1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
23 */
24/*
25 * Copyright (c) 2010, Intel Corporation.
26 * All rights reserved.
27 */
28
29/*
30 * PSMI 1.1 extensions are supported only in 2.6 and later versions.
31 * PSMI 1.2 extensions are supported only in 2.7 and later versions.
32 * PSMI 1.3 and 1.4 extensions are supported in Solaris 10.
33 * PSMI 1.5 extensions are supported in Solaris Nevada.
34 * PSMI 1.6 extensions are supported in Solaris Nevada.
35 * PSMI 1.7 extensions are supported in Solaris Nevada.
36 */
37#define	PSMI_1_7
38
39#include <sys/processor.h>
40#include <sys/time.h>
41#include <sys/psm.h>
42#include <sys/smp_impldefs.h>
43#include <sys/cram.h>
44#include <sys/acpi/acpi.h>
45#include <sys/acpica.h>
46#include <sys/psm_common.h>
47#include <sys/apic.h>
48#include <sys/apic_timer.h>
49#include <sys/pit.h>
50#include <sys/ddi.h>
51#include <sys/sunddi.h>
52#include <sys/ddi_impldefs.h>
53#include <sys/pci.h>
54#include <sys/promif.h>
55#include <sys/x86_archext.h>
56#include <sys/cpc_impl.h>
57#include <sys/uadmin.h>
58#include <sys/panic.h>
59#include <sys/debug.h>
60#include <sys/archsystm.h>
61#include <sys/trap.h>
62#include <sys/machsystm.h>
63#include <sys/cpuvar.h>
64#include <sys/rm_platter.h>
65#include <sys/privregs.h>
66#include <sys/cyclic.h>
67#include <sys/note.h>
68#include <sys/pci_intr_lib.h>
69#include <sys/sunndi.h>
70#if !defined(__xpv)
71#include <sys/hpet.h>
72#include <sys/clock.h>
73#endif
74
75/*
76 *	Local Function Prototypes
77 */
78static int apic_handle_defconf();
79static int apic_parse_mpct(caddr_t mpct, int bypass);
80static struct apic_mpfps_hdr *apic_find_fps_sig(caddr_t fptr, int size);
81static int apic_checksum(caddr_t bptr, int len);
82static int apic_find_bus_type(char *bus);
83static int apic_find_bus(int busid);
84static struct apic_io_intr *apic_find_io_intr(int irqno);
85static int apic_find_free_irq(int start, int end);
86struct apic_io_intr *apic_find_io_intr_w_busid(int irqno, int busid);
87static void apic_set_pwroff_method_from_mpcnfhdr(struct apic_mp_cnf_hdr *hdrp);
88static void apic_free_apic_cpus(void);
89static boolean_t apic_is_ioapic_AMD_813x(uint32_t physaddr);
90static int apic_acpi_enter_apicmode(void);
91
92int apic_handle_pci_pci_bridge(dev_info_t *idip, int child_devno,
93    int child_ipin, struct apic_io_intr **intrp);
94int apic_find_bus_id(int bustype);
95int apic_find_intin(uchar_t ioapic, uchar_t intin);
96void apic_record_rdt_entry(apic_irq_t *irqptr, int irq);
97
98int apic_debug_mps_id = 0;	/* 1 - print MPS ID strings */
99
100/* ACPI SCI interrupt configuration; -1 if SCI not used */
101int apic_sci_vect = -1;
102iflag_t apic_sci_flags;
103
104#if !defined(__xpv)
105/* ACPI HPET interrupt configuration; -1 if HPET not used */
106int apic_hpet_vect = -1;
107iflag_t apic_hpet_flags;
108#endif
109
110/*
111 * psm name pointer
112 */
113char *psm_name;
114
115/* ACPI support routines */
116static int acpi_probe(char *);
117static int apic_acpi_irq_configure(acpi_psm_lnk_t *acpipsmlnkp, dev_info_t *dip,
118    int *pci_irqp, iflag_t *intr_flagp);
119
120int apic_acpi_translate_pci_irq(dev_info_t *dip, int busid, int devid,
121    int ipin, int *pci_irqp, iflag_t *intr_flagp);
122uchar_t acpi_find_ioapic(int irq);
123static int acpi_intr_compatible(iflag_t iflag1, iflag_t iflag2);
124
125/* Max wait time (in repetitions) for flags to clear in an RDT entry. */
126int apic_max_reps_clear_pending = 1000;
127
128int	apic_intr_policy = INTR_ROUND_ROBIN;
129
130int	apic_next_bind_cpu = 1; /* For round robin assignment */
131				/* start with cpu 1 */
132
133/*
134 * If enabled, the distribution works as follows:
135 * On every interrupt entry, the current ipl for the CPU is set in cpu_info
136 * and the irq corresponding to the ipl is also set in the aci_current array.
137 * interrupt exit and setspl (due to soft interrupts) will cause the current
138 * ipl to be be changed. This is cache friendly as these frequently used
139 * paths write into a per cpu structure.
140 *
141 * Sampling is done by checking the structures for all CPUs and incrementing
142 * the busy field of the irq (if any) executing on each CPU and the busy field
143 * of the corresponding CPU.
144 * In periodic mode this is done on every clock interrupt.
145 * In one-shot mode, this is done thru a cyclic with an interval of
146 * apic_redistribute_sample_interval (default 10 milli sec).
147 *
148 * Every apic_sample_factor_redistribution times we sample, we do computations
149 * to decide which interrupt needs to be migrated (see comments
150 * before apic_intr_redistribute().
151 */
152
153/*
154 * Following 3 variables start as % and can be patched or set using an
155 * API to be defined in future. They will be scaled to
156 * sample_factor_redistribution which is in turn set to hertz+1 (in periodic
157 * mode), or 101 in one-shot mode to stagger it away from one sec processing
158 */
159
160int	apic_int_busy_mark = 60;
161int	apic_int_free_mark = 20;
162int	apic_diff_for_redistribution = 10;
163
164/* sampling interval for interrupt redistribution for dynamic migration */
165int	apic_redistribute_sample_interval = NANOSEC / 100; /* 10 millisec */
166
167/*
168 * number of times we sample before deciding to redistribute interrupts
169 * for dynamic migration
170 */
171int	apic_sample_factor_redistribution = 101;
172
173int	apic_redist_cpu_skip = 0;
174int	apic_num_imbalance = 0;
175int	apic_num_rebind = 0;
176
177/*
178 * Maximum number of APIC CPUs in the system, -1 indicates that dynamic
179 * allocation of CPU ids is disabled.
180 */
181int 	apic_max_nproc = -1;
182int	apic_nproc = 0;
183size_t	apic_cpus_size = 0;
184int	apic_defconf = 0;
185int	apic_irq_translate = 0;
186int	apic_spec_rev = 0;
187int	apic_imcrp = 0;
188
189int	apic_use_acpi = 1;	/* 1 = use ACPI, 0 = don't use ACPI */
190int	apic_use_acpi_madt_only = 0;	/* 1=ONLY use MADT from ACPI */
191
192/*
193 * For interrupt link devices, if apic_unconditional_srs is set, an irq resource
194 * will be assigned (via _SRS). If it is not set, use the current
195 * irq setting (via _CRS), but only if that irq is in the set of possible
196 * irqs (returned by _PRS) for the device.
197 */
198int	apic_unconditional_srs = 1;
199
200/*
201 * For interrupt link devices, if apic_prefer_crs is set when we are
202 * assigning an IRQ resource to a device, prefer the current IRQ setting
203 * over other possible irq settings under same conditions.
204 */
205
206int	apic_prefer_crs = 1;
207
208uchar_t apic_io_id[MAX_IO_APIC];
209volatile uint32_t *apicioadr[MAX_IO_APIC];
210uchar_t	apic_io_ver[MAX_IO_APIC];
211uchar_t	apic_io_vectbase[MAX_IO_APIC];
212uchar_t	apic_io_vectend[MAX_IO_APIC];
213uchar_t apic_reserved_irqlist[MAX_ISA_IRQ + 1];
214uint32_t apic_physaddr[MAX_IO_APIC];
215
216boolean_t ioapic_mask_workaround[MAX_IO_APIC];
217
218/*
219 * First available slot to be used as IRQ index into the apic_irq_table
220 * for those interrupts (like MSI/X) that don't have a physical IRQ.
221 */
222int apic_first_avail_irq  = APIC_FIRST_FREE_IRQ;
223
224/*
225 * apic_ioapic_lock protects the ioapics (reg select), the status, temp_bound
226 * and bound elements of cpus_info and the temp_cpu element of irq_struct
227 */
228lock_t	apic_ioapic_lock;
229
230int	apic_io_max = 0;	/* no. of i/o apics enabled */
231
232struct apic_io_intr *apic_io_intrp = NULL;
233static	struct apic_bus	*apic_busp;
234
235uchar_t	apic_resv_vector[MAXIPL+1];
236
237char	apic_level_intr[APIC_MAX_VECTOR+1];
238
239uint32_t	eisa_level_intr_mask = 0;
240	/* At least MSB will be set if EISA bus */
241
242int	apic_pci_bus_total = 0;
243uchar_t	apic_single_pci_busid = 0;
244
245/*
246 * airq_mutex protects additions to the apic_irq_table - the first
247 * pointer and any airq_nexts off of that one. It also protects
248 * apic_max_device_irq & apic_min_device_irq. It also guarantees
249 * that share_id is unique as new ids are generated only when new
250 * irq_t structs are linked in. Once linked in the structs are never
251 * deleted. temp_cpu & mps_intr_index field indicate if it is programmed
252 * or allocated. Note that there is a slight gap between allocating in
253 * apic_introp_xlate and programming in addspl.
254 */
255kmutex_t	airq_mutex;
256apic_irq_t	*apic_irq_table[APIC_MAX_VECTOR+1];
257int		apic_max_device_irq = 0;
258int		apic_min_device_irq = APIC_MAX_VECTOR;
259
260typedef struct prs_irq_list_ent {
261	int			list_prio;
262	int32_t			irq;
263	iflag_t			intrflags;
264	acpi_prs_private_t	prsprv;
265	struct prs_irq_list_ent	*next;
266} prs_irq_list_t;
267
268
269/*
270 * ACPI variables
271 */
272/* 1 = acpi is enabled & working, 0 = acpi is not enabled or not there */
273int apic_enable_acpi = 0;
274
275/* ACPI Multiple APIC Description Table ptr */
276static	ACPI_TABLE_MADT *acpi_mapic_dtp = NULL;
277
278/* ACPI Interrupt Source Override Structure ptr */
279ACPI_MADT_INTERRUPT_OVERRIDE *acpi_isop = NULL;
280int acpi_iso_cnt = 0;
281
282/* ACPI Non-maskable Interrupt Sources ptr */
283static	ACPI_MADT_NMI_SOURCE *acpi_nmi_sp = NULL;
284static	int acpi_nmi_scnt = 0;
285static	ACPI_MADT_LOCAL_APIC_NMI *acpi_nmi_cp = NULL;
286static	int acpi_nmi_ccnt = 0;
287
288/*
289 * The following added to identify a software poweroff method if available.
290 */
291
292static struct {
293	int	poweroff_method;
294	char	oem_id[APIC_MPS_OEM_ID_LEN + 1];	/* MAX + 1 for NULL */
295	char	prod_id[APIC_MPS_PROD_ID_LEN + 1];	/* MAX + 1 for NULL */
296} apic_mps_ids[] = {
297	{ APIC_POWEROFF_VIA_RTC,	"INTEL",	"ALDER" },   /* 4300 */
298	{ APIC_POWEROFF_VIA_RTC,	"NCR",		"AMC" },    /* 4300 */
299	{ APIC_POWEROFF_VIA_ASPEN_BMC,	"INTEL",	"A450NX" },  /* 4400? */
300	{ APIC_POWEROFF_VIA_ASPEN_BMC,	"INTEL",	"AD450NX" }, /* 4400 */
301	{ APIC_POWEROFF_VIA_ASPEN_BMC,	"INTEL",	"AC450NX" }, /* 4400R */
302	{ APIC_POWEROFF_VIA_SITKA_BMC,	"INTEL",	"S450NX" },  /* S50  */
303	{ APIC_POWEROFF_VIA_SITKA_BMC,	"INTEL",	"SC450NX" }  /* S50? */
304};
305
306int	apic_poweroff_method = APIC_POWEROFF_NONE;
307
308/*
309 * Auto-configuration routines
310 */
311
312/*
313 * Look at MPSpec 1.4 (Intel Order # 242016-005) for details of what we do here
314 * May work with 1.1 - but not guaranteed.
315 * According to the MP Spec, the MP floating pointer structure
316 * will be searched in the order described below:
317 * 1. In the first kilobyte of Extended BIOS Data Area (EBDA)
318 * 2. Within the last kilobyte of system base memory
319 * 3. In the BIOS ROM address space between 0F0000h and 0FFFFh
320 * Once we find the right signature with proper checksum, we call
321 * either handle_defconf or parse_mpct to get all info necessary for
322 * subsequent operations.
323 */
324int
325apic_probe_common(char *modname)
326{
327	uint32_t mpct_addr, ebda_start = 0, base_mem_end;
328	caddr_t	biosdatap;
329	caddr_t	mpct = 0;
330	caddr_t	fptr;
331	int	i, mpct_size, mapsize, retval = PSM_FAILURE;
332	ushort_t	ebda_seg, base_mem_size;
333	struct	apic_mpfps_hdr	*fpsp;
334	struct	apic_mp_cnf_hdr	*hdrp;
335	int bypass_cpu_and_ioapics_in_mptables;
336	int acpi_user_options;
337
338	if (apic_forceload < 0)
339		return (retval);
340
341	/*
342	 * Remember who we are
343	 */
344	psm_name = modname;
345
346	/* Allow override for MADT-only mode */
347	acpi_user_options = ddi_prop_get_int(DDI_DEV_T_ANY, ddi_root_node(), 0,
348	    "acpi-user-options", 0);
349	apic_use_acpi_madt_only = ((acpi_user_options & ACPI_OUSER_MADT) != 0);
350
351	/* Allow apic_use_acpi to override MADT-only mode */
352	if (!apic_use_acpi)
353		apic_use_acpi_madt_only = 0;
354
355	retval = acpi_probe(modname);
356
357	/*
358	 * mapin the bios data area 40:0
359	 * 40:13h - two-byte location reports the base memory size
360	 * 40:0Eh - two-byte location for the exact starting address of
361	 *	    the EBDA segment for EISA
362	 */
363	biosdatap = psm_map_phys(0x400, 0x20, PROT_READ);
364	if (!biosdatap)
365		goto apic_ret;
366	fpsp = (struct apic_mpfps_hdr *)NULL;
367	mapsize = MPFPS_RAM_WIN_LEN;
368	/*LINTED: pointer cast may result in improper alignment */
369	ebda_seg = *((ushort_t *)(biosdatap+0xe));
370	/* check the 1k of EBDA */
371	if (ebda_seg) {
372		ebda_start = ((uint32_t)ebda_seg) << 4;
373		fptr = psm_map_phys(ebda_start, MPFPS_RAM_WIN_LEN, PROT_READ);
374		if (fptr) {
375			if (!(fpsp =
376			    apic_find_fps_sig(fptr, MPFPS_RAM_WIN_LEN)))
377				psm_unmap_phys(fptr, MPFPS_RAM_WIN_LEN);
378		}
379	}
380	/* If not in EBDA, check the last k of system base memory */
381	if (!fpsp) {
382		/*LINTED: pointer cast may result in improper alignment */
383		base_mem_size = *((ushort_t *)(biosdatap + 0x13));
384
385		if (base_mem_size > 512)
386			base_mem_end = 639 * 1024;
387		else
388			base_mem_end = 511 * 1024;
389		/* if ebda == last k of base mem, skip to check BIOS ROM */
390		if (base_mem_end != ebda_start) {
391
392			fptr = psm_map_phys(base_mem_end, MPFPS_RAM_WIN_LEN,
393			    PROT_READ);
394
395			if (fptr) {
396				if (!(fpsp = apic_find_fps_sig(fptr,
397				    MPFPS_RAM_WIN_LEN)))
398					psm_unmap_phys(fptr, MPFPS_RAM_WIN_LEN);
399			}
400		}
401	}
402	psm_unmap_phys(biosdatap, 0x20);
403
404	/* If still cannot find it, check the BIOS ROM space */
405	if (!fpsp) {
406		mapsize = MPFPS_ROM_WIN_LEN;
407		fptr = psm_map_phys(MPFPS_ROM_WIN_START,
408		    MPFPS_ROM_WIN_LEN, PROT_READ);
409		if (fptr) {
410			if (!(fpsp =
411			    apic_find_fps_sig(fptr, MPFPS_ROM_WIN_LEN))) {
412				psm_unmap_phys(fptr, MPFPS_ROM_WIN_LEN);
413				goto apic_ret;
414			}
415		}
416	}
417
418	if (apic_checksum((caddr_t)fpsp, fpsp->mpfps_length * 16) != 0) {
419		psm_unmap_phys(fptr, MPFPS_ROM_WIN_LEN);
420		goto apic_ret;
421	}
422
423	apic_spec_rev = fpsp->mpfps_spec_rev;
424	if ((apic_spec_rev != 04) && (apic_spec_rev != 01)) {
425		psm_unmap_phys(fptr, MPFPS_ROM_WIN_LEN);
426		goto apic_ret;
427	}
428
429	/* check IMCR is present or not */
430	apic_imcrp = fpsp->mpfps_featinfo2 & MPFPS_FEATINFO2_IMCRP;
431
432	/* check default configuration (dual CPUs) */
433	if ((apic_defconf = fpsp->mpfps_featinfo1) != 0) {
434		psm_unmap_phys(fptr, mapsize);
435		if ((retval = apic_handle_defconf()) != PSM_SUCCESS)
436			return (retval);
437
438		goto apic_ret;
439	}
440
441	/* MP Configuration Table */
442	mpct_addr = (uint32_t)(fpsp->mpfps_mpct_paddr);
443
444	psm_unmap_phys(fptr, mapsize); /* unmap floating ptr struct */
445
446	/*
447	 * Map in enough memory for the MP Configuration Table Header.
448	 * Use this table to read the total length of the BIOS data and
449	 * map in all the info
450	 */
451	/*LINTED: pointer cast may result in improper alignment */
452	hdrp = (struct apic_mp_cnf_hdr *)psm_map_phys(mpct_addr,
453	    sizeof (struct apic_mp_cnf_hdr), PROT_READ);
454	if (!hdrp)
455		goto apic_ret;
456
457	/* check mp configuration table signature PCMP */
458	if (hdrp->mpcnf_sig != 0x504d4350) {
459		psm_unmap_phys((caddr_t)hdrp, sizeof (struct apic_mp_cnf_hdr));
460		goto apic_ret;
461	}
462	mpct_size = (int)hdrp->mpcnf_tbl_length;
463
464	apic_set_pwroff_method_from_mpcnfhdr(hdrp);
465
466	psm_unmap_phys((caddr_t)hdrp, sizeof (struct apic_mp_cnf_hdr));
467
468	if ((retval == PSM_SUCCESS) && !apic_use_acpi_madt_only) {
469		/* This is an ACPI machine No need for further checks */
470		goto apic_ret;
471	}
472
473	/*
474	 * Map in the entries for this machine, ie. Processor
475	 * Entry Tables, Bus Entry Tables, etc.
476	 * They are in fixed order following one another
477	 */
478	mpct = psm_map_phys(mpct_addr, mpct_size, PROT_READ);
479	if (!mpct)
480		goto apic_ret;
481
482	if (apic_checksum(mpct, mpct_size) != 0)
483		goto apic_fail1;
484
485	/*LINTED: pointer cast may result in improper alignment */
486	hdrp = (struct apic_mp_cnf_hdr *)mpct;
487	apicadr = (uint32_t *)mapin_apic((uint32_t)hdrp->mpcnf_local_apic,
488	    APIC_LOCAL_MEMLEN, PROT_READ | PROT_WRITE);
489	if (!apicadr)
490		goto apic_fail1;
491
492	/* Parse all information in the tables */
493	bypass_cpu_and_ioapics_in_mptables = (retval == PSM_SUCCESS);
494	if (apic_parse_mpct(mpct, bypass_cpu_and_ioapics_in_mptables) ==
495	    PSM_SUCCESS) {
496		retval = PSM_SUCCESS;
497		goto apic_ret;
498	}
499
500apic_fail1:
501	psm_unmap_phys(mpct, mpct_size);
502	mpct = NULL;
503
504apic_ret:
505	if (retval == PSM_SUCCESS) {
506		extern int apic_ioapic_method_probe();
507
508		if ((retval = apic_ioapic_method_probe()) == PSM_SUCCESS)
509			return (PSM_SUCCESS);
510	}
511
512	for (i = 0; i < apic_io_max; i++)
513		mapout_ioapic((caddr_t)apicioadr[i], APIC_IO_MEMLEN);
514	if (apic_cpus) {
515		kmem_free(apic_cpus, apic_cpus_size);
516		apic_cpus = NULL;
517	}
518	if (apicadr) {
519		mapout_apic((caddr_t)apicadr, APIC_LOCAL_MEMLEN);
520		apicadr = NULL;
521	}
522	if (mpct)
523		psm_unmap_phys(mpct, mpct_size);
524
525	return (retval);
526}
527
528static void
529apic_set_pwroff_method_from_mpcnfhdr(struct apic_mp_cnf_hdr *hdrp)
530{
531	int	i;
532
533	for (i = 0; i < (sizeof (apic_mps_ids) / sizeof (apic_mps_ids[0]));
534	    i++) {
535		if ((strncmp(hdrp->mpcnf_oem_str, apic_mps_ids[i].oem_id,
536		    strlen(apic_mps_ids[i].oem_id)) == 0) &&
537		    (strncmp(hdrp->mpcnf_prod_str, apic_mps_ids[i].prod_id,
538		    strlen(apic_mps_ids[i].prod_id)) == 0)) {
539
540			apic_poweroff_method = apic_mps_ids[i].poweroff_method;
541			break;
542		}
543	}
544
545	if (apic_debug_mps_id != 0) {
546		cmn_err(CE_CONT, "%s: MPS OEM ID = '%c%c%c%c%c%c%c%c'"
547		    "Product ID = '%c%c%c%c%c%c%c%c%c%c%c%c'\n",
548		    psm_name,
549		    hdrp->mpcnf_oem_str[0],
550		    hdrp->mpcnf_oem_str[1],
551		    hdrp->mpcnf_oem_str[2],
552		    hdrp->mpcnf_oem_str[3],
553		    hdrp->mpcnf_oem_str[4],
554		    hdrp->mpcnf_oem_str[5],
555		    hdrp->mpcnf_oem_str[6],
556		    hdrp->mpcnf_oem_str[7],
557		    hdrp->mpcnf_prod_str[0],
558		    hdrp->mpcnf_prod_str[1],
559		    hdrp->mpcnf_prod_str[2],
560		    hdrp->mpcnf_prod_str[3],
561		    hdrp->mpcnf_prod_str[4],
562		    hdrp->mpcnf_prod_str[5],
563		    hdrp->mpcnf_prod_str[6],
564		    hdrp->mpcnf_prod_str[7],
565		    hdrp->mpcnf_prod_str[8],
566		    hdrp->mpcnf_prod_str[9],
567		    hdrp->mpcnf_prod_str[10],
568		    hdrp->mpcnf_prod_str[11]);
569	}
570}
571
572static void
573apic_free_apic_cpus(void)
574{
575	if (apic_cpus != NULL) {
576		kmem_free(apic_cpus, apic_cpus_size);
577		apic_cpus = NULL;
578		apic_cpus_size = 0;
579	}
580}
581
582static int
583acpi_probe(char *modname)
584{
585	int			i, intmax, index;
586	uint32_t		id, ver;
587	int			acpi_verboseflags = 0;
588	int			madt_seen, madt_size;
589	ACPI_SUBTABLE_HEADER		*ap;
590	ACPI_MADT_LOCAL_APIC	*mpa;
591	ACPI_MADT_LOCAL_X2APIC	*mpx2a;
592	ACPI_MADT_IO_APIC		*mia;
593	ACPI_MADT_IO_SAPIC		*misa;
594	ACPI_MADT_INTERRUPT_OVERRIDE	*mio;
595	ACPI_MADT_NMI_SOURCE		*mns;
596	ACPI_MADT_INTERRUPT_SOURCE	*mis;
597	ACPI_MADT_LOCAL_APIC_NMI	*mlan;
598	ACPI_MADT_LOCAL_X2APIC_NMI	*mx2alan;
599	ACPI_MADT_LOCAL_APIC_OVERRIDE	*mao;
600	int			sci;
601	iflag_t			sci_flags;
602	volatile uint32_t	*ioapic;
603	int			ioapic_ix;
604	uint32_t		*local_ids;
605	uint32_t		*proc_ids;
606	uchar_t			hid;
607	int			warned = 0;
608
609	if (!apic_use_acpi)
610		return (PSM_FAILURE);
611
612	if (AcpiGetTable(ACPI_SIG_MADT, 1,
613	    (ACPI_TABLE_HEADER **) &acpi_mapic_dtp) != AE_OK)
614		return (PSM_FAILURE);
615
616	apicadr = mapin_apic((uint32_t)acpi_mapic_dtp->Address,
617	    APIC_LOCAL_MEMLEN, PROT_READ | PROT_WRITE);
618	if (!apicadr)
619		return (PSM_FAILURE);
620
621	if ((local_ids = (uint32_t *)kmem_zalloc(NCPU * sizeof (uint32_t),
622	    KM_NOSLEEP)) == NULL)
623		return (PSM_FAILURE);
624
625	if ((proc_ids = (uint32_t *)kmem_zalloc(NCPU * sizeof (uint32_t),
626	    KM_NOSLEEP)) == NULL) {
627		kmem_free(local_ids, NCPU * sizeof (uint32_t));
628		return (PSM_FAILURE);
629	}
630
631	id = apic_reg_ops->apic_read(APIC_LID_REG);
632	local_ids[0] = (uchar_t)(id >> 24);
633	apic_nproc = index = 1;
634	apic_io_max = 0;
635
636	ap = (ACPI_SUBTABLE_HEADER *) (acpi_mapic_dtp + 1);
637	madt_size = acpi_mapic_dtp->Header.Length;
638	madt_seen = sizeof (*acpi_mapic_dtp);
639
640	while (madt_seen < madt_size) {
641		switch (ap->Type) {
642		case ACPI_MADT_TYPE_LOCAL_APIC:
643			mpa = (ACPI_MADT_LOCAL_APIC *) ap;
644			if (mpa->LapicFlags & ACPI_MADT_ENABLED) {
645				if (mpa->Id == local_ids[0]) {
646					ASSERT(index == 1);
647					proc_ids[0] = mpa->ProcessorId;
648				} else if (apic_nproc < NCPU && use_mp &&
649				    apic_nproc < boot_ncpus) {
650					local_ids[index] = mpa->Id;
651					proc_ids[index] = mpa->ProcessorId;
652					index++;
653					apic_nproc++;
654				} else if (apic_nproc == NCPU && !warned) {
655					cmn_err(CE_WARN, "%s: CPU limit "
656					    "exceeded"
657#if !defined(__amd64)
658					    " for 32-bit mode"
659#endif
660					    "; Solaris will use %d CPUs.",
661					    psm_name,  NCPU);
662					warned = 1;
663				}
664			}
665			break;
666
667		case ACPI_MADT_TYPE_IO_APIC:
668			mia = (ACPI_MADT_IO_APIC *) ap;
669			if (apic_io_max < MAX_IO_APIC) {
670				ioapic_ix = apic_io_max;
671				apic_io_id[apic_io_max] = mia->Id;
672				apic_io_vectbase[apic_io_max] =
673				    mia->GlobalIrqBase;
674				apic_physaddr[apic_io_max] =
675				    (uint32_t)mia->Address;
676				ioapic = apicioadr[apic_io_max] =
677				    mapin_ioapic((uint32_t)mia->Address,
678				    APIC_IO_MEMLEN, PROT_READ | PROT_WRITE);
679				if (!ioapic)
680					goto cleanup;
681				ioapic_mask_workaround[apic_io_max] =
682				    apic_is_ioapic_AMD_813x(mia->Address);
683				apic_io_max++;
684			}
685			break;
686
687		case ACPI_MADT_TYPE_INTERRUPT_OVERRIDE:
688			mio = (ACPI_MADT_INTERRUPT_OVERRIDE *) ap;
689			if (acpi_isop == NULL)
690				acpi_isop = mio;
691			acpi_iso_cnt++;
692			break;
693
694		case ACPI_MADT_TYPE_NMI_SOURCE:
695			/* UNIMPLEMENTED */
696			mns = (ACPI_MADT_NMI_SOURCE *) ap;
697			if (acpi_nmi_sp == NULL)
698				acpi_nmi_sp = mns;
699			acpi_nmi_scnt++;
700
701			cmn_err(CE_NOTE, "!apic: nmi source: %d 0x%x\n",
702			    mns->GlobalIrq, mns->IntiFlags);
703			break;
704
705		case ACPI_MADT_TYPE_LOCAL_APIC_NMI:
706			/* UNIMPLEMENTED */
707			mlan = (ACPI_MADT_LOCAL_APIC_NMI *) ap;
708			if (acpi_nmi_cp == NULL)
709				acpi_nmi_cp = mlan;
710			acpi_nmi_ccnt++;
711
712			cmn_err(CE_NOTE, "!apic: local nmi: %d 0x%x %d\n",
713			    mlan->ProcessorId, mlan->IntiFlags,
714			    mlan->Lint);
715			break;
716
717		case ACPI_MADT_TYPE_LOCAL_APIC_OVERRIDE:
718			/* UNIMPLEMENTED */
719			mao = (ACPI_MADT_LOCAL_APIC_OVERRIDE *) ap;
720			cmn_err(CE_NOTE, "!apic: address override: %lx\n",
721			    (long)mao->Address);
722			break;
723
724		case ACPI_MADT_TYPE_IO_SAPIC:
725			/* UNIMPLEMENTED */
726			misa = (ACPI_MADT_IO_SAPIC *) ap;
727
728			cmn_err(CE_NOTE, "!apic: io sapic: %d %d %lx\n",
729			    misa->Id, misa->GlobalIrqBase,
730			    (long)misa->Address);
731			break;
732
733		case ACPI_MADT_TYPE_INTERRUPT_SOURCE:
734			/* UNIMPLEMENTED */
735			mis = (ACPI_MADT_INTERRUPT_SOURCE *) ap;
736
737			cmn_err(CE_NOTE,
738			    "!apic: irq source: %d %d %d 0x%x %d %d\n",
739			    mis->Id, mis->Eid, mis->GlobalIrq,
740			    mis->IntiFlags, mis->Type,
741			    mis->IoSapicVector);
742			break;
743
744		case ACPI_MADT_TYPE_LOCAL_X2APIC:
745			mpx2a = (ACPI_MADT_LOCAL_X2APIC *) ap;
746
747			/*
748			 * All logical processors with APIC ID values
749			 * of 255 and greater will have their APIC
750			 * reported through Processor X2APIC structure.
751			 * All logical processors with APIC ID less than
752			 * 255 will have their APIC reported through
753			 * Processor Local APIC.
754			 */
755			if ((mpx2a->LapicFlags & ACPI_MADT_ENABLED) &&
756			    (mpx2a->LocalApicId >> 8)) {
757				if (apic_nproc < NCPU && use_mp &&
758				    apic_nproc < boot_ncpus) {
759					local_ids[index] = mpx2a->LocalApicId;
760					proc_ids[index] = mpa->ProcessorId;
761					index++;
762					apic_nproc++;
763				} else if (apic_nproc == NCPU && !warned) {
764					cmn_err(CE_WARN, "%s: CPU limit "
765					    "exceeded"
766#if !defined(__amd64)
767					    " for 32-bit mode"
768#endif
769					    "; Solaris will use %d CPUs.",
770					    psm_name,  NCPU);
771					warned = 1;
772				}
773			}
774
775			break;
776
777		case ACPI_MADT_TYPE_LOCAL_X2APIC_NMI:
778			/* UNIMPLEMENTED */
779			mx2alan = (ACPI_MADT_LOCAL_X2APIC_NMI *) ap;
780			if (mx2alan->Uid >> 8)
781				acpi_nmi_ccnt++;
782
783#ifdef	DEBUG
784			cmn_err(CE_NOTE,
785			    "!apic: local x2apic nmi: %d 0x%x %d\n",
786			    mx2alan->Uid, mx2alan->IntiFlags, mx2alan->Lint);
787#endif
788
789			break;
790
791		case ACPI_MADT_TYPE_RESERVED:
792		default:
793			break;
794		}
795
796		/* advance to next entry */
797		madt_seen += ap->Length;
798		ap = (ACPI_SUBTABLE_HEADER *)(((char *)ap) + ap->Length);
799	}
800
801	/*
802	 * allocate enough space for possible hot-adding of CPUs.
803	 * max_ncpus may be less than apic_nproc if it's set by user.
804	 */
805	if (plat_dr_support_cpu()) {
806		apic_max_nproc = max_ncpus;
807	}
808	apic_cpus_size = max(apic_nproc, max_ncpus) * sizeof (*apic_cpus);
809	if ((apic_cpus = kmem_zalloc(apic_cpus_size, KM_NOSLEEP)) == NULL)
810		goto cleanup;
811
812	/*
813	 * ACPI doesn't provide the local apic ver, get it directly from the
814	 * local apic
815	 */
816	ver = apic_reg_ops->apic_read(APIC_VERS_REG);
817	for (i = 0; i < apic_nproc; i++) {
818		apic_cpus[i].aci_local_id = local_ids[i];
819		apic_cpus[i].aci_local_ver = (uchar_t)(ver & 0xFF);
820		apic_cpus[i].aci_processor_id = proc_ids[i];
821		/* Only build mapping info for CPUs present at boot. */
822		if (i < boot_ncpus)
823			(void) acpica_map_cpu(i, proc_ids[i]);
824	}
825
826	/*
827	 * To support CPU dynamic reconfiguration, the apic CPU info structure
828	 * for each possible CPU will be pre-allocated at boot time.
829	 * The state for each apic CPU info structure will be assigned according
830	 * to the following rules:
831	 * Rule 1:
832	 * 	Slot index range: [0, min(apic_nproc, boot_ncpus))
833	 *	State flags: 0
834	 *	Note: cpu exists and will be configured/enabled at boot time
835	 * Rule 2:
836	 * 	Slot index range: [boot_ncpus, apic_nproc)
837	 *	State flags: APIC_CPU_FREE | APIC_CPU_DIRTY
838	 *	Note: cpu exists but won't be configured/enabled at boot time
839	 * Rule 3:
840	 * 	Slot index range: [apic_nproc, boot_ncpus)
841	 *	State flags: APIC_CPU_FREE
842	 *	Note: cpu doesn't exist at boot time
843	 * Rule 4:
844	 * 	Slot index range: [max(apic_nproc, boot_ncpus), max_ncpus)
845	 *	State flags: APIC_CPU_FREE
846	 *	Note: cpu doesn't exist at boot time
847	 */
848	CPUSET_ZERO(apic_cpumask);
849	for (i = 0; i < min(boot_ncpus, apic_nproc); i++) {
850		CPUSET_ADD(apic_cpumask, i);
851		apic_cpus[i].aci_status = 0;
852	}
853	for (i = boot_ncpus; i < apic_nproc; i++) {
854		apic_cpus[i].aci_status = APIC_CPU_FREE | APIC_CPU_DIRTY;
855	}
856	for (i = apic_nproc; i < boot_ncpus; i++) {
857		apic_cpus[i].aci_status = APIC_CPU_FREE;
858	}
859	for (i = max(boot_ncpus, apic_nproc); i < max_ncpus; i++) {
860		apic_cpus[i].aci_status = APIC_CPU_FREE;
861	}
862
863	for (i = 0; i < apic_io_max; i++) {
864		ioapic_ix = i;
865
866		/*
867		 * need to check Sitka on the following acpi problem
868		 * On the Sitka, the ioapic's apic_id field isn't reporting
869		 * the actual io apic id. We have reported this problem
870		 * to Intel. Until they fix the problem, we will get the
871		 * actual id directly from the ioapic.
872		 */
873		id = ioapic_read(ioapic_ix, APIC_ID_CMD);
874		hid = (uchar_t)(id >> 24);
875
876		if (hid != apic_io_id[i]) {
877			if (apic_io_id[i] == 0)
878				apic_io_id[i] = hid;
879			else { /* set ioapic id to whatever reported by ACPI */
880				id = ((uint32_t)apic_io_id[i]) << 24;
881				ioapic_write(ioapic_ix, APIC_ID_CMD, id);
882			}
883		}
884		ver = ioapic_read(ioapic_ix, APIC_VERS_CMD);
885		apic_io_ver[i] = (uchar_t)(ver & 0xff);
886		intmax = (ver >> 16) & 0xff;
887		apic_io_vectend[i] = apic_io_vectbase[i] + intmax;
888		if (apic_first_avail_irq <= apic_io_vectend[i])
889			apic_first_avail_irq = apic_io_vectend[i] + 1;
890	}
891
892
893	/*
894	 * Process SCI configuration here
895	 * An error may be returned here if
896	 * acpi-user-options specifies legacy mode
897	 * (no SCI, no ACPI mode)
898	 */
899	if (acpica_get_sci(&sci, &sci_flags) != AE_OK)
900		sci = -1;
901
902	/*
903	 * Now call acpi_init() to generate namespaces
904	 * If this fails, we don't attempt to use ACPI
905	 * even if we were able to get a MADT above
906	 */
907	if (acpica_init() != AE_OK)
908		goto cleanup;
909
910	/*
911	 * Call acpica_build_processor_map() now that we have
912	 * ACPI namesspace access
913	 */
914	(void) acpica_build_processor_map();
915
916	/*
917	 * Squirrel away the SCI and flags for later on
918	 * in apic_picinit() when we're ready
919	 */
920	apic_sci_vect = sci;
921	apic_sci_flags = sci_flags;
922
923	if (apic_verbose & APIC_VERBOSE_IRQ_FLAG)
924		acpi_verboseflags |= PSM_VERBOSE_IRQ_FLAG;
925
926	if (apic_verbose & APIC_VERBOSE_POWEROFF_FLAG)
927		acpi_verboseflags |= PSM_VERBOSE_POWEROFF_FLAG;
928
929	if (apic_verbose & APIC_VERBOSE_POWEROFF_PAUSE_FLAG)
930		acpi_verboseflags |= PSM_VERBOSE_POWEROFF_PAUSE_FLAG;
931
932	if (acpi_psm_init(modname, acpi_verboseflags) == ACPI_PSM_FAILURE)
933		goto cleanup;
934
935	/* Enable ACPI APIC interrupt routing */
936	if (apic_acpi_enter_apicmode() != PSM_FAILURE) {
937		build_reserved_irqlist((uchar_t *)apic_reserved_irqlist);
938		apic_enable_acpi = 1;
939		if (apic_sci_vect > 0) {
940			acpica_set_core_feature(ACPI_FEATURE_SCI_EVENT);
941		}
942		if (apic_use_acpi_madt_only) {
943			cmn_err(CE_CONT,
944			    "?Using ACPI for CPU/IOAPIC information ONLY\n");
945		}
946
947#if !defined(__xpv)
948		/*
949		 * probe ACPI for hpet information here which is used later
950		 * in apic_picinit().
951		 */
952		if (hpet_acpi_init(&apic_hpet_vect, &apic_hpet_flags) < 0) {
953			cmn_err(CE_NOTE, "!ACPI HPET table query failed\n");
954		}
955#endif
956
957		kmem_free(local_ids, NCPU * sizeof (uint32_t));
958		kmem_free(proc_ids, NCPU * sizeof (uint32_t));
959		return (PSM_SUCCESS);
960	}
961	/* if setting APIC mode failed above, we fall through to cleanup */
962
963cleanup:
964	apic_free_apic_cpus();
965	if (apicadr != NULL) {
966		mapout_apic((caddr_t)apicadr, APIC_LOCAL_MEMLEN);
967		apicadr = NULL;
968	}
969	apic_max_nproc = -1;
970	apic_nproc = 0;
971	for (i = 0; i < apic_io_max; i++) {
972		mapout_ioapic((caddr_t)apicioadr[i], APIC_IO_MEMLEN);
973		apicioadr[i] = NULL;
974	}
975	apic_io_max = 0;
976	acpi_isop = NULL;
977	acpi_iso_cnt = 0;
978	acpi_nmi_sp = NULL;
979	acpi_nmi_scnt = 0;
980	acpi_nmi_cp = NULL;
981	acpi_nmi_ccnt = 0;
982	kmem_free(local_ids, NCPU * sizeof (uint32_t));
983	kmem_free(proc_ids, NCPU * sizeof (uint32_t));
984	return (PSM_FAILURE);
985}
986
987/*
988 * Handle default configuration. Fill in reqd global variables & tables
989 * Fill all details as MP table does not give any more info
990 */
991static int
992apic_handle_defconf()
993{
994	uint_t	lid;
995
996	/* Failed to probe ACPI MADT tables, disable CPU DR. */
997	apic_max_nproc = -1;
998	apic_free_apic_cpus();
999	plat_dr_disable_cpu();
1000
1001	apicioadr[0] = (void *)mapin_ioapic(APIC_IO_ADDR,
1002	    APIC_IO_MEMLEN, PROT_READ | PROT_WRITE);
1003	apicadr = (void *)psm_map_phys(APIC_LOCAL_ADDR,
1004	    APIC_LOCAL_MEMLEN, PROT_READ);
1005	apic_cpus_size = 2 * sizeof (*apic_cpus);
1006	apic_cpus = (apic_cpus_info_t *)
1007	    kmem_zalloc(apic_cpus_size, KM_NOSLEEP);
1008	if ((!apicadr) || (!apicioadr[0]) || (!apic_cpus))
1009		goto apic_handle_defconf_fail;
1010	CPUSET_ONLY(apic_cpumask, 0);
1011	CPUSET_ADD(apic_cpumask, 1);
1012	apic_nproc = 2;
1013	lid = apic_reg_ops->apic_read(APIC_LID_REG);
1014	apic_cpus[0].aci_local_id = (uchar_t)(lid >> APIC_ID_BIT_OFFSET);
1015	/*
1016	 * According to the PC+MP spec 1.1, the local ids
1017	 * for the default configuration has to be 0 or 1
1018	 */
1019	if (apic_cpus[0].aci_local_id == 1)
1020		apic_cpus[1].aci_local_id = 0;
1021	else if (apic_cpus[0].aci_local_id == 0)
1022		apic_cpus[1].aci_local_id = 1;
1023	else
1024		goto apic_handle_defconf_fail;
1025
1026	apic_io_id[0] = 2;
1027	apic_io_max = 1;
1028	if (apic_defconf >= 5) {
1029		apic_cpus[0].aci_local_ver = APIC_INTEGRATED_VERS;
1030		apic_cpus[1].aci_local_ver = APIC_INTEGRATED_VERS;
1031		apic_io_ver[0] = APIC_INTEGRATED_VERS;
1032	} else {
1033		apic_cpus[0].aci_local_ver = 0;		/* 82489 DX */
1034		apic_cpus[1].aci_local_ver = 0;
1035		apic_io_ver[0] = 0;
1036	}
1037	if (apic_defconf == 2 || apic_defconf == 3 || apic_defconf == 6)
1038		eisa_level_intr_mask = (inb(EISA_LEVEL_CNTL + 1) << 8) |
1039		    inb(EISA_LEVEL_CNTL) | ((uint_t)INT32_MAX + 1);
1040	return (PSM_SUCCESS);
1041
1042apic_handle_defconf_fail:
1043	if (apicadr)
1044		mapout_apic((caddr_t)apicadr, APIC_LOCAL_MEMLEN);
1045	if (apicioadr[0])
1046		mapout_ioapic((caddr_t)apicioadr[0], APIC_IO_MEMLEN);
1047	return (PSM_FAILURE);
1048}
1049
1050/* Parse the entries in MP configuration table and collect info that we need */
1051static int
1052apic_parse_mpct(caddr_t mpct, int bypass_cpus_and_ioapics)
1053{
1054	struct	apic_procent	*procp;
1055	struct	apic_bus	*busp;
1056	struct	apic_io_entry	*ioapicp;
1057	struct	apic_io_intr	*intrp;
1058	int			ioapic_ix;
1059	uint_t	lid;
1060	uint32_t	id;
1061	uchar_t hid;
1062	int	warned = 0;
1063
1064	/*LINTED: pointer cast may result in improper alignment */
1065	procp = (struct apic_procent *)(mpct + sizeof (struct apic_mp_cnf_hdr));
1066
1067	/* No need to count cpu entries if we won't use them */
1068	if (!bypass_cpus_and_ioapics) {
1069
1070		/* Find max # of CPUS and allocate structure accordingly */
1071		apic_nproc = 0;
1072		CPUSET_ZERO(apic_cpumask);
1073		while (procp->proc_entry == APIC_CPU_ENTRY) {
1074			if (procp->proc_cpuflags & CPUFLAGS_EN) {
1075				if (apic_nproc < NCPU && use_mp &&
1076				    apic_nproc < boot_ncpus) {
1077					CPUSET_ADD(apic_cpumask, apic_nproc);
1078					apic_nproc++;
1079				} else if (apic_nproc == NCPU && !warned) {
1080					cmn_err(CE_WARN, "%s: CPU limit "
1081					    "exceeded"
1082#if !defined(__amd64)
1083					    " for 32-bit mode"
1084#endif
1085					    "; Solaris will use %d CPUs.",
1086					    psm_name,  NCPU);
1087					warned = 1;
1088				}
1089
1090			}
1091			procp++;
1092		}
1093		apic_cpus_size = apic_nproc * sizeof (*apic_cpus);
1094		if (!apic_nproc || !(apic_cpus = (apic_cpus_info_t *)
1095		    kmem_zalloc(apic_cpus_size, KM_NOSLEEP)))
1096			return (PSM_FAILURE);
1097	}
1098
1099	/*LINTED: pointer cast may result in improper alignment */
1100	procp = (struct apic_procent *)(mpct + sizeof (struct apic_mp_cnf_hdr));
1101
1102	/*
1103	 * start with index 1 as 0 needs to be filled in with Boot CPU, but
1104	 * if we're bypassing this information, it has already been filled
1105	 * in by acpi_probe(), so don't overwrite it.
1106	 */
1107	if (!bypass_cpus_and_ioapics)
1108		apic_nproc = 1;
1109
1110	while (procp->proc_entry == APIC_CPU_ENTRY) {
1111		/* check whether the cpu exists or not */
1112		if (!bypass_cpus_and_ioapics &&
1113		    procp->proc_cpuflags & CPUFLAGS_EN) {
1114			if (procp->proc_cpuflags & CPUFLAGS_BP) { /* Boot CPU */
1115				lid = apic_reg_ops->apic_read(APIC_LID_REG);
1116				apic_cpus[0].aci_local_id = procp->proc_apicid;
1117				if (apic_cpus[0].aci_local_id !=
1118				    (uchar_t)(lid >> APIC_ID_BIT_OFFSET)) {
1119					return (PSM_FAILURE);
1120				}
1121				apic_cpus[0].aci_local_ver =
1122				    procp->proc_version;
1123			} else if (apic_nproc < NCPU && use_mp &&
1124			    apic_nproc < boot_ncpus) {
1125				apic_cpus[apic_nproc].aci_local_id =
1126				    procp->proc_apicid;
1127
1128				apic_cpus[apic_nproc].aci_local_ver =
1129				    procp->proc_version;
1130				apic_nproc++;
1131
1132			}
1133		}
1134		procp++;
1135	}
1136
1137	/*
1138	 * Save start of bus entries for later use.
1139	 * Get EISA level cntrl if EISA bus is present.
1140	 * Also get the CPI bus id for single CPI bus case
1141	 */
1142	apic_busp = busp = (struct apic_bus *)procp;
1143	while (busp->bus_entry == APIC_BUS_ENTRY) {
1144		lid = apic_find_bus_type((char *)&busp->bus_str1);
1145		if (lid	== BUS_EISA) {
1146			eisa_level_intr_mask = (inb(EISA_LEVEL_CNTL + 1) << 8) |
1147			    inb(EISA_LEVEL_CNTL) | ((uint_t)INT32_MAX + 1);
1148		} else if (lid == BUS_PCI) {
1149			/*
1150			 * apic_single_pci_busid will be used only if
1151			 * apic_pic_bus_total is equal to 1
1152			 */
1153			apic_pci_bus_total++;
1154			apic_single_pci_busid = busp->bus_id;
1155		}
1156		busp++;
1157	}
1158
1159	ioapicp = (struct apic_io_entry *)busp;
1160
1161	if (!bypass_cpus_and_ioapics)
1162		apic_io_max = 0;
1163	do {
1164		if (!bypass_cpus_and_ioapics && apic_io_max < MAX_IO_APIC) {
1165			if (ioapicp->io_flags & IOAPIC_FLAGS_EN) {
1166				apic_io_id[apic_io_max] = ioapicp->io_apicid;
1167				apic_io_ver[apic_io_max] = ioapicp->io_version;
1168				apicioadr[apic_io_max] =
1169				    (void *)mapin_ioapic(
1170				    (uint32_t)ioapicp->io_apic_addr,
1171				    APIC_IO_MEMLEN, PROT_READ | PROT_WRITE);
1172
1173				if (!apicioadr[apic_io_max])
1174					return (PSM_FAILURE);
1175
1176				ioapic_mask_workaround[apic_io_max] =
1177				    apic_is_ioapic_AMD_813x(
1178				    ioapicp->io_apic_addr);
1179
1180				ioapic_ix = apic_io_max;
1181				id = ioapic_read(ioapic_ix, APIC_ID_CMD);
1182				hid = (uchar_t)(id >> 24);
1183
1184				if (hid != apic_io_id[apic_io_max]) {
1185					if (apic_io_id[apic_io_max] == 0)
1186						apic_io_id[apic_io_max] = hid;
1187					else {
1188						/*
1189						 * set ioapic id to whatever
1190						 * reported by MPS
1191						 *
1192						 * may not need to set index
1193						 * again ???
1194						 * take it out and try
1195						 */
1196
1197						id = ((uint32_t)
1198						    apic_io_id[apic_io_max]) <<
1199						    24;
1200
1201						ioapic_write(ioapic_ix,
1202						    APIC_ID_CMD, id);
1203					}
1204				}
1205				apic_io_max++;
1206			}
1207		}
1208		ioapicp++;
1209	} while (ioapicp->io_entry == APIC_IO_ENTRY);
1210
1211	apic_io_intrp = (struct apic_io_intr *)ioapicp;
1212
1213	intrp = apic_io_intrp;
1214	while (intrp->intr_entry == APIC_IO_INTR_ENTRY) {
1215		if ((intrp->intr_irq > APIC_MAX_ISA_IRQ) ||
1216		    (apic_find_bus(intrp->intr_busid) == BUS_PCI)) {
1217			apic_irq_translate = 1;
1218			break;
1219		}
1220		intrp++;
1221	}
1222
1223	return (PSM_SUCCESS);
1224}
1225
1226boolean_t
1227apic_cpu_in_range(int cpu)
1228{
1229	cpu &= ~IRQ_USER_BOUND;
1230	/* Check whether cpu id is in valid range. */
1231	if (cpu < 0 || cpu >= apic_nproc) {
1232		return (B_FALSE);
1233	} else if (apic_max_nproc != -1 && cpu >= apic_max_nproc) {
1234		/*
1235		 * Check whether cpuid is in valid range if CPU DR is enabled.
1236		 */
1237		return (B_FALSE);
1238	} else if (!CPU_IN_SET(apic_cpumask, cpu)) {
1239		return (B_FALSE);
1240	}
1241
1242	return (B_TRUE);
1243}
1244
1245processorid_t
1246apic_get_next_bind_cpu(void)
1247{
1248	int i, count;
1249	processorid_t cpuid = 0;
1250
1251	for (count = 0; count < apic_nproc; count++) {
1252		if (apic_next_bind_cpu >= apic_nproc) {
1253			apic_next_bind_cpu = 0;
1254		}
1255		i = apic_next_bind_cpu++;
1256		if (apic_cpu_in_range(i)) {
1257			cpuid = i;
1258			break;
1259		}
1260	}
1261
1262	return (cpuid);
1263}
1264
1265uint16_t
1266apic_get_apic_version()
1267{
1268	int i;
1269	uchar_t min_io_apic_ver = 0;
1270	static uint16_t version;		/* Cache as value is constant */
1271	static boolean_t found = B_FALSE;	/* Accomodate zero version */
1272
1273	if (found == B_FALSE) {
1274		found = B_TRUE;
1275
1276		/*
1277		 * Don't assume all IO APICs in the system are the same.
1278		 *
1279		 * Set to the minimum version.
1280		 */
1281		for (i = 0; i < apic_io_max; i++) {
1282			if ((apic_io_ver[i] != 0) &&
1283			    ((min_io_apic_ver == 0) ||
1284			    (min_io_apic_ver >= apic_io_ver[i])))
1285				min_io_apic_ver = apic_io_ver[i];
1286		}
1287
1288		/* Assume all local APICs are of the same version. */
1289		version = (min_io_apic_ver << 8) | apic_cpus[0].aci_local_ver;
1290	}
1291	return (version);
1292}
1293
1294static struct apic_mpfps_hdr *
1295apic_find_fps_sig(caddr_t cptr, int len)
1296{
1297	int	i;
1298
1299	/* Look for the pattern "_MP_" */
1300	for (i = 0; i < len; i += 16) {
1301		if ((*(cptr+i) == '_') &&
1302		    (*(cptr+i+1) == 'M') &&
1303		    (*(cptr+i+2) == 'P') &&
1304		    (*(cptr+i+3) == '_'))
1305		    /*LINTED: pointer cast may result in improper alignment */
1306			return ((struct apic_mpfps_hdr *)(cptr + i));
1307	}
1308	return (NULL);
1309}
1310
1311static int
1312apic_checksum(caddr_t bptr, int len)
1313{
1314	int	i;
1315	uchar_t	cksum;
1316
1317	cksum = 0;
1318	for (i = 0; i < len; i++)
1319		cksum += *bptr++;
1320	return ((int)cksum);
1321}
1322
1323/*
1324 * On machines with PCI-PCI bridges, a device behind a PCI-PCI bridge
1325 * needs special handling.  We may need to chase up the device tree,
1326 * using the PCI-PCI Bridge specification's "rotating IPIN assumptions",
1327 * to find the IPIN at the root bus that relates to the IPIN on the
1328 * subsidiary bus (for ACPI or MP).  We may, however, have an entry
1329 * in the MP table or the ACPI namespace for this device itself.
1330 * We handle both cases in the search below.
1331 */
1332/* this is the non-acpi version */
1333int
1334apic_handle_pci_pci_bridge(dev_info_t *idip, int child_devno, int child_ipin,
1335			struct apic_io_intr **intrp)
1336{
1337	dev_info_t *dipp, *dip;
1338	int pci_irq;
1339	ddi_acc_handle_t cfg_handle;
1340	int bridge_devno, bridge_bus;
1341	int ipin;
1342
1343	dip = idip;
1344
1345	/*CONSTCOND*/
1346	while (1) {
1347		if (((dipp = ddi_get_parent(dip)) == (dev_info_t *)NULL) ||
1348		    (pci_config_setup(dipp, &cfg_handle) != DDI_SUCCESS))
1349			return (-1);
1350		if ((pci_config_get8(cfg_handle, PCI_CONF_BASCLASS) ==
1351		    PCI_CLASS_BRIDGE) && (pci_config_get8(cfg_handle,
1352		    PCI_CONF_SUBCLASS) == PCI_BRIDGE_PCI)) {
1353			pci_config_teardown(&cfg_handle);
1354			if (acpica_get_bdf(dipp, &bridge_bus, &bridge_devno,
1355			    NULL) != 0)
1356				return (-1);
1357			/*
1358			 * This is the rotating scheme documented in the
1359			 * PCI-to-PCI spec.  If the PCI-to-PCI bridge is
1360			 * behind another PCI-to-PCI bridge, then it needs
1361			 * to keep ascending until an interrupt entry is
1362			 * found or the root is reached.
1363			 */
1364			ipin = (child_devno + child_ipin) % PCI_INTD;
1365				if (bridge_bus == 0 && apic_pci_bus_total == 1)
1366					bridge_bus = (int)apic_single_pci_busid;
1367				pci_irq = ((bridge_devno & 0x1f) << 2) |
1368				    (ipin & 0x3);
1369				if ((*intrp = apic_find_io_intr_w_busid(pci_irq,
1370				    bridge_bus)) != NULL) {
1371					return (pci_irq);
1372				}
1373			dip = dipp;
1374			child_devno = bridge_devno;
1375			child_ipin = ipin;
1376		} else {
1377			pci_config_teardown(&cfg_handle);
1378			return (-1);
1379		}
1380	}
1381	/*LINTED: function will not fall off the bottom */
1382}
1383
1384uchar_t
1385acpi_find_ioapic(int irq)
1386{
1387	int i;
1388
1389	for (i = 0; i < apic_io_max; i++) {
1390		if (irq >= apic_io_vectbase[i] && irq <= apic_io_vectend[i])
1391			return ((uchar_t)i);
1392	}
1393	return (0xFF);	/* shouldn't happen */
1394}
1395
1396/*
1397 * See if two irqs are compatible for sharing a vector.
1398 * Currently we only support sharing of PCI devices.
1399 */
1400static int
1401acpi_intr_compatible(iflag_t iflag1, iflag_t iflag2)
1402{
1403	uint_t	level1, po1;
1404	uint_t	level2, po2;
1405
1406	/* Assume active high by default */
1407	po1 = 0;
1408	po2 = 0;
1409
1410	if (iflag1.bustype != iflag2.bustype || iflag1.bustype != BUS_PCI)
1411		return (0);
1412
1413	if (iflag1.intr_el == INTR_EL_CONFORM)
1414		level1 = AV_LEVEL;
1415	else
1416		level1 = (iflag1.intr_el == INTR_EL_LEVEL) ? AV_LEVEL : 0;
1417
1418	if (level1 && ((iflag1.intr_po == INTR_PO_ACTIVE_LOW) ||
1419	    (iflag1.intr_po == INTR_PO_CONFORM)))
1420		po1 = AV_ACTIVE_LOW;
1421
1422	if (iflag2.intr_el == INTR_EL_CONFORM)
1423		level2 = AV_LEVEL;
1424	else
1425		level2 = (iflag2.intr_el == INTR_EL_LEVEL) ? AV_LEVEL : 0;
1426
1427	if (level2 && ((iflag2.intr_po == INTR_PO_ACTIVE_LOW) ||
1428	    (iflag2.intr_po == INTR_PO_CONFORM)))
1429		po2 = AV_ACTIVE_LOW;
1430
1431	if ((level1 == level2) && (po1 == po2))
1432		return (1);
1433
1434	return (0);
1435}
1436
1437struct apic_io_intr *
1438apic_find_io_intr_w_busid(int irqno, int busid)
1439{
1440	struct	apic_io_intr	*intrp;
1441
1442	/*
1443	 * It can have more than 1 entry with same source bus IRQ,
1444	 * but unique with the source bus id
1445	 */
1446	intrp = apic_io_intrp;
1447	if (intrp != NULL) {
1448		while (intrp->intr_entry == APIC_IO_INTR_ENTRY) {
1449			if (intrp->intr_irq == irqno &&
1450			    intrp->intr_busid == busid &&
1451			    intrp->intr_type == IO_INTR_INT)
1452				return (intrp);
1453			intrp++;
1454		}
1455	}
1456	APIC_VERBOSE_IOAPIC((CE_NOTE, "Did not find io intr for irqno:"
1457	    "busid %x:%x\n", irqno, busid));
1458	return ((struct apic_io_intr *)NULL);
1459}
1460
1461
1462struct mps_bus_info {
1463	char	*bus_name;
1464	int	bus_id;
1465} bus_info_array[] = {
1466	"ISA ", BUS_ISA,
1467	"PCI ", BUS_PCI,
1468	"EISA ", BUS_EISA,
1469	"XPRESS", BUS_XPRESS,
1470	"PCMCIA", BUS_PCMCIA,
1471	"VL ", BUS_VL,
1472	"CBUS ", BUS_CBUS,
1473	"CBUSII", BUS_CBUSII,
1474	"FUTURE", BUS_FUTURE,
1475	"INTERN", BUS_INTERN,
1476	"MBI ", BUS_MBI,
1477	"MBII ", BUS_MBII,
1478	"MPI ", BUS_MPI,
1479	"MPSA ", BUS_MPSA,
1480	"NUBUS ", BUS_NUBUS,
1481	"TC ", BUS_TC,
1482	"VME ", BUS_VME,
1483	"PCI-E ", BUS_PCIE
1484};
1485
1486static int
1487apic_find_bus_type(char *bus)
1488{
1489	int	i = 0;
1490
1491	for (; i < sizeof (bus_info_array)/sizeof (struct mps_bus_info); i++)
1492		if (strncmp(bus, bus_info_array[i].bus_name,
1493		    strlen(bus_info_array[i].bus_name)) == 0)
1494			return (bus_info_array[i].bus_id);
1495	APIC_VERBOSE_IOAPIC((CE_WARN, "Did not find bus type for bus %s", bus));
1496	return (0);
1497}
1498
1499static int
1500apic_find_bus(int busid)
1501{
1502	struct	apic_bus	*busp;
1503
1504	busp = apic_busp;
1505	while (busp->bus_entry == APIC_BUS_ENTRY) {
1506		if (busp->bus_id == busid)
1507			return (apic_find_bus_type((char *)&busp->bus_str1));
1508		busp++;
1509	}
1510	APIC_VERBOSE_IOAPIC((CE_WARN, "Did not find bus for bus id %x", busid));
1511	return (0);
1512}
1513
1514int
1515apic_find_bus_id(int bustype)
1516{
1517	struct	apic_bus	*busp;
1518
1519	busp = apic_busp;
1520	while (busp->bus_entry == APIC_BUS_ENTRY) {
1521		if (apic_find_bus_type((char *)&busp->bus_str1) == bustype)
1522			return (busp->bus_id);
1523		busp++;
1524	}
1525	APIC_VERBOSE_IOAPIC((CE_WARN, "Did not find bus id for bustype %x",
1526	    bustype));
1527	return (-1);
1528}
1529
1530/*
1531 * Check if a particular irq need to be reserved for any io_intr
1532 */
1533static struct apic_io_intr *
1534apic_find_io_intr(int irqno)
1535{
1536	struct	apic_io_intr	*intrp;
1537
1538	intrp = apic_io_intrp;
1539	if (intrp != NULL) {
1540		while (intrp->intr_entry == APIC_IO_INTR_ENTRY) {
1541			if (intrp->intr_irq == irqno &&
1542			    intrp->intr_type == IO_INTR_INT)
1543				return (intrp);
1544			intrp++;
1545		}
1546	}
1547	return ((struct apic_io_intr *)NULL);
1548}
1549
1550/*
1551 * Check if the given ioapicindex intin combination has already been assigned
1552 * an irq. If so return irqno. Else -1
1553 */
1554int
1555apic_find_intin(uchar_t ioapic, uchar_t intin)
1556{
1557	apic_irq_t *irqptr;
1558	int	i;
1559
1560	/* find ioapic and intin in the apic_irq_table[] and return the index */
1561	for (i = apic_min_device_irq; i <= apic_max_device_irq; i++) {
1562		irqptr = apic_irq_table[i];
1563		while (irqptr) {
1564			if ((irqptr->airq_mps_intr_index >= 0) &&
1565			    (irqptr->airq_intin_no == intin) &&
1566			    (irqptr->airq_ioapicindex == ioapic)) {
1567				APIC_VERBOSE_IOAPIC((CE_NOTE, "!Found irq "
1568				    "entry for ioapic:intin %x:%x "
1569				    "shared interrupts ?", ioapic, intin));
1570				return (i);
1571			}
1572			irqptr = irqptr->airq_next;
1573		}
1574	}
1575	return (-1);
1576}
1577
1578int
1579apic_allocate_irq(int irq)
1580{
1581	int	freeirq, i;
1582
1583	if ((freeirq = apic_find_free_irq(irq, (APIC_RESV_IRQ - 1))) == -1)
1584		if ((freeirq = apic_find_free_irq(APIC_FIRST_FREE_IRQ,
1585		    (irq - 1))) == -1) {
1586			/*
1587			 * if BIOS really defines every single irq in the mps
1588			 * table, then don't worry about conflicting with
1589			 * them, just use any free slot in apic_irq_table
1590			 */
1591			for (i = APIC_FIRST_FREE_IRQ; i < APIC_RESV_IRQ; i++) {
1592				if ((apic_irq_table[i] == NULL) ||
1593				    apic_irq_table[i]->airq_mps_intr_index ==
1594				    FREE_INDEX) {
1595				freeirq = i;
1596				break;
1597			}
1598		}
1599		if (freeirq == -1) {
1600			/* This shouldn't happen, but just in case */
1601			cmn_err(CE_WARN, "%s: NO available IRQ", psm_name);
1602			return (-1);
1603		}
1604	}
1605	if (apic_irq_table[freeirq] == NULL) {
1606		apic_irq_table[freeirq] =
1607		    kmem_zalloc(sizeof (apic_irq_t), KM_NOSLEEP);
1608		if (apic_irq_table[freeirq] == NULL) {
1609			cmn_err(CE_WARN, "%s: NO memory to allocate IRQ",
1610			    psm_name);
1611			return (-1);
1612		}
1613		apic_irq_table[freeirq]->airq_temp_cpu = IRQ_UNINIT;
1614		apic_irq_table[freeirq]->airq_mps_intr_index = FREE_INDEX;
1615	}
1616	return (freeirq);
1617}
1618
1619static int
1620apic_find_free_irq(int start, int end)
1621{
1622	int	i;
1623
1624	for (i = start; i <= end; i++)
1625		/* Check if any I/O entry needs this IRQ */
1626		if (apic_find_io_intr(i) == NULL) {
1627			/* Then see if it is free */
1628			if ((apic_irq_table[i] == NULL) ||
1629			    (apic_irq_table[i]->airq_mps_intr_index ==
1630			    FREE_INDEX)) {
1631				return (i);
1632			}
1633		}
1634	return (-1);
1635}
1636
1637/*
1638 * compute the polarity, trigger mode and vector for programming into
1639 * the I/O apic and record in airq_rdt_entry.
1640 */
1641void
1642apic_record_rdt_entry(apic_irq_t *irqptr, int irq)
1643{
1644	int	ioapicindex, bus_type, vector;
1645	short	intr_index;
1646	uint_t	level, po, io_po;
1647	struct apic_io_intr *iointrp;
1648
1649	intr_index = irqptr->airq_mps_intr_index;
1650	DDI_INTR_IMPLDBG((CE_CONT, "apic_record_rdt_entry: intr_index=%d "
1651	    "irq = 0x%x dip = 0x%p vector = 0x%x\n", intr_index, irq,
1652	    (void *)irqptr->airq_dip, irqptr->airq_vector));
1653
1654	if (intr_index == RESERVE_INDEX) {
1655		apic_error |= APIC_ERR_INVALID_INDEX;
1656		return;
1657	} else if (APIC_IS_MSI_OR_MSIX_INDEX(intr_index)) {
1658		return;
1659	}
1660
1661	vector = irqptr->airq_vector;
1662	ioapicindex = irqptr->airq_ioapicindex;
1663	/* Assume edge triggered by default */
1664	level = 0;
1665	/* Assume active high by default */
1666	po = 0;
1667
1668	if (intr_index == DEFAULT_INDEX || intr_index == FREE_INDEX) {
1669		ASSERT(irq < 16);
1670		if (eisa_level_intr_mask & (1 << irq))
1671			level = AV_LEVEL;
1672		if (intr_index == FREE_INDEX && apic_defconf == 0)
1673			apic_error |= APIC_ERR_INVALID_INDEX;
1674	} else if (intr_index == ACPI_INDEX) {
1675		bus_type = irqptr->airq_iflag.bustype;
1676		if (irqptr->airq_iflag.intr_el == INTR_EL_CONFORM) {
1677			if (bus_type == BUS_PCI)
1678				level = AV_LEVEL;
1679		} else
1680			level = (irqptr->airq_iflag.intr_el == INTR_EL_LEVEL) ?
1681			    AV_LEVEL : 0;
1682		if (level &&
1683		    ((irqptr->airq_iflag.intr_po == INTR_PO_ACTIVE_LOW) ||
1684		    (irqptr->airq_iflag.intr_po == INTR_PO_CONFORM &&
1685		    bus_type == BUS_PCI)))
1686			po = AV_ACTIVE_LOW;
1687	} else {
1688		iointrp = apic_io_intrp + intr_index;
1689		bus_type = apic_find_bus(iointrp->intr_busid);
1690		if (iointrp->intr_el == INTR_EL_CONFORM) {
1691			if ((irq < 16) && (eisa_level_intr_mask & (1 << irq)))
1692				level = AV_LEVEL;
1693			else if (bus_type == BUS_PCI)
1694				level = AV_LEVEL;
1695		} else
1696			level = (iointrp->intr_el == INTR_EL_LEVEL) ?
1697			    AV_LEVEL : 0;
1698		if (level && ((iointrp->intr_po == INTR_PO_ACTIVE_LOW) ||
1699		    (iointrp->intr_po == INTR_PO_CONFORM &&
1700		    bus_type == BUS_PCI)))
1701			po = AV_ACTIVE_LOW;
1702	}
1703	if (level)
1704		apic_level_intr[irq] = 1;
1705	/*
1706	 * The 82489DX External APIC cannot do active low polarity interrupts.
1707	 */
1708	if (po && (apic_io_ver[ioapicindex] != IOAPIC_VER_82489DX))
1709		io_po = po;
1710	else
1711		io_po = 0;
1712
1713	if (apic_verbose & APIC_VERBOSE_IOAPIC_FLAG)
1714		prom_printf("setio: ioapic=0x%x intin=0x%x level=0x%x po=0x%x "
1715		    "vector=0x%x cpu=0x%x\n\n", ioapicindex,
1716		    irqptr->airq_intin_no, level, io_po, vector,
1717		    irqptr->airq_cpu);
1718
1719	irqptr->airq_rdt_entry = level|io_po|vector;
1720}
1721
1722int
1723apic_acpi_translate_pci_irq(dev_info_t *dip, int busid, int devid,
1724    int ipin, int *pci_irqp, iflag_t *intr_flagp)
1725{
1726
1727	int status;
1728	acpi_psm_lnk_t acpipsmlnk;
1729
1730	if ((status = acpi_get_irq_cache_ent(busid, devid, ipin, pci_irqp,
1731	    intr_flagp)) == ACPI_PSM_SUCCESS) {
1732		APIC_VERBOSE_IRQ((CE_CONT, "!%s: Found irqno %d "
1733		    "from cache for device %s, instance #%d\n", psm_name,
1734		    *pci_irqp, ddi_get_name(dip), ddi_get_instance(dip)));
1735		return (status);
1736	}
1737
1738	bzero(&acpipsmlnk, sizeof (acpi_psm_lnk_t));
1739
1740	if ((status = acpi_translate_pci_irq(dip, ipin, pci_irqp, intr_flagp,
1741	    &acpipsmlnk)) == ACPI_PSM_FAILURE) {
1742		APIC_VERBOSE_IRQ((CE_WARN, "%s: "
1743		    " acpi_translate_pci_irq failed for device %s, instance"
1744		    " #%d", psm_name, ddi_get_name(dip),
1745		    ddi_get_instance(dip)));
1746		return (status);
1747	}
1748
1749	if (status == ACPI_PSM_PARTIAL && acpipsmlnk.lnkobj != NULL) {
1750		status = apic_acpi_irq_configure(&acpipsmlnk, dip, pci_irqp,
1751		    intr_flagp);
1752		if (status != ACPI_PSM_SUCCESS) {
1753			status = acpi_get_current_irq_resource(&acpipsmlnk,
1754			    pci_irqp, intr_flagp);
1755		}
1756	}
1757
1758	if (status == ACPI_PSM_SUCCESS) {
1759		acpi_new_irq_cache_ent(busid, devid, ipin, *pci_irqp,
1760		    intr_flagp, &acpipsmlnk);
1761
1762		APIC_VERBOSE_IRQ((CE_CONT, "%s: [ACPI] "
1763		    "new irq %d for device %s, instance #%d\n", psm_name,
1764		    *pci_irqp, ddi_get_name(dip), ddi_get_instance(dip)));
1765	}
1766
1767	return (status);
1768}
1769
1770/*
1771 * Adds an entry to the irq list passed in, and returns the new list.
1772 * Entries are added in priority order (lower numerical priorities are
1773 * placed closer to the head of the list)
1774 */
1775static prs_irq_list_t *
1776acpi_insert_prs_irq_ent(prs_irq_list_t *listp, int priority, int irq,
1777    iflag_t *iflagp, acpi_prs_private_t *prsprvp)
1778{
1779	struct prs_irq_list_ent *newent, *prevp = NULL, *origlistp;
1780
1781	newent = kmem_zalloc(sizeof (struct prs_irq_list_ent), KM_SLEEP);
1782
1783	newent->list_prio = priority;
1784	newent->irq = irq;
1785	newent->intrflags = *iflagp;
1786	newent->prsprv = *prsprvp;
1787	/* ->next is NULL from kmem_zalloc */
1788
1789	/*
1790	 * New list -- return the new entry as the list.
1791	 */
1792	if (listp == NULL)
1793		return (newent);
1794
1795	/*
1796	 * Save original list pointer for return (since we're not modifying
1797	 * the head)
1798	 */
1799	origlistp = listp;
1800
1801	/*
1802	 * Insertion sort, with entries with identical keys stored AFTER
1803	 * existing entries (the less-than-or-equal test of priority does
1804	 * this for us).
1805	 */
1806	while (listp != NULL && listp->list_prio <= priority) {
1807		prevp = listp;
1808		listp = listp->next;
1809	}
1810
1811	newent->next = listp;
1812
1813	if (prevp == NULL) { /* Add at head of list (newent is the new head) */
1814		return (newent);
1815	} else {
1816		prevp->next = newent;
1817		return (origlistp);
1818	}
1819}
1820
1821/*
1822 * Frees the list passed in, deallocating all memory and leaving *listpp
1823 * set to NULL.
1824 */
1825static void
1826acpi_destroy_prs_irq_list(prs_irq_list_t **listpp)
1827{
1828	struct prs_irq_list_ent *nextp;
1829
1830	ASSERT(listpp != NULL);
1831
1832	while (*listpp != NULL) {
1833		nextp = (*listpp)->next;
1834		kmem_free(*listpp, sizeof (struct prs_irq_list_ent));
1835		*listpp = nextp;
1836	}
1837}
1838
1839/*
1840 * apic_choose_irqs_from_prs returns a list of irqs selected from the list of
1841 * irqs returned by the link device's _PRS method.  The irqs are chosen
1842 * to minimize contention in situations where the interrupt link device
1843 * can be programmed to steer interrupts to different interrupt controller
1844 * inputs (some of which may already be in use).  The list is sorted in order
1845 * of irqs to use, with the highest priority given to interrupt controller
1846 * inputs that are not shared.   When an interrupt controller input
1847 * must be shared, apic_choose_irqs_from_prs adds the possible irqs to the
1848 * returned list in the order that minimizes sharing (thereby ensuring lowest
1849 * possible latency from interrupt trigger time to ISR execution time).
1850 */
1851static prs_irq_list_t *
1852apic_choose_irqs_from_prs(acpi_irqlist_t *irqlistent, dev_info_t *dip,
1853    int crs_irq)
1854{
1855	int32_t irq;
1856	int i;
1857	prs_irq_list_t *prsirqlistp = NULL;
1858	iflag_t iflags;
1859
1860	while (irqlistent != NULL) {
1861		irqlistent->intr_flags.bustype = BUS_PCI;
1862
1863		for (i = 0; i < irqlistent->num_irqs; i++) {
1864
1865			irq = irqlistent->irqs[i];
1866
1867			if (irq <= 0) {
1868				/* invalid irq number */
1869				continue;
1870			}
1871
1872			if ((irq < 16) && (apic_reserved_irqlist[irq]))
1873				continue;
1874
1875			if ((apic_irq_table[irq] == NULL) ||
1876			    (apic_irq_table[irq]->airq_dip == dip)) {
1877
1878				prsirqlistp = acpi_insert_prs_irq_ent(
1879				    prsirqlistp, 0 /* Highest priority */, irq,
1880				    &irqlistent->intr_flags,
1881				    &irqlistent->acpi_prs_prv);
1882
1883				/*
1884				 * If we do not prefer the current irq from _CRS
1885				 * or if we do and this irq is the same as the
1886				 * current irq from _CRS, this is the one
1887				 * to pick.
1888				 */
1889				if (!(apic_prefer_crs) || (irq == crs_irq)) {
1890					return (prsirqlistp);
1891				}
1892				continue;
1893			}
1894
1895			/*
1896			 * Edge-triggered interrupts cannot be shared
1897			 */
1898			if (irqlistent->intr_flags.intr_el == INTR_EL_EDGE)
1899				continue;
1900
1901			/*
1902			 * To work around BIOSes that contain incorrect
1903			 * interrupt polarity information in interrupt
1904			 * descriptors returned by _PRS, we assume that
1905			 * the polarity of the other device sharing this
1906			 * interrupt controller input is compatible.
1907			 * If it's not, the caller will catch it when
1908			 * the caller invokes the link device's _CRS method
1909			 * (after invoking its _SRS method).
1910			 */
1911			iflags = irqlistent->intr_flags;
1912			iflags.intr_po =
1913			    apic_irq_table[irq]->airq_iflag.intr_po;
1914
1915			if (!acpi_intr_compatible(iflags,
1916			    apic_irq_table[irq]->airq_iflag)) {
1917				APIC_VERBOSE_IRQ((CE_CONT, "!%s: irq %d "
1918				    "not compatible [%x:%x:%x !~ %x:%x:%x]",
1919				    psm_name, irq,
1920				    iflags.intr_po,
1921				    iflags.intr_el,
1922				    iflags.bustype,
1923				    apic_irq_table[irq]->airq_iflag.intr_po,
1924				    apic_irq_table[irq]->airq_iflag.intr_el,
1925				    apic_irq_table[irq]->airq_iflag.bustype));
1926				continue;
1927			}
1928
1929			/*
1930			 * If we prefer the irq from _CRS, no need
1931			 * to search any further (and make sure
1932			 * to add this irq with the highest priority
1933			 * so it's tried first).
1934			 */
1935			if (crs_irq == irq && apic_prefer_crs) {
1936
1937				return (acpi_insert_prs_irq_ent(
1938				    prsirqlistp,
1939				    0 /* Highest priority */,
1940				    irq, &iflags,
1941				    &irqlistent->acpi_prs_prv));
1942			}
1943
1944			/*
1945			 * Priority is equal to the share count (lower
1946			 * share count is higher priority). Note that
1947			 * the intr flags passed in here are the ones we
1948			 * changed above -- if incorrect, it will be
1949			 * caught by the caller's _CRS flags comparison.
1950			 */
1951			prsirqlistp = acpi_insert_prs_irq_ent(
1952			    prsirqlistp,
1953			    apic_irq_table[irq]->airq_share, irq,
1954			    &iflags, &irqlistent->acpi_prs_prv);
1955		}
1956
1957		/* Go to the next irqlist entry */
1958		irqlistent = irqlistent->next;
1959	}
1960
1961	return (prsirqlistp);
1962}
1963
1964/*
1965 * Configures the irq for the interrupt link device identified by
1966 * acpipsmlnkp.
1967 *
1968 * Gets the current and the list of possible irq settings for the
1969 * device. If apic_unconditional_srs is not set, and the current
1970 * resource setting is in the list of possible irq settings,
1971 * current irq resource setting is passed to the caller.
1972 *
1973 * Otherwise, picks an irq number from the list of possible irq
1974 * settings, and sets the irq of the device to this value.
1975 * If prefer_crs is set, among a set of irq numbers in the list that have
1976 * the least number of devices sharing the interrupt, we pick current irq
1977 * resource setting if it is a member of this set.
1978 *
1979 * Passes the irq number in the value pointed to by pci_irqp, and
1980 * polarity and sensitivity in the structure pointed to by dipintrflagp
1981 * to the caller.
1982 *
1983 * Note that if setting the irq resource failed, but successfuly obtained
1984 * the current irq resource settings, passes the current irq resources
1985 * and considers it a success.
1986 *
1987 * Returns:
1988 * ACPI_PSM_SUCCESS on success.
1989 *
1990 * ACPI_PSM_FAILURE if an error occured during the configuration or
1991 * if a suitable irq was not found for this device, or if setting the
1992 * irq resource and obtaining the current resource fails.
1993 *
1994 */
1995static int
1996apic_acpi_irq_configure(acpi_psm_lnk_t *acpipsmlnkp, dev_info_t *dip,
1997    int *pci_irqp, iflag_t *dipintr_flagp)
1998{
1999	int32_t irq;
2000	int cur_irq = -1;
2001	acpi_irqlist_t *irqlistp;
2002	prs_irq_list_t *prs_irq_listp, *prs_irq_entp;
2003	boolean_t found_irq = B_FALSE;
2004
2005	dipintr_flagp->bustype = BUS_PCI;
2006
2007	if ((acpi_get_possible_irq_resources(acpipsmlnkp, &irqlistp))
2008	    == ACPI_PSM_FAILURE) {
2009		APIC_VERBOSE_IRQ((CE_WARN, "!%s: Unable to determine "
2010		    "or assign IRQ for device %s, instance #%d: The system was "
2011		    "unable to get the list of potential IRQs from ACPI.",
2012		    psm_name, ddi_get_name(dip), ddi_get_instance(dip)));
2013
2014		return (ACPI_PSM_FAILURE);
2015	}
2016
2017	if ((acpi_get_current_irq_resource(acpipsmlnkp, &cur_irq,
2018	    dipintr_flagp) == ACPI_PSM_SUCCESS) && (!apic_unconditional_srs) &&
2019	    (cur_irq > 0)) {
2020		/*
2021		 * If an IRQ is set in CRS and that IRQ exists in the set
2022		 * returned from _PRS, return that IRQ, otherwise print
2023		 * a warning
2024		 */
2025
2026		if (acpi_irqlist_find_irq(irqlistp, cur_irq, NULL)
2027		    == ACPI_PSM_SUCCESS) {
2028
2029			ASSERT(pci_irqp != NULL);
2030			*pci_irqp = cur_irq;
2031			acpi_free_irqlist(irqlistp);
2032			return (ACPI_PSM_SUCCESS);
2033		}
2034
2035		APIC_VERBOSE_IRQ((CE_WARN, "!%s: Could not find the "
2036		    "current irq %d for device %s, instance #%d in ACPI's "
2037		    "list of possible irqs for this device. Picking one from "
2038		    " the latter list.", psm_name, cur_irq, ddi_get_name(dip),
2039		    ddi_get_instance(dip)));
2040	}
2041
2042	if ((prs_irq_listp = apic_choose_irqs_from_prs(irqlistp, dip,
2043	    cur_irq)) == NULL) {
2044
2045		APIC_VERBOSE_IRQ((CE_WARN, "!%s: Could not find a "
2046		    "suitable irq from the list of possible irqs for device "
2047		    "%s, instance #%d in ACPI's list of possible irqs",
2048		    psm_name, ddi_get_name(dip), ddi_get_instance(dip)));
2049
2050		acpi_free_irqlist(irqlistp);
2051		return (ACPI_PSM_FAILURE);
2052	}
2053
2054	acpi_free_irqlist(irqlistp);
2055
2056	for (prs_irq_entp = prs_irq_listp;
2057	    prs_irq_entp != NULL && found_irq == B_FALSE;
2058	    prs_irq_entp = prs_irq_entp->next) {
2059
2060		acpipsmlnkp->acpi_prs_prv = prs_irq_entp->prsprv;
2061		irq = prs_irq_entp->irq;
2062
2063		APIC_VERBOSE_IRQ((CE_CONT, "!%s: Setting irq %d for "
2064		    "device %s instance #%d\n", psm_name, irq,
2065		    ddi_get_name(dip), ddi_get_instance(dip)));
2066
2067		if ((acpi_set_irq_resource(acpipsmlnkp, irq))
2068		    == ACPI_PSM_SUCCESS) {
2069			/*
2070			 * setting irq was successful, check to make sure CRS
2071			 * reflects that. If CRS does not agree with what we
2072			 * set, return the irq that was set.
2073			 */
2074
2075			if (acpi_get_current_irq_resource(acpipsmlnkp, &cur_irq,
2076			    dipintr_flagp) == ACPI_PSM_SUCCESS) {
2077
2078				if (cur_irq != irq)
2079					APIC_VERBOSE_IRQ((CE_WARN,
2080					    "!%s: IRQ resource set "
2081					    "(irqno %d) for device %s "
2082					    "instance #%d, differs from "
2083					    "current setting irqno %d",
2084					    psm_name, irq, ddi_get_name(dip),
2085					    ddi_get_instance(dip), cur_irq));
2086			} else {
2087				/*
2088				 * On at least one system, there was a bug in
2089				 * a DSDT method called by _STA, causing _STA to
2090				 * indicate that the link device was disabled
2091				 * (when, in fact, it was enabled).  Since _SRS
2092				 * succeeded, assume that _CRS is lying and use
2093				 * the iflags from this _PRS interrupt choice.
2094				 * If we're wrong about the flags, the polarity
2095				 * will be incorrect and we may get an interrupt
2096				 * storm, but there's not much else we can do
2097				 * at this point.
2098				 */
2099				*dipintr_flagp = prs_irq_entp->intrflags;
2100			}
2101
2102			/*
2103			 * Return the irq that was set, and not what _CRS
2104			 * reports, since _CRS has been seen to return
2105			 * different IRQs than what was passed to _SRS on some
2106			 * systems (and just not return successfully on others).
2107			 */
2108			cur_irq = irq;
2109			found_irq = B_TRUE;
2110		} else {
2111			APIC_VERBOSE_IRQ((CE_WARN, "!%s: set resource "
2112			    "irq %d failed for device %s instance #%d",
2113			    psm_name, irq, ddi_get_name(dip),
2114			    ddi_get_instance(dip)));
2115
2116			if (cur_irq == -1) {
2117				acpi_destroy_prs_irq_list(&prs_irq_listp);
2118				return (ACPI_PSM_FAILURE);
2119			}
2120		}
2121	}
2122
2123	acpi_destroy_prs_irq_list(&prs_irq_listp);
2124
2125	if (!found_irq)
2126		return (ACPI_PSM_FAILURE);
2127
2128	ASSERT(pci_irqp != NULL);
2129	*pci_irqp = cur_irq;
2130	return (ACPI_PSM_SUCCESS);
2131}
2132
2133void
2134ioapic_disable_redirection()
2135{
2136	int ioapic_ix;
2137	int intin_max;
2138	int intin_ix;
2139
2140	/* Disable the I/O APIC redirection entries */
2141	for (ioapic_ix = 0; ioapic_ix < apic_io_max; ioapic_ix++) {
2142
2143		/* Bits 23-16 define the maximum redirection entries */
2144		intin_max = (ioapic_read(ioapic_ix, APIC_VERS_CMD) >> 16)
2145		    & 0xff;
2146
2147		for (intin_ix = 0; intin_ix <= intin_max; intin_ix++) {
2148			/*
2149			 * The assumption here is that this is safe, even for
2150			 * systems with IOAPICs that suffer from the hardware
2151			 * erratum because all devices have been quiesced before
2152			 * this function is called from apic_shutdown()
2153			 * (or equivalent). If that assumption turns out to be
2154			 * false, this mask operation can induce the same
2155			 * erratum result we're trying to avoid.
2156			 */
2157			ioapic_write(ioapic_ix, APIC_RDT_CMD + 2 * intin_ix,
2158			    AV_MASK);
2159		}
2160	}
2161}
2162
2163/*
2164 * Looks for an IOAPIC with the specified physical address in the /ioapics
2165 * node in the device tree (created by the PCI enumerator).
2166 */
2167static boolean_t
2168apic_is_ioapic_AMD_813x(uint32_t physaddr)
2169{
2170	/*
2171	 * Look in /ioapics, for the ioapic with
2172	 * the physical address given
2173	 */
2174	dev_info_t *ioapicsnode = ddi_find_devinfo(IOAPICS_NODE_NAME, -1, 0);
2175	dev_info_t *ioapic_child;
2176	boolean_t rv = B_FALSE;
2177	int vid, did;
2178	uint64_t ioapic_paddr;
2179	boolean_t done = B_FALSE;
2180
2181	if (ioapicsnode == NULL)
2182		return (B_FALSE);
2183
2184	/* Load first child: */
2185	ioapic_child = ddi_get_child(ioapicsnode);
2186	while (!done && ioapic_child != 0) { /* Iterate over children */
2187
2188		if ((ioapic_paddr = (uint64_t)ddi_prop_get_int64(DDI_DEV_T_ANY,
2189		    ioapic_child, DDI_PROP_DONTPASS, "reg", 0))
2190		    != 0 && physaddr == ioapic_paddr) {
2191
2192			vid = ddi_prop_get_int(DDI_DEV_T_ANY, ioapic_child,
2193			    DDI_PROP_DONTPASS, IOAPICS_PROP_VENID, 0);
2194
2195			if (vid == VENID_AMD) {
2196
2197				did = ddi_prop_get_int(DDI_DEV_T_ANY,
2198				    ioapic_child, DDI_PROP_DONTPASS,
2199				    IOAPICS_PROP_DEVID, 0);
2200
2201				if (did == DEVID_8131_IOAPIC ||
2202				    did == DEVID_8132_IOAPIC) {
2203					rv = B_TRUE;
2204					done = B_TRUE;
2205				}
2206			}
2207		}
2208
2209		if (!done)
2210			ioapic_child = ddi_get_next_sibling(ioapic_child);
2211	}
2212
2213	/* The ioapics node was held by ddi_find_devinfo, so release it */
2214	ndi_rele_devi(ioapicsnode);
2215	return (rv);
2216}
2217
2218struct apic_state {
2219	int32_t as_task_reg;
2220	int32_t as_dest_reg;
2221	int32_t as_format_reg;
2222	int32_t as_local_timer;
2223	int32_t as_pcint_vect;
2224	int32_t as_int_vect0;
2225	int32_t as_int_vect1;
2226	int32_t as_err_vect;
2227	int32_t as_init_count;
2228	int32_t as_divide_reg;
2229	int32_t as_spur_int_reg;
2230	uint32_t as_ioapic_ids[MAX_IO_APIC];
2231};
2232
2233
2234static int
2235apic_acpi_enter_apicmode(void)
2236{
2237	ACPI_OBJECT_LIST	arglist;
2238	ACPI_OBJECT		arg;
2239	ACPI_STATUS		status;
2240
2241	/* Setup parameter object */
2242	arglist.Count = 1;
2243	arglist.Pointer = &arg;
2244	arg.Type = ACPI_TYPE_INTEGER;
2245	arg.Integer.Value = ACPI_APIC_MODE;
2246
2247	status = AcpiEvaluateObject(NULL, "\\_PIC", &arglist, NULL);
2248	if (ACPI_FAILURE(status))
2249		return (PSM_FAILURE);
2250	else
2251		return (PSM_SUCCESS);
2252}
2253
2254
2255static void
2256apic_save_state(struct apic_state *sp)
2257{
2258	int	i, cpuid;
2259	ulong_t	iflag;
2260
2261	PMD(PMD_SX, ("apic_save_state %p\n", (void *)sp))
2262	/*
2263	 * First the local APIC.
2264	 */
2265	sp->as_task_reg = apic_reg_ops->apic_get_pri();
2266	sp->as_dest_reg =  apic_reg_ops->apic_read(APIC_DEST_REG);
2267	if (apic_mode == LOCAL_APIC)
2268		sp->as_format_reg = apic_reg_ops->apic_read(APIC_FORMAT_REG);
2269	sp->as_local_timer = apic_reg_ops->apic_read(APIC_LOCAL_TIMER);
2270	sp->as_pcint_vect = apic_reg_ops->apic_read(APIC_PCINT_VECT);
2271	sp->as_int_vect0 = apic_reg_ops->apic_read(APIC_INT_VECT0);
2272	sp->as_int_vect1 = apic_reg_ops->apic_read(APIC_INT_VECT1);
2273	sp->as_err_vect = apic_reg_ops->apic_read(APIC_ERR_VECT);
2274	sp->as_init_count = apic_reg_ops->apic_read(APIC_INIT_COUNT);
2275	sp->as_divide_reg = apic_reg_ops->apic_read(APIC_DIVIDE_REG);
2276	sp->as_spur_int_reg = apic_reg_ops->apic_read(APIC_SPUR_INT_REG);
2277
2278	/*
2279	 * If on the boot processor then save the IOAPICs' IDs
2280	 */
2281	if ((cpuid = psm_get_cpu_id()) == 0) {
2282
2283		iflag = intr_clear();
2284		lock_set(&apic_ioapic_lock);
2285
2286		for (i = 0; i < apic_io_max; i++)
2287			sp->as_ioapic_ids[i] = ioapic_read(i, APIC_ID_CMD);
2288
2289		lock_clear(&apic_ioapic_lock);
2290		intr_restore(iflag);
2291	}
2292
2293	/* apic_state() is currently invoked only in Suspend/Resume */
2294	apic_cpus[cpuid].aci_status |= APIC_CPU_SUSPEND;
2295}
2296
2297static void
2298apic_restore_state(struct apic_state *sp)
2299{
2300	int	i;
2301	ulong_t	iflag;
2302
2303	/*
2304	 * First the local APIC.
2305	 */
2306	apic_reg_ops->apic_write_task_reg(sp->as_task_reg);
2307	if (apic_mode == LOCAL_APIC) {
2308		apic_reg_ops->apic_write(APIC_DEST_REG, sp->as_dest_reg);
2309		apic_reg_ops->apic_write(APIC_FORMAT_REG, sp->as_format_reg);
2310	}
2311	apic_reg_ops->apic_write(APIC_LOCAL_TIMER, sp->as_local_timer);
2312	apic_reg_ops->apic_write(APIC_PCINT_VECT, sp->as_pcint_vect);
2313	apic_reg_ops->apic_write(APIC_INT_VECT0, sp->as_int_vect0);
2314	apic_reg_ops->apic_write(APIC_INT_VECT1, sp->as_int_vect1);
2315	apic_reg_ops->apic_write(APIC_ERR_VECT, sp->as_err_vect);
2316	apic_reg_ops->apic_write(APIC_INIT_COUNT, sp->as_init_count);
2317	apic_reg_ops->apic_write(APIC_DIVIDE_REG, sp->as_divide_reg);
2318	apic_reg_ops->apic_write(APIC_SPUR_INT_REG, sp->as_spur_int_reg);
2319
2320	/*
2321	 * the following only needs to be done once, so we do it on the
2322	 * boot processor, since we know that we only have one of those
2323	 */
2324	if (psm_get_cpu_id() == 0) {
2325
2326		iflag = intr_clear();
2327		lock_set(&apic_ioapic_lock);
2328
2329		/* Restore IOAPICs' APIC IDs */
2330		for (i = 0; i < apic_io_max; i++) {
2331			ioapic_write(i, APIC_ID_CMD, sp->as_ioapic_ids[i]);
2332		}
2333
2334		lock_clear(&apic_ioapic_lock);
2335		intr_restore(iflag);
2336
2337		/*
2338		 * Reenter APIC mode before restoring LNK devices
2339		 */
2340		(void) apic_acpi_enter_apicmode();
2341
2342		/*
2343		 * restore acpi link device mappings
2344		 */
2345		acpi_restore_link_devices();
2346	}
2347}
2348
2349/*
2350 * Returns 0 on success
2351 */
2352int
2353apic_state(psm_state_request_t *rp)
2354{
2355	PMD(PMD_SX, ("apic_state "))
2356	switch (rp->psr_cmd) {
2357	case PSM_STATE_ALLOC:
2358		rp->req.psm_state_req.psr_state =
2359		    kmem_zalloc(sizeof (struct apic_state), KM_NOSLEEP);
2360		if (rp->req.psm_state_req.psr_state == NULL)
2361			return (ENOMEM);
2362		rp->req.psm_state_req.psr_state_size =
2363		    sizeof (struct apic_state);
2364		PMD(PMD_SX, (":STATE_ALLOC: state %p, size %lx\n",
2365		    rp->req.psm_state_req.psr_state,
2366		    rp->req.psm_state_req.psr_state_size))
2367		return (0);
2368
2369	case PSM_STATE_FREE:
2370		kmem_free(rp->req.psm_state_req.psr_state,
2371		    rp->req.psm_state_req.psr_state_size);
2372		PMD(PMD_SX, (" STATE_FREE: state %p, size %lx\n",
2373		    rp->req.psm_state_req.psr_state,
2374		    rp->req.psm_state_req.psr_state_size))
2375		return (0);
2376
2377	case PSM_STATE_SAVE:
2378		PMD(PMD_SX, (" STATE_SAVE: state %p, size %lx\n",
2379		    rp->req.psm_state_req.psr_state,
2380		    rp->req.psm_state_req.psr_state_size))
2381		apic_save_state(rp->req.psm_state_req.psr_state);
2382		return (0);
2383
2384	case PSM_STATE_RESTORE:
2385		apic_restore_state(rp->req.psm_state_req.psr_state);
2386		PMD(PMD_SX, (" STATE_RESTORE: state %p, size %lx\n",
2387		    rp->req.psm_state_req.psr_state,
2388		    rp->req.psm_state_req.psr_state_size))
2389		return (0);
2390
2391	default:
2392		return (EINVAL);
2393	}
2394}
2395