcopy(mdep, bootargs, strlen(mdep));
660		} else {
661			int off = strlen(kern_bootfile);
662			bcopy(kern_bootfile, bootargs, off);
663			bcopy(" ", &bootargs[off++], 1);
664			bcopy(mdep, &bootargs[off], strlen(mdep));
665			off += strlen(mdep);
666			bootargs[off] = '\0';
667		}
668	}
669}
670
671/*
672 * Reserve memory under PA 1G for mapping the new kernel and boot archive.
673 * This function is only called if fastreboot_onpanic is *not* set.
674 */
675static void
676fastboot_reserve_mem(fastboot_info_t *nk)
677{
678	int i;
679
680	/*
681	 * A valid kernel is in place.  No need to reserve any memory.
682	 */
683	if (nk->fi_valid)
684		return;
685
686	/*
687	 * Reserve memory under PA 1G for PTE lists.
688	 */
689	for (i = 0; i < FASTBOOT_MAX_FILES_MAP; i++) {
690		fastboot_file_t *fb = &nk->fi_files[i];
691		size_t fsize_roundup, size;
692
693		fsize_roundup = P2ROUNDUP_TYPED(saved_file_size[i],
694		    PAGESIZE, size_t);
695		size = FASTBOOT_PTE_LIST_SIZE(fsize_roundup);
696		if ((fb->fb_pte_list_va = contig_alloc(size,
697		    &fastboot_below_1G_dma_attr, PAGESIZE, 0)) == NULL) {
698			return;
699		}
700		fb->fb_pte_list_size = size;
701	}
702
703	/*
704	 * Reserve memory under PA 1G for page tables.
705	 */
706	if ((nk->fi_pagetable_va =
707	    (uintptr_t)contig_alloc(fastboot_pagetable_size,
708	    &fastboot_below_1G_dma_attr, PAGESIZE, 0)) == NULL) {
709		return;
710	}
711	nk->fi_pagetable_size = fastboot_pagetable_size;
712
713	/*
714	 * Reserve memory under PA 1G for multiboot structure.
715	 */
716	if ((nk->fi_new_mbi_va = (uintptr_t)contig_alloc(fastboot_mbi_size,
717	    &fastboot_below_1G_dma_attr, PAGESIZE, 0)) == NULL) {
718		return;
719	}
720	nk->fi_mbi_size = fastboot_mbi_size;
721}
722
723/*
724 * Calculate MD5 digest for the given fastboot_file.
725 * Assumes that the file is allready loaded properly.
726 */
727static void
728fastboot_cksum_file(fastboot_file_t *fb, uchar_t *md5_hash)
729{
730	MD5_CTX md5_ctx;
731
732	MD5Init(&md5_ctx);
733	MD5Update(&md5_ctx, (void *)fb->fb_va, fb->fb_size);
734	MD5Final(md5_hash, &md5_ctx);
735}
736
737/*
738 * Free up the memory we have allocated for a file
739 */
740static void
741fastboot_free_file(fastboot_file_t *fb)
742{
743	size_t	fsize_roundup;
744
745	fsize_roundup = P2ROUNDUP_TYPED(fb->fb_size, PAGESIZE, size_t);
746	if (fsize_roundup) {
747		contig_free((void *)fb->fb_va, fsize_roundup);
748		fb->fb_va = NULL;
749		fb->fb_size = 0;
750	}
751}
752
753/*
754 * Free up memory used by the PTEs for a file.
755 */
756static void
757fastboot_free_file_pte(fastboot_file_t *fb, uint64_t endaddr)
758{
759	if (fb->fb_pte_list_size && fb->fb_pte_list_pa < endaddr) {
760		contig_free((void *)fb->fb_pte_list_va, fb->fb_pte_list_size);
761		fb->fb_pte_list_va = 0;
762		fb->fb_pte_list_pa = 0;
763		fb->fb_pte_list_size = 0;
764	}
765}
766
767/*
768 * Free up all the memory used for representing a kernel with
769 * fastboot_info_t.
770 */
771static void
772fastboot_free_mem(fastboot_info_t *nk, uint64_t endaddr)
773{
774	int i;
775
776	for (i = 0; i < FASTBOOT_MAX_FILES_MAP; i++) {
777		fastboot_free_file(nk->fi_files + i);
778		fastboot_free_file_pte(nk->fi_files + i, endaddr);
779	}
780
781	if (nk->fi_pagetable_size && nk->fi_pagetable_pa < endaddr) {
782		contig_free((void *)nk->fi_pagetable_va, nk->fi_pagetable_size);
783		nk->fi_pagetable_va = 0;
784		nk->fi_pagetable_pa = 0;
785		nk->fi_pagetable_size = 0;
786	}
787
788	if (nk->fi_mbi_size && nk->fi_new_mbi_pa < endaddr) {
789		contig_free((void *)nk->fi_new_mbi_va, nk->fi_mbi_size);
790		nk->fi_new_mbi_va = 0;
791		nk->fi_new_mbi_pa = 0;
792		nk->fi_mbi_size = 0;
793	}
794}
795
796/*
797 * Only free up the memory allocated for the kernel and boot archive,
798 * but not for the page tables.
799 */
800void
801fastboot_free_newkernel(fastboot_info_t *nk)
802{
803	int i;
804
805	nk->fi_valid = 0;
806	/*
807	 * Free the memory we have allocated
808	 */
809	for (i = 0; i < FASTBOOT_MAX_FILES_MAP; i++) {
810		fastboot_free_file(&(nk->fi_files[i]));
811	}
812}
813
814static void
815fastboot_cksum_cdata(fastboot_info_t *nk, uchar_t *md5_hash)
816{
817	int i;
818	MD5_CTX md5_ctx;
819
820	MD5Init(&md5_ctx);
821	for (i = 0; i < FASTBOOT_MAX_FILES_MAP; i++) {
822		MD5Update(&md5_ctx, nk->fi_files[i].fb_pte_list_va,
823		    nk->fi_files[i].fb_pte_list_size);
824	}
825	MD5Update(&md5_ctx, (void *)nk->fi_pagetable_va, nk->fi_pagetable_size);
826	MD5Update(&md5_ctx, (void *)nk->fi_new_mbi_va, nk->fi_mbi_size);
827
828	MD5Final(md5_hash, &md5_ctx);
829}
830
831/*
832 * Generate MD5 checksum of the given kernel.
833 */
834static void
835fastboot_cksum_generate(fastboot_info_t *nk)
836{
837	int i;
838
839	for (i = 0; i < FASTBOOT_MAX_FILES_MAP; i++) {
840		fastboot_cksum_file(nk->fi_files + i, nk->fi_md5_hash[i]);
841	}
842	fastboot_cksum_cdata(nk, nk->fi_md5_hash[i]);
843}
844
845/*
846 * Calculate MD5 checksum of the given kernel and verify that
847 * it matches with what was calculated before.
848 */
849int
850fastboot_cksum_verify(fastboot_info_t *nk)
851{
852	int i;
853	uchar_t md5_hash[MD5_DIGEST_LENGTH];
854
855	for (i = 0; i < FASTBOOT_MAX_FILES_MAP; i++) {
856		fastboot_cksum_file(nk->fi_files + i, md5_hash);
857		if (bcmp(nk->fi_md5_hash[i], md5_hash,
858		    sizeof (nk->fi_md5_hash[i])) != 0)
859			return (i + 1);
860	}
861
862	fastboot_cksum_cdata(nk, md5_hash);
863	if (bcmp(nk->fi_md5_hash[i], md5_hash,
864	    sizeof (nk->fi_md5_hash[i])) != 0)
865		return (i + 1);
866
867	return (0);
868}
869
870/*
871 * This function performs the following tasks:
872 * - Read the sizes of the new kernel and boot archive.
873 * - Allocate memory for the new kernel and boot archive.
874 * - Allocate memory for page tables necessary for mapping the memory
875 *   allocated for the files.
876 * - Read the new kernel and boot archive into memory.
877 * - Map in the fast reboot switcher.
878 * - Load the fast reboot switcher to FASTBOOT_SWTCH_PA.
879 * - Build the new multiboot_info structure
880 * - Build page tables for the low 1G of physical memory.
881 * - Mark the data structure as valid if all steps have succeeded.
882 */
883void
884fastboot_load_kernel(char *mdep)
885{
886	void		*buf = NULL;
887	int		i;
888	fastboot_file_t	*fb;
889	uint32_t	dboot_start_offset;
890	char		kern_bootpath[OBP_MAXPATHLEN];
891	extern uintptr_t postbootkernelbase;
892	uintptr_t	saved_kernelbase;
893	int		bootpath_len = 0;
894	int		is_failsafe = 0;
895	int		is_retry = 0;
896	uint64_t	end_addr;
897
898	if (!fastreboot_capable)
899		return;
900
901	if (newkernel.fi_valid)
902		fastboot_free_newkernel(&newkernel);
903
904	saved_kernelbase = postbootkernelbase;
905
906	postbootkernelbase = 0;
907
908	/*
909	 * Initialize various HAT related fields in the data structure
910	 */
911	fastboot_init_fields(&newkernel);
912
913	bzero(kern_bootpath, OBP_MAXPATHLEN);
914
915	/*
916	 * Process the boot argument
917	 */
918	bzero(fastboot_args, OBP_MAXPATHLEN);
919	fastboot_parse_mdep(mdep, kern_bootpath, &bootpath_len, fastboot_args);
920
921	/*
922	 * Make sure we get the null character
923	 */
924	bcopy(kern_bootpath, fastboot_filename[FASTBOOT_NAME_UNIX],
925	    bootpath_len);
926	bcopy(kern_bootfile,
927	    &fastboot_filename[FASTBOOT_NAME_UNIX][bootpath_len],
928	    strlen(kern_bootfile) + 1);
929
930	bcopy(kern_bootpath, fastboot_filename[FASTBOOT_NAME_BOOTARCHIVE],
931	    bootpath_len);
932
933	if (bcmp(kern_bootfile, FAILSAFE_BOOTFILE32,
934	    (sizeof (FAILSAFE_BOOTFILE32) - 1)) == 0 ||
935	    bcmp(kern_bootfile, FAILSAFE_BOOTFILE64,
936	    (sizeof (FAILSAFE_BOOTFILE64) - 1)) == 0) {
937		is_failsafe = 1;
938	}
939
940load_kernel_retry:
941	/*
942	 * Read in unix and boot_archive
943	 */
944	end_addr = DBOOT_ENTRY_ADDRESS;
945	for (i = 0; i < FASTBOOT_MAX_FILES_MAP; i++) {
946		struct _buf	*file;
947		uintptr_t	va;
948		uint64_t	fsize;
949		size_t		fsize_roundup, pt_size;
950		int		page_index;
951		uintptr_t	offset;
952		ddi_dma_attr_t dma_attr = fastboot_dma_attr;
953
954
955		dprintf("fastboot_filename[%d] = %s\n",
956		    i, fastboot_filename[i]);
957
958		if ((file = kobj_open_file(fastboot_filename[i])) ==
959		    (struct _buf *)-1) {
960			cmn_err(CE_NOTE, "!Fastboot: Couldn't open %s",
961			    fastboot_filename[i]);
962			goto err_out;
963		}
964
965		if (kobj_get_filesize(file, &fsize) != 0) {
966			cmn_err(CE_NOTE,
967			    "!Fastboot: Couldn't get filesize for %s",
968			    fastboot_filename[i]);
969			goto err_out;
970		}
971
972		fsize_roundup = P2ROUNDUP_TYPED(fsize, PAGESIZE, size_t);
973
974		/*
975		 * Where the files end in physical memory after being
976		 * relocated by the fast boot switcher.
977		 */
978		end_addr += fsize_roundup;
979		if (end_addr > fastboot_below_1G_dma_attr.dma_attr_addr_hi) {
980			cmn_err(CE_NOTE, "!Fastboot: boot archive is too big");
981			goto err_out;
982		}
983
984		/*
985		 * Adjust dma_attr_addr_lo so that the new kernel and boot
986		 * archive will not be overridden during relocation.
987		 */
988		if (end_addr > fastboot_dma_attr.dma_attr_addr_lo ||
989		    end_addr > fastboot_below_1G_dma_attr.dma_attr_addr_lo) {
990
991			if (is_retry) {
992				/*
993				 * If we have already tried and didn't succeed,
994				 * just give up.
995				 */
996				cmn_err(CE_NOTE,
997				    "!Fastboot: boot archive is too big");
998				goto err_out;
999			} else {
1000				/* Set the flag so we don't keep retrying */
1001				is_retry++;
1002
1003				/* Adjust dma_attr_addr_lo */
1004				fastboot_dma_attr.dma_attr_addr_lo = end_addr;
1005				fastboot_below_1G_dma_attr.dma_attr_addr_lo =
1006				    end_addr;
1007
1008				/*
1009				 * Free the memory we have already allocated
1010				 * whose physical addresses might not fit
1011				 * the new lo and hi constraints.
1012				 */
1013				fastboot_free_mem(&newkernel, end_addr);
1014				goto load_kernel_retry;
1015			}
1016		}
1017
1018
1019		if (!fastboot_contig)
1020			dma_attr.dma_attr_sgllen = (fsize / PAGESIZE) +
1021			    (((fsize % PAGESIZE) == 0) ? 0 : 1);
1022
1023		if ((buf = contig_alloc(fsize, &dma_attr, PAGESIZE, 0))
1024		    == NULL) {
1025			cmn_err(CE_NOTE, fastboot_enomem_msg, fsize, "64G");
1026			goto err_out;
1027		}
1028
1029		va = P2ROUNDUP_TYPED((uintptr_t)buf, PAGESIZE, uintptr_t);
1030
1031		if (kobj_read_file(file, (char *)va, fsize, 0) < 0) {
1032			cmn_err(CE_NOTE, "!Fastboot: Couldn't read %s",
1033			    fastboot_filename[i]);
1034			goto err_out;
1035		}
1036
1037		fb = &newkernel.fi_files[i];
1038		fb->fb_va = va;
1039		fb->fb_size = fsize;
1040		fb->fb_sectcnt = 0;
1041
1042		pt_size = FASTBOOT_PTE_LIST_SIZE(fsize_roundup);
1043
1044		/*
1045		 * If we have reserved memory but it not enough, free it.
1046		 */
1047		if (fb->fb_pte_list_size && fb->fb_pte_list_size < pt_size) {
1048			contig_free((void *)fb->fb_pte_list_va,
1049			    fb->fb_pte_list_size);
1050			fb->fb_pte_list_size = 0;
1051		}
1052
1053		if (fb->fb_pte_list_size == 0) {
1054			if ((fb->fb_pte_list_va =
1055			    (x86pte_t *)contig_alloc(pt_size,
1056			    &fastboot_below_1G_dma_attr, PAGESIZE, 0))
1057			    == NULL) {
1058				cmn_err(CE_NOTE, fastboot_enomem_msg,
1059				    (uint64_t)pt_size, "1G");
1060				goto err_out;
1061			}
1062			/*
1063			 * fb_pte_list_size must be set after the allocation
1064			 * succeeds as it's used to determine how much memory to
1065			 * free.
1066			 */
1067			fb->fb_pte_list_size = pt_size;
1068		}
1069
1070		bzero((void *)(fb->fb_pte_list_va), fb->fb_pte_list_size);
1071
1072		fb->fb_pte_list_pa = mmu_ptob((uint64_t)hat_getpfnum(kas.a_hat,
1073		    (caddr_t)fb->fb_pte_list_va));
1074
1075		for (page_index = 0, offset = 0; offset < fb->fb_size;
1076		    offset += PAGESIZE) {
1077			uint64_t paddr;
1078
1079			paddr = mmu_ptob((uint64_t)hat_getpfnum(kas.a_hat,
1080			    (caddr_t)fb->fb_va + offset));
1081
1082			ASSERT(paddr >= fastboot_dma_attr.dma_attr_addr_lo);
1083
1084			/*
1085			 * Include the pte_bits so we don't have to make
1086			 * it in assembly.
1087			 */
1088			fb->fb_pte_list_va[page_index++] = (x86pte_t)
1089			    (paddr | pte_bits);
1090		}
1091
1092		fb->fb_pte_list_va[page_index] = FASTBOOT_TERMINATE;
1093
1094		if (i == FASTBOOT_UNIX) {
1095			Ehdr	*ehdr = (Ehdr *)va;
1096			int	j;
1097
1098			/*
1099			 * Sanity checks:
1100			 */
1101			for (j = 0; j < SELFMAG; j++) {
1102				if (ehdr->e_ident[j] != ELFMAG[j]) {
1103					cmn_err(CE_NOTE, "!Fastboot: Bad ELF "
1104					    "signature");
1105					goto err_out;
1106				}
1107			}
1108
1109			if (ehdr->e_ident[EI_CLASS] == ELFCLASS32 &&
1110			    ehdr->e_ident[EI_DATA] == ELFDATA2LSB &&
1111			    ehdr->e_machine == EM_386) {
1112
1113				fb->fb_sectcnt = sizeof (fb->fb_sections) /
1114				    sizeof (fb->fb_sections[0]);
1115
1116				if (fastboot_elf32_find_loadables((void *)va,
1117				    fsize, &fb->fb_sections[0],
1118				    &fb->fb_sectcnt, &dboot_start_offset) < 0) {
1119					cmn_err(CE_NOTE, "!Fastboot: ELF32 "
1120					    "program section failure");
1121					goto err_out;
1122				}
1123
1124				if (fb->fb_sectcnt == 0) {
1125					cmn_err(CE_NOTE, "!Fastboot: No ELF32 "
1126					    "program sections found");
1127					goto err_out;
1128				}
1129
1130				if (is_failsafe) {
1131					/* Failsafe boot_archive */
1132					bcopy(BOOTARCHIVE32_FAILSAFE,
1133					    &fastboot_filename
1134					    [FASTBOOT_NAME_BOOTARCHIVE]
1135					    [bootpath_len],
1136					    sizeof (BOOTARCHIVE32_FAILSAFE));
1137				} else {
1138					bcopy(BOOTARCHIVE32,
1139					    &fastboot_filename
1140					    [FASTBOOT_NAME_BOOTARCHIVE]
1141					    [bootpath_len],
1142					    sizeof (BOOTARCHIVE32));
1143				}
1144
1145			} else if (ehdr->e_ident[EI_CLASS] == ELFCLASS64 &&
1146			    ehdr->e_ident[EI_DATA] == ELFDATA2LSB &&
1147			    ehdr->e_machine == EM_AMD64) {
1148
1149				if (fastboot_elf64_find_dboot_load_offset(
1150				    (void *)va, fsize, &dboot_start_offset)
1151				    != 0) {
1152					cmn_err(CE_NOTE, "!Fastboot: Couldn't "
1153					    "find ELF64 dboot entry offset");
1154					goto err_out;
1155				}
1156
1157				if (!is_x86_feature(x86_featureset,
1158				    X86FSET_64) ||
1159				    !is_x86_feature(x86_featureset,
1160				    X86FSET_PAE)) {
1161					cmn_err(CE_NOTE, "Fastboot: Cannot "
1162					    "reboot to %s: "
1163					    "not a 64-bit capable system",
1164					    kern_bootfile);
1165					goto err_out;
1166				}
1167
1168				if (is_failsafe) {
1169					/* Failsafe boot_archive */
1170					bcopy(BOOTARCHIVE64_FAILSAFE,
1171					    &fastboot_filename
1172					    [FASTBOOT_NAME_BOOTARCHIVE]
1173					    [bootpath_len],
1174					    sizeof (BOOTARCHIVE64_FAILSAFE));
1175				} else {
1176					bcopy(BOOTARCHIVE64,
1177					    &fastboot_filename
1178					    [FASTBOOT_NAME_BOOTARCHIVE]
1179					    [bootpath_len],
1180					    sizeof (BOOTARCHIVE64));
1181				}
1182			} else {
1183				cmn_err(CE_NOTE, "!Fastboot: Unknown ELF type");
1184				goto err_out;
1185			}
1186
1187			fb->fb_dest_pa = DBOOT_ENTRY_ADDRESS -
1188			    dboot_start_offset;
1189
1190			fb->fb_next_pa = DBOOT_ENTRY_ADDRESS + fsize_roundup;
1191		} else {
1192			fb->fb_dest_pa = newkernel.fi_files[i - 1].fb_next_pa;
1193			fb->fb_next_pa = fb->fb_dest_pa + fsize_roundup;
1194		}
1195
1196		kobj_close_file(file);
1197
1198	}
1199
1200	/*
1201	 * Add the function that will switch us to 32-bit protected mode
1202	 */
1203	fb = &newkernel.fi_files[FASTBOOT_SWTCH];
1204	fb->fb_va = fb->fb_dest_pa = FASTBOOT_SWTCH_PA;
1205	fb->fb_size = MMU_PAGESIZE;
1206
1207	hat_devload(kas.a_hat, (caddr_t)fb->fb_va,
1208	    MMU_PAGESIZE, mmu_btop(fb->fb_dest_pa),
1209	    PROT_READ | PROT_WRITE | PROT_EXEC,
1210	    HAT_LOAD_NOCONSIST | HAT_LOAD_LOCK);
1211
1212	/*
1213	 * Build the new multiboot_info structure
1214	 */
1215	if (fastboot_build_mbi(fastboot_args, &newkernel) != 0) {
1216		goto err_out;
1217	}
1218
1219	/*
1220	 * Build page table for low 1G physical memory. Use big pages.
1221	 * Allocate 4 (5 for amd64) pages for the page tables.
1222	 *    1 page for PML4 (amd64)
1223	 *    1 page for Page-Directory-Pointer Table
1224	 *    2 pages for Page Directory
1225	 *    1 page for Page Table.
1226	 * The page table entry will be rewritten to map the physical
1227	 * address as we do the copying.
1228	 */
1229	if (newkernel.fi_has_pae) {
1230#ifdef	__amd64
1231		size_t size = MMU_PAGESIZE * 5;
1232#else
1233		size_t size = MMU_PAGESIZE * 4;
1234#endif	/* __amd64 */
1235
1236		if (newkernel.fi_pagetable_size && newkernel.fi_pagetable_size
1237		    < size) {
1238			contig_free((void *)newkernel.fi_pagetable_va,
1239			    newkernel.fi_pagetable_size);
1240			newkernel.fi_pagetable_size = 0;
1241		}
1242
1243		if (newkernel.fi_pagetable_size == 0) {
1244			if ((newkernel.fi_pagetable_va = (uintptr_t)
1245			    contig_alloc(size, &fastboot_below_1G_dma_attr,
1246			    MMU_PAGESIZE, 0)) == NULL) {
1247				cmn_err(CE_NOTE, fastboot_enomem_msg,
1248				    (uint64_t)size, "1G");
1249				goto err_out;
1250			}
1251			/*
1252			 * fi_pagetable_size must be set after the allocation
1253			 * succeeds as it's used to determine how much memory to
1254			 * free.
1255			 */
1256			newkernel.fi_pagetable_size = size;
1257		}
1258
1259		bzero((void *)(newkernel.fi_pagetable_va), size);
1260
1261		newkernel.fi_pagetable_pa =
1262		    mmu_ptob((uint64_t)hat_getpfnum(kas.a_hat,
1263		    (caddr_t)newkernel.fi_pagetable_va));
1264
1265		newkernel.fi_last_table_pa = newkernel.fi_pagetable_pa +
1266		    size - MMU_PAGESIZE;
1267
1268		newkernel.fi_next_table_va = newkernel.fi_pagetable_va +
1269		    MMU_PAGESIZE;
1270		newkernel.fi_next_table_pa = newkernel.fi_pagetable_pa +
1271		    MMU_PAGESIZE;
1272
1273		fastboot_build_pagetables(&newkernel);
1274	}
1275
1276
1277	/* Generate MD5 checksums */
1278	fastboot_cksum_generate(&newkernel);
1279
1280	/* Mark it as valid */
1281	newkernel.fi_valid = 1;
1282	newkernel.fi_magic = FASTBOOT_MAGIC;
1283
1284	postbootkernelbase = saved_kernelbase;
1285	return;
1286
1287err_out:
1288	postbootkernelbase = saved_kernelbase;
1289	newkernel.fi_valid = 0;
1290	fastboot_free_newkernel(&newkernel);
1291}
1292
1293
1294/* ARGSUSED */
1295static int
1296fastboot_xc_func(fastboot_info_t *nk, xc_arg_t unused2, xc_arg_t unused3)
1297{
1298	void (*fastboot_func)(fastboot_info_t *);
1299	fastboot_file_t	*fb = &nk->fi_files[FASTBOOT_SWTCH];
1300	fastboot_func = (void (*)())(fb->fb_va);
1301	kthread_t *t_intr = curthread->t_intr;
1302
1303	if (&kas != curproc->p_as) {
1304		hat_devload(curproc->p_as->a_hat, (caddr_t)fb->fb_va,
1305		    MMU_PAGESIZE, mmu_btop(fb->fb_dest_pa),
1306		    PROT_READ | PROT_WRITE | PROT_EXEC,
1307		    HAT_LOAD_NOCONSIST | HAT_LOAD_LOCK);
1308	}
1309
1310	/*
1311	 * If we have pinned a thread, make sure the address is mapped
1312	 * in the address space of the pinned thread.
1313	 */
1314	if (t_intr && t_intr->t_procp->p_as->a_hat != curproc->p_as->a_hat &&
1315	    t_intr->t_procp->p_as != &kas)
1316		hat_devload(t_intr->t_procp->p_as->a_hat, (caddr_t)fb->fb_va,
1317		    MMU_PAGESIZE, mmu_btop(fb->fb_dest_pa),
1318		    PROT_READ | PROT_WRITE | PROT_EXEC,
1319		    HAT_LOAD_NOCONSIST | HAT_LOAD_LOCK);
1320
1321	(*psm_shutdownf)(A_SHUTDOWN, AD_FASTREBOOT);
1322	(*fastboot_func)(nk);
1323
1324	/*NOTREACHED*/
1325	return (0);
1326}
1327
1328/*
1329 * Jump to the fast reboot switcher.  This function never returns.
1330 */
1331void
1332fast_reboot()
1333{
1334	processorid_t bootcpuid = 0;
1335	extern uintptr_t postbootkernelbase;
1336	extern char	fb_swtch_image[];
1337	fastboot_file_t	*fb;
1338	int i;
1339
1340	postbootkernelbase = 0;
1341
1342	fb = &newkernel.fi_files[FASTBOOT_SWTCH];
1343
1344	/*
1345	 * Map the address into both the current proc's address
1346	 * space and the kernel's address space in case the panic
1347	 * is forced by kmdb.
1348	 */
1349	if (&kas != curproc->p_as) {
1350		hat_devload(curproc->p_as->a_hat, (caddr_t)fb->fb_va,
1351		    MMU_PAGESIZE, mmu_btop(fb->fb_dest_pa),
1352		    PROT_READ | PROT_WRITE | PROT_EXEC,
1353		    HAT_LOAD_NOCONSIST | HAT_LOAD_LOCK);
1354	}
1355
1356	bcopy((void *)fb_swtch_image, (void *)fb->fb_va, fb->fb_size);
1357
1358
1359	/*
1360	 * Set fb_va to fake_va
1361	 */
1362	for (i = 0; i < FASTBOOT_MAX_FILES_MAP; i++) {
1363		newkernel.fi_files[i].fb_va = fake_va;
1364
1365	}
1366
1367	if (panicstr && CPU->cpu_id != bootcpuid &&
1368	    CPU_ACTIVE(cpu_get(bootcpuid))) {
1369		extern void panic_idle(void);
1370		cpuset_t cpuset;
1371
1372		CPUSET_ZERO(cpuset);
1373		CPUSET_ADD(cpuset, bootcpuid);
1374		xc_priority((xc_arg_t)&newkernel, 0, 0, CPUSET2BV(cpuset),
1375		    (xc_func_t)fastboot_xc_func);
1376
1377		panic_idle();
1378	} else
1379		(void) fastboot_xc_func(&newkernel, 0, 0);
1380}
1381
1382
1383/*
1384 * Get boot property value for fastreboot_onpanic.
1385 *
1386 * NOTE: If fastreboot_onpanic is set to non-zero in /etc/system,
1387 * new setting passed in via "-B fastreboot_onpanic" is ignored.
1388 * This order of precedence is to enable developers debugging panics
1389 * that occur early in boot to utilize Fast Reboot on panic.
1390 */
1391static void
1392fastboot_get_bootprop(void)
1393{
1394	int		val = 0xaa, len, ret;
1395	dev_info_t	*devi;
1396	char		*propstr = NULL;
1397
1398	devi = ddi_root_node();
1399
1400	ret = ddi_prop_lookup_string(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
1401	    FASTREBOOT_ONPANIC, &propstr);
1402
1403	if (ret == DDI_PROP_SUCCESS) {
1404		if (FASTREBOOT_ONPANIC_NOTSET(propstr))
1405			val = 0;
1406		else if (FASTREBOOT_ONPANIC_ISSET(propstr))
1407			val = UA_FASTREBOOT_ONPANIC;
1408
1409		/*
1410		 * Only set fastreboot_onpanic to the value passed in
1411		 * if it's not already set to non-zero, and the value
1412		 * has indeed been passed in via command line.
1413		 */
1414		if (!fastreboot_onpanic && val != 0xaa)
1415			fastreboot_onpanic = val;
1416		ddi_prop_free(propstr);
1417	} else if (ret != DDI_PROP_NOT_FOUND && ret != DDI_PROP_UNDEFINED) {
1418		cmn_err(CE_NOTE, "!%s value is invalid, will be ignored",
1419		    FASTREBOOT_ONPANIC);
1420	}
1421
1422	len = sizeof (fastreboot_onpanic_cmdline);
1423	ret = ddi_getlongprop_buf(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
1424	    FASTREBOOT_ONPANIC_CMDLINE, fastreboot_onpanic_cmdline, &len);
1425
1426	if (ret == DDI_PROP_BUF_TOO_SMALL)
1427		cmn_err(CE_NOTE, "!%s value is too long, will be ignored",
1428		    FASTREBOOT_ONPANIC_CMDLINE);
1429}
1430
1431/*
1432 * This function is called by main() to either load the backup kernel for panic
1433 * fast reboot, or to reserve low physical memory for fast reboot.
1434 */
1435void
1436fastboot_post_startup()
1437{
1438	lbolt_at_boot = ddi_get_lbolt();
1439
1440	/* Default to 10 minutes */
1441	if (fastreboot_onpanic_uptime == LONG_MAX)
1442		fastreboot_onpanic_uptime = SEC_TO_TICK(10 * 60);
1443
1444	if (!fastreboot_capable)
1445		return;
1446
1447	mutex_enter(&fastreboot_config_mutex);
1448
1449	fastboot_get_bootprop();
1450
1451	if (fastreboot_onpanic)
1452		fastboot_load_kernel(fastreboot_onpanic_cmdline);
1453	else if (reserve_mem_enabled)
1454		fastboot_reserve_mem(&newkernel);
1455
1456	mutex_exit(&fastreboot_config_mutex);
1457}
1458
1459/*
1460 * Update boot configuration settings.
1461 * If the new fastreboot_onpanic setting is false, and a kernel has
1462 * been preloaded, free the memory;
1463 * if the new fastreboot_onpanic setting is true and newkernel is
1464 * not valid, load the new kernel.
1465 */
1466void
1467fastboot_update_config(const char *mdep)
1468{
1469	uint8_t boot_config = (uint8_t)*mdep;
1470	int cur_fastreboot_onpanic;
1471
1472	if (!fastreboot_capable)
1473		return;
1474
1475	mutex_enter(&fastreboot_config_mutex);
1476
1477	cur_fastreboot_onpanic = fastreboot_onpanic;
1478	fastreboot_onpanic = boot_config & UA_FASTREBOOT_ONPANIC;
1479
1480	if (fastreboot_onpanic && (!cur_fastreboot_onpanic ||
1481	    !newkernel.fi_valid))
1482		fastboot_load_kernel(fastreboot_onpanic_cmdline);
1483	if (cur_fastreboot_onpanic && !fastreboot_onpanic)
1484		fastboot_free_newkernel(&newkernel);
1485
1486	mutex_exit(&fastreboot_config_mutex);
1487}
1488
1489/*
1490 * This is an internal interface to disable Fast Reboot on Panic.
1491 * It frees up memory allocated for the backup kernel and sets
1492 * fastreboot_onpanic to zero.
1493 */
1494static void
1495fastreboot_onpanic_disable(void)
1496{
1497	uint8_t boot_config = (uint8_t)(~UA_FASTREBOOT_ONPANIC);
1498	fastboot_update_config((const char *)&boot_config);
1499}
1500
1501/*
1502 * This is the interface to be called by fm_panic() in case FMA has diagnosed
1503 * a terminal machine check exception.  It does not free up memory allocated
1504 * for the backup kernel.  General disabling fastreboot_onpanic in a
1505 * non-panicking situation must go through fastboot_onpanic_disable().
1506 */
1507void
1508fastreboot_disable_highpil(void)
1509{
1510	fastreboot_onpanic = 0;
1511}
1512
1513/*
1514 * This is an internal interface to disable Fast Reboot by Default.
1515 * It does not free up memory allocated for the backup kernel.
1516 */
1517static void
1518fastreboot_capable_disable(uint32_t msgid)
1519{
1520	if (fastreboot_capable != 0) {
1521		fastreboot_capable = 0;
1522		if (msgid < sizeof (fastreboot_nosup_desc) /
1523		    sizeof (fastreboot_nosup_desc[0]))
1524			fastreboot_nosup_id = msgid;
1525		else
1526			fastreboot_nosup_id = FBNS_DEFAULT;
1527	}
1528}
1529
1530/*
1531 * This is the kernel interface for disabling
1532 * Fast Reboot by Default and Fast Reboot on Panic.
1533 * Frees up memory allocated for the backup kernel.
1534 * General disabling of the Fast Reboot by Default feature should be done
1535 * via the userland interface scf_fastreboot_default_set_transient().
1536 */
1537void
1538fastreboot_disable(uint32_t msgid)
1539{
1540	fastreboot_capable_disable(msgid);
1541	fastreboot_onpanic_disable();
1542}
1543
1544/*
1545 * Returns Fast Reboot not support message for fastreboot_nosup_id.
1546 * If fastreboot_nosup_id contains invalid index, default
1547 * Fast Reboot not support message is returned.
1548 */
1549const char *
1550fastreboot_nosup_message(void)
1551{
1552	uint32_t msgid;
1553
1554	msgid = fastreboot_nosup_id;
1555	if (msgid >= sizeof (fastreboot_nosup_desc) /
1556	    sizeof (fastreboot_nosup_desc[0]))
1557		msgid = FBNS_DEFAULT;
1558
1559	return (fastreboot_nosup_desc[msgid]);
1560}
1561
1562/*
1563 * A simplified interface for uadmin to call to update the configuration
1564 * setting and load a new kernel if necessary.
1565 */
1566void
1567fastboot_update_and_load(int fcn, char *mdep)
1568{
1569	if (fcn != AD_FASTREBOOT) {
1570		/*
1571		 * If user has explicitly requested reboot to prom,
1572		 * or uadmin(1M) was invoked with other functions,
1573		 * don't try to fast reboot after dumping.
1574		 */
1575		fastreboot_onpanic_disable();
1576	}
1577
1578	mutex_enter(&fastreboot_config_mutex);
1579
1580	if (fastreboot_onpanic)
1581		fastboot_load_kernel(mdep);
1582
1583	mutex_exit(&fastreboot_config_mutex);
1584}
1585