1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 1986, 2010, Oracle and/or its affiliates. All rights reserved.
23 */
24
25/*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
26/*	  All Rights Reserved  	*/
27
28/*
29 * University Copyright- Copyright (c) 1982, 1986, 1988
30 * The Regents of the University of California
31 * All Rights Reserved
32 *
33 * University Acknowledgment- Portions of this document are derived from
34 * software developed by the University of California, Berkeley, and its
35 * contributors.
36 */
37
38/*
39 * VM - shared or copy-on-write from a vnode/anonymous memory.
40 */
41
42#include <sys/types.h>
43#include <sys/param.h>
44#include <sys/t_lock.h>
45#include <sys/errno.h>
46#include <sys/systm.h>
47#include <sys/mman.h>
48#include <sys/debug.h>
49#include <sys/cred.h>
50#include <sys/vmsystm.h>
51#include <sys/tuneable.h>
52#include <sys/bitmap.h>
53#include <sys/swap.h>
54#include <sys/kmem.h>
55#include <sys/sysmacros.h>
56#include <sys/vtrace.h>
57#include <sys/cmn_err.h>
58#include <sys/callb.h>
59#include <sys/vm.h>
60#include <sys/dumphdr.h>
61#include <sys/lgrp.h>
62
63#include <vm/hat.h>
64#include <vm/as.h>
65#include <vm/seg.h>
66#include <vm/seg_vn.h>
67#include <vm/pvn.h>
68#include <vm/anon.h>
69#include <vm/page.h>
70#include <vm/vpage.h>
71#include <sys/proc.h>
72#include <sys/task.h>
73#include <sys/project.h>
74#include <sys/zone.h>
75#include <sys/shm_impl.h>
76/*
77 * Private seg op routines.
78 */
79static int	segvn_dup(struct seg *seg, struct seg *newseg);
80static int	segvn_unmap(struct seg *seg, caddr_t addr, size_t len);
81static void	segvn_free(struct seg *seg);
82static faultcode_t segvn_fault(struct hat *hat, struct seg *seg,
83		    caddr_t addr, size_t len, enum fault_type type,
84		    enum seg_rw rw);
85static faultcode_t segvn_faulta(struct seg *seg, caddr_t addr);
86static int	segvn_setprot(struct seg *seg, caddr_t addr,
87		    size_t len, uint_t prot);
88static int	segvn_checkprot(struct seg *seg, caddr_t addr,
89		    size_t len, uint_t prot);
90static int	segvn_kluster(struct seg *seg, caddr_t addr, ssize_t delta);
91static size_t	segvn_swapout(struct seg *seg);
92static int	segvn_sync(struct seg *seg, caddr_t addr, size_t len,
93		    int attr, uint_t flags);
94static size_t	segvn_incore(struct seg *seg, caddr_t addr, size_t len,
95		    char *vec);
96static int	segvn_lockop(struct seg *seg, caddr_t addr, size_t len,
97		    int attr, int op, ulong_t *lockmap, size_t pos);
98static int	segvn_getprot(struct seg *seg, caddr_t addr, size_t len,
99		    uint_t *protv);
100static u_offset_t	segvn_getoffset(struct seg *seg, caddr_t addr);
101static int	segvn_gettype(struct seg *seg, caddr_t addr);
102static int	segvn_getvp(struct seg *seg, caddr_t addr,
103		    struct vnode **vpp);
104static int	segvn_advise(struct seg *seg, caddr_t addr, size_t len,
105		    uint_t behav);
106static void	segvn_dump(struct seg *seg);
107static int	segvn_pagelock(struct seg *seg, caddr_t addr, size_t len,
108		    struct page ***ppp, enum lock_type type, enum seg_rw rw);
109static int	segvn_setpagesize(struct seg *seg, caddr_t addr, size_t len,
110		    uint_t szc);
111static int	segvn_getmemid(struct seg *seg, caddr_t addr,
112		    memid_t *memidp);
113static lgrp_mem_policy_info_t	*segvn_getpolicy(struct seg *, caddr_t);
114static int	segvn_capable(struct seg *seg, segcapability_t capable);
115
116struct	seg_ops segvn_ops = {
117	segvn_dup,
118	segvn_unmap,
119	segvn_free,
120	segvn_fault,
121	segvn_faulta,
122	segvn_setprot,
123	segvn_checkprot,
124	segvn_kluster,
125	segvn_swapout,
126	segvn_sync,
127	segvn_incore,
128	segvn_lockop,
129	segvn_getprot,
130	segvn_getoffset,
131	segvn_gettype,
132	segvn_getvp,
133	segvn_advise,
134	segvn_dump,
135	segvn_pagelock,
136	segvn_setpagesize,
137	segvn_getmemid,
138	segvn_getpolicy,
139	segvn_capable,
140};
141
142/*
143 * Common zfod structures, provided as a shorthand for others to use.
144 */
145static segvn_crargs_t zfod_segvn_crargs =
146	SEGVN_ZFOD_ARGS(PROT_ZFOD, PROT_ALL);
147static segvn_crargs_t kzfod_segvn_crargs =
148	SEGVN_ZFOD_ARGS(PROT_ZFOD & ~PROT_USER,
149	PROT_ALL & ~PROT_USER);
150static segvn_crargs_t stack_noexec_crargs =
151	SEGVN_ZFOD_ARGS(PROT_ZFOD & ~PROT_EXEC, PROT_ALL);
152
153caddr_t	zfod_argsp = (caddr_t)&zfod_segvn_crargs;	/* user zfod argsp */
154caddr_t	kzfod_argsp = (caddr_t)&kzfod_segvn_crargs;	/* kernel zfod argsp */
155caddr_t	stack_exec_argsp = (caddr_t)&zfod_segvn_crargs;	/* executable stack */
156caddr_t	stack_noexec_argsp = (caddr_t)&stack_noexec_crargs; /* noexec stack */
157
158#define	vpgtob(n)	((n) * sizeof (struct vpage))	/* For brevity */
159
160size_t	segvn_comb_thrshld = UINT_MAX;	/* patchable -- see 1196681 */
161
162size_t	segvn_pglock_comb_thrshld = (1UL << 16);	/* 64K */
163size_t	segvn_pglock_comb_balign = (1UL << 16);		/* 64K */
164uint_t	segvn_pglock_comb_bshift;
165size_t	segvn_pglock_comb_palign;
166
167static int	segvn_concat(struct seg *, struct seg *, int);
168static int	segvn_extend_prev(struct seg *, struct seg *,
169		    struct segvn_crargs *, size_t);
170static int	segvn_extend_next(struct seg *, struct seg *,
171		    struct segvn_crargs *, size_t);
172static void	segvn_softunlock(struct seg *, caddr_t, size_t, enum seg_rw);
173static void	segvn_pagelist_rele(page_t **);
174static void	segvn_setvnode_mpss(vnode_t *);
175static void	segvn_relocate_pages(page_t **, page_t *);
176static int	segvn_full_szcpages(page_t **, uint_t, int *, uint_t *);
177static int	segvn_fill_vp_pages(struct segvn_data *, vnode_t *, u_offset_t,
178    uint_t, page_t **, page_t **, uint_t *, int *);
179static faultcode_t segvn_fault_vnodepages(struct hat *, struct seg *, caddr_t,
180    caddr_t, enum fault_type, enum seg_rw, caddr_t, caddr_t, int);
181static faultcode_t segvn_fault_anonpages(struct hat *, struct seg *, caddr_t,
182    caddr_t, enum fault_type, enum seg_rw, caddr_t, caddr_t, int);
183static faultcode_t segvn_faultpage(struct hat *, struct seg *, caddr_t,
184    u_offset_t, struct vpage *, page_t **, uint_t,
185    enum fault_type, enum seg_rw, int);
186static void	segvn_vpage(struct seg *);
187static size_t	segvn_count_swap_by_vpages(struct seg *);
188
189static void segvn_purge(struct seg *seg);
190static int segvn_reclaim(void *, caddr_t, size_t, struct page **,
191    enum seg_rw, int);
192static int shamp_reclaim(void *, caddr_t, size_t, struct page **,
193    enum seg_rw, int);
194
195static int sameprot(struct seg *, caddr_t, size_t);
196
197static int segvn_demote_range(struct seg *, caddr_t, size_t, int, uint_t);
198static int segvn_clrszc(struct seg *);
199static struct seg *segvn_split_seg(struct seg *, caddr_t);
200static int segvn_claim_pages(struct seg *, struct vpage *, u_offset_t,
201    ulong_t, uint_t);
202
203static void segvn_hat_rgn_unload_callback(caddr_t, caddr_t, caddr_t,
204    size_t, void *, u_offset_t);
205
206static struct kmem_cache *segvn_cache;
207static struct kmem_cache **segvn_szc_cache;
208
209#ifdef VM_STATS
210static struct segvnvmstats_str {
211	ulong_t	fill_vp_pages[31];
212	ulong_t fltvnpages[49];
213	ulong_t	fullszcpages[10];
214	ulong_t	relocatepages[3];
215	ulong_t	fltanpages[17];
216	ulong_t pagelock[2];
217	ulong_t	demoterange[3];
218} segvnvmstats;
219#endif /* VM_STATS */
220
221#define	SDR_RANGE	1		/* demote entire range */
222#define	SDR_END		2		/* demote non aligned ends only */
223
224#define	CALC_LPG_REGION(pgsz, seg, addr, len, lpgaddr, lpgeaddr) {	    \
225		if ((len) != 0) { 		      	      		      \
226			lpgaddr = (caddr_t)P2ALIGN((uintptr_t)(addr), pgsz);  \
227			ASSERT(lpgaddr >= (seg)->s_base);	      	      \
228			lpgeaddr = (caddr_t)P2ROUNDUP((uintptr_t)((addr) +    \
229			    (len)), pgsz);				      \
230			ASSERT(lpgeaddr > lpgaddr);		      	      \
231			ASSERT(lpgeaddr <= (seg)->s_base + (seg)->s_size);    \
232		} else {					      	      \
233			lpgeaddr = lpgaddr = (addr);	      		      \
234		}							      \
235	}
236
237/*ARGSUSED*/
238static int
239segvn_cache_constructor(void *buf, void *cdrarg, int kmflags)
240{
241	struct segvn_data *svd = buf;
242
243	rw_init(&svd->lock, NULL, RW_DEFAULT, NULL);
244	mutex_init(&svd->segfree_syncmtx, NULL, MUTEX_DEFAULT, NULL);
245	svd->svn_trnext = svd->svn_trprev = NULL;
246	return (0);
247}
248
249/*ARGSUSED1*/
250static void
251segvn_cache_destructor(void *buf, void *cdrarg)
252{
253	struct segvn_data *svd = buf;
254
255	rw_destroy(&svd->lock);
256	mutex_destroy(&svd->segfree_syncmtx);
257}
258
259/*ARGSUSED*/
260static int
261svntr_cache_constructor(void *buf, void *cdrarg, int kmflags)
262{
263	bzero(buf, sizeof (svntr_t));
264	return (0);
265}
266
267/*
268 * Patching this variable to non-zero allows the system to run with
269 * stacks marked as "not executable".  It's a bit of a kludge, but is
270 * provided as a tweakable for platforms that export those ABIs
271 * (e.g. sparc V8) that have executable stacks enabled by default.
272 * There are also some restrictions for platforms that don't actually
273 * implement 'noexec' protections.
274 *
275 * Once enabled, the system is (therefore) unable to provide a fully
276 * ABI-compliant execution environment, though practically speaking,
277 * most everything works.  The exceptions are generally some interpreters
278 * and debuggers that create executable code on the stack and jump
279 * into it (without explicitly mprotecting the address range to include
280 * PROT_EXEC).
281 *
282 * One important class of applications that are disabled are those
283 * that have been transformed into malicious agents using one of the
284 * numerous "buffer overflow" attacks.  See 4007890.
285 */
286int noexec_user_stack = 0;
287int noexec_user_stack_log = 1;
288
289int segvn_lpg_disable = 0;
290uint_t segvn_maxpgszc = 0;
291
292ulong_t segvn_vmpss_clrszc_cnt;
293ulong_t segvn_vmpss_clrszc_err;
294ulong_t segvn_fltvnpages_clrszc_cnt;
295ulong_t segvn_fltvnpages_clrszc_err;
296ulong_t segvn_setpgsz_align_err;
297ulong_t segvn_setpgsz_anon_align_err;
298ulong_t segvn_setpgsz_getattr_err;
299ulong_t segvn_setpgsz_eof_err;
300ulong_t segvn_faultvnmpss_align_err1;
301ulong_t segvn_faultvnmpss_align_err2;
302ulong_t segvn_faultvnmpss_align_err3;
303ulong_t segvn_faultvnmpss_align_err4;
304ulong_t segvn_faultvnmpss_align_err5;
305ulong_t	segvn_vmpss_pageio_deadlk_err;
306
307int segvn_use_regions = 1;
308
309/*
310 * Segvn supports text replication optimization for NUMA platforms. Text
311 * replica's are represented by anon maps (amp). There's one amp per text file
312 * region per lgroup. A process chooses the amp for each of its text mappings
313 * based on the lgroup assignment of its main thread (t_tid = 1). All
314 * processes that want a replica on a particular lgroup for the same text file
315 * mapping share the same amp. amp's are looked up in svntr_hashtab hash table
316 * with vp,off,size,szc used as a key. Text replication segments are read only
317 * MAP_PRIVATE|MAP_TEXT segments that map vnode. Replication is achieved by
318 * forcing COW faults from vnode to amp and mapping amp pages instead of vnode
319 * pages. Replication amp is assigned to a segment when it gets its first
320 * pagefault. To handle main thread lgroup rehoming segvn_trasync_thread
321 * rechecks periodically if the process still maps an amp local to the main
322 * thread. If not async thread forces process to remap to an amp in the new
323 * home lgroup of the main thread. Current text replication implementation
324 * only provides the benefit to workloads that do most of their work in the
325 * main thread of a process or all the threads of a process run in the same
326 * lgroup. To extend text replication benefit to different types of
327 * multithreaded workloads further work would be needed in the hat layer to
328 * allow the same virtual address in the same hat to simultaneously map
329 * different physical addresses (i.e. page table replication would be needed
330 * for x86).
331 *
332 * amp pages are used instead of vnode pages as long as segment has a very
333 * simple life cycle.  It's created via segvn_create(), handles S_EXEC
334 * (S_READ) pagefaults and is fully unmapped.  If anything more complicated
335 * happens such as protection is changed, real COW fault happens, pagesize is
336 * changed, MC_LOCK is requested or segment is partially unmapped we turn off
337 * text replication by converting the segment back to vnode only segment
338 * (unmap segment's address range and set svd->amp to NULL).
339 *
340 * The original file can be changed after amp is inserted into
341 * svntr_hashtab. Processes that are launched after the file is already
342 * changed can't use the replica's created prior to the file change. To
343 * implement this functionality hash entries are timestamped. Replica's can
344 * only be used if current file modification time is the same as the timestamp
345 * saved when hash entry was created. However just timestamps alone are not
346 * sufficient to detect file modification via mmap(MAP_SHARED) mappings. We
347 * deal with file changes via MAP_SHARED mappings differently. When writable
348 * MAP_SHARED mappings are created to vnodes marked as executable we mark all
349 * existing replica's for this vnode as not usable for future text
350 * mappings. And we don't create new replica's for files that currently have
351 * potentially writable MAP_SHARED mappings (i.e. vn_is_mapped(V_WRITE) is
352 * true).
353 */
354
355#define	SEGVN_TEXTREPL_MAXBYTES_FACTOR	(20)
356size_t	segvn_textrepl_max_bytes_factor = SEGVN_TEXTREPL_MAXBYTES_FACTOR;
357
358static ulong_t			svntr_hashtab_sz = 512;
359static svntr_bucket_t		*svntr_hashtab = NULL;
360static struct kmem_cache	*svntr_cache;
361static svntr_stats_t		*segvn_textrepl_stats;
362static ksema_t 			segvn_trasync_sem;
363
364int				segvn_disable_textrepl = 1;
365size_t				textrepl_size_thresh = (size_t)-1;
366size_t				segvn_textrepl_bytes = 0;
367size_t				segvn_textrepl_max_bytes = 0;
368clock_t				segvn_update_textrepl_interval = 0;
369int				segvn_update_tr_time = 10;
370int				segvn_disable_textrepl_update = 0;
371
372static void segvn_textrepl(struct seg *);
373static void segvn_textunrepl(struct seg *, int);
374static void segvn_inval_trcache(vnode_t *);
375static void segvn_trasync_thread(void);
376static void segvn_trupdate_wakeup(void *);
377static void segvn_trupdate(void);
378static void segvn_trupdate_seg(struct seg *, segvn_data_t *, svntr_t *,
379    ulong_t);
380
381/*
382 * Initialize segvn data structures
383 */
384void
385segvn_init(void)
386{
387	uint_t maxszc;
388	uint_t szc;
389	size_t pgsz;
390
391	segvn_cache = kmem_cache_create("segvn_cache",
392	    sizeof (struct segvn_data), 0,
393	    segvn_cache_constructor, segvn_cache_destructor, NULL,
394	    NULL, NULL, 0);
395
396	if (segvn_lpg_disable == 0) {
397		szc = maxszc = page_num_pagesizes() - 1;
398		if (szc == 0) {
399			segvn_lpg_disable = 1;
400		}
401		if (page_get_pagesize(0) != PAGESIZE) {
402			panic("segvn_init: bad szc 0");
403			/*NOTREACHED*/
404		}
405		while (szc != 0) {
406			pgsz = page_get_pagesize(szc);
407			if (pgsz <= PAGESIZE || !IS_P2ALIGNED(pgsz, pgsz)) {
408				panic("segvn_init: bad szc %d", szc);
409				/*NOTREACHED*/
410			}
411			szc--;
412		}
413		if (segvn_maxpgszc == 0 || segvn_maxpgszc > maxszc)
414			segvn_maxpgszc = maxszc;
415	}
416
417	if (segvn_maxpgszc) {
418		segvn_szc_cache = (struct kmem_cache **)kmem_alloc(
419		    (segvn_maxpgszc + 1) * sizeof (struct kmem_cache *),
420		    KM_SLEEP);
421	}
422
423	for (szc = 1; szc <= segvn_maxpgszc; szc++) {
424		char	str[32];
425
426		(void) sprintf(str, "segvn_szc_cache%d", szc);
427		segvn_szc_cache[szc] = kmem_cache_create(str,
428		    page_get_pagecnt(szc) * sizeof (page_t *), 0,
429		    NULL, NULL, NULL, NULL, NULL, KMC_NODEBUG);
430	}
431
432
433	if (segvn_use_regions && !hat_supported(HAT_SHARED_REGIONS, NULL))
434		segvn_use_regions = 0;
435
436	/*
437	 * For now shared regions and text replication segvn support
438	 * are mutually exclusive. This is acceptable because
439	 * currently significant benefit from text replication was
440	 * only observed on AMD64 NUMA platforms (due to relatively
441	 * small L2$ size) and currently we don't support shared
442	 * regions on x86.
443	 */
444	if (segvn_use_regions && !segvn_disable_textrepl) {
445		segvn_disable_textrepl = 1;
446	}
447
448#if defined(_LP64)
449	if (lgrp_optimizations() && textrepl_size_thresh != (size_t)-1 &&
450	    !segvn_disable_textrepl) {
451		ulong_t i;
452		size_t hsz = svntr_hashtab_sz * sizeof (svntr_bucket_t);
453
454		svntr_cache = kmem_cache_create("svntr_cache",
455		    sizeof (svntr_t), 0, svntr_cache_constructor, NULL,
456		    NULL, NULL, NULL, 0);
457		svntr_hashtab = kmem_zalloc(hsz, KM_SLEEP);
458		for (i = 0; i < svntr_hashtab_sz; i++) {
459			mutex_init(&svntr_hashtab[i].tr_lock,  NULL,
460			    MUTEX_DEFAULT, NULL);
461		}
462		segvn_textrepl_max_bytes = ptob(physmem) /
463		    segvn_textrepl_max_bytes_factor;
464		segvn_textrepl_stats = kmem_zalloc(NCPU *
465		    sizeof (svntr_stats_t), KM_SLEEP);
466		sema_init(&segvn_trasync_sem, 0, NULL, SEMA_DEFAULT, NULL);
467		(void) thread_create(NULL, 0, segvn_trasync_thread,
468		    NULL, 0, &p0, TS_RUN, minclsyspri);
469	}
470#endif
471
472	if (!ISP2(segvn_pglock_comb_balign) ||
473	    segvn_pglock_comb_balign < PAGESIZE) {
474		segvn_pglock_comb_balign = 1UL << 16; /* 64K */
475	}
476	segvn_pglock_comb_bshift = highbit(segvn_pglock_comb_balign) - 1;
477	segvn_pglock_comb_palign = btop(segvn_pglock_comb_balign);
478}
479
480#define	SEGVN_PAGEIO	((void *)0x1)
481#define	SEGVN_NOPAGEIO	((void *)0x2)
482
483static void
484segvn_setvnode_mpss(vnode_t *vp)
485{
486	int err;
487
488	ASSERT(vp->v_mpssdata == NULL ||
489	    vp->v_mpssdata == SEGVN_PAGEIO ||
490	    vp->v_mpssdata == SEGVN_NOPAGEIO);
491
492	if (vp->v_mpssdata == NULL) {
493		if (vn_vmpss_usepageio(vp)) {
494			err = VOP_PAGEIO(vp, (page_t *)NULL,
495			    (u_offset_t)0, 0, 0, CRED(), NULL);
496		} else {
497			err = ENOSYS;
498		}
499		/*
500		 * set v_mpssdata just once per vnode life
501		 * so that it never changes.
502		 */
503		mutex_enter(&vp->v_lock);
504		if (vp->v_mpssdata == NULL) {
505			if (err == EINVAL) {
506				vp->v_mpssdata = SEGVN_PAGEIO;
507			} else {
508				vp->v_mpssdata = SEGVN_NOPAGEIO;
509			}
510		}
511		mutex_exit(&vp->v_lock);
512	}
513}
514
515int
516segvn_create(struct seg *seg, void *argsp)
517{
518	struct segvn_crargs *a = (struct segvn_crargs *)argsp;
519	struct segvn_data *svd;
520	size_t swresv = 0;
521	struct cred *cred;
522	struct anon_map *amp;
523	int error = 0;
524	size_t pgsz;
525	lgrp_mem_policy_t mpolicy = LGRP_MEM_POLICY_DEFAULT;
526	int use_rgn = 0;
527	int trok = 0;
528
529	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
530
531	if (a->type != MAP_PRIVATE && a->type != MAP_SHARED) {
532		panic("segvn_create type");
533		/*NOTREACHED*/
534	}
535
536	/*
537	 * Check arguments.  If a shared anon structure is given then
538	 * it is illegal to also specify a vp.
539	 */
540	if (a->amp != NULL && a->vp != NULL) {
541		panic("segvn_create anon_map");
542		/*NOTREACHED*/
543	}
544
545	if (a->type == MAP_PRIVATE && (a->flags & MAP_TEXT) &&
546	    a->vp != NULL && a->prot == (PROT_USER | PROT_READ | PROT_EXEC) &&
547	    segvn_use_regions) {
548		use_rgn = 1;
549	}
550
551	/* MAP_NORESERVE on a MAP_SHARED segment is meaningless. */
552	if (a->type == MAP_SHARED)
553		a->flags &= ~MAP_NORESERVE;
554
555	if (a->szc != 0) {
556		if (segvn_lpg_disable != 0 || (a->szc == AS_MAP_NO_LPOOB) ||
557		    (a->amp != NULL && a->type == MAP_PRIVATE) ||
558		    (a->flags & MAP_NORESERVE) || seg->s_as == &kas) {
559			a->szc = 0;
560		} else {
561			if (a->szc > segvn_maxpgszc)
562				a->szc = segvn_maxpgszc;
563			pgsz = page_get_pagesize(a->szc);
564			if (!IS_P2ALIGNED(seg->s_base, pgsz) ||
565			    !IS_P2ALIGNED(seg->s_size, pgsz)) {
566				a->szc = 0;
567			} else if (a->vp != NULL) {
568				if (IS_SWAPFSVP(a->vp) || VN_ISKAS(a->vp)) {
569					/*
570					 * paranoid check.
571					 * hat_page_demote() is not supported
572					 * on swapfs pages.
573					 */
574					a->szc = 0;
575				} else if (map_addr_vacalign_check(seg->s_base,
576				    a->offset & PAGEMASK)) {
577					a->szc = 0;
578				}
579			} else if (a->amp != NULL) {
580				pgcnt_t anum = btopr(a->offset);
581				pgcnt_t pgcnt = page_get_pagecnt(a->szc);
582				if (!IS_P2ALIGNED(anum, pgcnt)) {
583					a->szc = 0;
584				}
585			}
586		}
587	}
588
589	/*
590	 * If segment may need private pages, reserve them now.
591	 */
592	if (!(a->flags & MAP_NORESERVE) && ((a->vp == NULL && a->amp == NULL) ||
593	    (a->type == MAP_PRIVATE && (a->prot & PROT_WRITE)))) {
594		if (anon_resv_zone(seg->s_size,
595		    seg->s_as->a_proc->p_zone) == 0)
596			return (EAGAIN);
597		swresv = seg->s_size;
598		TRACE_3(TR_FAC_VM, TR_ANON_PROC, "anon proc:%p %lu %u",
599		    seg, swresv, 1);
600	}
601
602	/*
603	 * Reserve any mapping structures that may be required.
604	 *
605	 * Don't do it for segments that may use regions. It's currently a
606	 * noop in the hat implementations anyway.
607	 */
608	if (!use_rgn) {
609		hat_map(seg->s_as->a_hat, seg->s_base, seg->s_size, HAT_MAP);
610	}
611
612	if (a->cred) {
613		cred = a->cred;
614		crhold(cred);
615	} else {
616		crhold(cred = CRED());
617	}
618
619	/* Inform the vnode of the new mapping */
620	if (a->vp != NULL) {
621		error = VOP_ADDMAP(a->vp, a->offset & PAGEMASK,
622		    seg->s_as, seg->s_base, seg->s_size, a->prot,
623		    a->maxprot, a->type, cred, NULL);
624		if (error) {
625			if (swresv != 0) {
626				anon_unresv_zone(swresv,
627				    seg->s_as->a_proc->p_zone);
628				TRACE_3(TR_FAC_VM, TR_ANON_PROC,
629				    "anon proc:%p %lu %u", seg, swresv, 0);
630			}
631			crfree(cred);
632			if (!use_rgn) {
633				hat_unload(seg->s_as->a_hat, seg->s_base,
634				    seg->s_size, HAT_UNLOAD_UNMAP);
635			}
636			return (error);
637		}
638		/*
639		 * svntr_hashtab will be NULL if we support shared regions.
640		 */
641		trok = ((a->flags & MAP_TEXT) &&
642		    (seg->s_size > textrepl_size_thresh ||
643		    (a->flags & _MAP_TEXTREPL)) &&
644		    lgrp_optimizations() && svntr_hashtab != NULL &&
645		    a->type == MAP_PRIVATE && swresv == 0 &&
646		    !(a->flags & MAP_NORESERVE) &&
647		    seg->s_as != &kas && a->vp->v_type == VREG);
648
649		ASSERT(!trok || !use_rgn);
650	}
651
652	/*
653	 * MAP_NORESERVE mappings don't count towards the VSZ of a process
654	 * until we fault the pages in.
655	 */
656	if ((a->vp == NULL || a->vp->v_type != VREG) &&
657	    a->flags & MAP_NORESERVE) {
658		seg->s_as->a_resvsize -= seg->s_size;
659	}
660
661	/*
662	 * If more than one segment in the address space, and they're adjacent
663	 * virtually, try to concatenate them.  Don't concatenate if an
664	 * explicit anon_map structure was supplied (e.g., SystemV shared
665	 * memory) or if we'll use text replication for this segment.
666	 */
667	if (a->amp == NULL && !use_rgn && !trok) {
668		struct seg *pseg, *nseg;
669		struct segvn_data *psvd, *nsvd;
670		lgrp_mem_policy_t ppolicy, npolicy;
671		uint_t	lgrp_mem_policy_flags = 0;
672		extern lgrp_mem_policy_t lgrp_mem_default_policy;
673
674		/*
675		 * Memory policy flags (lgrp_mem_policy_flags) is valid when
676		 * extending stack/heap segments.
677		 */
678		if ((a->vp == NULL) && (a->type == MAP_PRIVATE) &&
679		    !(a->flags & MAP_NORESERVE) && (seg->s_as != &kas)) {
680			lgrp_mem_policy_flags = a->lgrp_mem_policy_flags;
681		} else {
682			/*
683			 * Get policy when not extending it from another segment
684			 */
685			mpolicy = lgrp_mem_policy_default(seg->s_size, a->type);
686		}
687
688		/*
689		 * First, try to concatenate the previous and new segments
690		 */
691		pseg = AS_SEGPREV(seg->s_as, seg);
692		if (pseg != NULL &&
693		    pseg->s_base + pseg->s_size == seg->s_base &&
694		    pseg->s_ops == &segvn_ops) {
695			/*
696			 * Get memory allocation policy from previous segment.
697			 * When extension is specified (e.g. for heap) apply
698			 * this policy to the new segment regardless of the
699			 * outcome of segment concatenation.  Extension occurs
700			 * for non-default policy otherwise default policy is
701			 * used and is based on extended segment size.
702			 */
703			psvd = (struct segvn_data *)pseg->s_data;
704			ppolicy = psvd->policy_info.mem_policy;
705			if (lgrp_mem_policy_flags ==
706			    LGRP_MP_FLAG_EXTEND_UP) {
707				if (ppolicy != lgrp_mem_default_policy) {
708					mpolicy = ppolicy;
709				} else {
710					mpolicy = lgrp_mem_policy_default(
711					    pseg->s_size + seg->s_size,
712					    a->type);
713				}
714			}
715
716			if (mpolicy == ppolicy &&
717			    (pseg->s_size + seg->s_size <=
718			    segvn_comb_thrshld || psvd->amp == NULL) &&
719			    segvn_extend_prev(pseg, seg, a, swresv) == 0) {
720				/*
721				 * success! now try to concatenate
722				 * with following seg
723				 */
724				crfree(cred);
725				nseg = AS_SEGNEXT(pseg->s_as, pseg);
726				if (nseg != NULL &&
727				    nseg != pseg &&
728				    nseg->s_ops == &segvn_ops &&
729				    pseg->s_base + pseg->s_size ==
730				    nseg->s_base)
731					(void) segvn_concat(pseg, nseg, 0);
732				ASSERT(pseg->s_szc == 0 ||
733				    (a->szc == pseg->s_szc &&
734				    IS_P2ALIGNED(pseg->s_base, pgsz) &&
735				    IS_P2ALIGNED(pseg->s_size, pgsz)));
736				return (0);
737			}
738		}
739
740		/*
741		 * Failed, so try to concatenate with following seg
742		 */
743		nseg = AS_SEGNEXT(seg->s_as, seg);
744		if (nseg != NULL &&
745		    seg->s_base + seg->s_size == nseg->s_base &&
746		    nseg->s_ops == &segvn_ops) {
747			/*
748			 * Get memory allocation policy from next segment.
749			 * When extension is specified (e.g. for stack) apply
750			 * this policy to the new segment regardless of the
751			 * outcome of segment concatenation.  Extension occurs
752			 * for non-default policy otherwise default policy is
753			 * used and is based on extended segment size.
754			 */
755			nsvd = (struct segvn_data *)nseg->s_data;
756			npolicy = nsvd->policy_info.mem_policy;
757			if (lgrp_mem_policy_flags ==
758			    LGRP_MP_FLAG_EXTEND_DOWN) {
759				if (npolicy != lgrp_mem_default_policy) {
760					mpolicy = npolicy;
761				} else {
762					mpolicy = lgrp_mem_policy_default(
763					    nseg->s_size + seg->s_size,
764					    a->type);
765				}
766			}
767
768			if (mpolicy == npolicy &&
769			    segvn_extend_next(seg, nseg, a, swresv) == 0) {
770				crfree(cred);
771				ASSERT(nseg->s_szc == 0 ||
772				    (a->szc == nseg->s_szc &&
773				    IS_P2ALIGNED(nseg->s_base, pgsz) &&
774				    IS_P2ALIGNED(nseg->s_size, pgsz)));
775				return (0);
776			}
777		}
778	}
779
780	if (a->vp != NULL) {
781		VN_HOLD(a->vp);
782		if (a->type == MAP_SHARED)
783			lgrp_shm_policy_init(NULL, a->vp);
784	}
785	svd = kmem_cache_alloc(segvn_cache, KM_SLEEP);
786
787	seg->s_ops = &segvn_ops;
788	seg->s_data = (void *)svd;
789	seg->s_szc = a->szc;
790
791	svd->seg = seg;
792	svd->vp = a->vp;
793	/*
794	 * Anonymous mappings have no backing file so the offset is meaningless.
795	 */
796	svd->offset = a->vp ? (a->offset & PAGEMASK) : 0;
797	svd->prot = a->prot;
798	svd->maxprot = a->maxprot;
799	svd->pageprot = 0;
800	svd->type = a->type;
801	svd->vpage = NULL;
802	svd->cred = cred;
803	svd->advice = MADV_NORMAL;
804	svd->pageadvice = 0;
805	svd->flags = (ushort_t)a->flags;
806	svd->softlockcnt = 0;
807	svd->softlockcnt_sbase = 0;
808	svd->softlockcnt_send = 0;
809	svd->rcookie = HAT_INVALID_REGION_COOKIE;
810	svd->pageswap = 0;
811
812	if (a->szc != 0 && a->vp != NULL) {
813		segvn_setvnode_mpss(a->vp);
814	}
815	if (svd->type == MAP_SHARED && svd->vp != NULL &&
816	    (svd->vp->v_flag & VVMEXEC) && (svd->prot & PROT_WRITE)) {
817		ASSERT(vn_is_mapped(svd->vp, V_WRITE));
818		segvn_inval_trcache(svd->vp);
819	}
820
821	amp = a->amp;
822	if ((svd->amp = amp) == NULL) {
823		svd->anon_index = 0;
824		if (svd->type == MAP_SHARED) {
825			svd->swresv = 0;
826			/*
827			 * Shared mappings to a vp need no other setup.
828			 * If we have a shared mapping to an anon_map object
829			 * which hasn't been allocated yet,  allocate the
830			 * struct now so that it will be properly shared
831			 * by remembering the swap reservation there.
832			 */
833			if (a->vp == NULL) {
834				svd->amp = anonmap_alloc(seg->s_size, swresv,
835				    ANON_SLEEP);
836				svd->amp->a_szc = seg->s_szc;
837			}
838		} else {
839			/*
840			 * Private mapping (with or without a vp).
841			 * Allocate anon_map when needed.
842			 */
843			svd->swresv = swresv;
844		}
845	} else {
846		pgcnt_t anon_num;
847
848		/*
849		 * Mapping to an existing anon_map structure without a vp.
850		 * For now we will insure that the segment size isn't larger
851		 * than the size - offset gives us.  Later on we may wish to
852		 * have the anon array dynamically allocated itself so that
853		 * we don't always have to allocate all the anon pointer slots.
854		 * This of course involves adding extra code to check that we
855		 * aren't trying to use an anon pointer slot beyond the end
856		 * of the currently allocated anon array.
857		 */
858		if ((amp->size - a->offset) < seg->s_size) {
859			panic("segvn_create anon_map size");
860			/*NOTREACHED*/
861		}
862
863		anon_num = btopr(a->offset);
864
865		if (a->type == MAP_SHARED) {
866			/*
867			 * SHARED mapping to a given anon_map.
868			 */
869			ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
870			amp->refcnt++;
871			if (a->szc > amp->a_szc) {
872				amp->a_szc = a->szc;
873			}
874			ANON_LOCK_EXIT(&amp->a_rwlock);
875			svd->anon_index = anon_num;
876			svd->swresv = 0;
877		} else {
878			/*
879			 * PRIVATE mapping to a given anon_map.
880			 * Make sure that all the needed anon
881			 * structures are created (so that we will
882			 * share the underlying pages if nothing
883			 * is written by this mapping) and then
884			 * duplicate the anon array as is done
885			 * when a privately mapped segment is dup'ed.
886			 */
887			struct anon *ap;
888			caddr_t addr;
889			caddr_t eaddr;
890			ulong_t	anon_idx;
891			int hat_flag = HAT_LOAD;
892
893			if (svd->flags & MAP_TEXT) {
894				hat_flag |= HAT_LOAD_TEXT;
895			}
896
897			svd->amp = anonmap_alloc(seg->s_size, 0, ANON_SLEEP);
898			svd->amp->a_szc = seg->s_szc;
899			svd->anon_index = 0;
900			svd->swresv = swresv;
901
902			/*
903			 * Prevent 2 threads from allocating anon
904			 * slots simultaneously.
905			 */
906			ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
907			eaddr = seg->s_base + seg->s_size;
908
909			for (anon_idx = anon_num, addr = seg->s_base;
910			    addr < eaddr; addr += PAGESIZE, anon_idx++) {
911				page_t *pp;
912
913				if ((ap = anon_get_ptr(amp->ahp,
914				    anon_idx)) != NULL)
915					continue;
916
917				/*
918				 * Allocate the anon struct now.
919				 * Might as well load up translation
920				 * to the page while we're at it...
921				 */
922				pp = anon_zero(seg, addr, &ap, cred);
923				if (ap == NULL || pp == NULL) {
924					panic("segvn_create anon_zero");
925					/*NOTREACHED*/
926				}
927
928				/*
929				 * Re-acquire the anon_map lock and
930				 * initialize the anon array entry.
931				 */
932				ASSERT(anon_get_ptr(amp->ahp,
933				    anon_idx) == NULL);
934				(void) anon_set_ptr(amp->ahp, anon_idx, ap,
935				    ANON_SLEEP);
936
937				ASSERT(seg->s_szc == 0);
938				ASSERT(!IS_VMODSORT(pp->p_vnode));
939
940				ASSERT(use_rgn == 0);
941				hat_memload(seg->s_as->a_hat, addr, pp,
942				    svd->prot & ~PROT_WRITE, hat_flag);
943
944				page_unlock(pp);
945			}
946			ASSERT(seg->s_szc == 0);
947			anon_dup(amp->ahp, anon_num, svd->amp->ahp,
948			    0, seg->s_size);
949			ANON_LOCK_EXIT(&amp->a_rwlock);
950		}
951	}
952
953	/*
954	 * Set default memory allocation policy for segment
955	 *
956	 * Always set policy for private memory at least for initialization
957	 * even if this is a shared memory segment
958	 */
959	(void) lgrp_privm_policy_set(mpolicy, &svd->policy_info, seg->s_size);
960
961	if (svd->type == MAP_SHARED)
962		(void) lgrp_shm_policy_set(mpolicy, svd->amp, svd->anon_index,
963		    svd->vp, svd->offset, seg->s_size);
964
965	if (use_rgn) {
966		ASSERT(!trok);
967		ASSERT(svd->amp == NULL);
968		svd->rcookie = hat_join_region(seg->s_as->a_hat, seg->s_base,
969		    seg->s_size, (void *)svd->vp, svd->offset, svd->prot,
970		    (uchar_t)seg->s_szc, segvn_hat_rgn_unload_callback,
971		    HAT_REGION_TEXT);
972	}
973
974	ASSERT(!trok || !(svd->prot & PROT_WRITE));
975	svd->tr_state = trok ? SEGVN_TR_INIT : SEGVN_TR_OFF;
976
977	return (0);
978}
979
980/*
981 * Concatenate two existing segments, if possible.
982 * Return 0 on success, -1 if two segments are not compatible
983 * or -2 on memory allocation failure.
984 * If amp_cat == 1 then try and concat segments with anon maps
985 */
986static int
987segvn_concat(struct seg *seg1, struct seg *seg2, int amp_cat)
988{
989	struct segvn_data *svd1 = seg1->s_data;
990	struct segvn_data *svd2 = seg2->s_data;
991	struct anon_map *amp1 = svd1->amp;
992	struct anon_map *amp2 = svd2->amp;
993	struct vpage *vpage1 = svd1->vpage;
994	struct vpage *vpage2 = svd2->vpage, *nvpage = NULL;
995	size_t size, nvpsize;
996	pgcnt_t npages1, npages2;
997
998	ASSERT(seg1->s_as && seg2->s_as && seg1->s_as == seg2->s_as);
999	ASSERT(AS_WRITE_HELD(seg1->s_as, &seg1->s_as->a_lock));
1000	ASSERT(seg1->s_ops == seg2->s_ops);
1001
1002	if (HAT_IS_REGION_COOKIE_VALID(svd1->rcookie) ||
1003	    HAT_IS_REGION_COOKIE_VALID(svd2->rcookie)) {
1004		return (-1);
1005	}
1006
1007	/* both segments exist, try to merge them */
1008#define	incompat(x)	(svd1->x != svd2->x)
1009	if (incompat(vp) || incompat(maxprot) ||
1010	    (!svd1->pageadvice && !svd2->pageadvice && incompat(advice)) ||
1011	    (!svd1->pageprot && !svd2->pageprot && incompat(prot)) ||
1012	    incompat(type) || incompat(cred) || incompat(flags) ||
1013	    seg1->s_szc != seg2->s_szc || incompat(policy_info.mem_policy) ||
1014	    (svd2->softlockcnt > 0) || svd1->softlockcnt_send > 0)
1015		return (-1);
1016#undef incompat
1017
1018	/*
1019	 * vp == NULL implies zfod, offset doesn't matter
1020	 */
1021	if (svd1->vp != NULL &&
1022	    svd1->offset + seg1->s_size != svd2->offset) {
1023		return (-1);
1024	}
1025
1026	/*
1027	 * Don't concatenate if either segment uses text replication.
1028	 */
1029	if (svd1->tr_state != SEGVN_TR_OFF || svd2->tr_state != SEGVN_TR_OFF) {
1030		return (-1);
1031	}
1032
1033	/*
1034	 * Fail early if we're not supposed to concatenate
1035	 * segments with non NULL amp.
1036	 */
1037	if (amp_cat == 0 && (amp1 != NULL || amp2 != NULL)) {
1038		return (-1);
1039	}
1040
1041	if (svd1->vp == NULL && svd1->type == MAP_SHARED) {
1042		if (amp1 != amp2) {
1043			return (-1);
1044		}
1045		if (amp1 != NULL && svd1->anon_index + btop(seg1->s_size) !=
1046		    svd2->anon_index) {
1047			return (-1);
1048		}
1049		ASSERT(amp1 == NULL || amp1->refcnt >= 2);
1050	}
1051
1052	/*
1053	 * If either seg has vpages, create a new merged vpage array.
1054	 */
1055	if (vpage1 != NULL || vpage2 != NULL) {
1056		struct vpage *vp, *evp;
1057
1058		npages1 = seg_pages(seg1);
1059		npages2 = seg_pages(seg2);
1060		nvpsize = vpgtob(npages1 + npages2);
1061
1062		if ((nvpage = kmem_zalloc(nvpsize, KM_NOSLEEP)) == NULL) {
1063			return (-2);
1064		}
1065
1066		if (vpage1 != NULL) {
1067			bcopy(vpage1, nvpage, vpgtob(npages1));
1068		} else {
1069			evp = nvpage + npages1;
1070			for (vp = nvpage; vp < evp; vp++) {
1071				VPP_SETPROT(vp, svd1->prot);
1072				VPP_SETADVICE(vp, svd1->advice);
1073			}
1074		}
1075
1076		if (vpage2 != NULL) {
1077			bcopy(vpage2, nvpage + npages1, vpgtob(npages2));
1078		} else {
1079			evp = nvpage + npages1 + npages2;
1080			for (vp = nvpage + npages1; vp < evp; vp++) {
1081				VPP_SETPROT(vp, svd2->prot);
1082				VPP_SETADVICE(vp, svd2->advice);
1083			}
1084		}
1085
1086		if (svd2->pageswap && (!svd1->pageswap && svd1->swresv)) {
1087			ASSERT(svd1->swresv == seg1->s_size);
1088			ASSERT(!(svd1->flags & MAP_NORESERVE));
1089			ASSERT(!(svd2->flags & MAP_NORESERVE));
1090			evp = nvpage + npages1;
1091			for (vp = nvpage; vp < evp; vp++) {
1092				VPP_SETSWAPRES(vp);
1093			}
1094		}
1095
1096		if (svd1->pageswap && (!svd2->pageswap && svd2->swresv)) {
1097			ASSERT(svd2->swresv == seg2->s_size);
1098			ASSERT(!(svd1->flags & MAP_NORESERVE));
1099			ASSERT(!(svd2->flags & MAP_NORESERVE));
1100			vp = nvpage + npages1;
1101			evp = vp + npages2;
1102			for (; vp < evp; vp++) {
1103				VPP_SETSWAPRES(vp);
1104			}
1105		}
1106	}
1107	ASSERT((vpage1 != NULL || vpage2 != NULL) ||
1108	    (svd1->pageswap == 0 && svd2->pageswap == 0));
1109
1110	/*
1111	 * If either segment has private pages, create a new merged anon
1112	 * array. If mergeing shared anon segments just decrement anon map's
1113	 * refcnt.
1114	 */
1115	if (amp1 != NULL && svd1->type == MAP_SHARED) {
1116		ASSERT(amp1 == amp2 && svd1->vp == NULL);
1117		ANON_LOCK_ENTER(&amp1->a_rwlock, RW_WRITER);
1118		ASSERT(amp1->refcnt >= 2);
1119		amp1->refcnt--;
1120		ANON_LOCK_EXIT(&amp1->a_rwlock);
1121		svd2->amp = NULL;
1122	} else if (amp1 != NULL || amp2 != NULL) {
1123		struct anon_hdr *nahp;
1124		struct anon_map *namp = NULL;
1125		size_t asize;
1126
1127		ASSERT(svd1->type == MAP_PRIVATE);
1128
1129		asize = seg1->s_size + seg2->s_size;
1130		if ((nahp = anon_create(btop(asize), ANON_NOSLEEP)) == NULL) {
1131			if (nvpage != NULL) {
1132				kmem_free(nvpage, nvpsize);
1133			}
1134			return (-2);
1135		}
1136		if (amp1 != NULL) {
1137			/*
1138			 * XXX anon rwlock is not really needed because
1139			 * this is a private segment and we are writers.
1140			 */
1141			ANON_LOCK_ENTER(&amp1->a_rwlock, RW_WRITER);
1142			ASSERT(amp1->refcnt == 1);
1143			if (anon_copy_ptr(amp1->ahp, svd1->anon_index,
1144			    nahp, 0, btop(seg1->s_size), ANON_NOSLEEP)) {
1145				anon_release(nahp, btop(asize));
1146				ANON_LOCK_EXIT(&amp1->a_rwlock);
1147				if (nvpage != NULL) {
1148					kmem_free(nvpage, nvpsize);
1149				}
1150				return (-2);
1151			}
1152		}
1153		if (amp2 != NULL) {
1154			ANON_LOCK_ENTER(&amp2->a_rwlock, RW_WRITER);
1155			ASSERT(amp2->refcnt == 1);
1156			if (anon_copy_ptr(amp2->ahp, svd2->anon_index,
1157			    nahp, btop(seg1->s_size), btop(seg2->s_size),
1158			    ANON_NOSLEEP)) {
1159				anon_release(nahp, btop(asize));
1160				ANON_LOCK_EXIT(&amp2->a_rwlock);
1161				if (amp1 != NULL) {
1162					ANON_LOCK_EXIT(&amp1->a_rwlock);
1163				}
1164				if (nvpage != NULL) {
1165					kmem_free(nvpage, nvpsize);
1166				}
1167				return (-2);
1168			}
1169		}
1170		if (amp1 != NULL) {
1171			namp = amp1;
1172			anon_release(amp1->ahp, btop(amp1->size));
1173		}
1174		if (amp2 != NULL) {
1175			if (namp == NULL) {
1176				ASSERT(amp1 == NULL);
1177				namp = amp2;
1178				anon_release(amp2->ahp, btop(amp2->size));
1179			} else {
1180				amp2->refcnt--;
1181				ANON_LOCK_EXIT(&amp2->a_rwlock);
1182				anonmap_free(amp2);
1183			}
1184			svd2->amp = NULL; /* needed for seg_free */
1185		}
1186		namp->ahp = nahp;
1187		namp->size = asize;
1188		svd1->amp = namp;
1189		svd1->anon_index = 0;
1190		ANON_LOCK_EXIT(&namp->a_rwlock);
1191	}
1192	/*
1193	 * Now free the old vpage structures.
1194	 */
1195	if (nvpage != NULL) {
1196		if (vpage1 != NULL) {
1197			kmem_free(vpage1, vpgtob(npages1));
1198		}
1199		if (vpage2 != NULL) {
1200			svd2->vpage = NULL;
1201			kmem_free(vpage2, vpgtob(npages2));
1202		}
1203		if (svd2->pageprot) {
1204			svd1->pageprot = 1;
1205		}
1206		if (svd2->pageadvice) {
1207			svd1->pageadvice = 1;
1208		}
1209		if (svd2->pageswap) {
1210			svd1->pageswap = 1;
1211		}
1212		svd1->vpage = nvpage;
1213	}
1214
1215	/* all looks ok, merge segments */
1216	svd1->swresv += svd2->swresv;
1217	svd2->swresv = 0;  /* so seg_free doesn't release swap space */
1218	size = seg2->s_size;
1219	seg_free(seg2);
1220	seg1->s_size += size;
1221	return (0);
1222}
1223
1224/*
1225 * Extend the previous segment (seg1) to include the
1226 * new segment (seg2 + a), if possible.
1227 * Return 0 on success.
1228 */
1229static int
1230segvn_extend_prev(seg1, seg2, a, swresv)
1231	struct seg *seg1, *seg2;
1232	struct segvn_crargs *a;
1233	size_t swresv;
1234{
1235	struct segvn_data *svd1 = (struct segvn_data *)seg1->s_data;
1236	size_t size;
1237	struct anon_map *amp1;
1238	struct vpage *new_vpage;
1239
1240	/*
1241	 * We don't need any segment level locks for "segvn" data
1242	 * since the address space is "write" locked.
1243	 */
1244	ASSERT(seg1->s_as && AS_WRITE_HELD(seg1->s_as, &seg1->s_as->a_lock));
1245
1246	if (HAT_IS_REGION_COOKIE_VALID(svd1->rcookie)) {
1247		return (-1);
1248	}
1249
1250	/* second segment is new, try to extend first */
1251	/* XXX - should also check cred */
1252	if (svd1->vp != a->vp || svd1->maxprot != a->maxprot ||
1253	    (!svd1->pageprot && (svd1->prot != a->prot)) ||
1254	    svd1->type != a->type || svd1->flags != a->flags ||
1255	    seg1->s_szc != a->szc || svd1->softlockcnt_send > 0)
1256		return (-1);
1257
1258	/* vp == NULL implies zfod, offset doesn't matter */
1259	if (svd1->vp != NULL &&
1260	    svd1->offset + seg1->s_size != (a->offset & PAGEMASK))
1261		return (-1);
1262
1263	if (svd1->tr_state != SEGVN_TR_OFF) {
1264		return (-1);
1265	}
1266
1267	amp1 = svd1->amp;
1268	if (amp1) {
1269		pgcnt_t newpgs;
1270
1271		/*
1272		 * Segment has private pages, can data structures
1273		 * be expanded?
1274		 *
1275		 * Acquire the anon_map lock to prevent it from changing,
1276		 * if it is shared.  This ensures that the anon_map
1277		 * will not change while a thread which has a read/write
1278		 * lock on an address space references it.
1279		 * XXX - Don't need the anon_map lock at all if "refcnt"
1280		 * is 1.
1281		 *
1282		 * Can't grow a MAP_SHARED segment with an anonmap because
1283		 * there may be existing anon slots where we want to extend
1284		 * the segment and we wouldn't know what to do with them
1285		 * (e.g., for tmpfs right thing is to just leave them there,
1286		 * for /dev/zero they should be cleared out).
1287		 */
1288		if (svd1->type == MAP_SHARED)
1289			return (-1);
1290
1291		ANON_LOCK_ENTER(&amp1->a_rwlock, RW_WRITER);
1292		if (amp1->refcnt > 1) {
1293			ANON_LOCK_EXIT(&amp1->a_rwlock);
1294			return (-1);
1295		}
1296		newpgs = anon_grow(amp1->ahp, &svd1->anon_index,
1297		    btop(seg1->s_size), btop(seg2->s_size), ANON_NOSLEEP);
1298
1299		if (newpgs == 0) {
1300			ANON_LOCK_EXIT(&amp1->a_rwlock);
1301			return (-1);
1302		}
1303		amp1->size = ptob(newpgs);
1304		ANON_LOCK_EXIT(&amp1->a_rwlock);
1305	}
1306	if (svd1->vpage != NULL) {
1307		struct vpage *vp, *evp;
1308		new_vpage =
1309		    kmem_zalloc(vpgtob(seg_pages(seg1) + seg_pages(seg2)),
1310			KM_NOSLEEP);
1311		if (new_vpage == NULL)
1312			return (-1);
1313		bcopy(svd1->vpage, new_vpage, vpgtob(seg_pages(seg1)));
1314		kmem_free(svd1->vpage, vpgtob(seg_pages(seg1)));
1315		svd1->vpage = new_vpage;
1316
1317		vp = new_vpage + seg_pages(seg1);
1318		evp = vp + seg_pages(seg2);
1319		for (; vp < evp; vp++)
1320			VPP_SETPROT(vp, a->prot);
1321		if (svd1->pageswap && swresv) {
1322			ASSERT(!(svd1->flags & MAP_NORESERVE));
1323			ASSERT(swresv == seg2->s_size);
1324			vp = new_vpage + seg_pages(seg1);
1325			for (; vp < evp; vp++) {
1326				VPP_SETSWAPRES(vp);
1327			}
1328		}
1329	}
1330	ASSERT(svd1->vpage != NULL || svd1->pageswap == 0);
1331	size = seg2->s_size;
1332	seg_free(seg2);
1333	seg1->s_size += size;
1334	svd1->swresv += swresv;
1335	if (svd1->pageprot && (a->prot & PROT_WRITE) &&
1336	    svd1->type == MAP_SHARED && svd1->vp != NULL &&
1337	    (svd1->vp->v_flag & VVMEXEC)) {
1338		ASSERT(vn_is_mapped(svd1->vp, V_WRITE));
1339		segvn_inval_trcache(svd1->vp);
1340	}
1341	return (0);
1342}
1343
1344/*
1345 * Extend the next segment (seg2) to include the
1346 * new segment (seg1 + a), if possible.
1347 * Return 0 on success.
1348 */
1349static int
1350segvn_extend_next(
1351	struct seg *seg1,
1352	struct seg *seg2,
1353	struct segvn_crargs *a,
1354	size_t swresv)
1355{
1356	struct segvn_data *svd2 = (struct segvn_data *)seg2->s_data;
1357	size_t size;
1358	struct anon_map *amp2;
1359	struct vpage *new_vpage;
1360
1361	/*
1362	 * We don't need any segment level locks for "segvn" data
1363	 * since the address space is "write" locked.
1364	 */
1365	ASSERT(seg2->s_as && AS_WRITE_HELD(seg2->s_as, &seg2->s_as->a_lock));
1366
1367	if (HAT_IS_REGION_COOKIE_VALID(svd2->rcookie)) {
1368		return (-1);
1369	}
1370
1371	/* first segment is new, try to extend second */
1372	/* XXX - should also check cred */
1373	if (svd2->vp != a->vp || svd2->maxprot != a->maxprot ||
1374	    (!svd2->pageprot && (svd2->prot != a->prot)) ||
1375	    svd2->type != a->type || svd2->flags != a->flags ||
1376	    seg2->s_szc != a->szc || svd2->softlockcnt_sbase > 0)
1377		return (-1);
1378	/* vp == NULL implies zfod, offset doesn't matter */
1379	if (svd2->vp != NULL &&
1380	    (a->offset & PAGEMASK) + seg1->s_size != svd2->offset)
1381		return (-1);
1382
1383	if (svd2->tr_state != SEGVN_TR_OFF) {
1384		return (-1);
1385	}
1386
1387	amp2 = svd2->amp;
1388	if (amp2) {
1389		pgcnt_t newpgs;
1390
1391		/*
1392		 * Segment has private pages, can data structures
1393		 * be expanded?
1394		 *
1395		 * Acquire the anon_map lock to prevent it from changing,
1396		 * if it is shared.  This ensures that the anon_map
1397		 * will not change while a thread which has a read/write
1398		 * lock on an address space references it.
1399		 *
1400		 * XXX - Don't need the anon_map lock at all if "refcnt"
1401		 * is 1.
1402		 */
1403		if (svd2->type == MAP_SHARED)
1404			return (-1);
1405
1406		ANON_LOCK_ENTER(&amp2->a_rwlock, RW_WRITER);
1407		if (amp2->refcnt > 1) {
1408			ANON_LOCK_EXIT(&amp2->a_rwlock);
1409			return (-1);
1410		}
1411		newpgs = anon_grow(amp2->ahp, &svd2->anon_index,
1412		    btop(seg2->s_size), btop(seg1->s_size),
1413		    ANON_NOSLEEP | ANON_GROWDOWN);
1414
1415		if (newpgs == 0) {
1416			ANON_LOCK_EXIT(&amp2->a_rwlock);
1417			return (-1);
1418		}
1419		amp2->size = ptob(newpgs);
1420		ANON_LOCK_EXIT(&amp2->a_rwlock);
1421	}
1422	if (svd2->vpage != NULL) {
1423		struct vpage *vp, *evp;
1424		new_vpage =
1425		    kmem_zalloc(vpgtob(seg_pages(seg1) + seg_pages(seg2)),
1426		    KM_NOSLEEP);
1427		if (new_vpage == NULL) {
1428			/* Not merging segments so adjust anon_index back */
1429			if (amp2)
1430				svd2->anon_index += seg_pages(seg1);
1431			return (-1);
1432		}
1433		bcopy(svd2->vpage, new_vpage + seg_pages(seg1),
1434		    vpgtob(seg_pages(seg2)));
1435		kmem_free(svd2->vpage, vpgtob(seg_pages(seg2)));
1436		svd2->vpage = new_vpage;
1437
1438		vp = new_vpage;
1439		evp = vp + seg_pages(seg1);
1440		for (; vp < evp; vp++)
1441			VPP_SETPROT(vp, a->prot);
1442		if (svd2->pageswap && swresv) {
1443			ASSERT(!(svd2->flags & MAP_NORESERVE));
1444			ASSERT(swresv == seg1->s_size);
1445			vp = new_vpage;
1446			for (; vp < evp; vp++) {
1447				VPP_SETSWAPRES(vp);
1448			}
1449		}
1450	}
1451	ASSERT(svd2->vpage != NULL || svd2->pageswap == 0);
1452	size = seg1->s_size;
1453	seg_free(seg1);
1454	seg2->s_size += size;
1455	seg2->s_base -= size;
1456	svd2->offset -= size;
1457	svd2->swresv += swresv;
1458	if (svd2->pageprot && (a->prot & PROT_WRITE) &&
1459	    svd2->type == MAP_SHARED && svd2->vp != NULL &&
1460	    (svd2->vp->v_flag & VVMEXEC)) {
1461		ASSERT(vn_is_mapped(svd2->vp, V_WRITE));
1462		segvn_inval_trcache(svd2->vp);
1463	}
1464	return (0);
1465}
1466
1467static int
1468segvn_dup(struct seg *seg, struct seg *newseg)
1469{
1470	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
1471	struct segvn_data *newsvd;
1472	pgcnt_t npages = seg_pages(seg);
1473	int error = 0;
1474	uint_t prot;
1475	size_t len;
1476	struct anon_map *amp;
1477
1478	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
1479	ASSERT(newseg->s_as->a_proc->p_parent == curproc);
1480
1481	/*
1482	 * If segment has anon reserved, reserve more for the new seg.
1483	 * For a MAP_NORESERVE segment swresv will be a count of all the
1484	 * allocated anon slots; thus we reserve for the child as many slots
1485	 * as the parent has allocated. This semantic prevents the child or
1486	 * parent from dieing during a copy-on-write fault caused by trying
1487	 * to write a shared pre-existing anon page.
1488	 */
1489	if ((len = svd->swresv) != 0) {
1490		if (anon_resv(svd->swresv) == 0)
1491			return (ENOMEM);
1492
1493		TRACE_3(TR_FAC_VM, TR_ANON_PROC, "anon proc:%p %lu %u",
1494		    seg, len, 0);
1495	}
1496
1497	newsvd = kmem_cache_alloc(segvn_cache, KM_SLEEP);
1498
1499	newseg->s_ops = &segvn_ops;
1500	newseg->s_data = (void *)newsvd;
1501	newseg->s_szc = seg->s_szc;
1502
1503	newsvd->seg = newseg;
1504	if ((newsvd->vp = svd->vp) != NULL) {
1505		VN_HOLD(svd->vp);
1506		if (svd->type == MAP_SHARED)
1507			lgrp_shm_policy_init(NULL, svd->vp);
1508	}
1509	newsvd->offset = svd->offset;
1510	newsvd->prot = svd->prot;
1511	newsvd->maxprot = svd->maxprot;
1512	newsvd->pageprot = svd->pageprot;
1513	newsvd->type = svd->type;
1514	newsvd->cred = svd->cred;
1515	crhold(newsvd->cred);
1516	newsvd->advice = svd->advice;
1517	newsvd->pageadvice = svd->pageadvice;
1518	newsvd->swresv = svd->swresv;
1519	newsvd->pageswap = svd->pageswap;
1520	newsvd->flags = svd->flags;
1521	newsvd->softlockcnt = 0;
1522	newsvd->softlockcnt_sbase = 0;
1523	newsvd->softlockcnt_send = 0;
1524	newsvd->policy_info = svd->policy_info;
1525	newsvd->rcookie = HAT_INVALID_REGION_COOKIE;
1526
1527	if ((amp = svd->amp) == NULL || svd->tr_state == SEGVN_TR_ON) {
1528		/*
1529		 * Not attaching to a shared anon object.
1530		 */
1531		ASSERT(!HAT_IS_REGION_COOKIE_VALID(svd->rcookie) ||
1532		    svd->tr_state == SEGVN_TR_OFF);
1533		if (svd->tr_state == SEGVN_TR_ON) {
1534			ASSERT(newsvd->vp != NULL && amp != NULL);
1535			newsvd->tr_state = SEGVN_TR_INIT;
1536		} else {
1537			newsvd->tr_state = svd->tr_state;
1538		}
1539		newsvd->amp = NULL;
1540		newsvd->anon_index = 0;
1541	} else {
1542		/* regions for now are only used on pure vnode segments */
1543		ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
1544		ASSERT(svd->tr_state == SEGVN_TR_OFF);
1545		newsvd->tr_state = SEGVN_TR_OFF;
1546		if (svd->type == MAP_SHARED) {
1547			newsvd->amp = amp;
1548			ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
1549			amp->refcnt++;
1550			ANON_LOCK_EXIT(&amp->a_rwlock);
1551			newsvd->anon_index = svd->anon_index;
1552		} else {
1553			int reclaim = 1;
1554
1555			/*
1556			 * Allocate and initialize new anon_map structure.
1557			 */
1558			newsvd->amp = anonmap_alloc(newseg->s_size, 0,
1559			    ANON_SLEEP);
1560			newsvd->amp->a_szc = newseg->s_szc;
1561			newsvd->anon_index = 0;
1562
1563			/*
1564			 * We don't have to acquire the anon_map lock
1565			 * for the new segment (since it belongs to an
1566			 * address space that is still not associated
1567			 * with any process), or the segment in the old
1568			 * address space (since all threads in it
1569			 * are stopped while duplicating the address space).
1570			 */
1571
1572			/*
1573			 * The goal of the following code is to make sure that
1574			 * softlocked pages do not end up as copy on write
1575			 * pages.  This would cause problems where one
1576			 * thread writes to a page that is COW and a different
1577			 * thread in the same process has softlocked it.  The
1578			 * softlock lock would move away from this process
1579			 * because the write would cause this process to get
1580			 * a copy (without the softlock).
1581			 *
1582			 * The strategy here is to just break the
1583			 * sharing on pages that could possibly be
1584			 * softlocked.
1585			 */
1586retry:
1587			if (svd->softlockcnt) {
1588				struct anon *ap, *newap;
1589				size_t i;
1590				uint_t vpprot;
1591				page_t *anon_pl[1+1], *pp;
1592				caddr_t addr;
1593				ulong_t old_idx = svd->anon_index;
1594				ulong_t new_idx = 0;
1595
1596				/*
1597				 * The softlock count might be non zero
1598				 * because some pages are still stuck in the
1599				 * cache for lazy reclaim. Flush the cache
1600				 * now. This should drop the count to zero.
1601				 * [or there is really I/O going on to these
1602				 * pages]. Note, we have the writers lock so
1603				 * nothing gets inserted during the flush.
1604				 */
1605				if (reclaim == 1) {
1606					segvn_purge(seg);
1607					reclaim = 0;
1608					goto retry;
1609				}
1610				i = btopr(seg->s_size);
1611				addr = seg->s_base;
1612				/*
1613				 * XXX break cow sharing using PAGESIZE
1614				 * pages. They will be relocated into larger
1615				 * pages at fault time.
1616				 */
1617				while (i-- > 0) {
1618					if (ap = anon_get_ptr(amp->ahp,
1619					    old_idx)) {
1620						error = anon_getpage(&ap,
1621						    &vpprot, anon_pl, PAGESIZE,
1622						    seg, addr, S_READ,
1623						    svd->cred);
1624						if (error) {
1625							newsvd->vpage = NULL;
1626							goto out;
1627						}
1628						/*
1629						 * prot need not be computed
1630						 * below 'cause anon_private is
1631						 * going to ignore it anyway
1632						 * as child doesn't inherit
1633						 * pagelock from parent.
1634						 */
1635						prot = svd->pageprot ?
1636						    VPP_PROT(
1637						    &svd->vpage[
1638						    seg_page(seg, addr)])
1639						    : svd->prot;
1640						pp = anon_private(&newap,
1641						    newseg, addr, prot,
1642						    anon_pl[0],	0,
1643						    newsvd->cred);
1644						if (pp == NULL) {
1645							/* no mem abort */
1646							newsvd->vpage = NULL;
1647							error = ENOMEM;
1648							goto out;
1649						}
1650						(void) anon_set_ptr(
1651						    newsvd->amp->ahp, new_idx,
1652						    newap, ANON_SLEEP);
1653						page_unlock(pp);
1654					}
1655					addr += PAGESIZE;
1656					old_idx++;
1657					new_idx++;
1658				}
1659			} else {	/* common case */
1660				if (seg->s_szc != 0) {
1661					/*
1662					 * If at least one of anon slots of a
1663					 * large page exists then make sure
1664					 * all anon slots of a large page
1665					 * exist to avoid partial cow sharing
1666					 * of a large page in the future.
1667					 */
1668					anon_dup_fill_holes(amp->ahp,
1669					    svd->anon_index, newsvd->amp->ahp,
1670					    0, seg->s_size, seg->s_szc,
1671					    svd->vp != NULL);
1672				} else {
1673					anon_dup(amp->ahp, svd->anon_index,
1674					    newsvd->amp->ahp, 0, seg->s_size);
1675				}
1676
1677				hat_clrattr(seg->s_as->a_hat, seg->s_base,
1678				    seg->s_size, PROT_WRITE);
1679			}
1680		}
1681	}
1682	/*
1683	 * If necessary, create a vpage structure for the new segment.
1684	 * Do not copy any page lock indications.
1685	 */
1686	if (svd->vpage != NULL) {
1687		uint_t i;
1688		struct vpage *ovp = svd->vpage;
1689		struct vpage *nvp;
1690
1691		nvp = newsvd->vpage =
1692		    kmem_alloc(vpgtob(npages), KM_SLEEP);
1693		for (i = 0; i < npages; i++) {
1694			*nvp = *ovp++;
1695			VPP_CLRPPLOCK(nvp++);
1696		}
1697	} else
1698		newsvd->vpage = NULL;
1699
1700	/* Inform the vnode of the new mapping */
1701	if (newsvd->vp != NULL) {
1702		error = VOP_ADDMAP(newsvd->vp, (offset_t)newsvd->offset,
1703		    newseg->s_as, newseg->s_base, newseg->s_size, newsvd->prot,
1704		    newsvd->maxprot, newsvd->type, newsvd->cred, NULL);
1705	}
1706out:
1707	if (error == 0 && HAT_IS_REGION_COOKIE_VALID(svd->rcookie)) {
1708		ASSERT(newsvd->amp == NULL);
1709		ASSERT(newsvd->tr_state == SEGVN_TR_OFF);
1710		newsvd->rcookie = svd->rcookie;
1711		hat_dup_region(newseg->s_as->a_hat, newsvd->rcookie);
1712	}
1713	return (error);
1714}
1715
1716
1717/*
1718 * callback function to invoke free_vp_pages() for only those pages actually
1719 * processed by the HAT when a shared region is destroyed.
1720 */
1721extern int free_pages;
1722
1723static void
1724segvn_hat_rgn_unload_callback(caddr_t saddr, caddr_t eaddr, caddr_t r_saddr,
1725    size_t r_size, void *r_obj, u_offset_t r_objoff)
1726{
1727	u_offset_t off;
1728	size_t len;
1729	vnode_t *vp = (vnode_t *)r_obj;
1730
1731	ASSERT(eaddr > saddr);
1732	ASSERT(saddr >= r_saddr);
1733	ASSERT(saddr < r_saddr + r_size);
1734	ASSERT(eaddr > r_saddr);
1735	ASSERT(eaddr <= r_saddr + r_size);
1736	ASSERT(vp != NULL);
1737
1738	if (!free_pages) {
1739		return;
1740	}
1741
1742	len = eaddr - saddr;
1743	off = (saddr - r_saddr) + r_objoff;
1744	free_vp_pages(vp, off, len);
1745}
1746
1747/*
1748 * callback function used by segvn_unmap to invoke free_vp_pages() for only
1749 * those pages actually processed by the HAT
1750 */
1751static void
1752segvn_hat_unload_callback(hat_callback_t *cb)
1753{
1754	struct seg		*seg = cb->hcb_data;
1755	struct segvn_data	*svd = (struct segvn_data *)seg->s_data;
1756	size_t			len;
1757	u_offset_t		off;
1758
1759	ASSERT(svd->vp != NULL);
1760	ASSERT(cb->hcb_end_addr > cb->hcb_start_addr);
1761	ASSERT(cb->hcb_start_addr >= seg->s_base);
1762
1763	len = cb->hcb_end_addr - cb->hcb_start_addr;
1764	off = cb->hcb_start_addr - seg->s_base;
1765	free_vp_pages(svd->vp, svd->offset + off, len);
1766}
1767
1768/*
1769 * This function determines the number of bytes of swap reserved by
1770 * a segment for which per-page accounting is present. It is used to
1771 * calculate the correct value of a segvn_data's swresv.
1772 */
1773static size_t
1774segvn_count_swap_by_vpages(struct seg *seg)
1775{
1776	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
1777	struct vpage *vp, *evp;
1778	size_t nswappages = 0;
1779
1780	ASSERT(svd->pageswap);
1781	ASSERT(svd->vpage != NULL);
1782
1783	evp = &svd->vpage[seg_page(seg, seg->s_base + seg->s_size)];
1784
1785	for (vp = svd->vpage; vp < evp; vp++) {
1786		if (VPP_ISSWAPRES(vp))
1787			nswappages++;
1788	}
1789
1790	return (nswappages << PAGESHIFT);
1791}
1792
1793static int
1794segvn_unmap(struct seg *seg, caddr_t addr, size_t len)
1795{
1796	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
1797	struct segvn_data *nsvd;
1798	struct seg *nseg;
1799	struct anon_map *amp;
1800	pgcnt_t	opages;		/* old segment size in pages */
1801	pgcnt_t	npages;		/* new segment size in pages */
1802	pgcnt_t	dpages;		/* pages being deleted (unmapped) */
1803	hat_callback_t callback;	/* used for free_vp_pages() */
1804	hat_callback_t *cbp = NULL;
1805	caddr_t nbase;
1806	size_t nsize;
1807	size_t oswresv;
1808	int reclaim = 1;
1809
1810	/*
1811	 * We don't need any segment level locks for "segvn" data
1812	 * since the address space is "write" locked.
1813	 */
1814	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
1815
1816	/*
1817	 * Fail the unmap if pages are SOFTLOCKed through this mapping.
1818	 * softlockcnt is protected from change by the as write lock.
1819	 */
1820retry:
1821	if (svd->softlockcnt > 0) {
1822		ASSERT(svd->tr_state == SEGVN_TR_OFF);
1823
1824		/*
1825		 * If this is shared segment non 0 softlockcnt
1826		 * means locked pages are still in use.
1827		 */
1828		if (svd->type == MAP_SHARED) {
1829			return (EAGAIN);
1830		}
1831
1832		/*
1833		 * since we do have the writers lock nobody can fill
1834		 * the cache during the purge. The flush either succeeds
1835		 * or we still have pending I/Os.
1836		 */
1837		if (reclaim == 1) {
1838			segvn_purge(seg);
1839			reclaim = 0;
1840			goto retry;
1841		}
1842		return (EAGAIN);
1843	}
1844
1845	/*
1846	 * Check for bad sizes
1847	 */
1848	if (addr < seg->s_base || addr + len > seg->s_base + seg->s_size ||
1849	    (len & PAGEOFFSET) || ((uintptr_t)addr & PAGEOFFSET)) {
1850		panic("segvn_unmap");
1851		/*NOTREACHED*/
1852	}
1853
1854	if (seg->s_szc != 0) {
1855		size_t pgsz = page_get_pagesize(seg->s_szc);
1856		int err;
1857		if (!IS_P2ALIGNED(addr, pgsz) || !IS_P2ALIGNED(len, pgsz)) {
1858			ASSERT(seg->s_base != addr || seg->s_size != len);
1859			if (HAT_IS_REGION_COOKIE_VALID(svd->rcookie)) {
1860				ASSERT(svd->amp == NULL);
1861				ASSERT(svd->tr_state == SEGVN_TR_OFF);
1862				hat_leave_region(seg->s_as->a_hat,
1863				    svd->rcookie, HAT_REGION_TEXT);
1864				svd->rcookie = HAT_INVALID_REGION_COOKIE;
1865				/*
1866				 * could pass a flag to segvn_demote_range()
1867				 * below to tell it not to do any unloads but
1868				 * this case is rare enough to not bother for
1869				 * now.
1870				 */
1871			} else if (svd->tr_state == SEGVN_TR_INIT) {
1872				svd->tr_state = SEGVN_TR_OFF;
1873			} else if (svd->tr_state == SEGVN_TR_ON) {
1874				ASSERT(svd->amp != NULL);
1875				segvn_textunrepl(seg, 1);
1876				ASSERT(svd->amp == NULL);
1877				ASSERT(svd->tr_state == SEGVN_TR_OFF);
1878			}
1879			VM_STAT_ADD(segvnvmstats.demoterange[0]);
1880			err = segvn_demote_range(seg, addr, len, SDR_END, 0);
1881			if (err == 0) {
1882				return (IE_RETRY);
1883			}
1884			return (err);
1885		}
1886	}
1887
1888	/* Inform the vnode of the unmapping. */
1889	if (svd->vp) {
1890		int error;
1891
1892		error = VOP_DELMAP(svd->vp,
1893		    (offset_t)svd->offset + (uintptr_t)(addr - seg->s_base),
1894		    seg->s_as, addr, len, svd->prot, svd->maxprot,
1895		    svd->type, svd->cred, NULL);
1896
1897		if (error == EAGAIN)
1898			return (error);
1899	}
1900
1901	/*
1902	 * Remove any page locks set through this mapping.
1903	 * If text replication is not off no page locks could have been
1904	 * established via this mapping.
1905	 */
1906	if (svd->tr_state == SEGVN_TR_OFF) {
1907		(void) segvn_lockop(seg, addr, len, 0, MC_UNLOCK, NULL, 0);
1908	}
1909
1910	if (HAT_IS_REGION_COOKIE_VALID(svd->rcookie)) {
1911		ASSERT(svd->amp == NULL);
1912		ASSERT(svd->tr_state == SEGVN_TR_OFF);
1913		ASSERT(svd->type == MAP_PRIVATE);
1914		hat_leave_region(seg->s_as->a_hat, svd->rcookie,
1915		    HAT_REGION_TEXT);
1916		svd->rcookie = HAT_INVALID_REGION_COOKIE;
1917	} else if (svd->tr_state == SEGVN_TR_ON) {
1918		ASSERT(svd->amp != NULL);
1919		ASSERT(svd->pageprot == 0 && !(svd->prot & PROT_WRITE));
1920		segvn_textunrepl(seg, 1);
1921		ASSERT(svd->amp == NULL && svd->tr_state == SEGVN_TR_OFF);
1922	} else {
1923		if (svd->tr_state != SEGVN_TR_OFF) {
1924			ASSERT(svd->tr_state == SEGVN_TR_INIT);
1925			svd->tr_state = SEGVN_TR_OFF;
1926		}
1927		/*
1928		 * Unload any hardware translations in the range to be taken
1929		 * out. Use a callback to invoke free_vp_pages() effectively.
1930		 */
1931		if (svd->vp != NULL && free_pages != 0) {
1932			callback.hcb_data = seg;
1933			callback.hcb_function = segvn_hat_unload_callback;
1934			cbp = &callback;
1935		}
1936		hat_unload_callback(seg->s_as->a_hat, addr, len,
1937		    HAT_UNLOAD_UNMAP, cbp);
1938
1939		if (svd->type == MAP_SHARED && svd->vp != NULL &&
1940		    (svd->vp->v_flag & VVMEXEC) &&
1941		    ((svd->prot & PROT_WRITE) || svd->pageprot)) {
1942			segvn_inval_trcache(svd->vp);
1943		}
1944	}
1945
1946	/*
1947	 * Check for entire segment
1948	 */
1949	if (addr == seg->s_base && len == seg->s_size) {
1950		seg_free(seg);
1951		return (0);
1952	}
1953
1954	opages = seg_pages(seg);
1955	dpages = btop(len);
1956	npages = opages - dpages;
1957	amp = svd->amp;
1958	ASSERT(amp == NULL || amp->a_szc >= seg->s_szc);
1959
1960	/*
1961	 * Check for beginning of segment
1962	 */
1963	if (addr == seg->s_base) {
1964		if (svd->vpage != NULL) {
1965			size_t nbytes;
1966			struct vpage *ovpage;
1967
1968			ovpage = svd->vpage;	/* keep pointer to vpage */
1969
1970			nbytes = vpgtob(npages);
1971			svd->vpage = kmem_alloc(nbytes, KM_SLEEP);
1972			bcopy(&ovpage[dpages], svd->vpage, nbytes);
1973
1974			/* free up old vpage */
1975			kmem_free(ovpage, vpgtob(opages));
1976		}
1977		if (amp != NULL) {
1978			ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
1979			if (amp->refcnt == 1 || svd->type == MAP_PRIVATE) {
1980				/*
1981				 * Shared anon map is no longer in use. Before
1982				 * freeing its pages purge all entries from
1983				 * pcache that belong to this amp.
1984				 */
1985				if (svd->type == MAP_SHARED) {
1986					ASSERT(amp->refcnt == 1);
1987					ASSERT(svd->softlockcnt == 0);
1988					anonmap_purge(amp);
1989				}
1990				/*
1991				 * Free up now unused parts of anon_map array.
1992				 */
1993				if (amp->a_szc == seg->s_szc) {
1994					if (seg->s_szc != 0) {
1995						anon_free_pages(amp->ahp,
1996						    svd->anon_index, len,
1997						    seg->s_szc);
1998					} else {
1999						anon_free(amp->ahp,
2000						    svd->anon_index,
2001						    len);
2002					}
2003				} else {
2004					ASSERT(svd->type == MAP_SHARED);
2005					ASSERT(amp->a_szc > seg->s_szc);
2006					anon_shmap_free_pages(amp,
2007					    svd->anon_index, len);
2008				}
2009
2010				/*
2011				 * Unreserve swap space for the
2012				 * unmapped chunk of this segment in
2013				 * case it's MAP_SHARED
2014				 */
2015				if (svd->type == MAP_SHARED) {
2016					anon_unresv_zone(len,
2017					    seg->s_as->a_proc->p_zone);
2018					amp->swresv -= len;
2019				}
2020			}
2021			ANON_LOCK_EXIT(&amp->a_rwlock);
2022			svd->anon_index += dpages;
2023		}
2024		if (svd->vp != NULL)
2025			svd->offset += len;
2026
2027		seg->s_base += len;
2028		seg->s_size -= len;
2029
2030		if (svd->swresv) {
2031			if (svd->flags & MAP_NORESERVE) {
2032				ASSERT(amp);
2033				oswresv = svd->swresv;
2034
2035				svd->swresv = ptob(anon_pages(amp->ahp,
2036				    svd->anon_index, npages));
2037				anon_unresv_zone(oswresv - svd->swresv,
2038				    seg->s_as->a_proc->p_zone);
2039				if (SEG_IS_PARTIAL_RESV(seg))
2040					seg->s_as->a_resvsize -= oswresv -
2041					    svd->swresv;
2042			} else {
2043				size_t unlen;
2044
2045				if (svd->pageswap) {
2046					oswresv = svd->swresv;
2047					svd->swresv =
2048					    segvn_count_swap_by_vpages(seg);
2049					ASSERT(oswresv >= svd->swresv);
2050					unlen = oswresv - svd->swresv;
2051				} else {
2052					svd->swresv -= len;
2053					ASSERT(svd->swresv == seg->s_size);
2054					unlen = len;
2055				}
2056				anon_unresv_zone(unlen,
2057				    seg->s_as->a_proc->p_zone);
2058			}
2059			TRACE_3(TR_FAC_VM, TR_ANON_PROC, "anon proc:%p %lu %u",
2060			    seg, len, 0);
2061		}
2062
2063		return (0);
2064	}
2065
2066	/*
2067	 * Check for end of segment
2068	 */
2069	if (addr + len == seg->s_base + seg->s_size) {
2070		if (svd->vpage != NULL) {
2071			size_t nbytes;
2072			struct vpage *ovpage;
2073
2074			ovpage = svd->vpage;	/* keep pointer to vpage */
2075
2076			nbytes = vpgtob(npages);
2077			svd->vpage = kmem_alloc(nbytes, KM_SLEEP);
2078			bcopy(ovpage, svd->vpage, nbytes);
2079
2080			/* free up old vpage */
2081			kmem_free(ovpage, vpgtob(opages));
2082
2083		}
2084		if (amp != NULL) {
2085			ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
2086			if (amp->refcnt == 1 || svd->type == MAP_PRIVATE) {
2087				/*
2088				 * Free up now unused parts of anon_map array.
2089				 */
2090				ulong_t an_idx = svd->anon_index + npages;
2091
2092				/*
2093				 * Shared anon map is no longer in use. Before
2094				 * freeing its pages purge all entries from
2095				 * pcache that belong to this amp.
2096				 */
2097				if (svd->type == MAP_SHARED) {
2098					ASSERT(amp->refcnt == 1);
2099					ASSERT(svd->softlockcnt == 0);
2100					anonmap_purge(amp);
2101				}
2102
2103				if (amp->a_szc == seg->s_szc) {
2104					if (seg->s_szc != 0) {
2105						anon_free_pages(amp->ahp,
2106						    an_idx, len,
2107						    seg->s_szc);
2108					} else {
2109						anon_free(amp->ahp, an_idx,
2110						    len);
2111					}
2112				} else {
2113					ASSERT(svd->type == MAP_SHARED);
2114					ASSERT(amp->a_szc > seg->s_szc);
2115					anon_shmap_free_pages(amp,
2116					    an_idx, len);
2117				}
2118
2119				/*
2120				 * Unreserve swap space for the
2121				 * unmapped chunk of this segment in
2122				 * case it's MAP_SHARED
2123				 */
2124				if (svd->type == MAP_SHARED) {
2125					anon_unresv_zone(len,
2126					    seg->s_as->a_proc->p_zone);
2127					amp->swresv -= len;
2128				}
2129			}
2130			ANON_LOCK_EXIT(&amp->a_rwlock);
2131		}
2132
2133		seg->s_size -= len;
2134
2135		if (svd->swresv) {
2136			if (svd->flags & MAP_NORESERVE) {
2137				ASSERT(amp);
2138				oswresv = svd->swresv;
2139				svd->swresv = ptob(anon_pages(amp->ahp,
2140				    svd->anon_index, npages));
2141				anon_unresv_zone(oswresv - svd->swresv,
2142				    seg->s_as->a_proc->p_zone);
2143				if (SEG_IS_PARTIAL_RESV(seg))
2144					seg->s_as->a_resvsize -= oswresv -
2145					    svd->swresv;
2146			} else {
2147				size_t unlen;
2148
2149				if (svd->pageswap) {
2150					oswresv = svd->swresv;
2151					svd->swresv =
2152					    segvn_count_swap_by_vpages(seg);
2153					ASSERT(oswresv >= svd->swresv);
2154					unlen = oswresv - svd->swresv;
2155				} else {
2156					svd->swresv -= len;
2157					ASSERT(svd->swresv == seg->s_size);
2158					unlen = len;
2159				}
2160				anon_unresv_zone(unlen,
2161				    seg->s_as->a_proc->p_zone);
2162			}
2163			TRACE_3(TR_FAC_VM, TR_ANON_PROC,
2164			    "anon proc:%p %lu %u", seg, len, 0);
2165		}
2166
2167		return (0);
2168	}
2169
2170	/*
2171	 * The section to go is in the middle of the segment,
2172	 * have to make it into two segments.  nseg is made for
2173	 * the high end while seg is cut down at the low end.
2174	 */
2175	nbase = addr + len;				/* new seg base */
2176	nsize = (seg->s_base + seg->s_size) - nbase;	/* new seg size */
2177	seg->s_size = addr - seg->s_base;		/* shrink old seg */
2178	nseg = seg_alloc(seg->s_as, nbase, nsize);
2179	if (nseg == NULL) {
2180		panic("segvn_unmap seg_alloc");
2181		/*NOTREACHED*/
2182	}
2183	nseg->s_ops = seg->s_ops;
2184	nsvd = kmem_cache_alloc(segvn_cache, KM_SLEEP);
2185	nseg->s_data = (void *)nsvd;
2186	nseg->s_szc = seg->s_szc;
2187	*nsvd = *svd;
2188	nsvd->seg = nseg;
2189	nsvd->offset = svd->offset + (uintptr_t)(nseg->s_base - seg->s_base);
2190	nsvd->swresv = 0;
2191	nsvd->softlockcnt = 0;
2192	nsvd->softlockcnt_sbase = 0;
2193	nsvd->softlockcnt_send = 0;
2194	ASSERT(nsvd->rcookie == HAT_INVALID_REGION_COOKIE);
2195
2196	if (svd->vp != NULL) {
2197		VN_HOLD(nsvd->vp);
2198		if (nsvd->type == MAP_SHARED)
2199			lgrp_shm_policy_init(NULL, nsvd->vp);
2200	}
2201	crhold(svd->cred);
2202
2203	if (svd->vpage == NULL) {
2204		nsvd->vpage = NULL;
2205	} else {
2206		/* need to split vpage into two arrays */
2207		size_t nbytes;
2208		struct vpage *ovpage;
2209
2210		ovpage = svd->vpage;		/* keep pointer to vpage */
2211
2212		npages = seg_pages(seg);	/* seg has shrunk */
2213		nbytes = vpgtob(npages);
2214		svd->vpage = kmem_alloc(nbytes, KM_SLEEP);
2215
2216		bcopy(ovpage, svd->vpage, nbytes);
2217
2218		npages = seg_pages(nseg);
2219		nbytes = vpgtob(npages);
2220		nsvd->vpage = kmem_alloc(nbytes, KM_SLEEP);
2221
2222		bcopy(&ovpage[opages - npages], nsvd->vpage, nbytes);
2223
2224		/* free up old vpage */
2225		kmem_free(ovpage, vpgtob(opages));
2226	}
2227
2228	if (amp == NULL) {
2229		nsvd->amp = NULL;
2230		nsvd->anon_index = 0;
2231	} else {
2232		/*
2233		 * Need to create a new anon map for the new segment.
2234		 * We'll also allocate a new smaller array for the old
2235		 * smaller segment to save space.
2236		 */
2237		opages = btop((uintptr_t)(addr - seg->s_base));
2238		ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
2239		if (amp->refcnt == 1 || svd->type == MAP_PRIVATE) {
2240			/*
2241			 * Free up now unused parts of anon_map array.
2242			 */
2243			ulong_t an_idx = svd->anon_index + opages;
2244
2245			/*
2246			 * Shared anon map is no longer in use. Before
2247			 * freeing its pages purge all entries from
2248			 * pcache that belong to this amp.
2249			 */
2250			if (svd->type == MAP_SHARED) {
2251				ASSERT(amp->refcnt == 1);
2252				ASSERT(svd->softlockcnt == 0);
2253				anonmap_purge(amp);
2254			}
2255
2256			if (amp->a_szc == seg->s_szc) {
2257				if (seg->s_szc != 0) {
2258					anon_free_pages(amp->ahp, an_idx, len,
2259					    seg->s_szc);
2260				} else {
2261					anon_free(amp->ahp, an_idx,
2262					    len);
2263				}
2264			} else {
2265				ASSERT(svd->type == MAP_SHARED);
2266				ASSERT(amp->a_szc > seg->s_szc);
2267				anon_shmap_free_pages(amp, an_idx, len);
2268			}
2269
2270			/*
2271			 * Unreserve swap space for the
2272			 * unmapped chunk of this segment in
2273			 * case it's MAP_SHARED
2274			 */
2275			if (svd->type == MAP_SHARED) {
2276				anon_unresv_zone(len,
2277				    seg->s_as->a_proc->p_zone);
2278				amp->swresv -= len;
2279			}
2280		}
2281		nsvd->anon_index = svd->anon_index +
2282		    btop((uintptr_t)(nseg->s_base - seg->s_base));
2283		if (svd->type == MAP_SHARED) {
2284			amp->refcnt++;
2285			nsvd->amp = amp;
2286		} else {
2287			struct anon_map *namp;
2288			struct anon_hdr *nahp;
2289
2290			ASSERT(svd->type == MAP_PRIVATE);
2291			nahp = anon_create(btop(seg->s_size), ANON_SLEEP);
2292			namp = anonmap_alloc(nseg->s_size, 0, ANON_SLEEP);
2293			namp->a_szc = seg->s_szc;
2294			(void) anon_copy_ptr(amp->ahp, svd->anon_index, nahp,
2295			    0, btop(seg->s_size), ANON_SLEEP);
2296			(void) anon_copy_ptr(amp->ahp, nsvd->anon_index,
2297			    namp->ahp, 0, btop(nseg->s_size), ANON_SLEEP);
2298			anon_release(amp->ahp, btop(amp->size));
2299			svd->anon_index = 0;
2300			nsvd->anon_index = 0;
2301			amp->ahp = nahp;
2302			amp->size = seg->s_size;
2303			nsvd->amp = namp;
2304		}
2305		ANON_LOCK_EXIT(&amp->a_rwlock);
2306	}
2307	if (svd->swresv) {
2308		if (svd->flags & MAP_NORESERVE) {
2309			ASSERT(amp);
2310			oswresv = svd->swresv;
2311			svd->swresv = ptob(anon_pages(amp->ahp,
2312			    svd->anon_index, btop(seg->s_size)));
2313			nsvd->swresv = ptob(anon_pages(nsvd->amp->ahp,
2314			    nsvd->anon_index, btop(nseg->s_size)));
2315			ASSERT(oswresv >= (svd->swresv + nsvd->swresv));
2316			anon_unresv_zone(oswresv - (svd->swresv + nsvd->swresv),
2317			    seg->s_as->a_proc->p_zone);
2318			if (SEG_IS_PARTIAL_RESV(seg))
2319				seg->s_as->a_resvsize -= oswresv -
2320				    (svd->swresv + nsvd->swresv);
2321		} else {
2322			size_t unlen;
2323
2324			if (svd->pageswap) {
2325				oswresv = svd->swresv;
2326				svd->swresv = segvn_count_swap_by_vpages(seg);
2327				nsvd->swresv = segvn_count_swap_by_vpages(nseg);
2328				ASSERT(oswresv >= (svd->swresv + nsvd->swresv));
2329				unlen = oswresv - (svd->swresv + nsvd->swresv);
2330			} else {
2331				if (seg->s_size + nseg->s_size + len !=
2332				    svd->swresv) {
2333					panic("segvn_unmap: cannot split "
2334					    "swap reservation");
2335					/*NOTREACHED*/
2336				}
2337				svd->swresv = seg->s_size;
2338				nsvd->swresv = nseg->s_size;
2339				unlen = len;
2340			}
2341			anon_unresv_zone(unlen,
2342			    seg->s_as->a_proc->p_zone);
2343		}
2344		TRACE_3(TR_FAC_VM, TR_ANON_PROC, "anon proc:%p %lu %u",
2345		    seg, len, 0);
2346	}
2347
2348	return (0);			/* I'm glad that's all over with! */
2349}
2350
2351static void
2352segvn_free(struct seg *seg)
2353{
2354	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
2355	pgcnt_t npages = seg_pages(seg);
2356	struct anon_map *amp;
2357	size_t len;
2358
2359	/*
2360	 * We don't need any segment level locks for "segvn" data
2361	 * since the address space is "write" locked.
2362	 */
2363	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
2364	ASSERT(svd->tr_state == SEGVN_TR_OFF);
2365
2366	ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
2367
2368	/*
2369	 * Be sure to unlock pages. XXX Why do things get free'ed instead
2370	 * of unmapped? XXX
2371	 */
2372	(void) segvn_lockop(seg, seg->s_base, seg->s_size,
2373	    0, MC_UNLOCK, NULL, 0);
2374
2375	/*
2376	 * Deallocate the vpage and anon pointers if necessary and possible.
2377	 */
2378	if (svd->vpage != NULL) {
2379		kmem_free(svd->vpage, vpgtob(npages));
2380		svd->vpage = NULL;
2381	}
2382	if ((amp = svd->amp) != NULL) {
2383		/*
2384		 * If there are no more references to this anon_map
2385		 * structure, then deallocate the structure after freeing
2386		 * up all the anon slot pointers that we can.
2387		 */
2388		ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
2389		ASSERT(amp->a_szc >= seg->s_szc);
2390		if (--amp->refcnt == 0) {
2391			if (svd->type == MAP_PRIVATE) {
2392				/*
2393				 * Private - we only need to anon_free
2394				 * the part that this segment refers to.
2395				 */
2396				if (seg->s_szc != 0) {
2397					anon_free_pages(amp->ahp,
2398					    svd->anon_index, seg->s_size,
2399					    seg->s_szc);
2400				} else {
2401					anon_free(amp->ahp, svd->anon_index,
2402					    seg->s_size);
2403				}
2404			} else {
2405
2406				/*
2407				 * Shared anon map is no longer in use. Before
2408				 * freeing its pages purge all entries from
2409				 * pcache that belong to this amp.
2410				 */
2411				ASSERT(svd->softlockcnt == 0);
2412				anonmap_purge(amp);
2413
2414				/*
2415				 * Shared - anon_free the entire
2416				 * anon_map's worth of stuff and
2417				 * release any swap reservation.
2418				 */
2419				if (amp->a_szc != 0) {
2420					anon_shmap_free_pages(amp, 0,
2421					    amp->size);
2422				} else {
2423					anon_free(amp->ahp, 0, amp->size);
2424				}
2425				if ((len = amp->swresv) != 0) {
2426					anon_unresv_zone(len,
2427					    seg->s_as->a_proc->p_zone);
2428					TRACE_3(TR_FAC_VM, TR_ANON_PROC,
2429					    "anon proc:%p %lu %u", seg, len, 0);
2430				}
2431			}
2432			svd->amp = NULL;
2433			ANON_LOCK_EXIT(&amp->a_rwlock);
2434			anonmap_free(amp);
2435		} else if (svd->type == MAP_PRIVATE) {
2436			/*
2437			 * We had a private mapping which still has
2438			 * a held anon_map so just free up all the
2439			 * anon slot pointers that we were using.
2440			 */
2441			if (seg->s_szc != 0) {
2442				anon_free_pages(amp->ahp, svd->anon_index,
2443				    seg->s_size, seg->s_szc);
2444			} else {
2445				anon_free(amp->ahp, svd->anon_index,
2446				    seg->s_size);
2447			}
2448			ANON_LOCK_EXIT(&amp->a_rwlock);
2449		} else {
2450			ANON_LOCK_EXIT(&amp->a_rwlock);
2451		}
2452	}
2453
2454	/*
2455	 * Release swap reservation.
2456	 */
2457	if ((len = svd->swresv) != 0) {
2458		anon_unresv_zone(svd->swresv,
2459		    seg->s_as->a_proc->p_zone);
2460		TRACE_3(TR_FAC_VM, TR_ANON_PROC, "anon proc:%p %lu %u",
2461		    seg, len, 0);
2462		if (SEG_IS_PARTIAL_RESV(seg))
2463			seg->s_as->a_resvsize -= svd->swresv;
2464		svd->swresv = 0;
2465	}
2466	/*
2467	 * Release claim on vnode, credentials, and finally free the
2468	 * private data.
2469	 */
2470	if (svd->vp != NULL) {
2471		if (svd->type == MAP_SHARED)
2472			lgrp_shm_policy_fini(NULL, svd->vp);
2473		VN_RELE(svd->vp);
2474		svd->vp = NULL;
2475	}
2476	crfree(svd->cred);
2477	svd->pageprot = 0;
2478	svd->pageadvice = 0;
2479	svd->pageswap = 0;
2480	svd->cred = NULL;
2481
2482	/*
2483	 * Take segfree_syncmtx lock to let segvn_reclaim() finish if it's
2484	 * still working with this segment without holding as lock (in case
2485	 * it's called by pcache async thread).
2486	 */
2487	ASSERT(svd->softlockcnt == 0);
2488	mutex_enter(&svd->segfree_syncmtx);
2489	mutex_exit(&svd->segfree_syncmtx);
2490
2491	seg->s_data = NULL;
2492	kmem_cache_free(segvn_cache, svd);
2493}
2494
2495/*
2496 * Do a F_SOFTUNLOCK call over the range requested.  The range must have
2497 * already been F_SOFTLOCK'ed.
2498 * Caller must always match addr and len of a softunlock with a previous
2499 * softlock with exactly the same addr and len.
2500 */
2501static void
2502segvn_softunlock(struct seg *seg, caddr_t addr, size_t len, enum seg_rw rw)
2503{
2504	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
2505	page_t *pp;
2506	caddr_t adr;
2507	struct vnode *vp;
2508	u_offset_t offset;
2509	ulong_t anon_index;
2510	struct anon_map *amp;
2511	struct anon *ap = NULL;
2512
2513	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
2514	ASSERT(SEGVN_LOCK_HELD(seg->s_as, &svd->lock));
2515
2516	if ((amp = svd->amp) != NULL)
2517		anon_index = svd->anon_index + seg_page(seg, addr);
2518
2519	if (HAT_IS_REGION_COOKIE_VALID(svd->rcookie)) {
2520		ASSERT(svd->tr_state == SEGVN_TR_OFF);
2521		hat_unlock_region(seg->s_as->a_hat, addr, len, svd->rcookie);
2522	} else {
2523		hat_unlock(seg->s_as->a_hat, addr, len);
2524	}
2525	for (adr = addr; adr < addr + len; adr += PAGESIZE) {
2526		if (amp != NULL) {
2527			ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
2528			if ((ap = anon_get_ptr(amp->ahp, anon_index++))
2529			    != NULL) {
2530				swap_xlate(ap, &vp, &offset);
2531			} else {
2532				vp = svd->vp;
2533				offset = svd->offset +
2534				    (uintptr_t)(adr - seg->s_base);
2535			}
2536			ANON_LOCK_EXIT(&amp->a_rwlock);
2537		} else {
2538			vp = svd->vp;
2539			offset = svd->offset +
2540			    (uintptr_t)(adr - seg->s_base);
2541		}
2542
2543		/*
2544		 * Use page_find() instead of page_lookup() to
2545		 * find the page since we know that it is locked.
2546		 */
2547		pp = page_find(vp, offset);
2548		if (pp == NULL) {
2549			panic(
2550			    "segvn_softunlock: addr %p, ap %p, vp %p, off %llx",
2551			    (void *)adr, (void *)ap, (void *)vp, offset);
2552			/*NOTREACHED*/
2553		}
2554
2555		if (rw == S_WRITE) {
2556			hat_setrefmod(pp);
2557			if (seg->s_as->a_vbits)
2558				hat_setstat(seg->s_as, adr, PAGESIZE,
2559				    P_REF | P_MOD);
2560		} else if (rw != S_OTHER) {
2561			hat_setref(pp);
2562			if (seg->s_as->a_vbits)
2563				hat_setstat(seg->s_as, adr, PAGESIZE, P_REF);
2564		}
2565		TRACE_3(TR_FAC_VM, TR_SEGVN_FAULT,
2566		    "segvn_fault:pp %p vp %p offset %llx", pp, vp, offset);
2567		page_unlock(pp);
2568	}
2569	ASSERT(svd->softlockcnt >= btop(len));
2570	if (!atomic_add_long_nv((ulong_t *)&svd->softlockcnt, -btop(len))) {
2571		/*
2572		 * All SOFTLOCKS are gone. Wakeup any waiting
2573		 * unmappers so they can try again to unmap.
2574		 * Check for waiters first without the mutex
2575		 * held so we don't always grab the mutex on
2576		 * softunlocks.
2577		 */
2578		if (AS_ISUNMAPWAIT(seg->s_as)) {
2579			mutex_enter(&seg->s_as->a_contents);
2580			if (AS_ISUNMAPWAIT(seg->s_as)) {
2581				AS_CLRUNMAPWAIT(seg->s_as);
2582				cv_broadcast(&seg->s_as->a_cv);
2583			}
2584			mutex_exit(&seg->s_as->a_contents);
2585		}
2586	}
2587}
2588
2589#define	PAGE_HANDLED	((page_t *)-1)
2590
2591/*
2592 * Release all the pages in the NULL terminated ppp list
2593 * which haven't already been converted to PAGE_HANDLED.
2594 */
2595static void
2596segvn_pagelist_rele(page_t **ppp)
2597{
2598	for (; *ppp != NULL; ppp++) {
2599		if (*ppp != PAGE_HANDLED)
2600			page_unlock(*ppp);
2601	}
2602}
2603
2604static int stealcow = 1;
2605
2606/*
2607 * Workaround for viking chip bug.  See bug id 1220902.
2608 * To fix this down in pagefault() would require importing so
2609 * much as and segvn code as to be unmaintainable.
2610 */
2611int enable_mbit_wa = 0;
2612
2613/*
2614 * Handles all the dirty work of getting the right
2615 * anonymous pages and loading up the translations.
2616 * This routine is called only from segvn_fault()
2617 * when looping over the range of addresses requested.
2618 *
2619 * The basic algorithm here is:
2620 * 	If this is an anon_zero case
2621 *		Call anon_zero to allocate page
2622 *		Load up translation
2623 *		Return
2624 *	endif
2625 *	If this is an anon page
2626 *		Use anon_getpage to get the page
2627 *	else
2628 *		Find page in pl[] list passed in
2629 *	endif
2630 *	If not a cow
2631 *		Load up the translation to the page
2632 *		return
2633 *	endif
2634 *	Call anon_private to handle cow
2635 *	Load up (writable) translation to new page
2636 */
2637static faultcode_t
2638segvn_faultpage(
2639	struct hat *hat,		/* the hat to use for mapping */
2640	struct seg *seg,		/* seg_vn of interest */
2641	caddr_t addr,			/* address in as */
2642	u_offset_t off,			/* offset in vp */
2643	struct vpage *vpage,		/* pointer to vpage for vp, off */
2644	page_t *pl[],			/* object source page pointer */
2645	uint_t vpprot,			/* access allowed to object pages */
2646	enum fault_type type,		/* type of fault */
2647	enum seg_rw rw,			/* type of access at fault */
2648	int brkcow)			/* we may need to break cow */
2649{
2650	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
2651	page_t *pp, **ppp;
2652	uint_t pageflags = 0;
2653	page_t *anon_pl[1 + 1];
2654	page_t *opp = NULL;		/* original page */
2655	uint_t prot;
2656	int err;
2657	int cow;
2658	int claim;
2659	int steal = 0;
2660	ulong_t anon_index;
2661	struct anon *ap, *oldap;
2662	struct anon_map *amp;
2663	int hat_flag = (type == F_SOFTLOCK) ? HAT_LOAD_LOCK : HAT_LOAD;
2664	int anon_lock = 0;
2665	anon_sync_obj_t cookie;
2666
2667	if (svd->flags & MAP_TEXT) {
2668		hat_flag |= HAT_LOAD_TEXT;
2669	}
2670
2671	ASSERT(SEGVN_READ_HELD(seg->s_as, &svd->lock));
2672	ASSERT(seg->s_szc == 0);
2673	ASSERT(svd->tr_state != SEGVN_TR_INIT);
2674
2675	/*
2676	 * Initialize protection value for this page.
2677	 * If we have per page protection values check it now.
2678	 */
2679	if (svd->pageprot) {
2680		uint_t protchk;
2681
2682		switch (rw) {
2683		case S_READ:
2684			protchk = PROT_READ;
2685			break;
2686		case S_WRITE:
2687			protchk = PROT_WRITE;
2688			break;
2689		case S_EXEC:
2690			protchk = PROT_EXEC;
2691			break;
2692		case S_OTHER:
2693		default:
2694			protchk = PROT_READ | PROT_WRITE | PROT_EXEC;
2695			break;
2696		}
2697
2698		prot = VPP_PROT(vpage);
2699		if ((prot & protchk) == 0)
2700			return (FC_PROT);	/* illegal access type */
2701	} else {
2702		prot = svd->prot;
2703	}
2704
2705	if (type == F_SOFTLOCK) {
2706		atomic_add_long((ulong_t *)&svd->softlockcnt, 1);
2707	}
2708
2709	/*
2710	 * Always acquire the anon array lock to prevent 2 threads from
2711	 * allocating separate anon slots for the same "addr".
2712	 */
2713
2714	if ((amp = svd->amp) != NULL) {
2715		ASSERT(RW_READ_HELD(&amp->a_rwlock));
2716		anon_index = svd->anon_index + seg_page(seg, addr);
2717		anon_array_enter(amp, anon_index, &cookie);
2718		anon_lock = 1;
2719	}
2720
2721	if (svd->vp == NULL && amp != NULL) {
2722		if ((ap = anon_get_ptr(amp->ahp, anon_index)) == NULL) {
2723			/*
2724			 * Allocate a (normally) writable anonymous page of
2725			 * zeroes. If no advance reservations, reserve now.
2726			 */
2727			if (svd->flags & MAP_NORESERVE) {
2728				if (anon_resv_zone(ptob(1),
2729				    seg->s_as->a_proc->p_zone)) {
2730					atomic_add_long(&svd->swresv, ptob(1));
2731					atomic_add_long(&seg->s_as->a_resvsize,
2732					    ptob(1));
2733				} else {
2734					err = ENOMEM;
2735					goto out;
2736				}
2737			}
2738			if ((pp = anon_zero(seg, addr, &ap,
2739			    svd->cred)) == NULL) {
2740				err = ENOMEM;
2741				goto out;	/* out of swap space */
2742			}
2743			/*
2744			 * Re-acquire the anon_map lock and
2745			 * initialize the anon array entry.
2746			 */
2747			(void) anon_set_ptr(amp->ahp, anon_index, ap,
2748			    ANON_SLEEP);
2749
2750			ASSERT(pp->p_szc == 0);
2751
2752			/*
2753			 * Handle pages that have been marked for migration
2754			 */
2755			if (lgrp_optimizations())
2756				page_migrate(seg, addr, &pp, 1);
2757
2758			if (enable_mbit_wa) {
2759				if (rw == S_WRITE)
2760					hat_setmod(pp);
2761				else if (!hat_ismod(pp))
2762					prot &= ~PROT_WRITE;
2763			}
2764			/*
2765			 * If AS_PAGLCK is set in a_flags (via memcntl(2)
2766			 * with MC_LOCKAS, MCL_FUTURE) and this is a
2767			 * MAP_NORESERVE segment, we may need to
2768			 * permanently lock the page as it is being faulted
2769			 * for the first time. The following text applies
2770			 * only to MAP_NORESERVE segments:
2771			 *
2772			 * As per memcntl(2), if this segment was created
2773			 * after MCL_FUTURE was applied (a "future"
2774			 * segment), its pages must be locked.  If this
2775			 * segment existed at MCL_FUTURE application (a
2776			 * "past" segment), the interface is unclear.
2777			 *
2778			 * We decide to lock only if vpage is present:
2779			 *
2780			 * - "future" segments will have a vpage array (see
2781			 *    as_map), and so will be locked as required
2782			 *
2783			 * - "past" segments may not have a vpage array,
2784			 *    depending on whether events (such as
2785			 *    mprotect) have occurred. Locking if vpage
2786			 *    exists will preserve legacy behavior.  Not
2787			 *    locking if vpage is absent, will not break
2788			 *    the interface or legacy behavior.  Note that
2789			 *    allocating vpage here if it's absent requires
2790			 *    upgrading the segvn reader lock, the cost of
2791			 *    which does not seem worthwhile.
2792			 *
2793			 * Usually testing and setting VPP_ISPPLOCK and
2794			 * VPP_SETPPLOCK requires holding the segvn lock as
2795			 * writer, but in this case all readers are
2796			 * serializing on the anon array lock.
2797			 */
2798			if (AS_ISPGLCK(seg->s_as) && vpage != NULL &&
2799			    (svd->flags & MAP_NORESERVE) &&
2800			    !VPP_ISPPLOCK(vpage)) {
2801				proc_t *p = seg->s_as->a_proc;
2802				ASSERT(svd->type == MAP_PRIVATE);
2803				mutex_enter(&p->p_lock);
2804				if (rctl_incr_locked_mem(p, NULL, PAGESIZE,
2805				    1) == 0) {
2806					claim = VPP_PROT(vpage) & PROT_WRITE;
2807					if (page_pp_lock(pp, claim, 0)) {
2808						VPP_SETPPLOCK(vpage);
2809					} else {
2810						rctl_decr_locked_mem(p, NULL,
2811						    PAGESIZE, 1);
2812					}
2813				}
2814				mutex_exit(&p->p_lock);
2815			}
2816
2817			ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
2818			hat_memload(hat, addr, pp, prot, hat_flag);
2819
2820			if (!(hat_flag & HAT_LOAD_LOCK))
2821				page_unlock(pp);
2822
2823			anon_array_exit(&cookie);
2824			return (0);
2825		}
2826	}
2827
2828	/*
2829	 * Obtain the page structure via anon_getpage() if it is
2830	 * a private copy of an object (the result of a previous
2831	 * copy-on-write).
2832	 */
2833	if (amp != NULL) {
2834		if ((ap = anon_get_ptr(amp->ahp, anon_index)) != NULL) {
2835			err = anon_getpage(&ap, &vpprot, anon_pl, PAGESIZE,
2836			    seg, addr, rw, svd->cred);
2837			if (err)
2838				goto out;
2839
2840			if (svd->type == MAP_SHARED) {
2841				/*
2842				 * If this is a shared mapping to an
2843				 * anon_map, then ignore the write
2844				 * permissions returned by anon_getpage().
2845				 * They apply to the private mappings
2846				 * of this anon_map.
2847				 */
2848				vpprot |= PROT_WRITE;
2849			}
2850			opp = anon_pl[0];
2851		}
2852	}
2853
2854	/*
2855	 * Search the pl[] list passed in if it is from the
2856	 * original object (i.e., not a private copy).
2857	 */
2858	if (opp == NULL) {
2859		/*
2860		 * Find original page.  We must be bringing it in
2861		 * from the list in pl[].
2862		 */
2863		for (ppp = pl; (opp = *ppp) != NULL; ppp++) {
2864			if (opp == PAGE_HANDLED)
2865				continue;
2866			ASSERT(opp->p_vnode == svd->vp); /* XXX */
2867			if (opp->p_offset == off)
2868				break;
2869		}
2870		if (opp == NULL) {
2871			panic("segvn_faultpage not found");
2872			/*NOTREACHED*/
2873		}
2874		*ppp = PAGE_HANDLED;
2875
2876	}
2877
2878	ASSERT(PAGE_LOCKED(opp));
2879
2880	TRACE_3(TR_FAC_VM, TR_SEGVN_FAULT,
2881	    "segvn_fault:pp %p vp %p offset %llx", opp, NULL, 0);
2882
2883	/*
2884	 * The fault is treated as a copy-on-write fault if a
2885	 * write occurs on a private segment and the object
2886	 * page (i.e., mapping) is write protected.  We assume
2887	 * that fatal protection checks have already been made.
2888	 */
2889
2890	if (brkcow) {
2891		ASSERT(svd->tr_state == SEGVN_TR_OFF);
2892		cow = !(vpprot & PROT_WRITE);
2893	} else if (svd->tr_state == SEGVN_TR_ON) {
2894		/*
2895		 * If we are doing text replication COW on first touch.
2896		 */
2897		ASSERT(amp != NULL);
2898		ASSERT(svd->vp != NULL);
2899		ASSERT(rw != S_WRITE);
2900		cow = (ap == NULL);
2901	} else {
2902		cow = 0;
2903	}
2904
2905	/*
2906	 * If not a copy-on-write case load the translation
2907	 * and return.
2908	 */
2909	if (cow == 0) {
2910
2911		/*
2912		 * Handle pages that have been marked for migration
2913		 */
2914		if (lgrp_optimizations())
2915			page_migrate(seg, addr, &opp, 1);
2916
2917		if (IS_VMODSORT(opp->p_vnode) || enable_mbit_wa) {
2918			if (rw == S_WRITE)
2919				hat_setmod(opp);
2920			else if (rw != S_OTHER && !hat_ismod(opp))
2921				prot &= ~PROT_WRITE;
2922		}
2923
2924		ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE ||
2925		    (!svd->pageprot && svd->prot == (prot & vpprot)));
2926		ASSERT(amp == NULL ||
2927		    svd->rcookie == HAT_INVALID_REGION_COOKIE);
2928		hat_memload_region(hat, addr, opp, prot & vpprot, hat_flag,
2929		    svd->rcookie);
2930
2931		if (!(hat_flag & HAT_LOAD_LOCK))
2932			page_unlock(opp);
2933
2934		if (anon_lock) {
2935			anon_array_exit(&cookie);
2936		}
2937		return (0);
2938	}
2939
2940	ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
2941
2942	hat_setref(opp);
2943
2944	ASSERT(amp != NULL && anon_lock);
2945
2946	/*
2947	 * Steal the page only if it isn't a private page
2948	 * since stealing a private page is not worth the effort.
2949	 */
2950	if ((ap = anon_get_ptr(amp->ahp, anon_index)) == NULL)
2951		steal = 1;
2952
2953	/*
2954	 * Steal the original page if the following conditions are true:
2955	 *
2956	 * We are low on memory, the page is not private, page is not large,
2957	 * not shared, not modified, not `locked' or if we have it `locked'
2958	 * (i.e., p_cowcnt == 1 and p_lckcnt == 0, which also implies
2959	 * that the page is not shared) and if it doesn't have any
2960	 * translations. page_struct_lock isn't needed to look at p_cowcnt
2961	 * and p_lckcnt because we first get exclusive lock on page.
2962	 */
2963	(void) hat_pagesync(opp, HAT_SYNC_DONTZERO | HAT_SYNC_STOPON_MOD);
2964
2965	if (stealcow && freemem < minfree && steal && opp->p_szc == 0 &&
2966	    page_tryupgrade(opp) && !hat_ismod(opp) &&
2967	    ((opp->p_lckcnt == 0 && opp->p_cowcnt == 0) ||
2968	    (opp->p_lckcnt == 0 && opp->p_cowcnt == 1 &&
2969	    vpage != NULL && VPP_ISPPLOCK(vpage)))) {
2970		/*
2971		 * Check if this page has other translations
2972		 * after unloading our translation.
2973		 */
2974		if (hat_page_is_mapped(opp)) {
2975			ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
2976			hat_unload(seg->s_as->a_hat, addr, PAGESIZE,
2977			    HAT_UNLOAD);
2978		}
2979
2980		/*
2981		 * hat_unload() might sync back someone else's recent
2982		 * modification, so check again.
2983		 */
2984		if (!hat_ismod(opp) && !hat_page_is_mapped(opp))
2985			pageflags |= STEAL_PAGE;
2986	}
2987
2988	/*
2989	 * If we have a vpage pointer, see if it indicates that we have
2990	 * ``locked'' the page we map -- if so, tell anon_private to
2991	 * transfer the locking resource to the new page.
2992	 *
2993	 * See Statement at the beginning of segvn_lockop regarding
2994	 * the way lockcnts/cowcnts are handled during COW.
2995	 *
2996	 */
2997	if (vpage != NULL && VPP_ISPPLOCK(vpage))
2998		pageflags |= LOCK_PAGE;
2999
3000	/*
3001	 * Allocate a private page and perform the copy.
3002	 * For MAP_NORESERVE reserve swap space now, unless this
3003	 * is a cow fault on an existing anon page in which case
3004	 * MAP_NORESERVE will have made advance reservations.
3005	 */
3006	if ((svd->flags & MAP_NORESERVE) && (ap == NULL)) {
3007		if (anon_resv_zone(ptob(1), seg->s_as->a_proc->p_zone)) {
3008			atomic_add_long(&svd->swresv, ptob(1));
3009			atomic_add_long(&seg->s_as->a_resvsize, ptob(1));
3010		} else {
3011			page_unlock(opp);
3012			err = ENOMEM;
3013			goto out;
3014		}
3015	}
3016	oldap = ap;
3017	pp = anon_private(&ap, seg, addr, prot, opp, pageflags, svd->cred);
3018	if (pp == NULL) {
3019		err = ENOMEM;	/* out of swap space */
3020		goto out;
3021	}
3022
3023	/*
3024	 * If we copied away from an anonymous page, then
3025	 * we are one step closer to freeing up an anon slot.
3026	 *
3027	 * NOTE:  The original anon slot must be released while
3028	 * holding the "anon_map" lock.  This is necessary to prevent
3029	 * other threads from obtaining a pointer to the anon slot
3030	 * which may be freed if its "refcnt" is 1.
3031	 */
3032	if (oldap != NULL)
3033		anon_decref(oldap);
3034
3035	(void) anon_set_ptr(amp->ahp, anon_index, ap, ANON_SLEEP);
3036
3037	/*
3038	 * Handle pages that have been marked for migration
3039	 */
3040	if (lgrp_optimizations())
3041		page_migrate(seg, addr, &pp, 1);
3042
3043	ASSERT(pp->p_szc == 0);
3044
3045	ASSERT(!IS_VMODSORT(pp->p_vnode));
3046	if (enable_mbit_wa) {
3047		if (rw == S_WRITE)
3048			hat_setmod(pp);
3049		else if (!hat_ismod(pp))
3050			prot &= ~PROT_WRITE;
3051	}
3052
3053	ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
3054	hat_memload(hat, addr, pp, prot, hat_flag);
3055
3056	if (!(hat_flag & HAT_LOAD_LOCK))
3057		page_unlock(pp);
3058
3059	ASSERT(anon_lock);
3060	anon_array_exit(&cookie);
3061	return (0);
3062out:
3063	if (anon_lock)
3064		anon_array_exit(&cookie);
3065
3066	if (type == F_SOFTLOCK) {
3067		atomic_add_long((ulong_t *)&svd->softlockcnt, -1);
3068	}
3069	return (FC_MAKE_ERR(err));
3070}
3071
3072/*
3073 * relocate a bunch of smaller targ pages into one large repl page. all targ
3074 * pages must be complete pages smaller than replacement pages.
3075 * it's assumed that no page's szc can change since they are all PAGESIZE or
3076 * complete large pages locked SHARED.
3077 */
3078static void
3079segvn_relocate_pages(page_t **targ, page_t *replacement)
3080{
3081	page_t *pp;
3082	pgcnt_t repl_npgs, curnpgs;
3083	pgcnt_t i;
3084	uint_t repl_szc = replacement->p_szc;
3085	page_t *first_repl = replacement;
3086	page_t *repl;
3087	spgcnt_t npgs;
3088
3089	VM_STAT_ADD(segvnvmstats.relocatepages[0]);
3090
3091	ASSERT(repl_szc != 0);
3092	npgs = repl_npgs = page_get_pagecnt(repl_szc);
3093
3094	i = 0;
3095	while (repl_npgs) {
3096		spgcnt_t nreloc;
3097		int err;
3098		ASSERT(replacement != NULL);
3099		pp = targ[i];
3100		ASSERT(pp->p_szc < repl_szc);
3101		ASSERT(PAGE_EXCL(pp));
3102		ASSERT(!PP_ISFREE(pp));
3103		curnpgs = page_get_pagecnt(pp->p_szc);
3104		if (curnpgs == 1) {
3105			VM_STAT_ADD(segvnvmstats.relocatepages[1]);
3106			repl = replacement;
3107			page_sub(&replacement, repl);
3108			ASSERT(PAGE_EXCL(repl));
3109			ASSERT(!PP_ISFREE(repl));
3110			ASSERT(repl->p_szc == repl_szc);
3111		} else {
3112			page_t *repl_savepp;
3113			int j;
3114			VM_STAT_ADD(segvnvmstats.relocatepages[2]);
3115			repl_savepp = replacement;
3116			for (j = 0; j < curnpgs; j++) {
3117				repl = replacement;
3118				page_sub(&replacement, repl);
3119				ASSERT(PAGE_EXCL(repl));
3120				ASSERT(!PP_ISFREE(repl));
3121				ASSERT(repl->p_szc == repl_szc);
3122				ASSERT(page_pptonum(targ[i + j]) ==
3123				    page_pptonum(targ[i]) + j);
3124			}
3125			repl = repl_savepp;
3126			ASSERT(IS_P2ALIGNED(page_pptonum(repl), curnpgs));
3127		}
3128		err = page_relocate(&pp, &repl, 0, 1, &nreloc, NULL);
3129		if (err || nreloc != curnpgs) {
3130			panic("segvn_relocate_pages: "
3131			    "page_relocate failed err=%d curnpgs=%ld "
3132			    "nreloc=%ld", err, curnpgs, nreloc);
3133		}
3134		ASSERT(curnpgs <= repl_npgs);
3135		repl_npgs -= curnpgs;
3136		i += curnpgs;
3137	}
3138	ASSERT(replacement == NULL);
3139
3140	repl = first_repl;
3141	repl_npgs = npgs;
3142	for (i = 0; i < repl_npgs; i++) {
3143		ASSERT(PAGE_EXCL(repl));
3144		ASSERT(!PP_ISFREE(repl));
3145		targ[i] = repl;
3146		page_downgrade(targ[i]);
3147		repl++;
3148	}
3149}
3150
3151/*
3152 * Check if all pages in ppa array are complete smaller than szc pages and
3153 * their roots will still be aligned relative to their current size if the
3154 * entire ppa array is relocated into one szc page. If these conditions are
3155 * not met return 0.
3156 *
3157 * If all pages are properly aligned attempt to upgrade their locks
3158 * to exclusive mode. If it fails set *upgrdfail to 1 and return 0.
3159 * upgrdfail was set to 0 by caller.
3160 *
3161 * Return 1 if all pages are aligned and locked exclusively.
3162 *
3163 * If all pages in ppa array happen to be physically contiguous to make one
3164 * szc page and all exclusive locks are successfully obtained promote the page
3165 * size to szc and set *pszc to szc. Return 1 with pages locked shared.
3166 */
3167static int
3168segvn_full_szcpages(page_t **ppa, uint_t szc, int *upgrdfail, uint_t *pszc)
3169{
3170	page_t *pp;
3171	pfn_t pfn;
3172	pgcnt_t totnpgs = page_get_pagecnt(szc);
3173	pfn_t first_pfn;
3174	int contig = 1;
3175	pgcnt_t i;
3176	pgcnt_t j;
3177	uint_t curszc;
3178	pgcnt_t curnpgs;
3179	int root = 0;
3180
3181	ASSERT(szc > 0);
3182
3183	VM_STAT_ADD(segvnvmstats.fullszcpages[0]);
3184
3185	for (i = 0; i < totnpgs; i++) {
3186		pp = ppa[i];
3187		ASSERT(PAGE_SHARED(pp));
3188		ASSERT(!PP_ISFREE(pp));
3189		pfn = page_pptonum(pp);
3190		if (i == 0) {
3191			if (!IS_P2ALIGNED(pfn, totnpgs)) {
3192				contig = 0;
3193			} else {
3194				first_pfn = pfn;
3195			}
3196		} else if (contig && pfn != first_pfn + i) {
3197			contig = 0;
3198		}
3199		if (pp->p_szc == 0) {
3200			if (root) {
3201				VM_STAT_ADD(segvnvmstats.fullszcpages[1]);
3202				return (0);
3203			}
3204		} else if (!root) {
3205			if ((curszc = pp->p_szc) >= szc) {
3206				VM_STAT_ADD(segvnvmstats.fullszcpages[2]);
3207				return (0);
3208			}
3209			if (curszc == 0) {
3210				/*
3211				 * p_szc changed means we don't have all pages
3212				 * locked. return failure.
3213				 */
3214				VM_STAT_ADD(segvnvmstats.fullszcpages[3]);
3215				return (0);
3216			}
3217			curnpgs = page_get_pagecnt(curszc);
3218			if (!IS_P2ALIGNED(pfn, curnpgs) ||
3219			    !IS_P2ALIGNED(i, curnpgs)) {
3220				VM_STAT_ADD(segvnvmstats.fullszcpages[4]);
3221				return (0);
3222			}
3223			root = 1;
3224		} else {
3225			ASSERT(i > 0);
3226			VM_STAT_ADD(segvnvmstats.fullszcpages[5]);
3227			if (pp->p_szc != curszc) {
3228				VM_STAT_ADD(segvnvmstats.fullszcpages[6]);
3229				return (0);
3230			}
3231			if (pfn - 1 != page_pptonum(ppa[i - 1])) {
3232				panic("segvn_full_szcpages: "
3233				    "large page not physically contiguous");
3234			}
3235			if (P2PHASE(pfn, curnpgs) == curnpgs - 1) {
3236				root = 0;
3237			}
3238		}
3239	}
3240
3241	for (i = 0; i < totnpgs; i++) {
3242		ASSERT(ppa[i]->p_szc < szc);
3243		if (!page_tryupgrade(ppa[i])) {
3244			for (j = 0; j < i; j++) {
3245				page_downgrade(ppa[j]);
3246			}
3247			*pszc = ppa[i]->p_szc;
3248			*upgrdfail = 1;
3249			VM_STAT_ADD(segvnvmstats.fullszcpages[7]);
3250			return (0);
3251		}
3252	}
3253
3254	/*
3255	 * When a page is put a free cachelist its szc is set to 0.  if file
3256	 * system reclaimed pages from cachelist targ pages will be physically
3257	 * contiguous with 0 p_szc.  in this case just upgrade szc of targ
3258	 * pages without any relocations.
3259	 * To avoid any hat issues with previous small mappings
3260	 * hat_pageunload() the target pages first.
3261	 */
3262	if (contig) {
3263		VM_STAT_ADD(segvnvmstats.fullszcpages[8]);
3264		for (i = 0; i < totnpgs; i++) {
3265			(void) hat_pageunload(ppa[i], HAT_FORCE_PGUNLOAD);
3266		}
3267		for (i = 0; i < totnpgs; i++) {
3268			ppa[i]->p_szc = szc;
3269		}
3270		for (i = 0; i < totnpgs; i++) {
3271			ASSERT(PAGE_EXCL(ppa[i]));
3272			page_downgrade(ppa[i]);
3273		}
3274		if (pszc != NULL) {
3275			*pszc = szc;
3276		}
3277	}
3278	VM_STAT_ADD(segvnvmstats.fullszcpages[9]);
3279	return (1);
3280}
3281
3282/*
3283 * Create physically contiguous pages for [vp, off] - [vp, off +
3284 * page_size(szc)) range and for private segment return them in ppa array.
3285 * Pages are created either via IO or relocations.
3286 *
3287 * Return 1 on success and 0 on failure.
3288 *
3289 * If physically contiguous pages already exist for this range return 1 without
3290 * filling ppa array. Caller initializes ppa[0] as NULL to detect that ppa
3291 * array wasn't filled. In this case caller fills ppa array via VOP_GETPAGE().
3292 */
3293
3294static int
3295segvn_fill_vp_pages(struct segvn_data *svd, vnode_t *vp, u_offset_t off,
3296    uint_t szc, page_t **ppa, page_t **ppplist, uint_t *ret_pszc,
3297    int *downsize)
3298
3299{
3300	page_t *pplist = *ppplist;
3301	size_t pgsz = page_get_pagesize(szc);
3302	pgcnt_t pages = btop(pgsz);
3303	ulong_t start_off = off;
3304	u_offset_t eoff = off + pgsz;
3305	spgcnt_t nreloc;
3306	u_offset_t io_off = off;
3307	size_t io_len;
3308	page_t *io_pplist = NULL;
3309	page_t *done_pplist = NULL;
3310	pgcnt_t pgidx = 0;
3311	page_t *pp;
3312	page_t *newpp;
3313	page_t *targpp;
3314	int io_err = 0;
3315	int i;
3316	pfn_t pfn;
3317	ulong_t ppages;
3318	page_t *targ_pplist = NULL;
3319	page_t *repl_pplist = NULL;
3320	page_t *tmp_pplist;
3321	int nios = 0;
3322	uint_t pszc;
3323	struct vattr va;
3324
3325	VM_STAT_ADD(segvnvmstats.fill_vp_pages[0]);
3326
3327	ASSERT(szc != 0);
3328	ASSERT(pplist->p_szc == szc);
3329
3330	/*
3331	 * downsize will be set to 1 only if we fail to lock pages. this will
3332	 * allow subsequent faults to try to relocate the page again. If we
3333	 * fail due to misalignment don't downsize and let the caller map the
3334	 * whole region with small mappings to avoid more faults into the area
3335	 * where we can't get large pages anyway.
3336	 */
3337	*downsize = 0;
3338
3339	while (off < eoff) {
3340		newpp = pplist;
3341		ASSERT(newpp != NULL);
3342		ASSERT(PAGE_EXCL(newpp));
3343		ASSERT(!PP_ISFREE(newpp));
3344		/*
3345		 * we pass NULL for nrelocp to page_lookup_create()
3346		 * so that it doesn't relocate. We relocate here
3347		 * later only after we make sure we can lock all
3348		 * pages in the range we handle and they are all
3349		 * aligned.
3350		 */
3351		pp = page_lookup_create(vp, off, SE_SHARED, newpp, NULL, 0);
3352		ASSERT(pp != NULL);
3353		ASSERT(!PP_ISFREE(pp));
3354		ASSERT(pp->p_vnode == vp);
3355		ASSERT(pp->p_offset == off);
3356		if (pp == newpp) {
3357			VM_STAT_ADD(segvnvmstats.fill_vp_pages[1]);
3358			page_sub(&pplist, pp);
3359			ASSERT(PAGE_EXCL(pp));
3360			ASSERT(page_iolock_assert(pp));
3361			page_list_concat(&io_pplist, &pp);
3362			off += PAGESIZE;
3363			continue;
3364		}
3365		VM_STAT_ADD(segvnvmstats.fill_vp_pages[2]);
3366		pfn = page_pptonum(pp);
3367		pszc = pp->p_szc;
3368		if (pszc >= szc && targ_pplist == NULL && io_pplist == NULL &&
3369		    IS_P2ALIGNED(pfn, pages)) {
3370			ASSERT(repl_pplist == NULL);
3371			ASSERT(done_pplist == NULL);
3372			ASSERT(pplist == *ppplist);
3373			page_unlock(pp);
3374			page_free_replacement_page(pplist);
3375			page_create_putback(pages);
3376			*ppplist = NULL;
3377			VM_STAT_ADD(segvnvmstats.fill_vp_pages[3]);
3378			return (1);
3379		}
3380		if (pszc >= szc) {
3381			page_unlock(pp);
3382			segvn_faultvnmpss_align_err1++;
3383			goto out;
3384		}
3385		ppages = page_get_pagecnt(pszc);
3386		if (!IS_P2ALIGNED(pfn, ppages)) {
3387			ASSERT(pszc > 0);
3388			/*
3389			 * sizing down to pszc won't help.
3390			 */
3391			page_unlock(pp);
3392			segvn_faultvnmpss_align_err2++;
3393			goto out;
3394		}
3395		pfn = page_pptonum(newpp);
3396		if (!IS_P2ALIGNED(pfn, ppages)) {
3397			ASSERT(pszc > 0);
3398			/*
3399			 * sizing down to pszc won't help.
3400			 */
3401			page_unlock(pp);
3402			segvn_faultvnmpss_align_err3++;
3403			goto out;
3404		}
3405		if (!PAGE_EXCL(pp)) {
3406			VM_STAT_ADD(segvnvmstats.fill_vp_pages[4]);
3407			page_unlock(pp);
3408			*downsize = 1;
3409			*ret_pszc = pp->p_szc;
3410			goto out;
3411		}
3412		targpp = pp;
3413		if (io_pplist != NULL) {
3414			VM_STAT_ADD(segvnvmstats.fill_vp_pages[5]);
3415			io_len = off - io_off;
3416			/*
3417			 * Some file systems like NFS don't check EOF
3418			 * conditions in VOP_PAGEIO(). Check it here
3419			 * now that pages are locked SE_EXCL. Any file
3420			 * truncation will wait until the pages are
3421			 * unlocked so no need to worry that file will
3422			 * be truncated after we check its size here.
3423			 * XXX fix NFS to remove this check.
3424			 */
3425			va.va_mask = AT_SIZE;
3426			if (VOP_GETATTR(vp, &va, ATTR_HINT, svd->cred, NULL)) {
3427				VM_STAT_ADD(segvnvmstats.fill_vp_pages[6]);
3428				page_unlock(targpp);
3429				goto out;
3430			}
3431			if (btopr(va.va_size) < btopr(io_off + io_len)) {
3432				VM_STAT_ADD(segvnvmstats.fill_vp_pages[7]);
3433				*downsize = 1;
3434				*ret_pszc = 0;
3435				page_unlock(targpp);
3436				goto out;
3437			}
3438			io_err = VOP_PAGEIO(vp, io_pplist, io_off, io_len,
3439				B_READ, svd->cred, NULL);
3440			if (io_err) {
3441				VM_STAT_ADD(segvnvmstats.fill_vp_pages[8]);
3442				page_unlock(targpp);
3443				if (io_err == EDEADLK) {
3444					segvn_vmpss_pageio_deadlk_err++;
3445				}
3446				goto out;
3447			}
3448			nios++;
3449			VM_STAT_ADD(segvnvmstats.fill_vp_pages[9]);
3450			while (io_pplist != NULL) {
3451				pp = io_pplist;
3452				page_sub(&io_pplist, pp);
3453				ASSERT(page_iolock_assert(pp));
3454				page_io_unlock(pp);
3455				pgidx = (pp->p_offset - start_off) >>
3456				    PAGESHIFT;
3457				ASSERT(pgidx < pages);
3458				ppa[pgidx] = pp;
3459				page_list_concat(&done_pplist, &pp);
3460			}
3461		}
3462		pp = targpp;
3463		ASSERT(PAGE_EXCL(pp));
3464		ASSERT(pp->p_szc <= pszc);
3465		if (pszc != 0 && !group_page_trylock(pp, SE_EXCL)) {
3466			VM_STAT_ADD(segvnvmstats.fill_vp_pages[10]);
3467			page_unlock(pp);
3468			*downsize = 1;
3469			*ret_pszc = pp->p_szc;
3470			goto out;
3471		}
3472		VM_STAT_ADD(segvnvmstats.fill_vp_pages[11]);
3473		/*
3474		 * page szc chould have changed before the entire group was
3475		 * locked. reread page szc.
3476		 */
3477		pszc = pp->p_szc;
3478		ppages = page_get_pagecnt(pszc);
3479
3480		/* link just the roots */
3481		page_list_concat(&targ_pplist, &pp);
3482		page_sub(&pplist, newpp);
3483		page_list_concat(&repl_pplist, &newpp);
3484		off += PAGESIZE;
3485		while (--ppages != 0) {
3486			newpp = pplist;
3487			page_sub(&pplist, newpp);
3488			off += PAGESIZE;
3489		}
3490		io_off = off;
3491	}
3492	if (io_pplist != NULL) {
3493		VM_STAT_ADD(segvnvmstats.fill_vp_pages[12]);
3494		io_len = eoff - io_off;
3495		va.va_mask = AT_SIZE;
3496		if (VOP_GETATTR(vp, &va, ATTR_HINT, svd->cred, NULL) != 0) {
3497			VM_STAT_ADD(segvnvmstats.fill_vp_pages[13]);
3498			goto out;
3499		}
3500		if (btopr(va.va_size) < btopr(io_off + io_len)) {
3501			VM_STAT_ADD(segvnvmstats.fill_vp_pages[14]);
3502			*downsize = 1;
3503			*ret_pszc = 0;
3504			goto out;
3505		}
3506		io_err = VOP_PAGEIO(vp, io_pplist, io_off, io_len,
3507		    B_READ, svd->cred, NULL);
3508		if (io_err) {
3509			VM_STAT_ADD(segvnvmstats.fill_vp_pages[15]);
3510			if (io_err == EDEADLK) {
3511				segvn_vmpss_pageio_deadlk_err++;
3512			}
3513			goto out;
3514		}
3515		nios++;
3516		while (io_pplist != NULL) {
3517			pp = io_pplist;
3518			page_sub(&io_pplist, pp);
3519			ASSERT(page_iolock_assert(pp));
3520			page_io_unlock(pp);
3521			pgidx = (pp->p_offset - start_off) >> PAGESHIFT;
3522			ASSERT(pgidx < pages);
3523			ppa[pgidx] = pp;
3524		}
3525	}
3526	/*
3527	 * we're now bound to succeed or panic.
3528	 * remove pages from done_pplist. it's not needed anymore.
3529	 */
3530	while (done_pplist != NULL) {
3531		pp = done_pplist;
3532		page_sub(&done_pplist, pp);
3533	}
3534	VM_STAT_ADD(segvnvmstats.fill_vp_pages[16]);
3535	ASSERT(pplist == NULL);
3536	*ppplist = NULL;
3537	while (targ_pplist != NULL) {
3538		int ret;
3539		VM_STAT_ADD(segvnvmstats.fill_vp_pages[17]);
3540		ASSERT(repl_pplist);
3541		pp = targ_pplist;
3542		page_sub(&targ_pplist, pp);
3543		pgidx = (pp->p_offset - start_off) >> PAGESHIFT;
3544		newpp = repl_pplist;
3545		page_sub(&repl_pplist, newpp);
3546#ifdef DEBUG
3547		pfn = page_pptonum(pp);
3548		pszc = pp->p_szc;
3549		ppages = page_get_pagecnt(pszc);
3550		ASSERT(IS_P2ALIGNED(pfn, ppages));
3551		pfn = page_pptonum(newpp);
3552		ASSERT(IS_P2ALIGNED(pfn, ppages));
3553		ASSERT(P2PHASE(pfn, pages) == pgidx);
3554#endif
3555		nreloc = 0;
3556		ret = page_relocate(&pp, &newpp, 0, 1, &nreloc, NULL);
3557		if (ret != 0 || nreloc == 0) {
3558			panic("segvn_fill_vp_pages: "
3559			    "page_relocate failed");
3560		}
3561		pp = newpp;
3562		while (nreloc-- != 0) {
3563			ASSERT(PAGE_EXCL(pp));
3564			ASSERT(pp->p_vnode == vp);
3565			ASSERT(pgidx ==
3566			    ((pp->p_offset - start_off) >> PAGESHIFT));
3567			ppa[pgidx++] = pp;
3568			pp++;
3569		}
3570	}
3571
3572	if (svd->type == MAP_PRIVATE) {
3573		VM_STAT_ADD(segvnvmstats.fill_vp_pages[18]);
3574		for (i = 0; i < pages; i++) {
3575			ASSERT(ppa[i] != NULL);
3576			ASSERT(PAGE_EXCL(ppa[i]));
3577			ASSERT(ppa[i]->p_vnode == vp);
3578			ASSERT(ppa[i]->p_offset ==
3579			    start_off + (i << PAGESHIFT));
3580			page_downgrade(ppa[i]);
3581		}
3582		ppa[pages] = NULL;
3583	} else {
3584		VM_STAT_ADD(segvnvmstats.fill_vp_pages[19]);
3585		/*
3586		 * the caller will still call VOP_GETPAGE() for shared segments
3587		 * to check FS write permissions. For private segments we map
3588		 * file read only anyway.  so no VOP_GETPAGE is needed.
3589		 */
3590		for (i = 0; i < pages; i++) {
3591			ASSERT(ppa[i] != NULL);
3592			ASSERT(PAGE_EXCL(ppa[i]));
3593			ASSERT(ppa[i]->p_vnode == vp);
3594			ASSERT(ppa[i]->p_offset ==
3595			    start_off + (i << PAGESHIFT));
3596			page_unlock(ppa[i]);
3597		}
3598		ppa[0] = NULL;
3599	}
3600
3601	return (1);
3602out:
3603	/*
3604	 * Do the cleanup. Unlock target pages we didn't relocate. They are
3605	 * linked on targ_pplist by root pages. reassemble unused replacement
3606	 * and io pages back to pplist.
3607	 */
3608	if (io_pplist != NULL) {
3609		VM_STAT_ADD(segvnvmstats.fill_vp_pages[20]);
3610		pp = io_pplist;
3611		do {
3612			ASSERT(pp->p_vnode == vp);
3613			ASSERT(pp->p_offset == io_off);
3614			ASSERT(page_iolock_assert(pp));
3615			page_io_unlock(pp);
3616			page_hashout(pp, NULL);
3617			io_off += PAGESIZE;
3618		} while ((pp = pp->p_next) != io_pplist);
3619		page_list_concat(&io_pplist, &pplist);
3620		pplist = io_pplist;
3621	}
3622	tmp_pplist = NULL;
3623	while (targ_pplist != NULL) {
3624		VM_STAT_ADD(segvnvmstats.fill_vp_pages[21]);
3625		pp = targ_pplist;
3626		ASSERT(PAGE_EXCL(pp));
3627		page_sub(&targ_pplist, pp);
3628
3629		pszc = pp->p_szc;
3630		ppages = page_get_pagecnt(pszc);
3631		ASSERT(IS_P2ALIGNED(page_pptonum(pp), ppages));
3632
3633		if (pszc != 0) {
3634			group_page_unlock(pp);
3635		}
3636		page_unlock(pp);
3637
3638		pp = repl_pplist;
3639		ASSERT(pp != NULL);
3640		ASSERT(PAGE_EXCL(pp));
3641		ASSERT(pp->p_szc == szc);
3642		page_sub(&repl_pplist, pp);
3643
3644		ASSERT(IS_P2ALIGNED(page_pptonum(pp), ppages));
3645
3646		/* relink replacement page */
3647		page_list_concat(&tmp_pplist, &pp);
3648		while (--ppages != 0) {
3649			VM_STAT_ADD(segvnvmstats.fill_vp_pages[22]);
3650			pp++;
3651			ASSERT(PAGE_EXCL(pp));
3652			ASSERT(pp->p_szc == szc);
3653			page_list_concat(&tmp_pplist, &pp);
3654		}
3655	}
3656	if (tmp_pplist != NULL) {
3657		VM_STAT_ADD(segvnvmstats.fill_vp_pages[23]);
3658		page_list_concat(&tmp_pplist, &pplist);
3659		pplist = tmp_pplist;
3660	}
3661	/*
3662	 * at this point all pages are either on done_pplist or
3663	 * pplist. They can't be all on done_pplist otherwise
3664	 * we'd've been done.
3665	 */
3666	ASSERT(pplist != NULL);
3667	if (nios != 0) {
3668		VM_STAT_ADD(segvnvmstats.fill_vp_pages[24]);
3669		pp = pplist;
3670		do {
3671			VM_STAT_ADD(segvnvmstats.fill_vp_pages[25]);
3672			ASSERT(pp->p_szc == szc);
3673			ASSERT(PAGE_EXCL(pp));
3674			ASSERT(pp->p_vnode != vp);
3675			pp->p_szc = 0;
3676		} while ((pp = pp->p_next) != pplist);
3677
3678		pp = done_pplist;
3679		do {
3680			VM_STAT_ADD(segvnvmstats.fill_vp_pages[26]);
3681			ASSERT(pp->p_szc == szc);
3682			ASSERT(PAGE_EXCL(pp));
3683			ASSERT(pp->p_vnode == vp);
3684			pp->p_szc = 0;
3685		} while ((pp = pp->p_next) != done_pplist);
3686
3687		while (pplist != NULL) {
3688			VM_STAT_ADD(segvnvmstats.fill_vp_pages[27]);
3689			pp = pplist;
3690			page_sub(&pplist, pp);
3691			page_free(pp, 0);
3692		}
3693
3694		while (done_pplist != NULL) {
3695			VM_STAT_ADD(segvnvmstats.fill_vp_pages[28]);
3696			pp = done_pplist;
3697			page_sub(&done_pplist, pp);
3698			page_unlock(pp);
3699		}
3700		*ppplist = NULL;
3701		return (0);
3702	}
3703	ASSERT(pplist == *ppplist);
3704	if (io_err) {
3705		VM_STAT_ADD(segvnvmstats.fill_vp_pages[29]);
3706		/*
3707		 * don't downsize on io error.
3708		 * see if vop_getpage succeeds.
3709		 * pplist may still be used in this case
3710		 * for relocations.
3711		 */
3712		return (0);
3713	}
3714	VM_STAT_ADD(segvnvmstats.fill_vp_pages[30]);
3715	page_free_replacement_page(pplist);
3716	page_create_putback(pages);
3717	*ppplist = NULL;
3718	return (0);
3719}
3720
3721int segvn_anypgsz = 0;
3722
3723#define	SEGVN_RESTORE_SOFTLOCK_VP(type, pages) 				\
3724		if ((type) == F_SOFTLOCK) {				\
3725			atomic_add_long((ulong_t *)&(svd)->softlockcnt, \
3726			    -(pages));					\
3727		}
3728
3729#define	SEGVN_UPDATE_MODBITS(ppa, pages, rw, prot, vpprot)		\
3730		if (IS_VMODSORT((ppa)[0]->p_vnode)) {			\
3731			if ((rw) == S_WRITE) {				\
3732				for (i = 0; i < (pages); i++) {		\
3733					ASSERT((ppa)[i]->p_vnode ==	\
3734					    (ppa)[0]->p_vnode);		\
3735					hat_setmod((ppa)[i]);		\
3736				}					\
3737			} else if ((rw) != S_OTHER &&			\
3738			    ((prot) & (vpprot) & PROT_WRITE)) {		\
3739				for (i = 0; i < (pages); i++) {		\
3740					ASSERT((ppa)[i]->p_vnode ==	\
3741					    (ppa)[0]->p_vnode);		\
3742					if (!hat_ismod((ppa)[i])) {	\
3743						prot &= ~PROT_WRITE;	\
3744						break;			\
3745					}				\
3746				}					\
3747			}						\
3748		}
3749
3750#ifdef  VM_STATS
3751
3752#define	SEGVN_VMSTAT_FLTVNPAGES(idx)					\
3753		VM_STAT_ADD(segvnvmstats.fltvnpages[(idx)]);
3754
3755#else /* VM_STATS */
3756
3757#define	SEGVN_VMSTAT_FLTVNPAGES(idx)
3758
3759#endif
3760
3761static faultcode_t
3762segvn_fault_vnodepages(struct hat *hat, struct seg *seg, caddr_t lpgaddr,
3763    caddr_t lpgeaddr, enum fault_type type, enum seg_rw rw, caddr_t addr,
3764    caddr_t eaddr, int brkcow)
3765{
3766	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
3767	struct anon_map *amp = svd->amp;
3768	uchar_t segtype = svd->type;
3769	uint_t szc = seg->s_szc;
3770	size_t pgsz = page_get_pagesize(szc);
3771	size_t maxpgsz = pgsz;
3772	pgcnt_t pages = btop(pgsz);
3773	pgcnt_t maxpages = pages;
3774	size_t ppasize = (pages + 1) * sizeof (page_t *);
3775	caddr_t a = lpgaddr;
3776	caddr_t	maxlpgeaddr = lpgeaddr;
3777	u_offset_t off = svd->offset + (uintptr_t)(a - seg->s_base);
3778	ulong_t aindx = svd->anon_index + seg_page(seg, a);
3779	struct vpage *vpage = (svd->vpage != NULL) ?
3780	    &svd->vpage[seg_page(seg, a)] : NULL;
3781	vnode_t *vp = svd->vp;
3782	page_t **ppa;
3783	uint_t	pszc;
3784	size_t	ppgsz;
3785	pgcnt_t	ppages;
3786	faultcode_t err = 0;
3787	int ierr;
3788	int vop_size_err = 0;
3789	uint_t protchk, prot, vpprot;
3790	ulong_t i;
3791	int hat_flag = (type == F_SOFTLOCK) ? HAT_LOAD_LOCK : HAT_LOAD;
3792	anon_sync_obj_t an_cookie;
3793	enum seg_rw arw;
3794	int alloc_failed = 0;
3795	int adjszc_chk;
3796	struct vattr va;
3797	int xhat = 0;
3798	page_t *pplist;
3799	pfn_t pfn;
3800	int physcontig;
3801	int upgrdfail;
3802	int segvn_anypgsz_vnode = 0; /* for now map vnode with 2 page sizes */
3803	int tron = (svd->tr_state == SEGVN_TR_ON);
3804
3805	ASSERT(szc != 0);
3806	ASSERT(vp != NULL);
3807	ASSERT(brkcow == 0 || amp != NULL);
3808	ASSERT(tron == 0 || amp != NULL);
3809	ASSERT(enable_mbit_wa == 0); /* no mbit simulations with large pages */
3810	ASSERT(!(svd->flags & MAP_NORESERVE));
3811	ASSERT(type != F_SOFTUNLOCK);
3812	ASSERT(IS_P2ALIGNED(a, maxpgsz));
3813	ASSERT(amp == NULL || IS_P2ALIGNED(aindx, maxpages));
3814	ASSERT(SEGVN_LOCK_HELD(seg->s_as, &svd->lock));
3815	ASSERT(seg->s_szc < NBBY * sizeof (int));
3816	ASSERT(type != F_SOFTLOCK || lpgeaddr - a == maxpgsz);
3817	ASSERT(svd->tr_state != SEGVN_TR_INIT);
3818
3819	VM_STAT_COND_ADD(type == F_SOFTLOCK, segvnvmstats.fltvnpages[0]);
3820	VM_STAT_COND_ADD(type != F_SOFTLOCK, segvnvmstats.fltvnpages[1]);
3821
3822	if (svd->flags & MAP_TEXT) {
3823		hat_flag |= HAT_LOAD_TEXT;
3824	}
3825
3826	if (svd->pageprot) {
3827		switch (rw) {
3828		case S_READ:
3829			protchk = PROT_READ;
3830			break;
3831		case S_WRITE:
3832			protchk = PROT_WRITE;
3833			break;
3834		case S_EXEC:
3835			protchk = PROT_EXEC;
3836			break;
3837		case S_OTHER:
3838		default:
3839			protchk = PROT_READ | PROT_WRITE | PROT_EXEC;
3840			break;
3841		}
3842	} else {
3843		prot = svd->prot;
3844		/* caller has already done segment level protection check. */
3845	}
3846
3847	if (seg->s_as->a_hat != hat) {
3848		xhat = 1;
3849	}
3850
3851	if (rw == S_WRITE && segtype == MAP_PRIVATE) {
3852		SEGVN_VMSTAT_FLTVNPAGES(2);
3853		arw = S_READ;
3854	} else {
3855		arw = rw;
3856	}
3857
3858	ppa = kmem_alloc(ppasize, KM_SLEEP);
3859
3860	VM_STAT_COND_ADD(amp != NULL, segvnvmstats.fltvnpages[3]);
3861
3862	for (;;) {
3863		adjszc_chk = 0;
3864		for (; a < lpgeaddr; a += pgsz, off += pgsz, aindx += pages) {
3865			if (adjszc_chk) {
3866				while (szc < seg->s_szc) {
3867					uintptr_t e;
3868					uint_t tszc;
3869					tszc = segvn_anypgsz_vnode ? szc + 1 :
3870					    seg->s_szc;
3871					ppgsz = page_get_pagesize(tszc);
3872					if (!IS_P2ALIGNED(a, ppgsz) ||
3873					    ((alloc_failed >> tszc) & 0x1)) {
3874						break;
3875					}
3876					SEGVN_VMSTAT_FLTVNPAGES(4);
3877					szc = tszc;
3878					pgsz = ppgsz;
3879					pages = btop(pgsz);
3880					e = P2ROUNDUP((uintptr_t)eaddr, pgsz);
3881					lpgeaddr = (caddr_t)e;
3882				}
3883			}
3884
3885		again:
3886			if (IS_P2ALIGNED(a, maxpgsz) && amp != NULL) {
3887				ASSERT(IS_P2ALIGNED(aindx, maxpages));
3888				ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
3889				anon_array_enter(amp, aindx, &an_cookie);
3890				if (anon_get_ptr(amp->ahp, aindx) != NULL) {
3891					SEGVN_VMSTAT_FLTVNPAGES(5);
3892					ASSERT(anon_pages(amp->ahp, aindx,
3893					    maxpages) == maxpages);
3894					anon_array_exit(&an_cookie);
3895					ANON_LOCK_EXIT(&amp->a_rwlock);
3896					err = segvn_fault_anonpages(hat, seg,
3897					    a, a + maxpgsz, type, rw,
3898					    MAX(a, addr),
3899					    MIN(a + maxpgsz, eaddr), brkcow);
3900					if (err != 0) {
3901						SEGVN_VMSTAT_FLTVNPAGES(6);
3902						goto out;
3903					}
3904					if (szc < seg->s_szc) {
3905						szc = seg->s_szc;
3906						pgsz = maxpgsz;
3907						pages = maxpages;
3908						lpgeaddr = maxlpgeaddr;
3909					}
3910					goto next;
3911				} else {
3912					ASSERT(anon_pages(amp->ahp, aindx,
3913					    maxpages) == 0);
3914					SEGVN_VMSTAT_FLTVNPAGES(7);
3915					anon_array_exit(&an_cookie);
3916					ANON_LOCK_EXIT(&amp->a_rwlock);
3917				}
3918			}
3919			ASSERT(!brkcow || IS_P2ALIGNED(a, maxpgsz));
3920			ASSERT(!tron || IS_P2ALIGNED(a, maxpgsz));
3921
3922			if (svd->pageprot != 0 && IS_P2ALIGNED(a, maxpgsz)) {
3923				ASSERT(vpage != NULL);
3924				prot = VPP_PROT(vpage);
3925				ASSERT(sameprot(seg, a, maxpgsz));
3926				if ((prot & protchk) == 0) {
3927					SEGVN_VMSTAT_FLTVNPAGES(8);
3928					err = FC_PROT;
3929					goto out;
3930				}
3931			}
3932			if (type == F_SOFTLOCK) {
3933				atomic_add_long((ulong_t *)&svd->softlockcnt,
3934				    pages);
3935			}
3936
3937			pplist = NULL;
3938			physcontig = 0;
3939			ppa[0] = NULL;
3940			if (!brkcow && !tron && szc &&
3941			    !page_exists_physcontig(vp, off, szc,
3942			    segtype == MAP_PRIVATE ? ppa : NULL)) {
3943				SEGVN_VMSTAT_FLTVNPAGES(9);
3944				if (page_alloc_pages(vp, seg, a, &pplist, NULL,
3945				    szc, 0, 0) && type != F_SOFTLOCK) {
3946					SEGVN_VMSTAT_FLTVNPAGES(10);
3947					pszc = 0;
3948					ierr = -1;
3949					alloc_failed |= (1 << szc);
3950					break;
3951				}
3952				if (pplist != NULL &&
3953				    vp->v_mpssdata == SEGVN_PAGEIO) {
3954					int downsize;
3955					SEGVN_VMSTAT_FLTVNPAGES(11);
3956					physcontig = segvn_fill_vp_pages(svd,
3957					    vp, off, szc, ppa, &pplist,
3958					    &pszc, &downsize);
3959					ASSERT(!physcontig || pplist == NULL);
3960					if (!physcontig && downsize &&
3961					    type != F_SOFTLOCK) {
3962						ASSERT(pplist == NULL);
3963						SEGVN_VMSTAT_FLTVNPAGES(12);
3964						ierr = -1;
3965						break;
3966					}
3967					ASSERT(!physcontig ||
3968					    segtype == MAP_PRIVATE ||
3969					    ppa[0] == NULL);
3970					if (physcontig && ppa[0] == NULL) {
3971						physcontig = 0;
3972					}
3973				}
3974			} else if (!brkcow && !tron && szc && ppa[0] != NULL) {
3975				SEGVN_VMSTAT_FLTVNPAGES(13);
3976				ASSERT(segtype == MAP_PRIVATE);
3977				physcontig = 1;
3978			}
3979
3980			if (!physcontig) {
3981				SEGVN_VMSTAT_FLTVNPAGES(14);
3982				ppa[0] = NULL;
3983				ierr = VOP_GETPAGE(vp, (offset_t)off, pgsz,
3984				    &vpprot, ppa, pgsz, seg, a, arw,
3985				    svd->cred, NULL);
3986#ifdef DEBUG
3987				if (ierr == 0) {
3988					for (i = 0; i < pages; i++) {
3989						ASSERT(PAGE_LOCKED(ppa[i]));
3990						ASSERT(!PP_ISFREE(ppa[i]));
3991						ASSERT(ppa[i]->p_vnode == vp);
3992						ASSERT(ppa[i]->p_offset ==
3993						    off + (i << PAGESHIFT));
3994					}
3995				}
3996#endif /* DEBUG */
3997				if (segtype == MAP_PRIVATE) {
3998					SEGVN_VMSTAT_FLTVNPAGES(15);
3999					vpprot &= ~PROT_WRITE;
4000				}
4001			} else {
4002				ASSERT(segtype == MAP_PRIVATE);
4003				SEGVN_VMSTAT_FLTVNPAGES(16);
4004				vpprot = PROT_ALL & ~PROT_WRITE;
4005				ierr = 0;
4006			}
4007
4008			if (ierr != 0) {
4009				SEGVN_VMSTAT_FLTVNPAGES(17);
4010				if (pplist != NULL) {
4011					SEGVN_VMSTAT_FLTVNPAGES(18);
4012					page_free_replacement_page(pplist);
4013					page_create_putback(pages);
4014				}
4015				SEGVN_RESTORE_SOFTLOCK_VP(type, pages);
4016				if (a + pgsz <= eaddr) {
4017					SEGVN_VMSTAT_FLTVNPAGES(19);
4018					err = FC_MAKE_ERR(ierr);
4019					goto out;
4020				}
4021				va.va_mask = AT_SIZE;
4022				if (VOP_GETATTR(vp, &va, 0, svd->cred, NULL)) {
4023					SEGVN_VMSTAT_FLTVNPAGES(20);
4024					err = FC_MAKE_ERR(EIO);
4025					goto out;
4026				}
4027				if (btopr(va.va_size) >= btopr(off + pgsz)) {
4028					SEGVN_VMSTAT_FLTVNPAGES(21);
4029					err = FC_MAKE_ERR(ierr);
4030					goto out;
4031				}
4032				if (btopr(va.va_size) <
4033				    btopr(off + (eaddr - a))) {
4034					SEGVN_VMSTAT_FLTVNPAGES(22);
4035					err = FC_MAKE_ERR(ierr);
4036					goto out;
4037				}
4038				if (brkcow || tron || type == F_SOFTLOCK) {
4039					/* can't reduce map area */
4040					SEGVN_VMSTAT_FLTVNPAGES(23);
4041					vop_size_err = 1;
4042					goto out;
4043				}
4044				SEGVN_VMSTAT_FLTVNPAGES(24);
4045				ASSERT(szc != 0);
4046				pszc = 0;
4047				ierr = -1;
4048				break;
4049			}
4050
4051			if (amp != NULL) {
4052				ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
4053				anon_array_enter(amp, aindx, &an_cookie);
4054			}
4055			if (amp != NULL &&
4056			    anon_get_ptr(amp->ahp, aindx) != NULL) {
4057				ulong_t taindx = P2ALIGN(aindx, maxpages);
4058
4059				SEGVN_VMSTAT_FLTVNPAGES(25);
4060				ASSERT(anon_pages(amp->ahp, taindx,
4061				    maxpages) == maxpages);
4062				for (i = 0; i < pages; i++) {
4063					page_unlock(ppa[i]);
4064				}
4065				anon_array_exit(&an_cookie);
4066				ANON_LOCK_EXIT(&amp->a_rwlock);
4067				if (pplist != NULL) {
4068					page_free_replacement_page(pplist);
4069					page_create_putback(pages);
4070				}
4071				SEGVN_RESTORE_SOFTLOCK_VP(type, pages);
4072				if (szc < seg->s_szc) {
4073					SEGVN_VMSTAT_FLTVNPAGES(26);
4074					/*
4075					 * For private segments SOFTLOCK
4076					 * either always breaks cow (any rw
4077					 * type except S_READ_NOCOW) or
4078					 * address space is locked as writer
4079					 * (S_READ_NOCOW case) and anon slots
4080					 * can't show up on second check.
4081					 * Therefore if we are here for
4082					 * SOFTLOCK case it must be a cow
4083					 * break but cow break never reduces
4084					 * szc. text replication (tron) in
4085					 * this case works as cow break.
4086					 * Thus the assert below.
4087					 */
4088					ASSERT(!brkcow && !tron &&
4089					    type != F_SOFTLOCK);
4090					pszc = seg->s_szc;
4091					ierr = -2;
4092					break;
4093				}
4094				ASSERT(IS_P2ALIGNED(a, maxpgsz));
4095				goto again;
4096			}
4097#ifdef DEBUG
4098			if (amp != NULL) {
4099				ulong_t taindx = P2ALIGN(aindx, maxpages);
4100				ASSERT(!anon_pages(amp->ahp, taindx, maxpages));
4101			}
4102#endif /* DEBUG */
4103
4104			if (brkcow || tron) {
4105				ASSERT(amp != NULL);
4106				ASSERT(pplist == NULL);
4107				ASSERT(szc == seg->s_szc);
4108				ASSERT(IS_P2ALIGNED(a, maxpgsz));
4109				ASSERT(IS_P2ALIGNED(aindx, maxpages));
4110				SEGVN_VMSTAT_FLTVNPAGES(27);
4111				ierr = anon_map_privatepages(amp, aindx, szc,
4112				    seg, a, prot, ppa, vpage, segvn_anypgsz,
4113				    tron ? PG_LOCAL : 0, svd->cred);
4114				if (ierr != 0) {
4115					SEGVN_VMSTAT_FLTVNPAGES(28);
4116					anon_array_exit(&an_cookie);
4117					ANON_LOCK_EXIT(&amp->a_rwlock);
4118					SEGVN_RESTORE_SOFTLOCK_VP(type, pages);
4119					err = FC_MAKE_ERR(ierr);
4120					goto out;
4121				}
4122
4123				ASSERT(!IS_VMODSORT(ppa[0]->p_vnode));
4124				/*
4125				 * p_szc can't be changed for locked
4126				 * swapfs pages.
4127				 */
4128				ASSERT(svd->rcookie ==
4129				    HAT_INVALID_REGION_COOKIE);
4130				hat_memload_array(hat, a, pgsz, ppa, prot,
4131				    hat_flag);
4132
4133				if (!(hat_flag & HAT_LOAD_LOCK)) {
4134					SEGVN_VMSTAT_FLTVNPAGES(29);
4135					for (i = 0; i < pages; i++) {
4136						page_unlock(ppa[i]);
4137					}
4138				}
4139				anon_array_exit(&an_cookie);
4140				ANON_LOCK_EXIT(&amp->a_rwlock);
4141				goto next;
4142			}
4143
4144			ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE ||
4145			    (!svd->pageprot && svd->prot == (prot & vpprot)));
4146
4147			pfn = page_pptonum(ppa[0]);
4148			/*
4149			 * hat_page_demote() needs an SE_EXCL lock on one of
4150			 * constituent page_t's and it decreases root's p_szc
4151			 * last. This means if root's p_szc is equal szc and
4152			 * all its constituent pages are locked
4153			 * hat_page_demote() that could have changed p_szc to
4154			 * szc is already done and no new have page_demote()
4155			 * can start for this large page.
4156			 */
4157
4158			/*
4159			 * we need to make sure same mapping size is used for
4160			 * the same address range if there's a possibility the
4161			 * adddress is already mapped because hat layer panics
4162			 * when translation is loaded for the range already
4163			 * mapped with a different page size.  We achieve it
4164			 * by always using largest page size possible subject
4165			 * to the constraints of page size, segment page size
4166			 * and page alignment.  Since mappings are invalidated
4167			 * when those constraints change and make it
4168			 * impossible to use previously used mapping size no
4169			 * mapping size conflicts should happen.
4170			 */
4171
4172		chkszc:
4173			if ((pszc = ppa[0]->p_szc) == szc &&
4174			    IS_P2ALIGNED(pfn, pages)) {
4175
4176				SEGVN_VMSTAT_FLTVNPAGES(30);
4177#ifdef DEBUG
4178				for (i = 0; i < pages; i++) {
4179					ASSERT(PAGE_LOCKED(ppa[i]));
4180					ASSERT(!PP_ISFREE(ppa[i]));
4181					ASSERT(page_pptonum(ppa[i]) ==
4182					    pfn + i);
4183					ASSERT(ppa[i]->p_szc == szc);
4184					ASSERT(ppa[i]->p_vnode == vp);
4185					ASSERT(ppa[i]->p_offset ==
4186					    off + (i << PAGESHIFT));
4187				}
4188#endif /* DEBUG */
4189				/*
4190				 * All pages are of szc we need and they are
4191				 * all locked so they can't change szc. load
4192				 * translations.
4193				 *
4194				 * if page got promoted since last check
4195				 * we don't need pplist.
4196				 */
4197				if (pplist != NULL) {
4198					page_free_replacement_page(pplist);
4199					page_create_putback(pages);
4200				}
4201				if (PP_ISMIGRATE(ppa[0])) {
4202					page_migrate(seg, a, ppa, pages);
4203				}
4204				SEGVN_UPDATE_MODBITS(ppa, pages, rw,
4205				    prot, vpprot);
4206				if (!xhat) {
4207					hat_memload_array_region(hat, a, pgsz,
4208					    ppa, prot & vpprot, hat_flag,
4209					    svd->rcookie);
4210				} else {
4211					/*
4212					 * avoid large xhat mappings to FS
4213					 * pages so that hat_page_demote()
4214					 * doesn't need to check for xhat
4215					 * large mappings.
4216					 * Don't use regions with xhats.
4217					 */
4218					for (i = 0; i < pages; i++) {
4219						hat_memload(hat,
4220						    a + (i << PAGESHIFT),
4221						    ppa[i], prot & vpprot,
4222						    hat_flag);
4223					}
4224				}
4225
4226				if (!(hat_flag & HAT_LOAD_LOCK)) {
4227					for (i = 0; i < pages; i++) {
4228						page_unlock(ppa[i]);
4229					}
4230				}
4231				if (amp != NULL) {
4232					anon_array_exit(&an_cookie);
4233					ANON_LOCK_EXIT(&amp->a_rwlock);
4234				}
4235				goto next;
4236			}
4237
4238			/*
4239			 * See if upsize is possible.
4240			 */
4241			if (pszc > szc && szc < seg->s_szc &&
4242			    (segvn_anypgsz_vnode || pszc >= seg->s_szc)) {
4243				pgcnt_t aphase;
4244				uint_t pszc1 = MIN(pszc, seg->s_szc);
4245				ppgsz = page_get_pagesize(pszc1);
4246				ppages = btop(ppgsz);
4247				aphase = btop(P2PHASE((uintptr_t)a, ppgsz));
4248
4249				ASSERT(type != F_SOFTLOCK);
4250
4251				SEGVN_VMSTAT_FLTVNPAGES(31);
4252				if (aphase != P2PHASE(pfn, ppages)) {
4253					segvn_faultvnmpss_align_err4++;
4254				} else {
4255					SEGVN_VMSTAT_FLTVNPAGES(32);
4256					if (pplist != NULL) {
4257						page_t *pl = pplist;
4258						page_free_replacement_page(pl);
4259						page_create_putback(pages);
4260					}
4261					for (i = 0; i < pages; i++) {
4262						page_unlock(ppa[i]);
4263					}
4264					if (amp != NULL) {
4265						anon_array_exit(&an_cookie);
4266						ANON_LOCK_EXIT(&amp->a_rwlock);
4267					}
4268					pszc = pszc1;
4269					ierr = -2;
4270					break;
4271				}
4272			}
4273
4274			/*
4275			 * check if we should use smallest mapping size.
4276			 */
4277			upgrdfail = 0;
4278			if (szc == 0 || xhat ||
4279			    (pszc >= szc &&
4280			    !IS_P2ALIGNED(pfn, pages)) ||
4281			    (pszc < szc &&
4282			    !segvn_full_szcpages(ppa, szc, &upgrdfail,
4283			    &pszc))) {
4284
4285				if (upgrdfail && type != F_SOFTLOCK) {
4286					/*
4287					 * segvn_full_szcpages failed to lock
4288					 * all pages EXCL. Size down.
4289					 */
4290					ASSERT(pszc < szc);
4291
4292					SEGVN_VMSTAT_FLTVNPAGES(33);
4293
4294					if (pplist != NULL) {
4295						page_t *pl = pplist;
4296						page_free_replacement_page(pl);
4297						page_create_putback(pages);
4298					}
4299
4300					for (i = 0; i < pages; i++) {
4301						page_unlock(ppa[i]);
4302					}
4303					if (amp != NULL) {
4304						anon_array_exit(&an_cookie);
4305						ANON_LOCK_EXIT(&amp->a_rwlock);
4306					}
4307					ierr = -1;
4308					break;
4309				}
4310				if (szc != 0 && !xhat && !upgrdfail) {
4311					segvn_faultvnmpss_align_err5++;
4312				}
4313				SEGVN_VMSTAT_FLTVNPAGES(34);
4314				if (pplist != NULL) {
4315					page_free_replacement_page(pplist);
4316					page_create_putback(pages);
4317				}
4318				SEGVN_UPDATE_MODBITS(ppa, pages, rw,
4319				    prot, vpprot);
4320				if (upgrdfail && segvn_anypgsz_vnode) {
4321					/* SOFTLOCK case */
4322					hat_memload_array_region(hat, a, pgsz,
4323					    ppa, prot & vpprot, hat_flag,
4324					    svd->rcookie);
4325				} else {
4326					for (i = 0; i < pages; i++) {
4327						hat_memload_region(hat,
4328						    a + (i << PAGESHIFT),
4329						    ppa[i], prot & vpprot,
4330						    hat_flag, svd->rcookie);
4331					}
4332				}
4333				if (!(hat_flag & HAT_LOAD_LOCK)) {
4334					for (i = 0; i < pages; i++) {
4335						page_unlock(ppa[i]);
4336					}
4337				}
4338				if (amp != NULL) {
4339					anon_array_exit(&an_cookie);
4340					ANON_LOCK_EXIT(&amp->a_rwlock);
4341				}
4342				goto next;
4343			}
4344
4345			if (pszc == szc) {
4346				/*
4347				 * segvn_full_szcpages() upgraded pages szc.
4348				 */
4349				ASSERT(pszc == ppa[0]->p_szc);
4350				ASSERT(IS_P2ALIGNED(pfn, pages));
4351				goto chkszc;
4352			}
4353
4354			if (pszc > szc) {
4355				kmutex_t *szcmtx;
4356				SEGVN_VMSTAT_FLTVNPAGES(35);
4357				/*
4358				 * p_szc of ppa[0] can change since we haven't
4359				 * locked all constituent pages. Call
4360				 * page_lock_szc() to prevent szc changes.
4361				 * This should be a rare case that happens when
4362				 * multiple segments use a different page size
4363				 * to map the same file offsets.
4364				 */
4365				szcmtx = page_szc_lock(ppa[0]);
4366				pszc = ppa[0]->p_szc;
4367				ASSERT(szcmtx != NULL || pszc == 0);
4368				ASSERT(ppa[0]->p_szc <= pszc);
4369				if (pszc <= szc) {
4370					SEGVN_VMSTAT_FLTVNPAGES(36);
4371					if (szcmtx != NULL) {
4372						mutex_exit(szcmtx);
4373					}
4374					goto chkszc;
4375				}
4376				if (pplist != NULL) {
4377					/*
4378					 * page got promoted since last check.
4379					 * we don't need preaalocated large
4380					 * page.
4381					 */
4382					SEGVN_VMSTAT_FLTVNPAGES(37);
4383					page_free_replacement_page(pplist);
4384					page_create_putback(pages);
4385				}
4386				SEGVN_UPDATE_MODBITS(ppa, pages, rw,
4387				    prot, vpprot);
4388				hat_memload_array_region(hat, a, pgsz, ppa,
4389				    prot & vpprot, hat_flag, svd->rcookie);
4390				mutex_exit(szcmtx);
4391				if (!(hat_flag & HAT_LOAD_LOCK)) {
4392					for (i = 0; i < pages; i++) {
4393						page_unlock(ppa[i]);
4394					}
4395				}
4396				if (amp != NULL) {
4397					anon_array_exit(&an_cookie);
4398					ANON_LOCK_EXIT(&amp->a_rwlock);
4399				}
4400				goto next;
4401			}
4402
4403			/*
4404			 * if page got demoted since last check
4405			 * we could have not allocated larger page.
4406			 * allocate now.
4407			 */
4408			if (pplist == NULL &&
4409			    page_alloc_pages(vp, seg, a, &pplist, NULL,
4410			    szc, 0, 0) && type != F_SOFTLOCK) {
4411				SEGVN_VMSTAT_FLTVNPAGES(38);
4412				for (i = 0; i < pages; i++) {
4413					page_unlock(ppa[i]);
4414				}
4415				if (amp != NULL) {
4416					anon_array_exit(&an_cookie);
4417					ANON_LOCK_EXIT(&amp->a_rwlock);
4418				}
4419				ierr = -1;
4420				alloc_failed |= (1 << szc);
4421				break;
4422			}
4423
4424			SEGVN_VMSTAT_FLTVNPAGES(39);
4425
4426			if (pplist != NULL) {
4427				segvn_relocate_pages(ppa, pplist);
4428#ifdef DEBUG
4429			} else {
4430				ASSERT(type == F_SOFTLOCK);
4431				SEGVN_VMSTAT_FLTVNPAGES(40);
4432#endif /* DEBUG */
4433			}
4434
4435			SEGVN_UPDATE_MODBITS(ppa, pages, rw, prot, vpprot);
4436
4437			if (pplist == NULL && segvn_anypgsz_vnode == 0) {
4438				ASSERT(type == F_SOFTLOCK);
4439				for (i = 0; i < pages; i++) {
4440					ASSERT(ppa[i]->p_szc < szc);
4441					hat_memload_region(hat,
4442					    a + (i << PAGESHIFT),
4443					    ppa[i], prot & vpprot, hat_flag,
4444					    svd->rcookie);
4445				}
4446			} else {
4447				ASSERT(pplist != NULL || type == F_SOFTLOCK);
4448				hat_memload_array_region(hat, a, pgsz, ppa,
4449				    prot & vpprot, hat_flag, svd->rcookie);
4450			}
4451			if (!(hat_flag & HAT_LOAD_LOCK)) {
4452				for (i = 0; i < pages; i++) {
4453					ASSERT(PAGE_SHARED(ppa[i]));
4454					page_unlock(ppa[i]);
4455				}
4456			}
4457			if (amp != NULL) {
4458				anon_array_exit(&an_cookie);
4459				ANON_LOCK_EXIT(&amp->a_rwlock);
4460			}
4461
4462		next:
4463			if (vpage != NULL) {
4464				vpage += pages;
4465			}
4466			adjszc_chk = 1;
4467		}
4468		if (a == lpgeaddr)
4469			break;
4470		ASSERT(a < lpgeaddr);
4471
4472		ASSERT(!brkcow && !tron && type != F_SOFTLOCK);
4473
4474		/*
4475		 * ierr == -1 means we failed to map with a large page.
4476		 * (either due to allocation/relocation failures or
4477		 * misalignment with other mappings to this file.
4478		 *
4479		 * ierr == -2 means some other thread allocated a large page
4480		 * after we gave up tp map with a large page.  retry with
4481		 * larger mapping.
4482		 */
4483		ASSERT(ierr == -1 || ierr == -2);
4484		ASSERT(ierr == -2 || szc != 0);
4485		ASSERT(ierr == -1 || szc < seg->s_szc);
4486		if (ierr == -2) {
4487			SEGVN_VMSTAT_FLTVNPAGES(41);
4488			ASSERT(pszc > szc && pszc <= seg->s_szc);
4489			szc = pszc;
4490		} else if (segvn_anypgsz_vnode) {
4491			SEGVN_VMSTAT_FLTVNPAGES(42);
4492			szc--;
4493		} else {
4494			SEGVN_VMSTAT_FLTVNPAGES(43);
4495			ASSERT(pszc < szc);
4496			/*
4497			 * other process created pszc large page.
4498			 * but we still have to drop to 0 szc.
4499			 */
4500			szc = 0;
4501		}
4502
4503		pgsz = page_get_pagesize(szc);
4504		pages = btop(pgsz);
4505		if (ierr == -2) {
4506			/*
4507			 * Size up case. Note lpgaddr may only be needed for
4508			 * softlock case so we don't adjust it here.
4509			 */
4510			a = (caddr_t)P2ALIGN((uintptr_t)a, pgsz);
4511			ASSERT(a >= lpgaddr);
4512			lpgeaddr = (caddr_t)P2ROUNDUP((uintptr_t)eaddr, pgsz);
4513			off = svd->offset + (uintptr_t)(a - seg->s_base);
4514			aindx = svd->anon_index + seg_page(seg, a);
4515			vpage = (svd->vpage != NULL) ?
4516			    &svd->vpage[seg_page(seg, a)] : NULL;
4517		} else {
4518			/*
4519			 * Size down case. Note lpgaddr may only be needed for
4520			 * softlock case so we don't adjust it here.
4521			 */
4522			ASSERT(IS_P2ALIGNED(a, pgsz));
4523			ASSERT(IS_P2ALIGNED(lpgeaddr, pgsz));
4524			lpgeaddr = (caddr_t)P2ROUNDUP((uintptr_t)eaddr, pgsz);
4525			ASSERT(a < lpgeaddr);
4526			if (a < addr) {
4527				SEGVN_VMSTAT_FLTVNPAGES(44);
4528				/*
4529				 * The beginning of the large page region can
4530				 * be pulled to the right to make a smaller
4531				 * region. We haven't yet faulted a single
4532				 * page.
4533				 */
4534				a = (caddr_t)P2ALIGN((uintptr_t)addr, pgsz);
4535				ASSERT(a >= lpgaddr);
4536				off = svd->offset +
4537				    (uintptr_t)(a - seg->s_base);
4538				aindx = svd->anon_index + seg_page(seg, a);
4539				vpage = (svd->vpage != NULL) ?
4540				    &svd->vpage[seg_page(seg, a)] : NULL;
4541			}
4542		}
4543	}
4544out:
4545	kmem_free(ppa, ppasize);
4546	if (!err && !vop_size_err) {
4547		SEGVN_VMSTAT_FLTVNPAGES(45);
4548		return (0);
4549	}
4550	if (type == F_SOFTLOCK && a > lpgaddr) {
4551		SEGVN_VMSTAT_FLTVNPAGES(46);
4552		segvn_softunlock(seg, lpgaddr, a - lpgaddr, S_OTHER);
4553	}
4554	if (!vop_size_err) {
4555		SEGVN_VMSTAT_FLTVNPAGES(47);
4556		return (err);
4557	}
4558	ASSERT(brkcow || tron || type == F_SOFTLOCK);
4559	/*
4560	 * Large page end is mapped beyond the end of file and it's a cow
4561	 * fault (can be a text replication induced cow) or softlock so we can't
4562	 * reduce the map area.  For now just demote the segment. This should
4563	 * really only happen if the end of the file changed after the mapping
4564	 * was established since when large page segments are created we make
4565	 * sure they don't extend beyond the end of the file.
4566	 */
4567	SEGVN_VMSTAT_FLTVNPAGES(48);
4568
4569	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4570	SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
4571	err = 0;
4572	if (seg->s_szc != 0) {
4573		segvn_fltvnpages_clrszc_cnt++;
4574		ASSERT(svd->softlockcnt == 0);
4575		err = segvn_clrszc(seg);
4576		if (err != 0) {
4577			segvn_fltvnpages_clrszc_err++;
4578		}
4579	}
4580	ASSERT(err || seg->s_szc == 0);
4581	SEGVN_LOCK_DOWNGRADE(seg->s_as, &svd->lock);
4582	/* segvn_fault will do its job as if szc had been zero to begin with */
4583	return (err == 0 ? IE_RETRY : FC_MAKE_ERR(err));
4584}
4585
4586/*
4587 * This routine will attempt to fault in one large page.
4588 * it will use smaller pages if that fails.
4589 * It should only be called for pure anonymous segments.
4590 */
4591static faultcode_t
4592segvn_fault_anonpages(struct hat *hat, struct seg *seg, caddr_t lpgaddr,
4593    caddr_t lpgeaddr, enum fault_type type, enum seg_rw rw, caddr_t addr,
4594    caddr_t eaddr, int brkcow)
4595{
4596	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
4597	struct anon_map *amp = svd->amp;
4598	uchar_t segtype = svd->type;
4599	uint_t szc = seg->s_szc;
4600	size_t pgsz = page_get_pagesize(szc);
4601	size_t maxpgsz = pgsz;
4602	pgcnt_t pages = btop(pgsz);
4603	uint_t ppaszc = szc;
4604	caddr_t a = lpgaddr;
4605	ulong_t aindx = svd->anon_index + seg_page(seg, a);
4606	struct vpage *vpage = (svd->vpage != NULL) ?
4607	    &svd->vpage[seg_page(seg, a)] : NULL;
4608	page_t **ppa;
4609	uint_t	ppa_szc;
4610	faultcode_t err;
4611	int ierr;
4612	uint_t protchk, prot, vpprot;
4613	ulong_t i;
4614	int hat_flag = (type == F_SOFTLOCK) ? HAT_LOAD_LOCK : HAT_LOAD;
4615	anon_sync_obj_t cookie;
4616	int adjszc_chk;
4617	int pgflags = (svd->tr_state == SEGVN_TR_ON) ? PG_LOCAL : 0;
4618
4619	ASSERT(szc != 0);
4620	ASSERT(amp != NULL);
4621	ASSERT(enable_mbit_wa == 0); /* no mbit simulations with large pages */
4622	ASSERT(!(svd->flags & MAP_NORESERVE));
4623	ASSERT(type != F_SOFTUNLOCK);
4624	ASSERT(IS_P2ALIGNED(a, maxpgsz));
4625	ASSERT(!brkcow || svd->tr_state == SEGVN_TR_OFF);
4626	ASSERT(svd->tr_state != SEGVN_TR_INIT);
4627
4628	ASSERT(SEGVN_LOCK_HELD(seg->s_as, &svd->lock));
4629
4630	VM_STAT_COND_ADD(type == F_SOFTLOCK, segvnvmstats.fltanpages[0]);
4631	VM_STAT_COND_ADD(type != F_SOFTLOCK, segvnvmstats.fltanpages[1]);
4632
4633	if (svd->flags & MAP_TEXT) {
4634		hat_flag |= HAT_LOAD_TEXT;
4635	}
4636
4637	if (svd->pageprot) {
4638		switch (rw) {
4639		case S_READ:
4640			protchk = PROT_READ;
4641			break;
4642		case S_WRITE:
4643			protchk = PROT_WRITE;
4644			break;
4645		case S_EXEC:
4646			protchk = PROT_EXEC;
4647			break;
4648		case S_OTHER:
4649		default:
4650			protchk = PROT_READ | PROT_WRITE | PROT_EXEC;
4651			break;
4652		}
4653		VM_STAT_ADD(segvnvmstats.fltanpages[2]);
4654	} else {
4655		prot = svd->prot;
4656		/* caller has already done segment level protection check. */
4657	}
4658
4659	ppa = kmem_cache_alloc(segvn_szc_cache[ppaszc], KM_SLEEP);
4660	ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
4661	for (;;) {
4662		adjszc_chk = 0;
4663		for (; a < lpgeaddr; a += pgsz, aindx += pages) {
4664			if (svd->pageprot != 0 && IS_P2ALIGNED(a, maxpgsz)) {
4665				VM_STAT_ADD(segvnvmstats.fltanpages[3]);
4666				ASSERT(vpage != NULL);
4667				prot = VPP_PROT(vpage);
4668				ASSERT(sameprot(seg, a, maxpgsz));
4669				if ((prot & protchk) == 0) {
4670					err = FC_PROT;
4671					goto error;
4672				}
4673			}
4674			if (adjszc_chk && IS_P2ALIGNED(a, maxpgsz) &&
4675			    pgsz < maxpgsz) {
4676				ASSERT(a > lpgaddr);
4677				szc = seg->s_szc;
4678				pgsz = maxpgsz;
4679				pages = btop(pgsz);
4680				ASSERT(IS_P2ALIGNED(aindx, pages));
4681				lpgeaddr = (caddr_t)P2ROUNDUP((uintptr_t)eaddr,
4682				    pgsz);
4683			}
4684			if (type == F_SOFTLOCK) {
4685				atomic_add_long((ulong_t *)&svd->softlockcnt,
4686				    pages);
4687			}
4688			anon_array_enter(amp, aindx, &cookie);
4689			ppa_szc = (uint_t)-1;
4690			ierr = anon_map_getpages(amp, aindx, szc, seg, a,
4691			    prot, &vpprot, ppa, &ppa_szc, vpage, rw, brkcow,
4692			    segvn_anypgsz, pgflags, svd->cred);
4693			if (ierr != 0) {
4694				anon_array_exit(&cookie);
4695				VM_STAT_ADD(segvnvmstats.fltanpages[4]);
4696				if (type == F_SOFTLOCK) {
4697					atomic_add_long(
4698					    (ulong_t *)&svd->softlockcnt,
4699					    -pages);
4700				}
4701				if (ierr > 0) {
4702					VM_STAT_ADD(segvnvmstats.fltanpages[6]);
4703					err = FC_MAKE_ERR(ierr);
4704					goto error;
4705				}
4706				break;
4707			}
4708
4709			ASSERT(!IS_VMODSORT(ppa[0]->p_vnode));
4710
4711			ASSERT(segtype == MAP_SHARED ||
4712			    ppa[0]->p_szc <= szc);
4713			ASSERT(segtype == MAP_PRIVATE ||
4714			    ppa[0]->p_szc >= szc);
4715
4716			/*
4717			 * Handle pages that have been marked for migration
4718			 */
4719			if (lgrp_optimizations())
4720				page_migrate(seg, a, ppa, pages);
4721
4722			ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
4723
4724			if (segtype == MAP_SHARED) {
4725				vpprot |= PROT_WRITE;
4726			}
4727
4728			hat_memload_array(hat, a, pgsz, ppa,
4729			    prot & vpprot, hat_flag);
4730
4731			if (hat_flag & HAT_LOAD_LOCK) {
4732				VM_STAT_ADD(segvnvmstats.fltanpages[7]);
4733			} else {
4734				VM_STAT_ADD(segvnvmstats.fltanpages[8]);
4735				for (i = 0; i < pages; i++)
4736					page_unlock(ppa[i]);
4737			}
4738			if (vpage != NULL)
4739				vpage += pages;
4740
4741			anon_array_exit(&cookie);
4742			adjszc_chk = 1;
4743		}
4744		if (a == lpgeaddr)
4745			break;
4746		ASSERT(a < lpgeaddr);
4747		/*
4748		 * ierr == -1 means we failed to allocate a large page.
4749		 * so do a size down operation.
4750		 *
4751		 * ierr == -2 means some other process that privately shares
4752		 * pages with this process has allocated a larger page and we
4753		 * need to retry with larger pages. So do a size up
4754		 * operation. This relies on the fact that large pages are
4755		 * never partially shared i.e. if we share any constituent
4756		 * page of a large page with another process we must share the
4757		 * entire large page. Note this cannot happen for SOFTLOCK
4758		 * case, unless current address (a) is at the beginning of the
4759		 * next page size boundary because the other process couldn't
4760		 * have relocated locked pages.
4761		 */
4762		ASSERT(ierr == -1 || ierr == -2);
4763
4764		if (segvn_anypgsz) {
4765			ASSERT(ierr == -2 || szc != 0);
4766			ASSERT(ierr == -1 || szc < seg->s_szc);
4767			szc = (ierr == -1) ? szc - 1 : szc + 1;
4768		} else {
4769			/*
4770			 * For non COW faults and segvn_anypgsz == 0
4771			 * we need to be careful not to loop forever
4772			 * if existing page is found with szc other
4773			 * than 0 or seg->s_szc. This could be due
4774			 * to page relocations on behalf of DR or
4775			 * more likely large page creation. For this
4776			 * case simply re-size to existing page's szc
4777			 * if returned by anon_map_getpages().
4778			 */
4779			if (ppa_szc == (uint_t)-1) {
4780				szc = (ierr == -1) ? 0 : seg->s_szc;
4781			} else {
4782				ASSERT(ppa_szc <= seg->s_szc);
4783				ASSERT(ierr == -2 || ppa_szc < szc);
4784				ASSERT(ierr == -1 || ppa_szc > szc);
4785				szc = ppa_szc;
4786			}
4787		}
4788
4789		pgsz = page_get_pagesize(szc);
4790		pages = btop(pgsz);
4791		ASSERT(type != F_SOFTLOCK || ierr == -1 ||
4792		    (IS_P2ALIGNED(a, pgsz) && IS_P2ALIGNED(lpgeaddr, pgsz)));
4793		if (type == F_SOFTLOCK) {
4794			/*
4795			 * For softlocks we cannot reduce the fault area
4796			 * (calculated based on the largest page size for this
4797			 * segment) for size down and a is already next
4798			 * page size aligned as assertted above for size
4799			 * ups. Therefore just continue in case of softlock.
4800			 */
4801			VM_STAT_ADD(segvnvmstats.fltanpages[9]);
4802			continue; /* keep lint happy */
4803		} else if (ierr == -2) {
4804
4805			/*
4806			 * Size up case. Note lpgaddr may only be needed for
4807			 * softlock case so we don't adjust it here.
4808			 */
4809			VM_STAT_ADD(segvnvmstats.fltanpages[10]);
4810			a = (caddr_t)P2ALIGN((uintptr_t)a, pgsz);
4811			ASSERT(a >= lpgaddr);
4812			lpgeaddr = (caddr_t)P2ROUNDUP((uintptr_t)eaddr, pgsz);
4813			aindx = svd->anon_index + seg_page(seg, a);
4814			vpage = (svd->vpage != NULL) ?
4815			    &svd->vpage[seg_page(seg, a)] : NULL;
4816		} else {
4817			/*
4818			 * Size down case. Note lpgaddr may only be needed for
4819			 * softlock case so we don't adjust it here.
4820			 */
4821			VM_STAT_ADD(segvnvmstats.fltanpages[11]);
4822			ASSERT(IS_P2ALIGNED(a, pgsz));
4823			ASSERT(IS_P2ALIGNED(lpgeaddr, pgsz));
4824			lpgeaddr = (caddr_t)P2ROUNDUP((uintptr_t)eaddr, pgsz);
4825			ASSERT(a < lpgeaddr);
4826			if (a < addr) {
4827				/*
4828				 * The beginning of the large page region can
4829				 * be pulled to the right to make a smaller
4830				 * region. We haven't yet faulted a single
4831				 * page.
4832				 */
4833				VM_STAT_ADD(segvnvmstats.fltanpages[12]);
4834				a = (caddr_t)P2ALIGN((uintptr_t)addr, pgsz);
4835				ASSERT(a >= lpgaddr);
4836				aindx = svd->anon_index + seg_page(seg, a);
4837				vpage = (svd->vpage != NULL) ?
4838				    &svd->vpage[seg_page(seg, a)] : NULL;
4839			}
4840		}
4841	}
4842	VM_STAT_ADD(segvnvmstats.fltanpages[13]);
4843	ANON_LOCK_EXIT(&amp->a_rwlock);
4844	kmem_cache_free(segvn_szc_cache[ppaszc], ppa);
4845	return (0);
4846error:
4847	VM_STAT_ADD(segvnvmstats.fltanpages[14]);
4848	ANON_LOCK_EXIT(&amp->a_rwlock);
4849	kmem_cache_free(segvn_szc_cache[ppaszc], ppa);
4850	if (type == F_SOFTLOCK && a > lpgaddr) {
4851		VM_STAT_ADD(segvnvmstats.fltanpages[15]);
4852		segvn_softunlock(seg, lpgaddr, a - lpgaddr, S_OTHER);
4853	}
4854	return (err);
4855}
4856
4857int fltadvice = 1;	/* set to free behind pages for sequential access */
4858
4859/*
4860 * This routine is called via a machine specific fault handling routine.
4861 * It is also called by software routines wishing to lock or unlock
4862 * a range of addresses.
4863 *
4864 * Here is the basic algorithm:
4865 *	If unlocking
4866 *		Call segvn_softunlock
4867 *		Return
4868 *	endif
4869 *	Checking and set up work
4870 *	If we will need some non-anonymous pages
4871 *		Call VOP_GETPAGE over the range of non-anonymous pages
4872 *	endif
4873 *	Loop over all addresses requested
4874 *		Call segvn_faultpage passing in page list
4875 *		    to load up translations and handle anonymous pages
4876 *	endloop
4877 *	Load up translation to any additional pages in page list not
4878 *	    already handled that fit into this segment
4879 */
4880static faultcode_t
4881segvn_fault(struct hat *hat, struct seg *seg, caddr_t addr, size_t len,
4882    enum fault_type type, enum seg_rw rw)
4883{
4884	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
4885	page_t **plp, **ppp, *pp;
4886	u_offset_t off;
4887	caddr_t a;
4888	struct vpage *vpage;
4889	uint_t vpprot, prot;
4890	int err;
4891	page_t *pl[PVN_GETPAGE_NUM + 1];
4892	size_t plsz, pl_alloc_sz;
4893	size_t page;
4894	ulong_t anon_index;
4895	struct anon_map *amp;
4896	int dogetpage = 0;
4897	caddr_t	lpgaddr, lpgeaddr;
4898	size_t pgsz;
4899	anon_sync_obj_t cookie;
4900	int brkcow = BREAK_COW_SHARE(rw, type, svd->type);
4901
4902	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
4903	ASSERT(svd->amp == NULL || svd->rcookie == HAT_INVALID_REGION_COOKIE);
4904
4905	/*
4906	 * First handle the easy stuff
4907	 */
4908	if (type == F_SOFTUNLOCK) {
4909		if (rw == S_READ_NOCOW) {
4910			rw = S_READ;
4911			ASSERT(AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
4912		}
4913		SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
4914		pgsz = (seg->s_szc == 0) ? PAGESIZE :
4915		    page_get_pagesize(seg->s_szc);
4916		VM_STAT_COND_ADD(pgsz > PAGESIZE, segvnvmstats.fltanpages[16]);
4917		CALC_LPG_REGION(pgsz, seg, addr, len, lpgaddr, lpgeaddr);
4918		segvn_softunlock(seg, lpgaddr, lpgeaddr - lpgaddr, rw);
4919		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4920		return (0);
4921	}
4922
4923	ASSERT(svd->tr_state == SEGVN_TR_OFF ||
4924	    !HAT_IS_REGION_COOKIE_VALID(svd->rcookie));
4925	if (brkcow == 0) {
4926		if (svd->tr_state == SEGVN_TR_INIT) {
4927			SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
4928			if (svd->tr_state == SEGVN_TR_INIT) {
4929				ASSERT(svd->vp != NULL && svd->amp == NULL);
4930				ASSERT(svd->flags & MAP_TEXT);
4931				ASSERT(svd->type == MAP_PRIVATE);
4932				segvn_textrepl(seg);
4933				ASSERT(svd->tr_state != SEGVN_TR_INIT);
4934				ASSERT(svd->tr_state != SEGVN_TR_ON ||
4935				    svd->amp != NULL);
4936			}
4937			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4938		}
4939	} else if (svd->tr_state != SEGVN_TR_OFF) {
4940		SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
4941
4942		if (rw == S_WRITE && svd->tr_state != SEGVN_TR_OFF) {
4943			ASSERT(!svd->pageprot && !(svd->prot & PROT_WRITE));
4944			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4945			return (FC_PROT);
4946		}
4947
4948		if (svd->tr_state == SEGVN_TR_ON) {
4949			ASSERT(svd->vp != NULL && svd->amp != NULL);
4950			segvn_textunrepl(seg, 0);
4951			ASSERT(svd->amp == NULL &&
4952			    svd->tr_state == SEGVN_TR_OFF);
4953		} else if (svd->tr_state != SEGVN_TR_OFF) {
4954			svd->tr_state = SEGVN_TR_OFF;
4955		}
4956		ASSERT(svd->amp == NULL && svd->tr_state == SEGVN_TR_OFF);
4957		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4958	}
4959
4960top:
4961	SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
4962
4963	/*
4964	 * If we have the same protections for the entire segment,
4965	 * insure that the access being attempted is legitimate.
4966	 */
4967
4968	if (svd->pageprot == 0) {
4969		uint_t protchk;
4970
4971		switch (rw) {
4972		case S_READ:
4973		case S_READ_NOCOW:
4974			protchk = PROT_READ;
4975			break;
4976		case S_WRITE:
4977			protchk = PROT_WRITE;
4978			break;
4979		case S_EXEC:
4980			protchk = PROT_EXEC;
4981			break;
4982		case S_OTHER:
4983		default:
4984			protchk = PROT_READ | PROT_WRITE | PROT_EXEC;
4985			break;
4986		}
4987
4988		if ((svd->prot & protchk) == 0) {
4989			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4990			return (FC_PROT);	/* illegal access type */
4991		}
4992	}
4993
4994	if (brkcow && HAT_IS_REGION_COOKIE_VALID(svd->rcookie)) {
4995		/* this must be SOFTLOCK S_READ fault */
4996		ASSERT(svd->amp == NULL);
4997		ASSERT(svd->tr_state == SEGVN_TR_OFF);
4998		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4999		SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
5000		if (HAT_IS_REGION_COOKIE_VALID(svd->rcookie)) {
5001			/*
5002			 * this must be the first ever non S_READ_NOCOW
5003			 * softlock for this segment.
5004			 */
5005			ASSERT(svd->softlockcnt == 0);
5006			hat_leave_region(seg->s_as->a_hat, svd->rcookie,
5007			    HAT_REGION_TEXT);
5008			svd->rcookie = HAT_INVALID_REGION_COOKIE;
5009		}
5010		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5011		goto top;
5012	}
5013
5014	/*
5015	 * We can't allow the long term use of softlocks for vmpss segments,
5016	 * because in some file truncation cases we should be able to demote
5017	 * the segment, which requires that there are no softlocks.  The
5018	 * only case where it's ok to allow a SOFTLOCK fault against a vmpss
5019	 * segment is S_READ_NOCOW, where the caller holds the address space
5020	 * locked as writer and calls softunlock before dropping the as lock.
5021	 * S_READ_NOCOW is used by /proc to read memory from another user.
5022	 *
5023	 * Another deadlock between SOFTLOCK and file truncation can happen
5024	 * because segvn_fault_vnodepages() calls the FS one pagesize at
5025	 * a time. A second VOP_GETPAGE() call by segvn_fault_vnodepages()
5026	 * can cause a deadlock because the first set of page_t's remain
5027	 * locked SE_SHARED.  To avoid this, we demote segments on a first
5028	 * SOFTLOCK if they have a length greater than the segment's
5029	 * page size.
5030	 *
5031	 * So for now, we only avoid demoting a segment on a SOFTLOCK when
5032	 * the access type is S_READ_NOCOW and the fault length is less than
5033	 * or equal to the segment's page size. While this is quite restrictive,
5034	 * it should be the most common case of SOFTLOCK against a vmpss
5035	 * segment.
5036	 *
5037	 * For S_READ_NOCOW, it's safe not to do a copy on write because the
5038	 * caller makes sure no COW will be caused by another thread for a
5039	 * softlocked page.
5040	 */
5041	if (type == F_SOFTLOCK && svd->vp != NULL && seg->s_szc != 0) {
5042		int demote = 0;
5043
5044		if (rw != S_READ_NOCOW) {
5045			demote = 1;
5046		}
5047		if (!demote && len > PAGESIZE) {
5048			pgsz = page_get_pagesize(seg->s_szc);
5049			CALC_LPG_REGION(pgsz, seg, addr, len, lpgaddr,
5050			    lpgeaddr);
5051			if (lpgeaddr - lpgaddr > pgsz) {
5052				demote = 1;
5053			}
5054		}
5055
5056		ASSERT(demote || AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
5057
5058		if (demote) {
5059			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5060			SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
5061			if (seg->s_szc != 0) {
5062				segvn_vmpss_clrszc_cnt++;
5063				ASSERT(svd->softlockcnt == 0);
5064				err = segvn_clrszc(seg);
5065				if (err) {
5066					segvn_vmpss_clrszc_err++;
5067					SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5068					return (FC_MAKE_ERR(err));
5069				}
5070			}
5071			ASSERT(seg->s_szc == 0);
5072			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5073			goto top;
5074		}
5075	}
5076
5077	/*
5078	 * Check to see if we need to allocate an anon_map structure.
5079	 */
5080	if (svd->amp == NULL && (svd->vp == NULL || brkcow)) {
5081		ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
5082		/*
5083		 * Drop the "read" lock on the segment and acquire
5084		 * the "write" version since we have to allocate the
5085		 * anon_map.
5086		 */
5087		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5088		SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
5089
5090		if (svd->amp == NULL) {
5091			svd->amp = anonmap_alloc(seg->s_size, 0, ANON_SLEEP);
5092			svd->amp->a_szc = seg->s_szc;
5093		}
5094		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5095
5096		/*
5097		 * Start all over again since segment protections
5098		 * may have changed after we dropped the "read" lock.
5099		 */
5100		goto top;
5101	}
5102
5103	/*
5104	 * S_READ_NOCOW vs S_READ distinction was
5105	 * only needed for the code above. After
5106	 * that we treat it as S_READ.
5107	 */
5108	if (rw == S_READ_NOCOW) {
5109		ASSERT(type == F_SOFTLOCK);
5110		ASSERT(AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
5111		rw = S_READ;
5112	}
5113
5114	amp = svd->amp;
5115
5116	/*
5117	 * MADV_SEQUENTIAL work is ignored for large page segments.
5118	 */
5119	if (seg->s_szc != 0) {
5120		pgsz = page_get_pagesize(seg->s_szc);
5121		ASSERT(SEGVN_LOCK_HELD(seg->s_as, &svd->lock));
5122		CALC_LPG_REGION(pgsz, seg, addr, len, lpgaddr, lpgeaddr);
5123		if (svd->vp == NULL) {
5124			err = segvn_fault_anonpages(hat, seg, lpgaddr,
5125			    lpgeaddr, type, rw, addr, addr + len, brkcow);
5126		} else {
5127			err = segvn_fault_vnodepages(hat, seg, lpgaddr,
5128			    lpgeaddr, type, rw, addr, addr + len, brkcow);
5129			if (err == IE_RETRY) {
5130				ASSERT(seg->s_szc == 0);
5131				ASSERT(SEGVN_READ_HELD(seg->s_as, &svd->lock));
5132				SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5133				goto top;
5134			}
5135		}
5136		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5137		return (err);
5138	}
5139
5140	page = seg_page(seg, addr);
5141	if (amp != NULL) {
5142		ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
5143		anon_index = svd->anon_index + page;
5144
5145		if (type == F_PROT && rw == S_READ &&
5146		    svd->tr_state == SEGVN_TR_OFF &&
5147		    svd->type == MAP_PRIVATE && svd->pageprot == 0) {
5148			size_t index = anon_index;
5149			struct anon *ap;
5150
5151			ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
5152			/*
5153			 * The fast path could apply to S_WRITE also, except
5154			 * that the protection fault could be caused by lazy
5155			 * tlb flush when ro->rw. In this case, the pte is
5156			 * RW already. But RO in the other cpu's tlb causes
5157			 * the fault. Since hat_chgprot won't do anything if
5158			 * pte doesn't change, we may end up faulting
5159			 * indefinitely until the RO tlb entry gets replaced.
5160			 */
5161			for (a = addr; a < addr + len; a += PAGESIZE, index++) {
5162				anon_array_enter(amp, index, &cookie);
5163				ap = anon_get_ptr(amp->ahp, index);
5164				anon_array_exit(&cookie);
5165				if ((ap == NULL) || (ap->an_refcnt != 1)) {
5166					ANON_LOCK_EXIT(&amp->a_rwlock);
5167					goto slow;
5168				}
5169			}
5170			hat_chgprot(seg->s_as->a_hat, addr, len, svd->prot);
5171			ANON_LOCK_EXIT(&amp->a_rwlock);
5172			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5173			return (0);
5174		}
5175	}
5176slow:
5177
5178	if (svd->vpage == NULL)
5179		vpage = NULL;
5180	else
5181		vpage = &svd->vpage[page];
5182
5183	off = svd->offset + (uintptr_t)(addr - seg->s_base);
5184
5185	/*
5186	 * If MADV_SEQUENTIAL has been set for the particular page we
5187	 * are faulting on, free behind all pages in the segment and put
5188	 * them on the free list.
5189	 */
5190
5191	if ((page != 0) && fltadvice && svd->tr_state != SEGVN_TR_ON) {
5192		struct vpage *vpp;
5193		ulong_t fanon_index;
5194		size_t fpage;
5195		u_offset_t pgoff, fpgoff;
5196		struct vnode *fvp;
5197		struct anon *fap = NULL;
5198
5199		if (svd->advice == MADV_SEQUENTIAL ||
5200		    (svd->pageadvice &&
5201		    VPP_ADVICE(vpage) == MADV_SEQUENTIAL)) {
5202			pgoff = off - PAGESIZE;
5203			fpage = page - 1;
5204			if (vpage != NULL)
5205				vpp = &svd->vpage[fpage];
5206			if (amp != NULL)
5207				fanon_index = svd->anon_index + fpage;
5208
5209			while (pgoff > svd->offset) {
5210				if (svd->advice != MADV_SEQUENTIAL &&
5211				    (!svd->pageadvice || (vpage &&
5212				    VPP_ADVICE(vpp) != MADV_SEQUENTIAL)))
5213					break;
5214
5215				/*
5216				 * If this is an anon page, we must find the
5217				 * correct <vp, offset> for it
5218				 */
5219				fap = NULL;
5220				if (amp != NULL) {
5221					ANON_LOCK_ENTER(&amp->a_rwlock,
5222					    RW_READER);
5223					anon_array_enter(amp, fanon_index,
5224					    &cookie);
5225					fap = anon_get_ptr(amp->ahp,
5226					    fanon_index);
5227					if (fap != NULL) {
5228						swap_xlate(fap, &fvp, &fpgoff);
5229					} else {
5230						fpgoff = pgoff;
5231						fvp = svd->vp;
5232					}
5233					anon_array_exit(&cookie);
5234					ANON_LOCK_EXIT(&amp->a_rwlock);
5235				} else {
5236					fpgoff = pgoff;
5237					fvp = svd->vp;
5238				}
5239				if (fvp == NULL)
5240					break;	/* XXX */
5241				/*
5242				 * Skip pages that are free or have an
5243				 * "exclusive" lock.
5244				 */
5245				pp = page_lookup_nowait(fvp, fpgoff, SE_SHARED);
5246				if (pp == NULL)
5247					break;
5248				/*
5249				 * We don't need the page_struct_lock to test
5250				 * as this is only advisory; even if we
5251				 * acquire it someone might race in and lock
5252				 * the page after we unlock and before the
5253				 * PUTPAGE, then VOP_PUTPAGE will do nothing.
5254				 */
5255				if (pp->p_lckcnt == 0 && pp->p_cowcnt == 0) {
5256					/*
5257					 * Hold the vnode before releasing
5258					 * the page lock to prevent it from
5259					 * being freed and re-used by some
5260					 * other thread.
5261					 */
5262					VN_HOLD(fvp);
5263					page_unlock(pp);
5264					/*
5265					 * We should build a page list
5266					 * to kluster putpages XXX
5267					 */
5268					(void) VOP_PUTPAGE(fvp,
5269					    (offset_t)fpgoff, PAGESIZE,
5270					    (B_DONTNEED|B_FREE|B_ASYNC),
5271					    svd->cred, NULL);
5272					VN_RELE(fvp);
5273				} else {
5274					/*
5275					 * XXX - Should the loop terminate if
5276					 * the page is `locked'?
5277					 */
5278					page_unlock(pp);
5279				}
5280				--vpp;
5281				--fanon_index;
5282				pgoff -= PAGESIZE;
5283			}
5284		}
5285	}
5286
5287	plp = pl;
5288	*plp = NULL;
5289	pl_alloc_sz = 0;
5290
5291	/*
5292	 * See if we need to call VOP_GETPAGE for
5293	 * *any* of the range being faulted on.
5294	 * We can skip all of this work if there
5295	 * was no original vnode.
5296	 */
5297	if (svd->vp != NULL) {
5298		u_offset_t vp_off;
5299		size_t vp_len;
5300		struct anon *ap;
5301		vnode_t *vp;
5302
5303		vp_off = off;
5304		vp_len = len;
5305
5306		if (amp == NULL)
5307			dogetpage = 1;
5308		else {
5309			/*
5310			 * Only acquire reader lock to prevent amp->ahp
5311			 * from being changed.  It's ok to miss pages,
5312			 * hence we don't do anon_array_enter
5313			 */
5314			ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
5315			ap = anon_get_ptr(amp->ahp, anon_index);
5316
5317			if (len <= PAGESIZE)
5318				/* inline non_anon() */
5319				dogetpage = (ap == NULL);
5320			else
5321				dogetpage = non_anon(amp->ahp, anon_index,
5322				    &vp_off, &vp_len);
5323			ANON_LOCK_EXIT(&amp->a_rwlock);
5324		}
5325
5326		if (dogetpage) {
5327			enum seg_rw arw;
5328			struct as *as = seg->s_as;
5329
5330			if (len > ptob((sizeof (pl) / sizeof (pl[0])) - 1)) {
5331				/*
5332				 * Page list won't fit in local array,
5333				 * allocate one of the needed size.
5334				 */
5335				pl_alloc_sz =
5336				    (btop(len) + 1) * sizeof (page_t *);
5337				plp = kmem_alloc(pl_alloc_sz, KM_SLEEP);
5338				plp[0] = NULL;
5339				plsz = len;
5340			} else if (rw == S_WRITE && svd->type == MAP_PRIVATE ||
5341			    svd->tr_state == SEGVN_TR_ON || rw == S_OTHER ||
5342			    (((size_t)(addr + PAGESIZE) <
5343			    (size_t)(seg->s_base + seg->s_size)) &&
5344			    hat_probe(as->a_hat, addr + PAGESIZE))) {
5345				/*
5346				 * Ask VOP_GETPAGE to return the exact number
5347				 * of pages if
5348				 * (a) this is a COW fault, or
5349				 * (b) this is a software fault, or
5350				 * (c) next page is already mapped.
5351				 */
5352				plsz = len;
5353			} else {
5354				/*
5355				 * Ask VOP_GETPAGE to return adjacent pages
5356				 * within the segment.
5357				 */
5358				plsz = MIN((size_t)PVN_GETPAGE_SZ, (size_t)
5359				    ((seg->s_base + seg->s_size) - addr));
5360				ASSERT((addr + plsz) <=
5361				    (seg->s_base + seg->s_size));
5362			}
5363
5364			/*
5365			 * Need to get some non-anonymous pages.
5366			 * We need to make only one call to GETPAGE to do
5367			 * this to prevent certain deadlocking conditions
5368			 * when we are doing locking.  In this case
5369			 * non_anon() should have picked up the smallest
5370			 * range which includes all the non-anonymous
5371			 * pages in the requested range.  We have to
5372			 * be careful regarding which rw flag to pass in
5373			 * because on a private mapping, the underlying
5374			 * object is never allowed to be written.
5375			 */
5376			if (rw == S_WRITE && svd->type == MAP_PRIVATE) {
5377				arw = S_READ;
5378			} else {
5379				arw = rw;
5380			}
5381			vp = svd->vp;
5382			TRACE_3(TR_FAC_VM, TR_SEGVN_GETPAGE,
5383			    "segvn_getpage:seg %p addr %p vp %p",
5384			    seg, addr, vp);
5385			err = VOP_GETPAGE(vp, (offset_t)vp_off, vp_len,
5386			    &vpprot, plp, plsz, seg, addr + (vp_off - off), arw,
5387			    svd->cred, NULL);
5388			if (err) {
5389				SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5390				segvn_pagelist_rele(plp);
5391				if (pl_alloc_sz)
5392					kmem_free(plp, pl_alloc_sz);
5393				return (FC_MAKE_ERR(err));
5394			}
5395			if (svd->type == MAP_PRIVATE)
5396				vpprot &= ~PROT_WRITE;
5397		}
5398	}
5399
5400	/*
5401	 * N.B. at this time the plp array has all the needed non-anon
5402	 * pages in addition to (possibly) having some adjacent pages.
5403	 */
5404
5405	/*
5406	 * Always acquire the anon_array_lock to prevent
5407	 * 2 threads from allocating separate anon slots for
5408	 * the same "addr".
5409	 *
5410	 * If this is a copy-on-write fault and we don't already
5411	 * have the anon_array_lock, acquire it to prevent the
5412	 * fault routine from handling multiple copy-on-write faults
5413	 * on the same "addr" in the same address space.
5414	 *
5415	 * Only one thread should deal with the fault since after
5416	 * it is handled, the other threads can acquire a translation
5417	 * to the newly created private page.  This prevents two or
5418	 * more threads from creating different private pages for the
5419	 * same fault.
5420	 *
5421	 * We grab "serialization" lock here if this is a MAP_PRIVATE segment
5422	 * to prevent deadlock between this thread and another thread
5423	 * which has soft-locked this page and wants to acquire serial_lock.
5424	 * ( bug 4026339 )
5425	 *
5426	 * The fix for bug 4026339 becomes unnecessary when using the
5427	 * locking scheme with per amp rwlock and a global set of hash
5428	 * lock, anon_array_lock.  If we steal a vnode page when low
5429	 * on memory and upgrad the page lock through page_rename,
5430	 * then the page is PAGE_HANDLED, nothing needs to be done
5431	 * for this page after returning from segvn_faultpage.
5432	 *
5433	 * But really, the page lock should be downgraded after
5434	 * the stolen page is page_rename'd.
5435	 */
5436
5437	if (amp != NULL)
5438		ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
5439
5440	/*
5441	 * Ok, now loop over the address range and handle faults
5442	 */
5443	for (a = addr; a < addr + len; a += PAGESIZE, off += PAGESIZE) {
5444		err = segvn_faultpage(hat, seg, a, off, vpage, plp, vpprot,
5445		    type, rw, brkcow);
5446		if (err) {
5447			if (amp != NULL)
5448				ANON_LOCK_EXIT(&amp->a_rwlock);
5449			if (type == F_SOFTLOCK && a > addr) {
5450				segvn_softunlock(seg, addr, (a - addr),
5451				    S_OTHER);
5452			}
5453			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5454			segvn_pagelist_rele(plp);
5455			if (pl_alloc_sz)
5456				kmem_free(plp, pl_alloc_sz);
5457			return (err);
5458		}
5459		if (vpage) {
5460			vpage++;
5461		} else if (svd->vpage) {
5462			page = seg_page(seg, addr);
5463			vpage = &svd->vpage[++page];
5464		}
5465	}
5466
5467	/* Didn't get pages from the underlying fs so we're done */
5468	if (!dogetpage)
5469		goto done;
5470
5471	/*
5472	 * Now handle any other pages in the list returned.
5473	 * If the page can be used, load up the translations now.
5474	 * Note that the for loop will only be entered if "plp"
5475	 * is pointing to a non-NULL page pointer which means that
5476	 * VOP_GETPAGE() was called and vpprot has been initialized.
5477	 */
5478	if (svd->pageprot == 0)
5479		prot = svd->prot & vpprot;
5480
5481
5482	/*
5483	 * Large Files: diff should be unsigned value because we started
5484	 * supporting > 2GB segment sizes from 2.5.1 and when a
5485	 * large file of size > 2GB gets mapped to address space
5486	 * the diff value can be > 2GB.
5487	 */
5488
5489	for (ppp = plp; (pp = *ppp) != NULL; ppp++) {
5490		size_t diff;
5491		struct anon *ap;
5492		int anon_index;
5493		anon_sync_obj_t cookie;
5494		int hat_flag = HAT_LOAD_ADV;
5495
5496		if (svd->flags & MAP_TEXT) {
5497			hat_flag |= HAT_LOAD_TEXT;
5498		}
5499
5500		if (pp == PAGE_HANDLED)
5501			continue;
5502
5503		if (svd->tr_state != SEGVN_TR_ON &&
5504		    pp->p_offset >=  svd->offset &&
5505		    pp->p_offset < svd->offset + seg->s_size) {
5506
5507			diff = pp->p_offset - svd->offset;
5508
5509			/*
5510			 * Large Files: Following is the assertion
5511			 * validating the above cast.
5512			 */
5513			ASSERT(svd->vp == pp->p_vnode);
5514
5515			page = btop(diff);
5516			if (svd->pageprot)
5517				prot = VPP_PROT(&svd->vpage[page]) & vpprot;
5518
5519			/*
5520			 * Prevent other threads in the address space from
5521			 * creating private pages (i.e., allocating anon slots)
5522			 * while we are in the process of loading translations
5523			 * to additional pages returned by the underlying
5524			 * object.
5525			 */
5526			if (amp != NULL) {
5527				anon_index = svd->anon_index + page;
5528				anon_array_enter(amp, anon_index, &cookie);
5529				ap = anon_get_ptr(amp->ahp, anon_index);
5530			}
5531			if ((amp == NULL) || (ap == NULL)) {
5532				if (IS_VMODSORT(pp->p_vnode) ||
5533				    enable_mbit_wa) {
5534					if (rw == S_WRITE)
5535						hat_setmod(pp);
5536					else if (rw != S_OTHER &&
5537					    !hat_ismod(pp))
5538						prot &= ~PROT_WRITE;
5539				}
5540				/*
5541				 * Skip mapping read ahead pages marked
5542				 * for migration, so they will get migrated
5543				 * properly on fault
5544				 */
5545				ASSERT(amp == NULL ||
5546				    svd->rcookie == HAT_INVALID_REGION_COOKIE);
5547				if ((prot & PROT_READ) && !PP_ISMIGRATE(pp)) {
5548					hat_memload_region(hat,
5549					    seg->s_base + diff,
5550					    pp, prot, hat_flag,
5551					    svd->rcookie);
5552				}
5553			}
5554			if (amp != NULL)
5555				anon_array_exit(&cookie);
5556		}
5557		page_unlock(pp);
5558	}
5559done:
5560	if (amp != NULL)
5561		ANON_LOCK_EXIT(&amp->a_rwlock);
5562	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5563	if (pl_alloc_sz)
5564		kmem_free(plp, pl_alloc_sz);
5565	return (0);
5566}
5567
5568/*
5569 * This routine is used to start I/O on pages asynchronously.  XXX it will
5570 * only create PAGESIZE pages. At fault time they will be relocated into
5571 * larger pages.
5572 */
5573static faultcode_t
5574segvn_faulta(struct seg *seg, caddr_t addr)
5575{
5576	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
5577	int err;
5578	struct anon_map *amp;
5579	vnode_t *vp;
5580
5581	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
5582
5583	SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
5584	if ((amp = svd->amp) != NULL) {
5585		struct anon *ap;
5586
5587		/*
5588		 * Reader lock to prevent amp->ahp from being changed.
5589		 * This is advisory, it's ok to miss a page, so
5590		 * we don't do anon_array_enter lock.
5591		 */
5592		ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
5593		if ((ap = anon_get_ptr(amp->ahp,
5594		    svd->anon_index + seg_page(seg, addr))) != NULL) {
5595
5596			err = anon_getpage(&ap, NULL, NULL,
5597			    0, seg, addr, S_READ, svd->cred);
5598
5599			ANON_LOCK_EXIT(&amp->a_rwlock);
5600			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5601			if (err)
5602				return (FC_MAKE_ERR(err));
5603			return (0);
5604		}
5605		ANON_LOCK_EXIT(&amp->a_rwlock);
5606	}
5607
5608	if (svd->vp == NULL) {
5609		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5610		return (0);			/* zfod page - do nothing now */
5611	}
5612
5613	vp = svd->vp;
5614	TRACE_3(TR_FAC_VM, TR_SEGVN_GETPAGE,
5615	    "segvn_getpage:seg %p addr %p vp %p", seg, addr, vp);
5616	err = VOP_GETPAGE(vp,
5617	    (offset_t)(svd->offset + (uintptr_t)(addr - seg->s_base)),
5618	    PAGESIZE, NULL, NULL, 0, seg, addr,
5619	    S_OTHER, svd->cred, NULL);
5620
5621	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5622	if (err)
5623		return (FC_MAKE_ERR(err));
5624	return (0);
5625}
5626
5627static int
5628segvn_setprot(struct seg *seg, caddr_t addr, size_t len, uint_t prot)
5629{
5630	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
5631	struct vpage *cvp, *svp, *evp;
5632	struct vnode *vp;
5633	size_t pgsz;
5634	pgcnt_t pgcnt;
5635	anon_sync_obj_t cookie;
5636	int unload_done = 0;
5637
5638	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
5639
5640	if ((svd->maxprot & prot) != prot)
5641		return (EACCES);			/* violated maxprot */
5642
5643	SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
5644
5645	/* return if prot is the same */
5646	if (!svd->pageprot && svd->prot == prot) {
5647		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5648		return (0);
5649	}
5650
5651	/*
5652	 * Since we change protections we first have to flush the cache.
5653	 * This makes sure all the pagelock calls have to recheck
5654	 * protections.
5655	 */
5656	if (svd->softlockcnt > 0) {
5657		ASSERT(svd->tr_state == SEGVN_TR_OFF);
5658
5659		/*
5660		 * If this is shared segment non 0 softlockcnt
5661		 * means locked pages are still in use.
5662		 */
5663		if (svd->type == MAP_SHARED) {
5664			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5665			return (EAGAIN);
5666		}
5667
5668		/*
5669		 * Since we do have the segvn writers lock nobody can fill
5670		 * the cache with entries belonging to this seg during
5671		 * the purge. The flush either succeeds or we still have
5672		 * pending I/Os.
5673		 */
5674		segvn_purge(seg);
5675		if (svd->softlockcnt > 0) {
5676			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5677			return (EAGAIN);
5678		}
5679	}
5680
5681	if (HAT_IS_REGION_COOKIE_VALID(svd->rcookie)) {
5682		ASSERT(svd->amp == NULL);
5683		ASSERT(svd->tr_state == SEGVN_TR_OFF);
5684		hat_leave_region(seg->s_as->a_hat, svd->rcookie,
5685		    HAT_REGION_TEXT);
5686		svd->rcookie = HAT_INVALID_REGION_COOKIE;
5687		unload_done = 1;
5688	} else if (svd->tr_state == SEGVN_TR_INIT) {
5689		svd->tr_state = SEGVN_TR_OFF;
5690	} else if (svd->tr_state == SEGVN_TR_ON) {
5691		ASSERT(svd->amp != NULL);
5692		segvn_textunrepl(seg, 0);
5693		ASSERT(svd->amp == NULL && svd->tr_state == SEGVN_TR_OFF);
5694		unload_done = 1;
5695	}
5696
5697	if ((prot & PROT_WRITE) && svd->type == MAP_SHARED &&
5698	    svd->vp != NULL && (svd->vp->v_flag & VVMEXEC)) {
5699		ASSERT(vn_is_mapped(svd->vp, V_WRITE));
5700		segvn_inval_trcache(svd->vp);
5701	}
5702	if (seg->s_szc != 0) {
5703		int err;
5704		pgsz = page_get_pagesize(seg->s_szc);
5705		pgcnt = pgsz >> PAGESHIFT;
5706		ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
5707		if (!IS_P2ALIGNED(addr, pgsz) || !IS_P2ALIGNED(len, pgsz)) {
5708			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5709			ASSERT(seg->s_base != addr || seg->s_size != len);
5710			/*
5711			 * If we are holding the as lock as a reader then
5712			 * we need to return IE_RETRY and let the as
5713			 * layer drop and re-acquire the lock as a writer.
5714			 */
5715			if (AS_READ_HELD(seg->s_as, &seg->s_as->a_lock))
5716				return (IE_RETRY);
5717			VM_STAT_ADD(segvnvmstats.demoterange[1]);
5718			if (svd->type == MAP_PRIVATE || svd->vp != NULL) {
5719				err = segvn_demote_range(seg, addr, len,
5720				    SDR_END, 0);
5721			} else {
5722				uint_t szcvec = map_pgszcvec(seg->s_base,
5723				    pgsz, (uintptr_t)seg->s_base,
5724				    (svd->flags & MAP_TEXT), MAPPGSZC_SHM, 0);
5725				err = segvn_demote_range(seg, addr, len,
5726				    SDR_END, szcvec);
5727			}
5728			if (err == 0)
5729				return (IE_RETRY);
5730			if (err == ENOMEM)
5731				return (IE_NOMEM);
5732			return (err);
5733		}
5734	}
5735
5736
5737	/*
5738	 * If it's a private mapping and we're making it writable then we
5739	 * may have to reserve the additional swap space now. If we are
5740	 * making writable only a part of the segment then we use its vpage
5741	 * array to keep a record of the pages for which we have reserved
5742	 * swap. In this case we set the pageswap field in the segment's
5743	 * segvn structure to record this.
5744	 *
5745	 * If it's a private mapping to a file (i.e., vp != NULL) and we're
5746	 * removing write permission on the entire segment and we haven't
5747	 * modified any pages, we can release the swap space.
5748	 */
5749	if (svd->type == MAP_PRIVATE) {
5750		if (prot & PROT_WRITE) {
5751			if (!(svd->flags & MAP_NORESERVE) &&
5752			    !(svd->swresv && svd->pageswap == 0)) {
5753				size_t sz = 0;
5754
5755				/*
5756				 * Start by determining how much swap
5757				 * space is required.
5758				 */
5759				if (addr == seg->s_base &&
5760				    len == seg->s_size &&
5761				    svd->pageswap == 0) {
5762					/* The whole segment */
5763					sz = seg->s_size;
5764				} else {
5765					/*
5766					 * Make sure that the vpage array
5767					 * exists, and make a note of the
5768					 * range of elements corresponding
5769					 * to len.
5770					 */
5771					segvn_vpage(seg);
5772					svp = &svd->vpage[seg_page(seg, addr)];
5773					evp = &svd->vpage[seg_page(seg,
5774					    addr + len)];
5775
5776					if (svd->pageswap == 0) {
5777						/*
5778						 * This is the first time we've
5779						 * asked for a part of this
5780						 * segment, so we need to
5781						 * reserve everything we've
5782						 * been asked for.
5783						 */
5784						sz = len;
5785					} else {
5786						/*
5787						 * We have to count the number
5788						 * of pages required.
5789						 */
5790						for (cvp = svp;  cvp < evp;
5791						    cvp++) {
5792							if (!VPP_ISSWAPRES(cvp))
5793								sz++;
5794						}
5795						sz <<= PAGESHIFT;
5796					}
5797				}
5798
5799				/* Try to reserve the necessary swap. */
5800				if (anon_resv_zone(sz,
5801				    seg->s_as->a_proc->p_zone) == 0) {
5802					SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5803					return (IE_NOMEM);
5804				}
5805
5806				/*
5807				 * Make a note of how much swap space
5808				 * we've reserved.
5809				 */
5810				if (svd->pageswap == 0 && sz == seg->s_size) {
5811					svd->swresv = sz;
5812				} else {
5813					ASSERT(svd->vpage != NULL);
5814					svd->swresv += sz;
5815					svd->pageswap = 1;
5816					for (cvp = svp; cvp < evp; cvp++) {
5817						if (!VPP_ISSWAPRES(cvp))
5818							VPP_SETSWAPRES(cvp);
5819					}
5820				}
5821			}
5822		} else {
5823			/*
5824			 * Swap space is released only if this segment
5825			 * does not map anonymous memory, since read faults
5826			 * on such segments still need an anon slot to read
5827			 * in the data.
5828			 */
5829			if (svd->swresv != 0 && svd->vp != NULL &&
5830			    svd->amp == NULL && addr == seg->s_base &&
5831			    len == seg->s_size && svd->pageprot == 0) {
5832				ASSERT(svd->pageswap == 0);
5833				anon_unresv_zone(svd->swresv,
5834				    seg->s_as->a_proc->p_zone);
5835				svd->swresv = 0;
5836				TRACE_3(TR_FAC_VM, TR_ANON_PROC,
5837				    "anon proc:%p %lu %u", seg, 0, 0);
5838			}
5839		}
5840	}
5841
5842	if (addr == seg->s_base && len == seg->s_size && svd->vpage == NULL) {
5843		if (svd->prot == prot) {
5844			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5845			return (0);			/* all done */
5846		}
5847		svd->prot = (uchar_t)prot;
5848	} else if (svd->type == MAP_PRIVATE) {
5849		struct anon *ap = NULL;
5850		page_t *pp;
5851		u_offset_t offset, off;
5852		struct anon_map *amp;
5853		ulong_t anon_idx = 0;
5854
5855		/*
5856		 * A vpage structure exists or else the change does not
5857		 * involve the entire segment.  Establish a vpage structure
5858		 * if none is there.  Then, for each page in the range,
5859		 * adjust its individual permissions.  Note that write-
5860		 * enabling a MAP_PRIVATE page can affect the claims for
5861		 * locked down memory.  Overcommitting memory terminates
5862		 * the operation.
5863		 */
5864		segvn_vpage(seg);
5865		svd->pageprot = 1;
5866		if ((amp = svd->amp) != NULL) {
5867			anon_idx = svd->anon_index + seg_page(seg, addr);
5868			ASSERT(seg->s_szc == 0 ||
5869			    IS_P2ALIGNED(anon_idx, pgcnt));
5870			ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
5871		}
5872
5873		offset = svd->offset + (uintptr_t)(addr - seg->s_base);
5874		evp = &svd->vpage[seg_page(seg, addr + len)];
5875
5876		/*
5877		 * See Statement at the beginning of segvn_lockop regarding
5878		 * the way cowcnts and lckcnts are handled.
5879		 */
5880		for (svp = &svd->vpage[seg_page(seg, addr)]; svp < evp; svp++) {
5881
5882			if (seg->s_szc != 0) {
5883				if (amp != NULL) {
5884					anon_array_enter(amp, anon_idx,
5885					    &cookie);
5886				}
5887				if (IS_P2ALIGNED(anon_idx, pgcnt) &&
5888				    !segvn_claim_pages(seg, svp, offset,
5889				    anon_idx, prot)) {
5890					if (amp != NULL) {
5891						anon_array_exit(&cookie);
5892					}
5893					break;
5894				}
5895				if (amp != NULL) {
5896					anon_array_exit(&cookie);
5897				}
5898				anon_idx++;
5899			} else {
5900				if (amp != NULL) {
5901					anon_array_enter(amp, anon_idx,
5902					    &cookie);
5903					ap = anon_get_ptr(amp->ahp, anon_idx++);
5904				}
5905
5906				if (VPP_ISPPLOCK(svp) &&
5907				    VPP_PROT(svp) != prot) {
5908
5909					if (amp == NULL || ap == NULL) {
5910						vp = svd->vp;
5911						off = offset;
5912					} else
5913						swap_xlate(ap, &vp, &off);
5914					if (amp != NULL)
5915						anon_array_exit(&cookie);
5916
5917					if ((pp = page_lookup(vp, off,
5918					    SE_SHARED)) == NULL) {
5919						panic("segvn_setprot: no page");
5920						/*NOTREACHED*/
5921					}
5922					ASSERT(seg->s_szc == 0);
5923					if ((VPP_PROT(svp) ^ prot) &
5924					    PROT_WRITE) {
5925						if (prot & PROT_WRITE) {
5926							if (!page_addclaim(
5927							    pp)) {
5928								page_unlock(pp);
5929								break;
5930							}
5931						} else {
5932							if (!page_subclaim(
5933							    pp)) {
5934								page_unlock(pp);
5935								break;
5936							}
5937						}
5938					}
5939					page_unlock(pp);
5940				} else if (amp != NULL)
5941					anon_array_exit(&cookie);
5942			}
5943			VPP_SETPROT(svp, prot);
5944			offset += PAGESIZE;
5945		}
5946		if (amp != NULL)
5947			ANON_LOCK_EXIT(&amp->a_rwlock);
5948
5949		/*
5950		 * Did we terminate prematurely?  If so, simply unload
5951		 * the translations to the things we've updated so far.
5952		 */
5953		if (svp != evp) {
5954			if (unload_done) {
5955				SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5956				return (IE_NOMEM);
5957			}
5958			len = (svp - &svd->vpage[seg_page(seg, addr)]) *
5959			    PAGESIZE;
5960			ASSERT(seg->s_szc == 0 || IS_P2ALIGNED(len, pgsz));
5961			if (len != 0)
5962				hat_unload(seg->s_as->a_hat, addr,
5963				    len, HAT_UNLOAD);
5964			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5965			return (IE_NOMEM);
5966		}
5967	} else {
5968		segvn_vpage(seg);
5969		svd->pageprot = 1;
5970		evp = &svd->vpage[seg_page(seg, addr + len)];
5971		for (svp = &svd->vpage[seg_page(seg, addr)]; svp < evp; svp++) {
5972			VPP_SETPROT(svp, prot);
5973		}
5974	}
5975
5976	if (unload_done) {
5977		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5978		return (0);
5979	}
5980
5981	if (((prot & PROT_WRITE) != 0 &&
5982	    (svd->vp != NULL || svd->type == MAP_PRIVATE)) ||
5983	    (prot & ~PROT_USER) == PROT_NONE) {
5984		/*
5985		 * Either private or shared data with write access (in
5986		 * which case we need to throw out all former translations
5987		 * so that we get the right translations set up on fault
5988		 * and we don't allow write access to any copy-on-write pages
5989		 * that might be around or to prevent write access to pages
5990		 * representing holes in a file), or we don't have permission
5991		 * to access the memory at all (in which case we have to
5992		 * unload any current translations that might exist).
5993		 */
5994		hat_unload(seg->s_as->a_hat, addr, len, HAT_UNLOAD);
5995	} else {
5996		/*
5997		 * A shared mapping or a private mapping in which write
5998		 * protection is going to be denied - just change all the
5999		 * protections over the range of addresses in question.
6000		 * segvn does not support any other attributes other
6001		 * than prot so we can use hat_chgattr.
6002		 */
6003		hat_chgattr(seg->s_as->a_hat, addr, len, prot);
6004	}
6005
6006	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6007
6008	return (0);
6009}
6010
6011/*
6012 * segvn_setpagesize is called via SEGOP_SETPAGESIZE from as_setpagesize,
6013 * to determine if the seg is capable of mapping the requested szc.
6014 */
6015static int
6016segvn_setpagesize(struct seg *seg, caddr_t addr, size_t len, uint_t szc)
6017{
6018	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6019	struct segvn_data *nsvd;
6020	struct anon_map *amp = svd->amp;
6021	struct seg *nseg;
6022	caddr_t eaddr = addr + len, a;
6023	size_t pgsz = page_get_pagesize(szc);
6024	pgcnt_t pgcnt = page_get_pagecnt(szc);
6025	int err;
6026	u_offset_t off = svd->offset + (uintptr_t)(addr - seg->s_base);
6027
6028	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
6029	ASSERT(addr >= seg->s_base && eaddr <= seg->s_base + seg->s_size);
6030
6031	if (seg->s_szc == szc || segvn_lpg_disable != 0) {
6032		return (0);
6033	}
6034
6035	/*
6036	 * addr should always be pgsz aligned but eaddr may be misaligned if
6037	 * it's at the end of the segment.
6038	 *
6039	 * XXX we should assert this condition since as_setpagesize() logic
6040	 * guarantees it.
6041	 */
6042	if (!IS_P2ALIGNED(addr, pgsz) ||
6043	    (!IS_P2ALIGNED(eaddr, pgsz) &&
6044	    eaddr != seg->s_base + seg->s_size)) {
6045
6046		segvn_setpgsz_align_err++;
6047		return (EINVAL);
6048	}
6049
6050	if (amp != NULL && svd->type == MAP_SHARED) {
6051		ulong_t an_idx = svd->anon_index + seg_page(seg, addr);
6052		if (!IS_P2ALIGNED(an_idx, pgcnt)) {
6053
6054			segvn_setpgsz_anon_align_err++;
6055			return (EINVAL);
6056		}
6057	}
6058
6059	if ((svd->flags & MAP_NORESERVE) || seg->s_as == &kas ||
6060	    szc > segvn_maxpgszc) {
6061		return (EINVAL);
6062	}
6063
6064	/* paranoid check */
6065	if (svd->vp != NULL &&
6066	    (IS_SWAPFSVP(svd->vp) || VN_ISKAS(svd->vp))) {
6067		return (EINVAL);
6068	}
6069
6070	if (seg->s_szc == 0 && svd->vp != NULL &&
6071	    map_addr_vacalign_check(addr, off)) {
6072		return (EINVAL);
6073	}
6074
6075	/*
6076	 * Check that protections are the same within new page
6077	 * size boundaries.
6078	 */
6079	if (svd->pageprot) {
6080		for (a = addr; a < eaddr; a += pgsz) {
6081			if ((a + pgsz) > eaddr) {
6082				if (!sameprot(seg, a, eaddr - a)) {
6083					return (EINVAL);
6084				}
6085			} else {
6086				if (!sameprot(seg, a, pgsz)) {
6087					return (EINVAL);
6088				}
6089			}
6090		}
6091	}
6092
6093	/*
6094	 * Since we are changing page size we first have to flush
6095	 * the cache. This makes sure all the pagelock calls have
6096	 * to recheck protections.
6097	 */
6098	if (svd->softlockcnt > 0) {
6099		ASSERT(svd->tr_state == SEGVN_TR_OFF);
6100
6101		/*
6102		 * If this is shared segment non 0 softlockcnt
6103		 * means locked pages are still in use.
6104		 */
6105		if (svd->type == MAP_SHARED) {
6106			return (EAGAIN);
6107		}
6108
6109		/*
6110		 * Since we do have the segvn writers lock nobody can fill
6111		 * the cache with entries belonging to this seg during
6112		 * the purge. The flush either succeeds or we still have
6113		 * pending I/Os.
6114		 */
6115		segvn_purge(seg);
6116		if (svd->softlockcnt > 0) {
6117			return (EAGAIN);
6118		}
6119	}
6120
6121	if (HAT_IS_REGION_COOKIE_VALID(svd->rcookie)) {
6122		ASSERT(svd->amp == NULL);
6123		ASSERT(svd->tr_state == SEGVN_TR_OFF);
6124		hat_leave_region(seg->s_as->a_hat, svd->rcookie,
6125		    HAT_REGION_TEXT);
6126		svd->rcookie = HAT_INVALID_REGION_COOKIE;
6127	} else if (svd->tr_state == SEGVN_TR_INIT) {
6128		svd->tr_state = SEGVN_TR_OFF;
6129	} else if (svd->tr_state == SEGVN_TR_ON) {
6130		ASSERT(svd->amp != NULL);
6131		segvn_textunrepl(seg, 1);
6132		ASSERT(svd->amp == NULL && svd->tr_state == SEGVN_TR_OFF);
6133		amp = NULL;
6134	}
6135
6136	/*
6137	 * Operation for sub range of existing segment.
6138	 */
6139	if (addr != seg->s_base || eaddr != (seg->s_base + seg->s_size)) {
6140		if (szc < seg->s_szc) {
6141			VM_STAT_ADD(segvnvmstats.demoterange[2]);
6142			err = segvn_demote_range(seg, addr, len, SDR_RANGE, 0);
6143			if (err == 0) {
6144				return (IE_RETRY);
6145			}
6146			if (err == ENOMEM) {
6147				return (IE_NOMEM);
6148			}
6149			return (err);
6150		}
6151		if (addr != seg->s_base) {
6152			nseg = segvn_split_seg(seg, addr);
6153			if (eaddr != (nseg->s_base + nseg->s_size)) {
6154				/* eaddr is szc aligned */
6155				(void) segvn_split_seg(nseg, eaddr);
6156			}
6157			return (IE_RETRY);
6158		}
6159		if (eaddr != (seg->s_base + seg->s_size)) {
6160			/* eaddr is szc aligned */
6161			(void) segvn_split_seg(seg, eaddr);
6162		}
6163		return (IE_RETRY);
6164	}
6165
6166	/*
6167	 * Break any low level sharing and reset seg->s_szc to 0.
6168	 */
6169	if ((err = segvn_clrszc(seg)) != 0) {
6170		if (err == ENOMEM) {
6171			err = IE_NOMEM;
6172		}
6173		return (err);
6174	}
6175	ASSERT(seg->s_szc == 0);
6176
6177	/*
6178	 * If the end of the current segment is not pgsz aligned
6179	 * then attempt to concatenate with the next segment.
6180	 */
6181	if (!IS_P2ALIGNED(eaddr, pgsz)) {
6182		nseg = AS_SEGNEXT(seg->s_as, seg);
6183		if (nseg == NULL || nseg == seg || eaddr != nseg->s_base) {
6184			return (ENOMEM);
6185		}
6186		if (nseg->s_ops != &segvn_ops) {
6187			return (EINVAL);
6188		}
6189		nsvd = (struct segvn_data *)nseg->s_data;
6190		if (nsvd->softlockcnt > 0) {
6191			/*
6192			 * If this is shared segment non 0 softlockcnt
6193			 * means locked pages are still in use.
6194			 */
6195			if (nsvd->type == MAP_SHARED) {
6196				return (EAGAIN);
6197			}
6198			segvn_purge(nseg);
6199			if (nsvd->softlockcnt > 0) {
6200				return (EAGAIN);
6201			}
6202		}
6203		err = segvn_clrszc(nseg);
6204		if (err == ENOMEM) {
6205			err = IE_NOMEM;
6206		}
6207		if (err != 0) {
6208			return (err);
6209		}
6210		ASSERT(nsvd->rcookie == HAT_INVALID_REGION_COOKIE);
6211		err = segvn_concat(seg, nseg, 1);
6212		if (err == -1) {
6213			return (EINVAL);
6214		}
6215		if (err == -2) {
6216			return (IE_NOMEM);
6217		}
6218		return (IE_RETRY);
6219	}
6220
6221	/*
6222	 * May need to re-align anon array to
6223	 * new szc.
6224	 */
6225	if (amp != NULL) {
6226		if (!IS_P2ALIGNED(svd->anon_index, pgcnt)) {
6227			struct anon_hdr *nahp;
6228
6229			ASSERT(svd->type == MAP_PRIVATE);
6230
6231			ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
6232			ASSERT(amp->refcnt == 1);
6233			nahp = anon_create(btop(amp->size), ANON_NOSLEEP);
6234			if (nahp == NULL) {
6235				ANON_LOCK_EXIT(&amp->a_rwlock);
6236				return (IE_NOMEM);
6237			}
6238			if (anon_copy_ptr(amp->ahp, svd->anon_index,
6239			    nahp, 0, btop(seg->s_size), ANON_NOSLEEP)) {
6240				anon_release(nahp, btop(amp->size));
6241				ANON_LOCK_EXIT(&amp->a_rwlock);
6242				return (IE_NOMEM);
6243			}
6244			anon_release(amp->ahp, btop(amp->size));
6245			amp->ahp = nahp;
6246			svd->anon_index = 0;
6247			ANON_LOCK_EXIT(&amp->a_rwlock);
6248		}
6249	}
6250	if (svd->vp != NULL && szc != 0) {
6251		struct vattr va;
6252		u_offset_t eoffpage = svd->offset;
6253		va.va_mask = AT_SIZE;
6254		eoffpage += seg->s_size;
6255		eoffpage = btopr(eoffpage);
6256		if (VOP_GETATTR(svd->vp, &va, 0, svd->cred, NULL) != 0) {
6257			segvn_setpgsz_getattr_err++;
6258			return (EINVAL);
6259		}
6260		if (btopr(va.va_size) < eoffpage) {
6261			segvn_setpgsz_eof_err++;
6262			return (EINVAL);
6263		}
6264		if (amp != NULL) {
6265			/*
6266			 * anon_fill_cow_holes() may call VOP_GETPAGE().
6267			 * don't take anon map lock here to avoid holding it
6268			 * across VOP_GETPAGE() calls that may call back into
6269			 * segvn for klsutering checks. We don't really need
6270			 * anon map lock here since it's a private segment and
6271			 * we hold as level lock as writers.
6272			 */
6273			if ((err = anon_fill_cow_holes(seg, seg->s_base,
6274			    amp->ahp, svd->anon_index, svd->vp, svd->offset,
6275			    seg->s_size, szc, svd->prot, svd->vpage,
6276			    svd->cred)) != 0) {
6277				return (EINVAL);
6278			}
6279		}
6280		segvn_setvnode_mpss(svd->vp);
6281	}
6282
6283	if (amp != NULL) {
6284		ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
6285		if (svd->type == MAP_PRIVATE) {
6286			amp->a_szc = szc;
6287		} else if (szc > amp->a_szc) {
6288			amp->a_szc = szc;
6289		}
6290		ANON_LOCK_EXIT(&amp->a_rwlock);
6291	}
6292
6293	seg->s_szc = szc;
6294
6295	return (0);
6296}
6297
6298static int
6299segvn_clrszc(struct seg *seg)
6300{
6301	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6302	struct anon_map *amp = svd->amp;
6303	size_t pgsz;
6304	pgcnt_t pages;
6305	int err = 0;
6306	caddr_t a = seg->s_base;
6307	caddr_t ea = a + seg->s_size;
6308	ulong_t an_idx = svd->anon_index;
6309	vnode_t *vp = svd->vp;
6310	struct vpage *vpage = svd->vpage;
6311	page_t *anon_pl[1 + 1], *pp;
6312	struct anon *ap, *oldap;
6313	uint_t prot = svd->prot, vpprot;
6314	int pageflag = 0;
6315
6316	ASSERT(AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock) ||
6317	    SEGVN_WRITE_HELD(seg->s_as, &svd->lock));
6318	ASSERT(svd->softlockcnt == 0);
6319
6320	if (vp == NULL && amp == NULL) {
6321		ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
6322		seg->s_szc = 0;
6323		return (0);
6324	}
6325
6326	if (HAT_IS_REGION_COOKIE_VALID(svd->rcookie)) {
6327		ASSERT(svd->amp == NULL);
6328		ASSERT(svd->tr_state == SEGVN_TR_OFF);
6329		hat_leave_region(seg->s_as->a_hat, svd->rcookie,
6330		    HAT_REGION_TEXT);
6331		svd->rcookie = HAT_INVALID_REGION_COOKIE;
6332	} else if (svd->tr_state == SEGVN_TR_ON) {
6333		ASSERT(svd->amp != NULL);
6334		segvn_textunrepl(seg, 1);
6335		ASSERT(svd->amp == NULL && svd->tr_state == SEGVN_TR_OFF);
6336		amp = NULL;
6337	} else {
6338		if (svd->tr_state != SEGVN_TR_OFF) {
6339			ASSERT(svd->tr_state == SEGVN_TR_INIT);
6340			svd->tr_state = SEGVN_TR_OFF;
6341		}
6342
6343		/*
6344		 * do HAT_UNLOAD_UNMAP since we are changing the pagesize.
6345		 * unload argument is 0 when we are freeing the segment
6346		 * and unload was already done.
6347		 */
6348		hat_unload(seg->s_as->a_hat, seg->s_base, seg->s_size,
6349		    HAT_UNLOAD_UNMAP);
6350	}
6351
6352	if (amp == NULL || svd->type == MAP_SHARED) {
6353		seg->s_szc = 0;
6354		return (0);
6355	}
6356
6357	pgsz = page_get_pagesize(seg->s_szc);
6358	pages = btop(pgsz);
6359
6360	/*
6361	 * XXX anon rwlock is not really needed because this is a
6362	 * private segment and we are writers.
6363	 */
6364	ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
6365
6366	for (; a < ea; a += pgsz, an_idx += pages) {
6367		if ((oldap = anon_get_ptr(amp->ahp, an_idx)) != NULL) {
6368			ASSERT(vpage != NULL || svd->pageprot == 0);
6369			if (vpage != NULL) {
6370				ASSERT(sameprot(seg, a, pgsz));
6371				prot = VPP_PROT(vpage);
6372				pageflag = VPP_ISPPLOCK(vpage) ? LOCK_PAGE : 0;
6373			}
6374			if (seg->s_szc != 0) {
6375				ASSERT(vp == NULL || anon_pages(amp->ahp,
6376				    an_idx, pages) == pages);
6377				if ((err = anon_map_demotepages(amp, an_idx,
6378				    seg, a, prot, vpage, svd->cred)) != 0) {
6379					goto out;
6380				}
6381			} else {
6382				if (oldap->an_refcnt == 1) {
6383					continue;
6384				}
6385				if ((err = anon_getpage(&oldap, &vpprot,
6386				    anon_pl, PAGESIZE, seg, a, S_READ,
6387				    svd->cred))) {
6388					goto out;
6389				}
6390				if ((pp = anon_private(&ap, seg, a, prot,
6391				    anon_pl[0], pageflag, svd->cred)) == NULL) {
6392					err = ENOMEM;
6393					goto out;
6394				}
6395				anon_decref(oldap);
6396				(void) anon_set_ptr(amp->ahp, an_idx, ap,
6397				    ANON_SLEEP);
6398				page_unlock(pp);
6399			}
6400		}
6401		vpage = (vpage == NULL) ? NULL : vpage + pages;
6402	}
6403
6404	amp->a_szc = 0;
6405	seg->s_szc = 0;
6406out:
6407	ANON_LOCK_EXIT(&amp->a_rwlock);
6408	return (err);
6409}
6410
6411static int
6412segvn_claim_pages(
6413	struct seg *seg,
6414	struct vpage *svp,
6415	u_offset_t off,
6416	ulong_t anon_idx,
6417	uint_t prot)
6418{
6419	pgcnt_t	pgcnt = page_get_pagecnt(seg->s_szc);
6420	size_t ppasize = (pgcnt + 1) * sizeof (page_t *);
6421	page_t	**ppa;
6422	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6423	struct anon_map *amp = svd->amp;
6424	struct vpage *evp = svp + pgcnt;
6425	caddr_t addr = ((uintptr_t)(svp - svd->vpage) << PAGESHIFT)
6426	    + seg->s_base;
6427	struct anon *ap;
6428	struct vnode *vp = svd->vp;
6429	page_t *pp;
6430	pgcnt_t pg_idx, i;
6431	int err = 0;
6432	anoff_t aoff;
6433	int anon = (amp != NULL) ? 1 : 0;
6434
6435	ASSERT(svd->type == MAP_PRIVATE);
6436	ASSERT(svd->vpage != NULL);
6437	ASSERT(seg->s_szc != 0);
6438	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
6439	ASSERT(amp == NULL || IS_P2ALIGNED(anon_idx, pgcnt));
6440	ASSERT(sameprot(seg, addr, pgcnt << PAGESHIFT));
6441
6442	if (VPP_PROT(svp) == prot)
6443		return (1);
6444	if (!((VPP_PROT(svp) ^ prot) & PROT_WRITE))
6445		return (1);
6446
6447	ppa = kmem_alloc(ppasize, KM_SLEEP);
6448	if (anon && vp != NULL) {
6449		if (anon_get_ptr(amp->ahp, anon_idx) == NULL) {
6450			anon = 0;
6451			ASSERT(!anon_pages(amp->ahp, anon_idx, pgcnt));
6452		}
6453		ASSERT(!anon ||
6454		    anon_pages(amp->ahp, anon_idx, pgcnt) == pgcnt);
6455	}
6456
6457	for (*ppa = NULL, pg_idx = 0; svp < evp; svp++, anon_idx++) {
6458		if (!VPP_ISPPLOCK(svp))
6459			continue;
6460		if (anon) {
6461			ap = anon_get_ptr(amp->ahp, anon_idx);
6462			if (ap == NULL) {
6463				panic("segvn_claim_pages: no anon slot");
6464			}
6465			swap_xlate(ap, &vp, &aoff);
6466			off = (u_offset_t)aoff;
6467		}
6468		ASSERT(vp != NULL);
6469		if ((pp = page_lookup(vp,
6470		    (u_offset_t)off, SE_SHARED)) == NULL) {
6471			panic("segvn_claim_pages: no page");
6472		}
6473		ppa[pg_idx++] = pp;
6474		off += PAGESIZE;
6475	}
6476
6477	if (ppa[0] == NULL) {
6478		kmem_free(ppa, ppasize);
6479		return (1);
6480	}
6481
6482	ASSERT(pg_idx <= pgcnt);
6483	ppa[pg_idx] = NULL;
6484
6485
6486	/* Find each large page within ppa, and adjust its claim */
6487
6488	/* Does ppa cover a single large page? */
6489	if (ppa[0]->p_szc == seg->s_szc) {
6490		if (prot & PROT_WRITE)
6491			err = page_addclaim_pages(ppa);
6492		else
6493			err = page_subclaim_pages(ppa);
6494	} else {
6495		for (i = 0; ppa[i]; i += pgcnt) {
6496			ASSERT(IS_P2ALIGNED(page_pptonum(ppa[i]), pgcnt));
6497			if (prot & PROT_WRITE)
6498				err = page_addclaim_pages(&ppa[i]);
6499			else
6500				err = page_subclaim_pages(&ppa[i]);
6501			if (err == 0)
6502				break;
6503		}
6504	}
6505
6506	for (i = 0; i < pg_idx; i++) {
6507		ASSERT(ppa[i] != NULL);
6508		page_unlock(ppa[i]);
6509	}
6510
6511	kmem_free(ppa, ppasize);
6512	return (err);
6513}
6514
6515/*
6516 * Returns right (upper address) segment if split occurred.
6517 * If the address is equal to the beginning or end of its segment it returns
6518 * the current segment.
6519 */
6520static struct seg *
6521segvn_split_seg(struct seg *seg, caddr_t addr)
6522{
6523	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6524	struct seg *nseg;
6525	size_t nsize;
6526	struct segvn_data *nsvd;
6527
6528	ASSERT(AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
6529	ASSERT(svd->tr_state == SEGVN_TR_OFF);
6530
6531	ASSERT(addr >= seg->s_base);
6532	ASSERT(addr <= seg->s_base + seg->s_size);
6533	ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
6534
6535	if (addr == seg->s_base || addr == seg->s_base + seg->s_size)
6536		return (seg);
6537
6538	nsize = seg->s_base + seg->s_size - addr;
6539	seg->s_size = addr - seg->s_base;
6540	nseg = seg_alloc(seg->s_as, addr, nsize);
6541	ASSERT(nseg != NULL);
6542	nseg->s_ops = seg->s_ops;
6543	nsvd = kmem_cache_alloc(segvn_cache, KM_SLEEP);
6544	nseg->s_data = (void *)nsvd;
6545	nseg->s_szc = seg->s_szc;
6546	*nsvd = *svd;
6547	ASSERT(nsvd->rcookie == HAT_INVALID_REGION_COOKIE);
6548	nsvd->seg = nseg;
6549	rw_init(&nsvd->lock, NULL, RW_DEFAULT, NULL);
6550
6551	if (nsvd->vp != NULL) {
6552		VN_HOLD(nsvd->vp);
6553		nsvd->offset = svd->offset +
6554		    (uintptr_t)(nseg->s_base - seg->s_base);
6555		if (nsvd->type == MAP_SHARED)
6556			lgrp_shm_policy_init(NULL, nsvd->vp);
6557	} else {
6558		/*
6559		 * The offset for an anonymous segment has no signifigance in
6560		 * terms of an offset into a file. If we were to use the above
6561		 * calculation instead, the structures read out of
6562		 * /proc/<pid>/xmap would be more difficult to decipher since
6563		 * it would be unclear whether two seemingly contiguous
6564		 * prxmap_t structures represented different segments or a
6565		 * single segment that had been split up into multiple prxmap_t
6566		 * structures (e.g. if some part of the segment had not yet
6567		 * been faulted in).
6568		 */
6569		nsvd->offset = 0;
6570	}
6571
6572	ASSERT(svd->softlockcnt == 0);
6573	ASSERT(svd->softlockcnt_sbase == 0);
6574	ASSERT(svd->softlockcnt_send == 0);
6575	crhold(svd->cred);
6576
6577	if (svd->vpage != NULL) {
6578		size_t bytes = vpgtob(seg_pages(seg));
6579		size_t nbytes = vpgtob(seg_pages(nseg));
6580		struct vpage *ovpage = svd->vpage;
6581
6582		svd->vpage = kmem_alloc(bytes, KM_SLEEP);
6583		bcopy(ovpage, svd->vpage, bytes);
6584		nsvd->vpage = kmem_alloc(nbytes, KM_SLEEP);
6585		bcopy(ovpage + seg_pages(seg), nsvd->vpage, nbytes);
6586		kmem_free(ovpage, bytes + nbytes);
6587	}
6588	if (svd->amp != NULL && svd->type == MAP_PRIVATE) {
6589		struct anon_map *oamp = svd->amp, *namp;
6590		struct anon_hdr *nahp;
6591
6592		ANON_LOCK_ENTER(&oamp->a_rwlock, RW_WRITER);
6593		ASSERT(oamp->refcnt == 1);
6594		nahp = anon_create(btop(seg->s_size), ANON_SLEEP);
6595		(void) anon_copy_ptr(oamp->ahp, svd->anon_index,
6596		    nahp, 0, btop(seg->s_size), ANON_SLEEP);
6597
6598		namp = anonmap_alloc(nseg->s_size, 0, ANON_SLEEP);
6599		namp->a_szc = nseg->s_szc;
6600		(void) anon_copy_ptr(oamp->ahp,
6601		    svd->anon_index + btop(seg->s_size),
6602		    namp->ahp, 0, btop(nseg->s_size), ANON_SLEEP);
6603		anon_release(oamp->ahp, btop(oamp->size));
6604		oamp->ahp = nahp;
6605		oamp->size = seg->s_size;
6606		svd->anon_index = 0;
6607		nsvd->amp = namp;
6608		nsvd->anon_index = 0;
6609		ANON_LOCK_EXIT(&oamp->a_rwlock);
6610	} else if (svd->amp != NULL) {
6611		pgcnt_t pgcnt = page_get_pagecnt(seg->s_szc);
6612		ASSERT(svd->amp == nsvd->amp);
6613		ASSERT(seg->s_szc <= svd->amp->a_szc);
6614		nsvd->anon_index = svd->anon_index + seg_pages(seg);
6615		ASSERT(IS_P2ALIGNED(nsvd->anon_index, pgcnt));
6616		ANON_LOCK_ENTER(&svd->amp->a_rwlock, RW_WRITER);
6617		svd->amp->refcnt++;
6618		ANON_LOCK_EXIT(&svd->amp->a_rwlock);
6619	}
6620
6621	/*
6622	 * Split the amount of swap reserved.
6623	 */
6624	if (svd->swresv) {
6625		/*
6626		 * For MAP_NORESERVE, only allocate swap reserve for pages
6627		 * being used.  Other segments get enough to cover whole
6628		 * segment.
6629		 */
6630		if (svd->flags & MAP_NORESERVE) {
6631			size_t	oswresv;
6632
6633			ASSERT(svd->amp);
6634			oswresv = svd->swresv;
6635			svd->swresv = ptob(anon_pages(svd->amp->ahp,
6636			    svd->anon_index, btop(seg->s_size)));
6637			nsvd->swresv = ptob(anon_pages(nsvd->amp->ahp,
6638			    nsvd->anon_index, btop(nseg->s_size)));
6639			ASSERT(oswresv >= (svd->swresv + nsvd->swresv));
6640		} else {
6641			if (svd->pageswap) {
6642				svd->swresv = segvn_count_swap_by_vpages(seg);
6643				ASSERT(nsvd->swresv >= svd->swresv);
6644				nsvd->swresv -= svd->swresv;
6645			} else {
6646				ASSERT(svd->swresv == seg->s_size +
6647				    nseg->s_size);
6648				svd->swresv = seg->s_size;
6649				nsvd->swresv = nseg->s_size;
6650			}
6651		}
6652	}
6653
6654	return (nseg);
6655}
6656
6657/*
6658 * called on memory operations (unmap, setprot, setpagesize) for a subset
6659 * of a large page segment to either demote the memory range (SDR_RANGE)
6660 * or the ends (SDR_END) by addr/len.
6661 *
6662 * returns 0 on success. returns errno, including ENOMEM, on failure.
6663 */
6664static int
6665segvn_demote_range(
6666	struct seg *seg,
6667	caddr_t addr,
6668	size_t len,
6669	int flag,
6670	uint_t szcvec)
6671{
6672	caddr_t eaddr = addr + len;
6673	caddr_t lpgaddr, lpgeaddr;
6674	struct seg *nseg;
6675	struct seg *badseg1 = NULL;
6676	struct seg *badseg2 = NULL;
6677	size_t pgsz;
6678	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6679	int err;
6680	uint_t szc = seg->s_szc;
6681	uint_t tszcvec;
6682
6683	ASSERT(AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
6684	ASSERT(svd->tr_state == SEGVN_TR_OFF);
6685	ASSERT(szc != 0);
6686	pgsz = page_get_pagesize(szc);
6687	ASSERT(seg->s_base != addr || seg->s_size != len);
6688	ASSERT(addr >= seg->s_base && eaddr <= seg->s_base + seg->s_size);
6689	ASSERT(svd->softlockcnt == 0);
6690	ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
6691	ASSERT(szcvec == 0 || (flag == SDR_END && svd->type == MAP_SHARED));
6692
6693	CALC_LPG_REGION(pgsz, seg, addr, len, lpgaddr, lpgeaddr);
6694	ASSERT(flag == SDR_RANGE || eaddr < lpgeaddr || addr > lpgaddr);
6695	if (flag == SDR_RANGE) {
6696		/* demote entire range */
6697		badseg1 = nseg = segvn_split_seg(seg, lpgaddr);
6698		(void) segvn_split_seg(nseg, lpgeaddr);
6699		ASSERT(badseg1->s_base == lpgaddr);
6700		ASSERT(badseg1->s_size == lpgeaddr - lpgaddr);
6701	} else if (addr != lpgaddr) {
6702		ASSERT(flag == SDR_END);
6703		badseg1 = nseg = segvn_split_seg(seg, lpgaddr);
6704		if (eaddr != lpgeaddr && eaddr > lpgaddr + pgsz &&
6705		    eaddr < lpgaddr + 2 * pgsz) {
6706			(void) segvn_split_seg(nseg, lpgeaddr);
6707			ASSERT(badseg1->s_base == lpgaddr);
6708			ASSERT(badseg1->s_size == 2 * pgsz);
6709		} else {
6710			nseg = segvn_split_seg(nseg, lpgaddr + pgsz);
6711			ASSERT(badseg1->s_base == lpgaddr);
6712			ASSERT(badseg1->s_size == pgsz);
6713			if (eaddr != lpgeaddr && eaddr > lpgaddr + pgsz) {
6714				ASSERT(lpgeaddr - lpgaddr > 2 * pgsz);
6715				nseg = segvn_split_seg(nseg, lpgeaddr - pgsz);
6716				badseg2 = nseg;
6717				(void) segvn_split_seg(nseg, lpgeaddr);
6718				ASSERT(badseg2->s_base == lpgeaddr - pgsz);
6719				ASSERT(badseg2->s_size == pgsz);
6720			}
6721		}
6722	} else {
6723		ASSERT(flag == SDR_END);
6724		ASSERT(eaddr < lpgeaddr);
6725		badseg1 = nseg = segvn_split_seg(seg, lpgeaddr - pgsz);
6726		(void) segvn_split_seg(nseg, lpgeaddr);
6727		ASSERT(badseg1->s_base == lpgeaddr - pgsz);
6728		ASSERT(badseg1->s_size == pgsz);
6729	}
6730
6731	ASSERT(badseg1 != NULL);
6732	ASSERT(badseg1->s_szc == szc);
6733	ASSERT(flag == SDR_RANGE || badseg1->s_size == pgsz ||
6734	    badseg1->s_size == 2 * pgsz);
6735	ASSERT(sameprot(badseg1, badseg1->s_base, pgsz));
6736	ASSERT(badseg1->s_size == pgsz ||
6737	    sameprot(badseg1, badseg1->s_base + pgsz, pgsz));
6738	if (err = segvn_clrszc(badseg1)) {
6739		return (err);
6740	}
6741	ASSERT(badseg1->s_szc == 0);
6742
6743	if (szc > 1 && (tszcvec = P2PHASE(szcvec, 1 << szc)) > 1) {
6744		uint_t tszc = highbit(tszcvec) - 1;
6745		caddr_t ta = MAX(addr, badseg1->s_base);
6746		caddr_t te;
6747		size_t tpgsz = page_get_pagesize(tszc);
6748
6749		ASSERT(svd->type == MAP_SHARED);
6750		ASSERT(flag == SDR_END);
6751		ASSERT(tszc < szc && tszc > 0);
6752
6753		if (eaddr > badseg1->s_base + badseg1->s_size) {
6754			te = badseg1->s_base + badseg1->s_size;
6755		} else {
6756			te = eaddr;
6757		}
6758
6759		ASSERT(ta <= te);
6760		badseg1->s_szc = tszc;
6761		if (!IS_P2ALIGNED(ta, tpgsz) || !IS_P2ALIGNED(te, tpgsz)) {
6762			if (badseg2 != NULL) {
6763				err = segvn_demote_range(badseg1, ta, te - ta,
6764				    SDR_END, tszcvec);
6765				if (err != 0) {
6766					return (err);
6767				}
6768			} else {
6769				return (segvn_demote_range(badseg1, ta,
6770				    te - ta, SDR_END, tszcvec));
6771			}
6772		}
6773	}
6774
6775	if (badseg2 == NULL)
6776		return (0);
6777	ASSERT(badseg2->s_szc == szc);
6778	ASSERT(badseg2->s_size == pgsz);
6779	ASSERT(sameprot(badseg2, badseg2->s_base, badseg2->s_size));
6780	if (err = segvn_clrszc(badseg2)) {
6781		return (err);
6782	}
6783	ASSERT(badseg2->s_szc == 0);
6784
6785	if (szc > 1 && (tszcvec = P2PHASE(szcvec, 1 << szc)) > 1) {
6786		uint_t tszc = highbit(tszcvec) - 1;
6787		size_t tpgsz = page_get_pagesize(tszc);
6788
6789		ASSERT(svd->type == MAP_SHARED);
6790		ASSERT(flag == SDR_END);
6791		ASSERT(tszc < szc && tszc > 0);
6792		ASSERT(badseg2->s_base > addr);
6793		ASSERT(eaddr > badseg2->s_base);
6794		ASSERT(eaddr < badseg2->s_base + badseg2->s_size);
6795
6796		badseg2->s_szc = tszc;
6797		if (!IS_P2ALIGNED(eaddr, tpgsz)) {
6798			return (segvn_demote_range(badseg2, badseg2->s_base,
6799			    eaddr - badseg2->s_base, SDR_END, tszcvec));
6800		}
6801	}
6802
6803	return (0);
6804}
6805
6806static int
6807segvn_checkprot(struct seg *seg, caddr_t addr, size_t len, uint_t prot)
6808{
6809	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6810	struct vpage *vp, *evp;
6811
6812	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
6813
6814	SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
6815	/*
6816	 * If segment protection can be used, simply check against them.
6817	 */
6818	if (svd->pageprot == 0) {
6819		int err;
6820
6821		err = ((svd->prot & prot) != prot) ? EACCES : 0;
6822		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6823		return (err);
6824	}
6825
6826	/*
6827	 * Have to check down to the vpage level.
6828	 */
6829	evp = &svd->vpage[seg_page(seg, addr + len)];
6830	for (vp = &svd->vpage[seg_page(seg, addr)]; vp < evp; vp++) {
6831		if ((VPP_PROT(vp) & prot) != prot) {
6832			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6833			return (EACCES);
6834		}
6835	}
6836	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6837	return (0);
6838}
6839
6840static int
6841segvn_getprot(struct seg *seg, caddr_t addr, size_t len, uint_t *protv)
6842{
6843	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6844	size_t pgno = seg_page(seg, addr + len) - seg_page(seg, addr) + 1;
6845
6846	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
6847
6848	if (pgno != 0) {
6849		SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
6850		if (svd->pageprot == 0) {
6851			do {
6852				protv[--pgno] = svd->prot;
6853			} while (pgno != 0);
6854		} else {
6855			size_t pgoff = seg_page(seg, addr);
6856
6857			do {
6858				pgno--;
6859				protv[pgno] = VPP_PROT(&svd->vpage[pgno+pgoff]);
6860			} while (pgno != 0);
6861		}
6862		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6863	}
6864	return (0);
6865}
6866
6867static u_offset_t
6868segvn_getoffset(struct seg *seg, caddr_t addr)
6869{
6870	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6871
6872	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
6873
6874	return (svd->offset + (uintptr_t)(addr - seg->s_base));
6875}
6876
6877/*ARGSUSED*/
6878static int
6879segvn_gettype(struct seg *seg, caddr_t addr)
6880{
6881	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6882
6883	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
6884
6885	return (svd->type | (svd->flags & (MAP_NORESERVE | MAP_TEXT |
6886	    MAP_INITDATA)));
6887}
6888
6889/*ARGSUSED*/
6890static int
6891segvn_getvp(struct seg *seg, caddr_t addr, struct vnode **vpp)
6892{
6893	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6894
6895	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
6896
6897	*vpp = svd->vp;
6898	return (0);
6899}
6900
6901/*
6902 * Check to see if it makes sense to do kluster/read ahead to
6903 * addr + delta relative to the mapping at addr.  We assume here
6904 * that delta is a signed PAGESIZE'd multiple (which can be negative).
6905 *
6906 * For segvn, we currently "approve" of the action if we are
6907 * still in the segment and it maps from the same vp/off,
6908 * or if the advice stored in segvn_data or vpages allows it.
6909 * Currently, klustering is not allowed only if MADV_RANDOM is set.
6910 */
6911static int
6912segvn_kluster(struct seg *seg, caddr_t addr, ssize_t delta)
6913{
6914	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6915	struct anon *oap, *ap;
6916	ssize_t pd;
6917	size_t page;
6918	struct vnode *vp1, *vp2;
6919	u_offset_t off1, off2;
6920	struct anon_map *amp;
6921
6922	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
6923	ASSERT(AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock) ||
6924	    SEGVN_LOCK_HELD(seg->s_as, &svd->lock));
6925
6926	if (addr + delta < seg->s_base ||
6927	    addr + delta >= (seg->s_base + seg->s_size))
6928		return (-1);		/* exceeded segment bounds */
6929
6930	pd = delta / (ssize_t)PAGESIZE;	/* divide to preserve sign bit */
6931	page = seg_page(seg, addr);
6932
6933	/*
6934	 * Check to see if either of the pages addr or addr + delta
6935	 * have advice set that prevents klustering (if MADV_RANDOM advice
6936	 * is set for entire segment, or MADV_SEQUENTIAL is set and delta
6937	 * is negative).
6938	 */
6939	if (svd->advice == MADV_RANDOM ||
6940	    svd->advice == MADV_SEQUENTIAL && delta < 0)
6941		return (-1);
6942	else if (svd->pageadvice && svd->vpage) {
6943		struct vpage *bvpp, *evpp;
6944
6945		bvpp = &svd->vpage[page];
6946		evpp = &svd->vpage[page + pd];
6947		if (VPP_ADVICE(bvpp) == MADV_RANDOM ||
6948		    VPP_ADVICE(evpp) == MADV_SEQUENTIAL && delta < 0)
6949			return (-1);
6950		if (VPP_ADVICE(bvpp) != VPP_ADVICE(evpp) &&
6951		    VPP_ADVICE(evpp) == MADV_RANDOM)
6952			return (-1);
6953	}
6954
6955	if (svd->type == MAP_SHARED)
6956		return (0);		/* shared mapping - all ok */
6957
6958	if ((amp = svd->amp) == NULL)
6959		return (0);		/* off original vnode */
6960
6961	page += svd->anon_index;
6962
6963	ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
6964
6965	oap = anon_get_ptr(amp->ahp, page);
6966	ap = anon_get_ptr(amp->ahp, page + pd);
6967
6968	ANON_LOCK_EXIT(&amp->a_rwlock);
6969
6970	if ((oap == NULL && ap != NULL) || (oap != NULL && ap == NULL)) {
6971		return (-1);		/* one with and one without an anon */
6972	}
6973
6974	if (oap == NULL) {		/* implies that ap == NULL */
6975		return (0);		/* off original vnode */
6976	}
6977
6978	/*
6979	 * Now we know we have two anon pointers - check to
6980	 * see if they happen to be properly allocated.
6981	 */
6982
6983	/*
6984	 * XXX We cheat here and don't lock the anon slots. We can't because
6985	 * we may have been called from the anon layer which might already
6986	 * have locked them. We are holding a refcnt on the slots so they
6987	 * can't disappear. The worst that will happen is we'll get the wrong
6988	 * names (vp, off) for the slots and make a poor klustering decision.
6989	 */
6990	swap_xlate(ap, &vp1, &off1);
6991	swap_xlate(oap, &vp2, &off2);
6992
6993
6994	if (!VOP_CMP(vp1, vp2, NULL) || off1 - off2 != delta)
6995		return (-1);
6996	return (0);
6997}
6998
6999/*
7000 * Swap the pages of seg out to secondary storage, returning the
7001 * number of bytes of storage freed.
7002 *
7003 * The basic idea is first to unload all translations and then to call
7004 * VOP_PUTPAGE() for all newly-unmapped pages, to push them out to the
7005 * swap device.  Pages to which other segments have mappings will remain
7006 * mapped and won't be swapped.  Our caller (as_swapout) has already
7007 * performed the unloading step.
7008 *
7009 * The value returned is intended to correlate well with the process's
7010 * memory requirements.  However, there are some caveats:
7011 * 1)	When given a shared segment as argument, this routine will
7012 *	only succeed in swapping out pages for the last sharer of the
7013 *	segment.  (Previous callers will only have decremented mapping
7014 *	reference counts.)
7015 * 2)	We assume that the hat layer maintains a large enough translation
7016 *	cache to capture process reference patterns.
7017 */
7018static size_t
7019segvn_swapout(struct seg *seg)
7020{
7021	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
7022	struct anon_map *amp;
7023	pgcnt_t pgcnt = 0;
7024	pgcnt_t npages;
7025	pgcnt_t page;
7026	ulong_t anon_index;
7027
7028	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
7029
7030	SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
7031	/*
7032	 * Find pages unmapped by our caller and force them
7033	 * out to the virtual swap device.
7034	 */
7035	if ((amp = svd->amp) != NULL)
7036		anon_index = svd->anon_index;
7037	npages = seg->s_size >> PAGESHIFT;
7038	for (page = 0; page < npages; page++) {
7039		page_t *pp;
7040		struct anon *ap;
7041		struct vnode *vp;
7042		u_offset_t off;
7043		anon_sync_obj_t cookie;
7044
7045		/*
7046		 * Obtain <vp, off> pair for the page, then look it up.
7047		 *
7048		 * Note that this code is willing to consider regular
7049		 * pages as well as anon pages.  Is this appropriate here?
7050		 */
7051		ap = NULL;
7052		if (amp != NULL) {
7053			ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
7054			if (anon_array_try_enter(amp, anon_index + page,
7055			    &cookie)) {
7056				ANON_LOCK_EXIT(&amp->a_rwlock);
7057				continue;
7058			}
7059			ap = anon_get_ptr(amp->ahp, anon_index + page);
7060			if (ap != NULL) {
7061				swap_xlate(ap, &vp, &off);
7062			} else {
7063				vp = svd->vp;
7064				off = svd->offset + ptob(page);
7065			}
7066			anon_array_exit(&cookie);
7067			ANON_LOCK_EXIT(&amp->a_rwlock);
7068		} else {
7069			vp = svd->vp;
7070			off = svd->offset + ptob(page);
7071		}
7072		if (vp == NULL) {		/* untouched zfod page */
7073			ASSERT(ap == NULL);
7074			continue;
7075		}
7076
7077		pp = page_lookup_nowait(vp, off, SE_SHARED);
7078		if (pp == NULL)
7079			continue;
7080
7081
7082		/*
7083		 * Examine the page to see whether it can be tossed out,
7084		 * keeping track of how many we've found.
7085		 */
7086		if (!page_tryupgrade(pp)) {
7087			/*
7088			 * If the page has an i/o lock and no mappings,
7089			 * it's very likely that the page is being
7090			 * written out as a result of klustering.
7091			 * Assume this is so and take credit for it here.
7092			 */
7093			if (!page_io_trylock(pp)) {
7094				if (!hat_page_is_mapped(pp))
7095					pgcnt++;
7096			} else {
7097				page_io_unlock(pp);
7098			}
7099			page_unlock(pp);
7100			continue;
7101		}
7102		ASSERT(!page_iolock_assert(pp));
7103
7104
7105		/*
7106		 * Skip if page is locked or has mappings.
7107		 * We don't need the page_struct_lock to look at lckcnt
7108		 * and cowcnt because the page is exclusive locked.
7109		 */
7110		if (pp->p_lckcnt != 0 || pp->p_cowcnt != 0 ||
7111		    hat_page_is_mapped(pp)) {
7112			page_unlock(pp);
7113			continue;
7114		}
7115
7116		/*
7117		 * dispose skips large pages so try to demote first.
7118		 */
7119		if (pp->p_szc != 0 && !page_try_demote_pages(pp)) {
7120			page_unlock(pp);
7121			/*
7122			 * XXX should skip the remaining page_t's of this
7123			 * large page.
7124			 */
7125			continue;
7126		}
7127
7128		ASSERT(pp->p_szc == 0);
7129
7130		/*
7131		 * No longer mapped -- we can toss it out.  How
7132		 * we do so depends on whether or not it's dirty.
7133		 */
7134		if (hat_ismod(pp) && pp->p_vnode) {
7135			/*
7136			 * We must clean the page before it can be
7137			 * freed.  Setting B_FREE will cause pvn_done
7138			 * to free the page when the i/o completes.
7139			 * XXX:	This also causes it to be accounted
7140			 *	as a pageout instead of a swap: need
7141			 *	B_SWAPOUT bit to use instead of B_FREE.
7142			 *
7143			 * Hold the vnode before releasing the page lock
7144			 * to prevent it from being freed and re-used by
7145			 * some other thread.
7146			 */
7147			VN_HOLD(vp);
7148			page_unlock(pp);
7149
7150			/*
7151			 * Queue all i/o requests for the pageout thread
7152			 * to avoid saturating the pageout devices.
7153			 */
7154			if (!queue_io_request(vp, off))
7155				VN_RELE(vp);
7156		} else {
7157			/*
7158			 * The page was clean, free it.
7159			 *
7160			 * XXX:	Can we ever encounter modified pages
7161			 *	with no associated vnode here?
7162			 */
7163			ASSERT(pp->p_vnode != NULL);
7164			/*LINTED: constant in conditional context*/
7165			VN_DISPOSE(pp, B_FREE, 0, kcred);
7166		}
7167
7168		/*
7169		 * Credit now even if i/o is in progress.
7170		 */
7171		pgcnt++;
7172	}
7173	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7174
7175	/*
7176	 * Wakeup pageout to initiate i/o on all queued requests.
7177	 */
7178	cv_signal_pageout();
7179	return (ptob(pgcnt));
7180}
7181
7182/*
7183 * Synchronize primary storage cache with real object in virtual memory.
7184 *
7185 * XXX - Anonymous pages should not be sync'ed out at all.
7186 */
7187static int
7188segvn_sync(struct seg *seg, caddr_t addr, size_t len, int attr, uint_t flags)
7189{
7190	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
7191	struct vpage *vpp;
7192	page_t *pp;
7193	u_offset_t offset;
7194	struct vnode *vp;
7195	u_offset_t off;
7196	caddr_t eaddr;
7197	int bflags;
7198	int err = 0;
7199	int segtype;
7200	int pageprot;
7201	int prot;
7202	ulong_t anon_index;
7203	struct anon_map *amp;
7204	struct anon *ap;
7205	anon_sync_obj_t cookie;
7206
7207	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
7208
7209	SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
7210
7211	if (svd->softlockcnt > 0) {
7212		/*
7213		 * If this is shared segment non 0 softlockcnt
7214		 * means locked pages are still in use.
7215		 */
7216		if (svd->type == MAP_SHARED) {
7217			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7218			return (EAGAIN);
7219		}
7220
7221		/*
7222		 * flush all pages from seg cache
7223		 * otherwise we may deadlock in swap_putpage
7224		 * for B_INVAL page (4175402).
7225		 *
7226		 * Even if we grab segvn WRITER's lock
7227		 * here, there might be another thread which could've
7228		 * successfully performed lookup/insert just before
7229		 * we acquired the lock here.  So, grabbing either
7230		 * lock here is of not much use.  Until we devise
7231		 * a strategy at upper layers to solve the
7232		 * synchronization issues completely, we expect
7233		 * applications to handle this appropriately.
7234		 */
7235		segvn_purge(seg);
7236		if (svd->softlockcnt > 0) {
7237			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7238			return (EAGAIN);
7239		}
7240	} else if (svd->type == MAP_SHARED && svd->amp != NULL &&
7241	    svd->amp->a_softlockcnt > 0) {
7242		/*
7243		 * Try to purge this amp's entries from pcache. It will
7244		 * succeed only if other segments that share the amp have no
7245		 * outstanding softlock's.
7246		 */
7247		segvn_purge(seg);
7248		if (svd->amp->a_softlockcnt > 0 || svd->softlockcnt > 0) {
7249			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7250			return (EAGAIN);
7251		}
7252	}
7253
7254	vpp = svd->vpage;
7255	offset = svd->offset + (uintptr_t)(addr - seg->s_base);
7256	bflags = ((flags & MS_ASYNC) ? B_ASYNC : 0) |
7257	    ((flags & MS_INVALIDATE) ? B_INVAL : 0);
7258
7259	if (attr) {
7260		pageprot = attr & ~(SHARED|PRIVATE);
7261		segtype = (attr & SHARED) ? MAP_SHARED : MAP_PRIVATE;
7262
7263		/*
7264		 * We are done if the segment types don't match
7265		 * or if we have segment level protections and
7266		 * they don't match.
7267		 */
7268		if (svd->type != segtype) {
7269			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7270			return (0);
7271		}
7272		if (vpp == NULL) {
7273			if (svd->prot != pageprot) {
7274				SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7275				return (0);
7276			}
7277			prot = svd->prot;
7278		} else
7279			vpp = &svd->vpage[seg_page(seg, addr)];
7280
7281	} else if (svd->vp && svd->amp == NULL &&
7282	    (flags & MS_INVALIDATE) == 0) {
7283
7284		/*
7285		 * No attributes, no anonymous pages and MS_INVALIDATE flag
7286		 * is not on, just use one big request.
7287		 */
7288		err = VOP_PUTPAGE(svd->vp, (offset_t)offset, len,
7289		    bflags, svd->cred, NULL);
7290		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7291		return (err);
7292	}
7293
7294	if ((amp = svd->amp) != NULL)
7295		anon_index = svd->anon_index + seg_page(seg, addr);
7296
7297	for (eaddr = addr + len; addr < eaddr; addr += PAGESIZE) {
7298		ap = NULL;
7299		if (amp != NULL) {
7300			ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
7301			anon_array_enter(amp, anon_index, &cookie);
7302			ap = anon_get_ptr(amp->ahp, anon_index++);
7303			if (ap != NULL) {
7304				swap_xlate(ap, &vp, &off);
7305			} else {
7306				vp = svd->vp;
7307				off = offset;
7308			}
7309			anon_array_exit(&cookie);
7310			ANON_LOCK_EXIT(&amp->a_rwlock);
7311		} else {
7312			vp = svd->vp;
7313			off = offset;
7314		}
7315		offset += PAGESIZE;
7316
7317		if (vp == NULL)		/* untouched zfod page */
7318			continue;
7319
7320		if (attr) {
7321			if (vpp) {
7322				prot = VPP_PROT(vpp);
7323				vpp++;
7324			}
7325			if (prot != pageprot) {
7326				continue;
7327			}
7328		}
7329
7330		/*
7331		 * See if any of these pages are locked --  if so, then we
7332		 * will have to truncate an invalidate request at the first
7333		 * locked one. We don't need the page_struct_lock to test
7334		 * as this is only advisory; even if we acquire it someone
7335		 * might race in and lock the page after we unlock and before
7336		 * we do the PUTPAGE, then PUTPAGE simply does nothing.
7337		 */
7338		if (flags & MS_INVALIDATE) {
7339			if ((pp = page_lookup(vp, off, SE_SHARED)) != NULL) {
7340				if (pp->p_lckcnt != 0 || pp->p_cowcnt != 0) {
7341					page_unlock(pp);
7342					SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7343					return (EBUSY);
7344				}
7345				if (ap != NULL && pp->p_szc != 0 &&
7346				    page_tryupgrade(pp)) {
7347					if (pp->p_lckcnt == 0 &&
7348					    pp->p_cowcnt == 0) {
7349						/*
7350						 * swapfs VN_DISPOSE() won't
7351						 * invalidate large pages.
7352						 * Attempt to demote.
7353						 * XXX can't help it if it
7354						 * fails. But for swapfs
7355						 * pages it is no big deal.
7356						 */
7357						(void) page_try_demote_pages(
7358						    pp);
7359					}
7360				}
7361				page_unlock(pp);
7362			}
7363		} else if (svd->type == MAP_SHARED && amp != NULL) {
7364			/*
7365			 * Avoid writing out to disk ISM's large pages
7366			 * because segspt_free_pages() relies on NULL an_pvp
7367			 * of anon slots of such pages.
7368			 */
7369
7370			ASSERT(svd->vp == NULL);
7371			/*
7372			 * swapfs uses page_lookup_nowait if not freeing or
7373			 * invalidating and skips a page if
7374			 * page_lookup_nowait returns NULL.
7375			 */
7376			pp = page_lookup_nowait(vp, off, SE_SHARED);
7377			if (pp == NULL) {
7378				continue;
7379			}
7380			if (pp->p_szc != 0) {
7381				page_unlock(pp);
7382				continue;
7383			}
7384
7385			/*
7386			 * Note ISM pages are created large so (vp, off)'s
7387			 * page cannot suddenly become large after we unlock
7388			 * pp.
7389			 */
7390			page_unlock(pp);
7391		}
7392		/*
7393		 * XXX - Should ultimately try to kluster
7394		 * calls to VOP_PUTPAGE() for performance.
7395		 */
7396		VN_HOLD(vp);
7397		err = VOP_PUTPAGE(vp, (offset_t)off, PAGESIZE,
7398		    (bflags | (IS_SWAPFSVP(vp) ? B_PAGE_NOWAIT : 0)),
7399		    svd->cred, NULL);
7400
7401		VN_RELE(vp);
7402		if (err)
7403			break;
7404	}
7405	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7406	return (err);
7407}
7408
7409/*
7410 * Determine if we have data corresponding to pages in the
7411 * primary storage virtual memory cache (i.e., "in core").
7412 */
7413static size_t
7414segvn_incore(struct seg *seg, caddr_t addr, size_t len, char *vec)
7415{
7416	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
7417	struct vnode *vp, *avp;
7418	u_offset_t offset, aoffset;
7419	size_t p, ep;
7420	int ret;
7421	struct vpage *vpp;
7422	page_t *pp;
7423	uint_t start;
7424	struct anon_map *amp;		/* XXX - for locknest */
7425	struct anon *ap;
7426	uint_t attr;
7427	anon_sync_obj_t cookie;
7428
7429	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
7430
7431	SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
7432	if (svd->amp == NULL && svd->vp == NULL) {
7433		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7434		bzero(vec, btopr(len));
7435		return (len);	/* no anonymous pages created yet */
7436	}
7437
7438	p = seg_page(seg, addr);
7439	ep = seg_page(seg, addr + len);
7440	start = svd->vp ? SEG_PAGE_VNODEBACKED : 0;
7441
7442	amp = svd->amp;
7443	for (; p < ep; p++, addr += PAGESIZE) {
7444		vpp = (svd->vpage) ? &svd->vpage[p]: NULL;
7445		ret = start;
7446		ap = NULL;
7447		avp = NULL;
7448		/* Grab the vnode/offset for the anon slot */
7449		if (amp != NULL) {
7450			ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
7451			anon_array_enter(amp, svd->anon_index + p, &cookie);
7452			ap = anon_get_ptr(amp->ahp, svd->anon_index + p);
7453			if (ap != NULL) {
7454				swap_xlate(ap, &avp, &aoffset);
7455			}
7456			anon_array_exit(&cookie);
7457			ANON_LOCK_EXIT(&amp->a_rwlock);
7458		}
7459		if ((avp != NULL) && page_exists(avp, aoffset)) {
7460			/* A page exists for the anon slot */
7461			ret |= SEG_PAGE_INCORE;
7462
7463			/*
7464			 * If page is mapped and writable
7465			 */
7466			attr = (uint_t)0;
7467			if ((hat_getattr(seg->s_as->a_hat, addr,
7468			    &attr) != -1) && (attr & PROT_WRITE)) {
7469				ret |= SEG_PAGE_ANON;
7470			}
7471			/*
7472			 * Don't get page_struct lock for lckcnt and cowcnt,
7473			 * since this is purely advisory.
7474			 */
7475			if ((pp = page_lookup_nowait(avp, aoffset,
7476			    SE_SHARED)) != NULL) {
7477				if (pp->p_lckcnt)
7478					ret |= SEG_PAGE_SOFTLOCK;
7479				if (pp->p_cowcnt)
7480					ret |= SEG_PAGE_HASCOW;
7481				page_unlock(pp);
7482			}
7483		}
7484
7485		/* Gather vnode statistics */
7486		vp = svd->vp;
7487		offset = svd->offset + (uintptr_t)(addr - seg->s_base);
7488
7489		if (vp != NULL) {
7490			/*
7491			 * Try to obtain a "shared" lock on the page
7492			 * without blocking.  If this fails, determine
7493			 * if the page is in memory.
7494			 */
7495			pp = page_lookup_nowait(vp, offset, SE_SHARED);
7496			if ((pp == NULL) && (page_exists(vp, offset))) {
7497				/* Page is incore, and is named */
7498				ret |= (SEG_PAGE_INCORE | SEG_PAGE_VNODE);
7499			}
7500			/*
7501			 * Don't get page_struct lock for lckcnt and cowcnt,
7502			 * since this is purely advisory.
7503			 */
7504			if (pp != NULL) {
7505				ret |= (SEG_PAGE_INCORE | SEG_PAGE_VNODE);
7506				if (pp->p_lckcnt)
7507					ret |= SEG_PAGE_SOFTLOCK;
7508				if (pp->p_cowcnt)
7509					ret |= SEG_PAGE_HASCOW;
7510				page_unlock(pp);
7511			}
7512		}
7513
7514		/* Gather virtual page information */
7515		if (vpp) {
7516			if (VPP_ISPPLOCK(vpp))
7517				ret |= SEG_PAGE_LOCKED;
7518			vpp++;
7519		}
7520
7521		*vec++ = (char)ret;
7522	}
7523	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7524	return (len);
7525}
7526
7527/*
7528 * Statement for p_cowcnts/p_lckcnts.
7529 *
7530 * p_cowcnt is updated while mlock/munlocking MAP_PRIVATE and PROT_WRITE region
7531 * irrespective of the following factors or anything else:
7532 *
7533 *	(1) anon slots are populated or not
7534 *	(2) cow is broken or not
7535 *	(3) refcnt on ap is 1 or greater than 1
7536 *
7537 * If it's not MAP_PRIVATE and PROT_WRITE, p_lckcnt is updated during mlock
7538 * and munlock.
7539 *
7540 *
7541 * Handling p_cowcnts/p_lckcnts during copy-on-write fault:
7542 *
7543 *	if vpage has PROT_WRITE
7544 *		transfer cowcnt on the oldpage -> cowcnt on the newpage
7545 *	else
7546 *		transfer lckcnt on the oldpage -> lckcnt on the newpage
7547 *
7548 *	During copy-on-write, decrement p_cowcnt on the oldpage and increment
7549 *	p_cowcnt on the newpage *if* the corresponding vpage has PROT_WRITE.
7550 *
7551 *	We may also break COW if softlocking on read access in the physio case.
7552 *	In this case, vpage may not have PROT_WRITE. So, we need to decrement
7553 *	p_lckcnt on the oldpage and increment p_lckcnt on the newpage *if* the
7554 *	vpage doesn't have PROT_WRITE.
7555 *
7556 *
7557 * Handling p_cowcnts/p_lckcnts during mprotect on mlocked region:
7558 *
7559 * 	If a MAP_PRIVATE region loses PROT_WRITE, we decrement p_cowcnt and
7560 *	increment p_lckcnt by calling page_subclaim() which takes care of
7561 * 	availrmem accounting and p_lckcnt overflow.
7562 *
7563 *	If a MAP_PRIVATE region gains PROT_WRITE, we decrement p_lckcnt and
7564 *	increment p_cowcnt by calling page_addclaim() which takes care of
7565 *	availrmem availability and p_cowcnt overflow.
7566 */
7567
7568/*
7569 * Lock down (or unlock) pages mapped by this segment.
7570 *
7571 * XXX only creates PAGESIZE pages if anon slots are not initialized.
7572 * At fault time they will be relocated into larger pages.
7573 */
7574static int
7575segvn_lockop(struct seg *seg, caddr_t addr, size_t len,
7576    int attr, int op, ulong_t *lockmap, size_t pos)
7577{
7578	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
7579	struct vpage *vpp;
7580	struct vpage *evp;
7581	page_t *pp;
7582	u_offset_t offset;
7583	u_offset_t off;
7584	int segtype;
7585	int pageprot;
7586	int claim;
7587	struct vnode *vp;
7588	ulong_t anon_index;
7589	struct anon_map *amp;
7590	struct anon *ap;
7591	struct vattr va;
7592	anon_sync_obj_t cookie;
7593	struct kshmid *sp = NULL;
7594	struct proc	*p = curproc;
7595	kproject_t	*proj = NULL;
7596	int chargeproc = 1;
7597	size_t locked_bytes = 0;
7598	size_t unlocked_bytes = 0;
7599	int err = 0;
7600
7601	/*
7602	 * Hold write lock on address space because may split or concatenate
7603	 * segments
7604	 */
7605	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
7606
7607	/*
7608	 * If this is a shm, use shm's project and zone, else use
7609	 * project and zone of calling process
7610	 */
7611
7612	/* Determine if this segment backs a sysV shm */
7613	if (svd->amp != NULL && svd->amp->a_sp != NULL) {
7614		ASSERT(svd->type == MAP_SHARED);
7615		ASSERT(svd->tr_state == SEGVN_TR_OFF);
7616		sp = svd->amp->a_sp;
7617		proj = sp->shm_perm.ipc_proj;
7618		chargeproc = 0;
7619	}
7620
7621	SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
7622	if (attr) {
7623		pageprot = attr & ~(SHARED|PRIVATE);
7624		segtype = attr & SHARED ? MAP_SHARED : MAP_PRIVATE;
7625
7626		/*
7627		 * We are done if the segment types don't match
7628		 * or if we have segment level protections and
7629		 * they don't match.
7630		 */
7631		if (svd->type != segtype) {
7632			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7633			return (0);
7634		}
7635		if (svd->pageprot == 0 && svd->prot != pageprot) {
7636			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7637			return (0);
7638		}
7639	}
7640
7641	if (op == MC_LOCK) {
7642		if (svd->tr_state == SEGVN_TR_INIT) {
7643			svd->tr_state = SEGVN_TR_OFF;
7644		} else if (svd->tr_state == SEGVN_TR_ON) {
7645			ASSERT(svd->amp != NULL);
7646			segvn_textunrepl(seg, 0);
7647			ASSERT(svd->amp == NULL &&
7648			    svd->tr_state == SEGVN_TR_OFF);
7649		}
7650	}
7651
7652	/*
7653	 * If we're locking, then we must create a vpage structure if
7654	 * none exists.  If we're unlocking, then check to see if there
7655	 * is a vpage --  if not, then we could not have locked anything.
7656	 */
7657
7658	if ((vpp = svd->vpage) == NULL) {
7659		if (op == MC_LOCK)
7660			segvn_vpage(seg);
7661		else {
7662			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7663			return (0);
7664		}
7665	}
7666
7667	/*
7668	 * The anonymous data vector (i.e., previously
7669	 * unreferenced mapping to swap space) can be allocated
7670	 * by lazily testing for its existence.
7671	 */
7672	if (op == MC_LOCK && svd->amp == NULL && svd->vp == NULL) {
7673		ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
7674		svd->amp = anonmap_alloc(seg->s_size, 0, ANON_SLEEP);
7675		svd->amp->a_szc = seg->s_szc;
7676	}
7677
7678	if ((amp = svd->amp) != NULL) {
7679		anon_index = svd->anon_index + seg_page(seg, addr);
7680	}
7681
7682	offset = svd->offset + (uintptr_t)(addr - seg->s_base);
7683	evp = &svd->vpage[seg_page(seg, addr + len)];
7684
7685	if (sp != NULL)
7686		mutex_enter(&sp->shm_mlock);
7687
7688	/* determine number of unlocked bytes in range for lock operation */
7689	if (op == MC_LOCK) {
7690
7691		if (sp == NULL) {
7692			for (vpp = &svd->vpage[seg_page(seg, addr)]; vpp < evp;
7693			    vpp++) {
7694				if (!VPP_ISPPLOCK(vpp))
7695					unlocked_bytes += PAGESIZE;
7696			}
7697		} else {
7698			ulong_t		i_idx, i_edx;
7699			anon_sync_obj_t	i_cookie;
7700			struct anon	*i_ap;
7701			struct vnode	*i_vp;
7702			u_offset_t	i_off;
7703
7704			/* Only count sysV pages once for locked memory */
7705			i_edx = svd->anon_index + seg_page(seg, addr + len);
7706			ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
7707			for (i_idx = anon_index; i_idx < i_edx; i_idx++) {
7708				anon_array_enter(amp, i_idx, &i_cookie);
7709				i_ap = anon_get_ptr(amp->ahp, i_idx);
7710				if (i_ap == NULL) {
7711					unlocked_bytes += PAGESIZE;
7712					anon_array_exit(&i_cookie);
7713					continue;
7714				}
7715				swap_xlate(i_ap, &i_vp, &i_off);
7716				anon_array_exit(&i_cookie);
7717				pp = page_lookup(i_vp, i_off, SE_SHARED);
7718				if (pp == NULL) {
7719					unlocked_bytes += PAGESIZE;
7720					continue;
7721				} else if (pp->p_lckcnt == 0)
7722					unlocked_bytes += PAGESIZE;
7723				page_unlock(pp);
7724			}
7725			ANON_LOCK_EXIT(&amp->a_rwlock);
7726		}
7727
7728		mutex_enter(&p->p_lock);
7729		err = rctl_incr_locked_mem(p, proj, unlocked_bytes,
7730		    chargeproc);
7731		mutex_exit(&p->p_lock);
7732
7733		if (err) {
7734			if (sp != NULL)
7735				mutex_exit(&sp->shm_mlock);
7736			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7737			return (err);
7738		}
7739	}
7740	/*
7741	 * Loop over all pages in the range.  Process if we're locking and
7742	 * page has not already been locked in this mapping; or if we're
7743	 * unlocking and the page has been locked.
7744	 */
7745	for (vpp = &svd->vpage[seg_page(seg, addr)]; vpp < evp;
7746	    vpp++, pos++, addr += PAGESIZE, offset += PAGESIZE, anon_index++) {
7747		if ((attr == 0 || VPP_PROT(vpp) == pageprot) &&
7748		    ((op == MC_LOCK && !VPP_ISPPLOCK(vpp)) ||
7749		    (op == MC_UNLOCK && VPP_ISPPLOCK(vpp)))) {
7750
7751			if (amp != NULL)
7752				ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
7753			/*
7754			 * If this isn't a MAP_NORESERVE segment and
7755			 * we're locking, allocate anon slots if they
7756			 * don't exist.  The page is brought in later on.
7757			 */
7758			if (op == MC_LOCK && svd->vp == NULL &&
7759			    ((svd->flags & MAP_NORESERVE) == 0) &&
7760			    amp != NULL &&
7761			    ((ap = anon_get_ptr(amp->ahp, anon_index))
7762			    == NULL)) {
7763				anon_array_enter(amp, anon_index, &cookie);
7764
7765				if ((ap = anon_get_ptr(amp->ahp,
7766				    anon_index)) == NULL) {
7767					pp = anon_zero(seg, addr, &ap,
7768					    svd->cred);
7769					if (pp == NULL) {
7770						anon_array_exit(&cookie);
7771						ANON_LOCK_EXIT(&amp->a_rwlock);
7772						err = ENOMEM;
7773						goto out;
7774					}
7775					ASSERT(anon_get_ptr(amp->ahp,
7776					    anon_index) == NULL);
7777					(void) anon_set_ptr(amp->ahp,
7778					    anon_index, ap, ANON_SLEEP);
7779					page_unlock(pp);
7780				}
7781				anon_array_exit(&cookie);
7782			}
7783
7784			/*
7785			 * Get name for page, accounting for
7786			 * existence of private copy.
7787			 */
7788			ap = NULL;
7789			if (amp != NULL) {
7790				anon_array_enter(amp, anon_index, &cookie);
7791				ap = anon_get_ptr(amp->ahp, anon_index);
7792				if (ap != NULL) {
7793					swap_xlate(ap, &vp, &off);
7794				} else {
7795					if (svd->vp == NULL &&
7796					    (svd->flags & MAP_NORESERVE)) {
7797						anon_array_exit(&cookie);
7798						ANON_LOCK_EXIT(&amp->a_rwlock);
7799						continue;
7800					}
7801					vp = svd->vp;
7802					off = offset;
7803				}
7804				if (op != MC_LOCK || ap == NULL) {
7805					anon_array_exit(&cookie);
7806					ANON_LOCK_EXIT(&amp->a_rwlock);
7807				}
7808			} else {
7809				vp = svd->vp;
7810				off = offset;
7811			}
7812
7813			/*
7814			 * Get page frame.  It's ok if the page is
7815			 * not available when we're unlocking, as this
7816			 * may simply mean that a page we locked got
7817			 * truncated out of existence after we locked it.
7818			 *
7819			 * Invoke VOP_GETPAGE() to obtain the page struct
7820			 * since we may need to read it from disk if its
7821			 * been paged out.
7822			 */
7823			if (op != MC_LOCK)
7824				pp = page_lookup(vp, off, SE_SHARED);
7825			else {
7826				page_t *pl[1 + 1];
7827				int error;
7828
7829				ASSERT(vp != NULL);
7830
7831				error = VOP_GETPAGE(vp, (offset_t)off, PAGESIZE,
7832				    (uint_t *)NULL, pl, PAGESIZE, seg, addr,
7833				    S_OTHER, svd->cred, NULL);
7834
7835				if (error && ap != NULL) {
7836					anon_array_exit(&cookie);
7837					ANON_LOCK_EXIT(&amp->a_rwlock);
7838				}
7839
7840				/*
7841				 * If the error is EDEADLK then we must bounce
7842				 * up and drop all vm subsystem locks and then
7843				 * retry the operation later
7844				 * This behavior is a temporary measure because
7845				 * ufs/sds logging is badly designed and will
7846				 * deadlock if we don't allow this bounce to
7847				 * happen.  The real solution is to re-design
7848				 * the logging code to work properly.  See bug
7849				 * 4125102 for details of the problem.
7850				 */
7851				if (error == EDEADLK) {
7852					err = error;
7853					goto out;
7854				}
7855				/*
7856				 * Quit if we fail to fault in the page.  Treat
7857				 * the failure as an error, unless the addr
7858				 * is mapped beyond the end of a file.
7859				 */
7860				if (error && svd->vp) {
7861					va.va_mask = AT_SIZE;
7862					if (VOP_GETATTR(svd->vp, &va, 0,
7863					    svd->cred, NULL) != 0) {
7864						err = EIO;
7865						goto out;
7866					}
7867					if (btopr(va.va_size) >=
7868					    btopr(off + 1)) {
7869						err = EIO;
7870						goto out;
7871					}
7872					goto out;
7873
7874				} else if (error) {
7875					err = EIO;
7876					goto out;
7877				}
7878				pp = pl[0];
7879				ASSERT(pp != NULL);
7880			}
7881
7882			/*
7883			 * See Statement at the beginning of this routine.
7884			 *
7885			 * claim is always set if MAP_PRIVATE and PROT_WRITE
7886			 * irrespective of following factors:
7887			 *
7888			 * (1) anon slots are populated or not
7889			 * (2) cow is broken or not
7890			 * (3) refcnt on ap is 1 or greater than 1
7891			 *
7892			 * See 4140683 for details
7893			 */
7894			claim = ((VPP_PROT(vpp) & PROT_WRITE) &&
7895			    (svd->type == MAP_PRIVATE));
7896
7897			/*
7898			 * Perform page-level operation appropriate to
7899			 * operation.  If locking, undo the SOFTLOCK
7900			 * performed to bring the page into memory
7901			 * after setting the lock.  If unlocking,
7902			 * and no page was found, account for the claim
7903			 * separately.
7904			 */
7905			if (op == MC_LOCK) {
7906				int ret = 1;	/* Assume success */
7907
7908				ASSERT(!VPP_ISPPLOCK(vpp));
7909
7910				ret = page_pp_lock(pp, claim, 0);
7911				if (ap != NULL) {
7912					if (ap->an_pvp != NULL) {
7913						anon_swap_free(ap, pp);
7914					}
7915					anon_array_exit(&cookie);
7916					ANON_LOCK_EXIT(&amp->a_rwlock);
7917				}
7918				if (ret == 0) {
7919					/* locking page failed */
7920					page_unlock(pp);
7921					err = EAGAIN;
7922					goto out;
7923				}
7924				VPP_SETPPLOCK(vpp);
7925				if (sp != NULL) {
7926					if (pp->p_lckcnt == 1)
7927						locked_bytes += PAGESIZE;
7928				} else
7929					locked_bytes += PAGESIZE;
7930
7931				if (lockmap != (ulong_t *)NULL)
7932					BT_SET(lockmap, pos);
7933
7934				page_unlock(pp);
7935			} else {
7936				ASSERT(VPP_ISPPLOCK(vpp));
7937				if (pp != NULL) {
7938					/* sysV pages should be locked */
7939					ASSERT(sp == NULL || pp->p_lckcnt > 0);
7940					page_pp_unlock(pp, claim, 0);
7941					if (sp != NULL) {
7942						if (pp->p_lckcnt == 0)
7943							unlocked_bytes
7944							    += PAGESIZE;
7945					} else
7946						unlocked_bytes += PAGESIZE;
7947					page_unlock(pp);
7948				} else {
7949					ASSERT(sp == NULL);
7950					unlocked_bytes += PAGESIZE;
7951				}
7952				VPP_CLRPPLOCK(vpp);
7953			}
7954		}
7955	}
7956out:
7957	if (op == MC_LOCK) {
7958		/* Credit back bytes that did not get locked */
7959		if ((unlocked_bytes - locked_bytes) > 0) {
7960			if (proj == NULL)
7961				mutex_enter(&p->p_lock);
7962			rctl_decr_locked_mem(p, proj,
7963			    (unlocked_bytes - locked_bytes), chargeproc);
7964			if (proj == NULL)
7965				mutex_exit(&p->p_lock);
7966		}
7967
7968	} else {
7969		/* Account bytes that were unlocked */
7970		if (unlocked_bytes > 0) {
7971			if (proj == NULL)
7972				mutex_enter(&p->p_lock);
7973			rctl_decr_locked_mem(p, proj, unlocked_bytes,
7974			    chargeproc);
7975			if (proj == NULL)
7976				mutex_exit(&p->p_lock);
7977		}
7978	}
7979	if (sp != NULL)
7980		mutex_exit(&sp->shm_mlock);
7981	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7982
7983	return (err);
7984}
7985
7986/*
7987 * Set advice from user for specified pages
7988 * There are 5 types of advice:
7989 *	MADV_NORMAL	- Normal (default) behavior (whatever that is)
7990 *	MADV_RANDOM	- Random page references
7991 *				do not allow readahead or 'klustering'
7992 *	MADV_SEQUENTIAL	- Sequential page references
7993 *				Pages previous to the one currently being
7994 *				accessed (determined by fault) are 'not needed'
7995 *				and are freed immediately
7996 *	MADV_WILLNEED	- Pages are likely to be used (fault ahead in mctl)
7997 *	MADV_DONTNEED	- Pages are not needed (synced out in mctl)
7998 *	MADV_FREE	- Contents can be discarded
7999 *	MADV_ACCESS_DEFAULT- Default access
8000 *	MADV_ACCESS_LWP	- Next LWP will access heavily
8001 *	MADV_ACCESS_MANY- Many LWPs or processes will access heavily
8002 */
8003static int
8004segvn_advise(struct seg *seg, caddr_t addr, size_t len, uint_t behav)
8005{
8006	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
8007	size_t page;
8008	int err = 0;
8009	int already_set;
8010	struct anon_map *amp;
8011	ulong_t anon_index;
8012	struct seg *next;
8013	lgrp_mem_policy_t policy;
8014	struct seg *prev;
8015	struct vnode *vp;
8016
8017	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
8018
8019	/*
8020	 * In case of MADV_FREE, we won't be modifying any segment private
8021	 * data structures; so, we only need to grab READER's lock
8022	 */
8023	if (behav != MADV_FREE) {
8024		SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
8025		if (svd->tr_state != SEGVN_TR_OFF) {
8026			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
8027			return (0);
8028		}
8029	} else {
8030		SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
8031	}
8032
8033	/*
8034	 * Large pages are assumed to be only turned on when accesses to the
8035	 * segment's address range have spatial and temporal locality. That
8036	 * justifies ignoring MADV_SEQUENTIAL for large page segments.
8037	 * Also, ignore advice affecting lgroup memory allocation
8038	 * if don't need to do lgroup optimizations on this system
8039	 */
8040
8041	if ((behav == MADV_SEQUENTIAL &&
8042	    (seg->s_szc != 0 || HAT_IS_REGION_COOKIE_VALID(svd->rcookie))) ||
8043	    (!lgrp_optimizations() && (behav == MADV_ACCESS_DEFAULT ||
8044	    behav == MADV_ACCESS_LWP || behav == MADV_ACCESS_MANY))) {
8045		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
8046		return (0);
8047	}
8048
8049	if (behav == MADV_SEQUENTIAL || behav == MADV_ACCESS_DEFAULT ||
8050	    behav == MADV_ACCESS_LWP || behav == MADV_ACCESS_MANY) {
8051		/*
8052		 * Since we are going to unload hat mappings
8053		 * we first have to flush the cache. Otherwise
8054		 * this might lead to system panic if another
8055		 * thread is doing physio on the range whose
8056		 * mappings are unloaded by madvise(3C).
8057		 */
8058		if (svd->softlockcnt > 0) {
8059			/*
8060			 * If this is shared segment non 0 softlockcnt
8061			 * means locked pages are still in use.
8062			 */
8063			if (svd->type == MAP_SHARED) {
8064				SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
8065				return (EAGAIN);
8066			}
8067			/*
8068			 * Since we do have the segvn writers lock
8069			 * nobody can fill the cache with entries
8070			 * belonging to this seg during the purge.
8071			 * The flush either succeeds or we still
8072			 * have pending I/Os. In the later case,
8073			 * madvise(3C) fails.
8074			 */
8075			segvn_purge(seg);
8076			if (svd->softlockcnt > 0) {
8077				/*
8078				 * Since madvise(3C) is advisory and
8079				 * it's not part of UNIX98, madvise(3C)
8080				 * failure here doesn't cause any hardship.
8081				 * Note that we don't block in "as" layer.
8082				 */
8083				SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
8084				return (EAGAIN);
8085			}
8086		} else if (svd->type == MAP_SHARED && svd->amp != NULL &&
8087		    svd->amp->a_softlockcnt > 0) {
8088			/*
8089			 * Try to purge this amp's entries from pcache. It
8090			 * will succeed only if other segments that share the
8091			 * amp have no outstanding softlock's.
8092			 */
8093			segvn_purge(seg);
8094		}
8095	}
8096
8097	amp = svd->amp;
8098	vp = svd->vp;
8099	if (behav == MADV_FREE) {
8100		/*
8101		 * MADV_FREE is not supported for segments with
8102		 * underlying object; if anonmap is NULL, anon slots
8103		 * are not yet populated and there is nothing for
8104		 * us to do. As MADV_FREE is advisory, we don't
8105		 * return error in either case.
8106		 */
8107		if (vp != NULL || amp == NULL) {
8108			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
8109			return (0);
8110		}
8111
8112		segvn_purge(seg);
8113
8114		page = seg_page(seg, addr);
8115		ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
8116		anon_disclaim(amp, svd->anon_index + page, len);
8117		ANON_LOCK_EXIT(&amp->a_rwlock);
8118		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
8119		return (0);
8120	}
8121
8122	/*
8123	 * If advice is to be applied to entire segment,
8124	 * use advice field in seg_data structure
8125	 * otherwise use appropriate vpage entry.
8126	 */
8127	if ((addr == seg->s_base) && (len == seg->s_size)) {
8128		switch (behav) {
8129		case MADV_ACCESS_LWP:
8130		case MADV_ACCESS_MANY:
8131		case MADV_ACCESS_DEFAULT:
8132			/*
8133			 * Set memory allocation policy for this segment
8134			 */
8135			policy = lgrp_madv_to_policy(behav, len, svd->type);
8136			if (svd->type == MAP_SHARED)
8137				already_set = lgrp_shm_policy_set(policy, amp,
8138				    svd->anon_index, vp, svd->offset, len);
8139			else {
8140				/*
8141				 * For private memory, need writers lock on
8142				 * address space because the segment may be
8143				 * split or concatenated when changing policy
8144				 */
8145				if (AS_READ_HELD(seg->s_as,
8146				    &seg->s_as->a_lock)) {
8147					SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
8148					return (IE_RETRY);
8149				}
8150
8151				already_set = lgrp_privm_policy_set(policy,
8152				    &svd->policy_info, len);
8153			}
8154
8155			/*
8156			 * If policy set already and it shouldn't be reapplied,
8157			 * don't do anything.
8158			 */
8159			if (already_set &&
8160			    !LGRP_MEM_POLICY_REAPPLICABLE(policy))
8161				break;
8162
8163			/*
8164			 * Mark any existing pages in given range for
8165			 * migration
8166			 */
8167			page_mark_migrate(seg, addr, len, amp, svd->anon_index,
8168			    vp, svd->offset, 1);
8169
8170			/*
8171			 * If same policy set already or this is a shared
8172			 * memory segment, don't need to try to concatenate
8173			 * segment with adjacent ones.
8174			 */
8175			if (already_set || svd->type == MAP_SHARED)
8176				break;
8177
8178			/*
8179			 * Try to concatenate this segment with previous
8180			 * one and next one, since we changed policy for
8181			 * this one and it may be compatible with adjacent
8182			 * ones now.
8183			 */
8184			prev = AS_SEGPREV(seg->s_as, seg);
8185			next = AS_SEGNEXT(seg->s_as, seg);
8186
8187			if (next && next->s_ops == &segvn_ops &&
8188			    addr + len == next->s_base)
8189				(void) segvn_concat(seg, next, 1);
8190
8191			if (prev && prev->s_ops == &segvn_ops &&
8192			    addr == prev->s_base + prev->s_size) {
8193				/*
8194				 * Drop lock for private data of current
8195				 * segment before concatenating (deleting) it
8196				 * and return IE_REATTACH to tell as_ctl() that
8197				 * current segment has changed
8198				 */
8199				SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
8200				if (!segvn_concat(prev, seg, 1))
8201					err = IE_REATTACH;
8202
8203				return (err);
8204			}
8205			break;
8206
8207		case MADV_SEQUENTIAL:
8208			/*
8209			 * unloading mapping guarantees
8210			 * detection in segvn_fault
8211			 */
8212			ASSERT(seg->s_szc == 0);
8213			ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
8214			hat_unload(seg->s_as->a_hat, addr, len,
8215			    HAT_UNLOAD);
8216			/* FALLTHROUGH */
8217		case MADV_NORMAL:
8218		case MADV_RANDOM:
8219			svd->advice = (uchar_t)behav;
8220			svd->pageadvice = 0;
8221			break;
8222		case MADV_WILLNEED:	/* handled in memcntl */
8223		case MADV_DONTNEED:	/* handled in memcntl */
8224		case MADV_FREE:		/* handled above */
8225			break;
8226		default:
8227			err = EINVAL;
8228		}
8229	} else {
8230		caddr_t			eaddr;
8231		struct seg		*new_seg;
8232		struct segvn_data	*new_svd;
8233		u_offset_t		off;
8234		caddr_t			oldeaddr;
8235
8236		page = seg_page(seg, addr);
8237
8238		segvn_vpage(seg);
8239
8240		switch (behav) {
8241			struct vpage *bvpp, *evpp;
8242
8243		case MADV_ACCESS_LWP:
8244		case MADV_ACCESS_MANY:
8245		case MADV_ACCESS_DEFAULT:
8246			/*
8247			 * Set memory allocation policy for portion of this
8248			 * segment
8249			 */
8250
8251			/*
8252			 * Align address and length of advice to page
8253			 * boundaries for large pages
8254			 */
8255			if (seg->s_szc != 0) {
8256				size_t	pgsz;
8257
8258				pgsz = page_get_pagesize(seg->s_szc);
8259				addr = (caddr_t)P2ALIGN((uintptr_t)addr, pgsz);
8260				len = P2ROUNDUP(len, pgsz);
8261			}
8262
8263			/*
8264			 * Check to see whether policy is set already
8265			 */
8266			policy = lgrp_madv_to_policy(behav, len, svd->type);
8267
8268			anon_index = svd->anon_index + page;
8269			off = svd->offset + (uintptr_t)(addr - seg->s_base);
8270
8271			if (svd->type == MAP_SHARED)
8272				already_set = lgrp_shm_policy_set(policy, amp,
8273				    anon_index, vp, off, len);
8274			else
8275				already_set =
8276				    (policy == svd->policy_info.mem_policy);
8277
8278			/*
8279			 * If policy set already and it shouldn't be reapplied,
8280			 * don't do anything.
8281			 */
8282			if (already_set &&
8283			    !LGRP_MEM_POLICY_REAPPLICABLE(policy))
8284				break;
8285
8286			/*
8287			 * For private memory, need writers lock on
8288			 * address space because the segment may be
8289			 * split or concatenated when changing policy
8290			 */
8291			if (svd->type == MAP_PRIVATE &&
8292			    AS_READ_HELD(seg->s_as, &seg->s_as->a_lock)) {
8293				SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
8294				return (IE_RETRY);
8295			}
8296
8297			/*
8298			 * Mark any existing pages in given range for
8299			 * migration
8300			 */
8301			page_mark_migrate(seg, addr, len, amp, svd->anon_index,
8302			    vp, svd->offset, 1);
8303
8304			/*
8305			 * Don't need to try to split or concatenate
8306			 * segments, since policy is same or this is a shared
8307			 * memory segment
8308			 */
8309			if (already_set || svd->type == MAP_SHARED)
8310				break;
8311
8312			if (HAT_IS_REGION_COOKIE_VALID(svd->rcookie)) {
8313				ASSERT(svd->amp == NULL);
8314				ASSERT(svd->tr_state == SEGVN_TR_OFF);
8315				ASSERT(svd->softlockcnt == 0);
8316				hat_leave_region(seg->s_as->a_hat, svd->rcookie,
8317				    HAT_REGION_TEXT);
8318				svd->rcookie = HAT_INVALID_REGION_COOKIE;
8319			}
8320
8321			/*
8322			 * Split off new segment if advice only applies to a
8323			 * portion of existing segment starting in middle
8324			 */
8325			new_seg = NULL;
8326			eaddr = addr + len;
8327			oldeaddr = seg->s_base + seg->s_size;
8328			if (addr > seg->s_base) {
8329				/*
8330				 * Must flush I/O page cache
8331				 * before splitting segment
8332				 */
8333				if (svd->softlockcnt > 0)
8334					segvn_purge(seg);
8335
8336				/*
8337				 * Split segment and return IE_REATTACH to tell
8338				 * as_ctl() that current segment changed
8339				 */
8340				new_seg = segvn_split_seg(seg, addr);
8341				new_svd = (struct segvn_data *)new_seg->s_data;
8342				err = IE_REATTACH;
8343
8344				/*
8345				 * If new segment ends where old one
8346				 * did, try to concatenate the new
8347				 * segment with next one.
8348				 */
8349				if (eaddr == oldeaddr) {
8350					/*
8351					 * Set policy for new segment
8352					 */
8353					(void) lgrp_privm_policy_set(policy,
8354					    &new_svd->policy_info,
8355					    new_seg->s_size);
8356
8357					next = AS_SEGNEXT(new_seg->s_as,
8358					    new_seg);
8359
8360					if (next &&
8361					    next->s_ops == &segvn_ops &&
8362					    eaddr == next->s_base)
8363						(void) segvn_concat(new_seg,
8364						    next, 1);
8365				}
8366			}
8367
8368			/*
8369			 * Split off end of existing segment if advice only
8370			 * applies to a portion of segment ending before
8371			 * end of the existing segment
8372			 */
8373			if (eaddr < oldeaddr) {
8374				/*
8375				 * Must flush I/O page cache
8376				 * before splitting segment
8377				 */
8378				if (svd->softlockcnt > 0)
8379					segvn_purge(seg);
8380
8381				/*
8382				 * If beginning of old segment was already
8383				 * split off, use new segment to split end off
8384				 * from.
8385				 */
8386				if (new_seg != NULL && new_seg != seg) {
8387					/*
8388					 * Split segment
8389					 */
8390					(void) segvn_split_seg(new_seg, eaddr);
8391
8392					/*
8393					 * Set policy for new segment
8394					 */
8395					(void) lgrp_privm_policy_set(policy,
8396					    &new_svd->policy_info,
8397					    new_seg->s_size);
8398				} else {
8399					/*
8400					 * Split segment and return IE_REATTACH
8401					 * to tell as_ctl() that current
8402					 * segment changed
8403					 */
8404					(void) segvn_split_seg(seg, eaddr);
8405					err = IE_REATTACH;
8406
8407					(void) lgrp_privm_policy_set(policy,
8408					    &svd->policy_info, seg->s_size);
8409
8410					/*
8411					 * If new segment starts where old one
8412					 * did, try to concatenate it with
8413					 * previous segment.
8414					 */
8415					if (addr == seg->s_base) {
8416						prev = AS_SEGPREV(seg->s_as,
8417						    seg);
8418
8419						/*
8420						 * Drop lock for private data
8421						 * of current segment before
8422						 * concatenating (deleting) it
8423						 */
8424						if (prev &&
8425						    prev->s_ops ==
8426						    &segvn_ops &&
8427						    addr == prev->s_base +
8428						    prev->s_size) {
8429							SEGVN_LOCK_EXIT(
8430							    seg->s_as,
8431							    &svd->lock);
8432							(void) segvn_concat(
8433							    prev, seg, 1);
8434							return (err);
8435						}
8436					}
8437				}
8438			}
8439			break;
8440		case MADV_SEQUENTIAL:
8441			ASSERT(seg->s_szc == 0);
8442			ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
8443			hat_unload(seg->s_as->a_hat, addr, len, HAT_UNLOAD);
8444			/* FALLTHROUGH */
8445		case MADV_NORMAL:
8446		case MADV_RANDOM:
8447			bvpp = &svd->vpage[page];
8448			evpp = &svd->vpage[page + (len >> PAGESHIFT)];
8449			for (; bvpp < evpp; bvpp++)
8450				VPP_SETADVICE(bvpp, behav);
8451			svd->advice = MADV_NORMAL;
8452			break;
8453		case MADV_WILLNEED:	/* handled in memcntl */
8454		case MADV_DONTNEED:	/* handled in memcntl */
8455		case MADV_FREE:		/* handled above */
8456			break;
8457		default:
8458			err = EINVAL;
8459		}
8460	}
8461	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
8462	return (err);
8463}
8464
8465/*
8466 * Create a vpage structure for this seg.
8467 */
8468static void
8469segvn_vpage(struct seg *seg)
8470{
8471	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
8472	struct vpage *vp, *evp;
8473
8474	ASSERT(SEGVN_WRITE_HELD(seg->s_as, &svd->lock));
8475
8476	/*
8477	 * If no vpage structure exists, allocate one.  Copy the protections
8478	 * and the advice from the segment itself to the individual pages.
8479	 */
8480	if (svd->vpage == NULL) {
8481		svd->pageadvice = 1;
8482		svd->vpage = kmem_zalloc(seg_pages(seg) * sizeof (struct vpage),
8483		    KM_SLEEP);
8484		evp = &svd->vpage[seg_page(seg, seg->s_base + seg->s_size)];
8485		for (vp = svd->vpage; vp < evp; vp++) {
8486			VPP_SETPROT(vp, svd->prot);
8487			VPP_SETADVICE(vp, svd->advice);
8488		}
8489	}
8490}
8491
8492/*
8493 * Dump the pages belonging to this segvn segment.
8494 */
8495static void
8496segvn_dump(struct seg *seg)
8497{
8498	struct segvn_data *svd;
8499	page_t *pp;
8500	struct anon_map *amp;
8501	ulong_t	anon_index;
8502	struct vnode *vp;
8503	u_offset_t off, offset;
8504	pfn_t pfn;
8505	pgcnt_t page, npages;
8506	caddr_t addr;
8507
8508	npages = seg_pages(seg);
8509	svd = (struct segvn_data *)seg->s_data;
8510	vp = svd->vp;
8511	off = offset = svd->offset;
8512	addr = seg->s_base;
8513
8514	if ((amp = svd->amp) != NULL) {
8515		anon_index = svd->anon_index;
8516		ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
8517	}
8518
8519	for (page = 0; page < npages; page++, offset += PAGESIZE) {
8520		struct anon *ap;
8521		int we_own_it = 0;
8522
8523		if (amp && (ap = anon_get_ptr(svd->amp->ahp, anon_index++))) {
8524			swap_xlate_nopanic(ap, &vp, &off);
8525		} else {
8526			vp = svd->vp;
8527			off = offset;
8528		}
8529
8530		/*
8531		 * If pp == NULL, the page either does not exist
8532		 * or is exclusively locked.  So determine if it
8533		 * exists before searching for it.
8534		 */
8535
8536		if ((pp = page_lookup_nowait(vp, off, SE_SHARED)))
8537			we_own_it = 1;
8538		else
8539			pp = page_exists(vp, off);
8540
8541		if (pp) {
8542			pfn = page_pptonum(pp);
8543			dump_addpage(seg->s_as, addr, pfn);
8544			if (we_own_it)
8545				page_unlock(pp);
8546		}
8547		addr += PAGESIZE;
8548		dump_timeleft = dump_timeout;
8549	}
8550
8551	if (amp != NULL)
8552		ANON_LOCK_EXIT(&amp->a_rwlock);
8553}
8554
8555#ifdef DEBUG
8556static uint32_t segvn_pglock_mtbf = 0;
8557#endif
8558
8559#define	PCACHE_SHWLIST		((page_t *)-2)
8560#define	NOPCACHE_SHWLIST	((page_t *)-1)
8561
8562/*
8563 * Lock/Unlock anon pages over a given range. Return shadow list. This routine
8564 * uses global segment pcache to cache shadow lists (i.e. pp arrays) of pages
8565 * to avoid the overhead of per page locking, unlocking for subsequent IOs to
8566 * the same parts of the segment. Currently shadow list creation is only
8567 * supported for pure anon segments. MAP_PRIVATE segment pcache entries are
8568 * tagged with segment pointer, starting virtual address and length. This
8569 * approach for MAP_SHARED segments may add many pcache entries for the same
8570 * set of pages and lead to long hash chains that decrease pcache lookup
8571 * performance. To avoid this issue for shared segments shared anon map and
8572 * starting anon index are used for pcache entry tagging. This allows all
8573 * segments to share pcache entries for the same anon range and reduces pcache
8574 * chain's length as well as memory overhead from duplicate shadow lists and
8575 * pcache entries.
8576 *
8577 * softlockcnt field in segvn_data structure counts the number of F_SOFTLOCK'd
8578 * pages via segvn_fault() and pagelock'd pages via this routine. But pagelock
8579 * part of softlockcnt accounting is done differently for private and shared
8580 * segments. In private segment case softlock is only incremented when a new
8581 * shadow list is created but not when an existing one is found via
8582 * seg_plookup(). pcache entries have reference count incremented/decremented
8583 * by each seg_plookup()/seg_pinactive() operation. Only entries that have 0
8584 * reference count can be purged (and purging is needed before segment can be
8585 * freed). When a private segment pcache entry is purged segvn_reclaim() will
8586 * decrement softlockcnt. Since in private segment case each of its pcache
8587 * entries only belongs to this segment we can expect that when
8588 * segvn_pagelock(L_PAGEUNLOCK) was called for all outstanding IOs in this
8589 * segment purge will succeed and softlockcnt will drop to 0. In shared
8590 * segment case reference count in pcache entry counts active locks from many
8591 * different segments so we can't expect segment purging to succeed even when
8592 * segvn_pagelock(L_PAGEUNLOCK) was called for all outstanding IOs in this
8593 * segment. To be able to determine when there're no pending pagelocks in
8594 * shared segment case we don't rely on purging to make softlockcnt drop to 0
8595 * but instead softlockcnt is incremented and decremented for every
8596 * segvn_pagelock(L_PAGELOCK/L_PAGEUNLOCK) call regardless if a new shadow
8597 * list was created or an existing one was found. When softlockcnt drops to 0
8598 * this segment no longer has any claims for pcached shadow lists and the
8599 * segment can be freed even if there're still active pcache entries
8600 * shared by this segment anon map. Shared segment pcache entries belong to
8601 * anon map and are typically removed when anon map is freed after all
8602 * processes destroy the segments that use this anon map.
8603 */
8604static int
8605segvn_pagelock(struct seg *seg, caddr_t addr, size_t len, struct page ***ppp,
8606    enum lock_type type, enum seg_rw rw)
8607{
8608	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
8609	size_t np;
8610	pgcnt_t adjustpages;
8611	pgcnt_t npages;
8612	ulong_t anon_index;
8613	uint_t protchk = (rw == S_READ) ? PROT_READ : PROT_WRITE;
8614	uint_t error;
8615	struct anon_map *amp;
8616	pgcnt_t anpgcnt;
8617	struct page **pplist, **pl, *pp;
8618	caddr_t a;
8619	size_t page;
8620	caddr_t lpgaddr, lpgeaddr;
8621	anon_sync_obj_t cookie;
8622	int anlock;
8623	struct anon_map *pamp;
8624	caddr_t paddr;
8625	seg_preclaim_cbfunc_t preclaim_callback;
8626	size_t pgsz;
8627	int use_pcache;
8628	size_t wlen;
8629	uint_t pflags = 0;
8630	int sftlck_sbase = 0;
8631	int sftlck_send = 0;
8632
8633#ifdef DEBUG
8634	if (type == L_PAGELOCK && segvn_pglock_mtbf) {
8635		hrtime_t ts = gethrtime();
8636		if ((ts % segvn_pglock_mtbf) == 0) {
8637			return (ENOTSUP);
8638		}
8639		if ((ts % segvn_pglock_mtbf) == 1) {
8640			return (EFAULT);
8641		}
8642	}
8643#endif
8644
8645	TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEGVN_START,
8646	    "segvn_pagelock: start seg %p addr %p", seg, addr);
8647
8648	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
8649	ASSERT(type == L_PAGELOCK || type == L_PAGEUNLOCK);
8650
8651	SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
8652
8653	/*
8654	 * for now we only support pagelock to anon memory. We would have to
8655	 * check protections for vnode objects and call into the vnode driver.
8656	 * That's too much for a fast path. Let the fault entry point handle
8657	 * it.
8658	 */
8659	if (svd->vp != NULL) {
8660		if (type == L_PAGELOCK) {
8661			error = ENOTSUP;
8662			goto out;
8663		}
8664		panic("segvn_pagelock(L_PAGEUNLOCK): vp != NULL");
8665	}
8666	if ((amp = svd->amp) == NULL) {
8667		if (type == L_PAGELOCK) {
8668			error = EFAULT;
8669			goto out;
8670		}
8671		panic("segvn_pagelock(L_PAGEUNLOCK): amp == NULL");
8672	}
8673	if (rw != S_READ && rw != S_WRITE) {
8674		if (type == L_PAGELOCK) {
8675			error = ENOTSUP;
8676			goto out;
8677		}
8678		panic("segvn_pagelock(L_PAGEUNLOCK): bad rw");
8679	}
8680
8681	if (seg->s_szc != 0) {
8682		/*
8683		 * We are adjusting the pagelock region to the large page size
8684		 * boundary because the unlocked part of a large page cannot
8685		 * be freed anyway unless all constituent pages of a large
8686		 * page are locked. Bigger regions reduce pcache chain length
8687		 * and improve lookup performance. The tradeoff is that the
8688		 * very first segvn_pagelock() call for a given page is more
8689		 * expensive if only 1 page_t is needed for IO. This is only
8690		 * an issue if pcache entry doesn't get reused by several
8691		 * subsequent calls. We optimize here for the case when pcache
8692		 * is heavily used by repeated IOs to the same address range.
8693		 *
8694		 * Note segment's page size cannot change while we are holding
8695		 * as lock.  And then it cannot change while softlockcnt is
8696		 * not 0. This will allow us to correctly recalculate large
8697		 * page size region for the matching pageunlock/reclaim call
8698		 * since as_pageunlock() caller must always match
8699		 * as_pagelock() call's addr and len.
8700		 *
8701		 * For pageunlock *ppp points to the pointer of page_t that
8702		 * corresponds to the real unadjusted start address. Similar
8703		 * for pagelock *ppp must point to the pointer of page_t that
8704		 * corresponds to the real unadjusted start address.
8705		 */
8706		pgsz = page_get_pagesize(seg->s_szc);
8707		CALC_LPG_REGION(pgsz, seg, addr, len, lpgaddr, lpgeaddr);
8708		adjustpages = btop((uintptr_t)(addr - lpgaddr));
8709	} else if (len < segvn_pglock_comb_thrshld) {
8710		lpgaddr = addr;
8711		lpgeaddr = addr + len;
8712		adjustpages = 0;
8713		pgsz = PAGESIZE;
8714	} else {
8715		/*
8716		 * Align the address range of large enough requests to allow
8717		 * combining of different shadow lists into 1 to reduce memory
8718		 * overhead from potentially overlapping large shadow lists
8719		 * (worst case is we have a 1MB IO into buffers with start
8720		 * addresses separated by 4K).  Alignment is only possible if
8721		 * padded chunks have sufficient access permissions. Note
8722		 * permissions won't change between L_PAGELOCK and
8723		 * L_PAGEUNLOCK calls since non 0 softlockcnt will force
8724		 * segvn_setprot() to wait until softlockcnt drops to 0. This
8725		 * allows us to determine in L_PAGEUNLOCK the same range we
8726		 * computed in L_PAGELOCK.
8727		 *
8728		 * If alignment is limited by segment ends set
8729		 * sftlck_sbase/sftlck_send flags. In L_PAGELOCK case when
8730		 * these flags are set bump softlockcnt_sbase/softlockcnt_send
8731		 * per segment counters. In L_PAGEUNLOCK case decrease
8732		 * softlockcnt_sbase/softlockcnt_send counters if
8733		 * sftlck_sbase/sftlck_send flags are set.  When
8734		 * softlockcnt_sbase/softlockcnt_send are non 0
8735		 * segvn_concat()/segvn_extend_prev()/segvn_extend_next()
8736		 * won't merge the segments. This restriction combined with
8737		 * restriction on segment unmapping and splitting for segments
8738		 * that have non 0 softlockcnt allows L_PAGEUNLOCK to
8739		 * correctly determine the same range that was previously
8740		 * locked by matching L_PAGELOCK.
8741		 */
8742		pflags = SEGP_PSHIFT | (segvn_pglock_comb_bshift << 16);
8743		pgsz = PAGESIZE;
8744		if (svd->type == MAP_PRIVATE) {
8745			lpgaddr = (caddr_t)P2ALIGN((uintptr_t)addr,
8746			    segvn_pglock_comb_balign);
8747			if (lpgaddr < seg->s_base) {
8748				lpgaddr = seg->s_base;
8749				sftlck_sbase = 1;
8750			}
8751		} else {
8752			ulong_t aix = svd->anon_index + seg_page(seg, addr);
8753			ulong_t aaix = P2ALIGN(aix, segvn_pglock_comb_palign);
8754			if (aaix < svd->anon_index) {
8755				lpgaddr = seg->s_base;
8756				sftlck_sbase = 1;
8757			} else {
8758				lpgaddr = addr - ptob(aix - aaix);
8759				ASSERT(lpgaddr >= seg->s_base);
8760			}
8761		}
8762		if (svd->pageprot && lpgaddr != addr) {
8763			struct vpage *vp = &svd->vpage[seg_page(seg, lpgaddr)];
8764			struct vpage *evp = &svd->vpage[seg_page(seg, addr)];
8765			while (vp < evp) {
8766				if ((VPP_PROT(vp) & protchk) == 0) {
8767					break;
8768				}
8769				vp++;
8770			}
8771			if (vp < evp) {
8772				lpgaddr = addr;
8773				pflags = 0;
8774			}
8775		}
8776		lpgeaddr = addr + len;
8777		if (pflags) {
8778			if (svd->type == MAP_PRIVATE) {
8779				lpgeaddr = (caddr_t)P2ROUNDUP(
8780				    (uintptr_t)lpgeaddr,
8781				    segvn_pglock_comb_balign);
8782			} else {
8783				ulong_t aix = svd->anon_index +
8784				    seg_page(seg, lpgeaddr);
8785				ulong_t aaix = P2ROUNDUP(aix,
8786				    segvn_pglock_comb_palign);
8787				if (aaix < aix) {
8788					lpgeaddr = 0;
8789				} else {
8790					lpgeaddr += ptob(aaix - aix);
8791				}
8792			}
8793			if (lpgeaddr == 0 ||
8794			    lpgeaddr > seg->s_base + seg->s_size) {
8795				lpgeaddr = seg->s_base + seg->s_size;
8796				sftlck_send = 1;
8797			}
8798		}
8799		if (svd->pageprot && lpgeaddr != addr + len) {
8800			struct vpage *vp;
8801			struct vpage *evp;
8802
8803			vp = &svd->vpage[seg_page(seg, addr + len)];
8804			evp = &svd->vpage[seg_page(seg, lpgeaddr)];
8805
8806			while (vp < evp) {
8807				if ((VPP_PROT(vp) & protchk) == 0) {
8808					break;
8809				}
8810				vp++;
8811			}
8812			if (vp < evp) {
8813				lpgeaddr = addr + len;
8814			}
8815		}
8816		adjustpages = btop((uintptr_t)(addr - lpgaddr));
8817	}
8818
8819	/*
8820	 * For MAP_SHARED segments we create pcache entries tagged by amp and
8821	 * anon index so that we can share pcache entries with other segments
8822	 * that map this amp.  For private segments pcache entries are tagged
8823	 * with segment and virtual address.
8824	 */
8825	if (svd->type == MAP_SHARED) {
8826		pamp = amp;
8827		paddr = (caddr_t)((lpgaddr - seg->s_base) +
8828		    ptob(svd->anon_index));
8829		preclaim_callback = shamp_reclaim;
8830	} else {
8831		pamp = NULL;
8832		paddr = lpgaddr;
8833		preclaim_callback = segvn_reclaim;
8834	}
8835
8836	if (type == L_PAGEUNLOCK) {
8837		VM_STAT_ADD(segvnvmstats.pagelock[0]);
8838
8839		/*
8840		 * update hat ref bits for /proc. We need to make sure
8841		 * that threads tracing the ref and mod bits of the
8842		 * address space get the right data.
8843		 * Note: page ref and mod bits are updated at reclaim time
8844		 */
8845		if (seg->s_as->a_vbits) {
8846			for (a = addr; a < addr + len; a += PAGESIZE) {
8847				if (rw == S_WRITE) {
8848					hat_setstat(seg->s_as, a,
8849					    PAGESIZE, P_REF | P_MOD);
8850				} else {
8851					hat_setstat(seg->s_as, a,
8852					    PAGESIZE, P_REF);
8853				}
8854			}
8855		}
8856
8857		/*
8858		 * Check the shadow list entry after the last page used in
8859		 * this IO request. If it's NOPCACHE_SHWLIST the shadow list
8860		 * was not inserted into pcache and is not large page
8861		 * adjusted.  In this case call reclaim callback directly and
8862		 * don't adjust the shadow list start and size for large
8863		 * pages.
8864		 */
8865		npages = btop(len);
8866		if ((*ppp)[npages] == NOPCACHE_SHWLIST) {
8867			void *ptag;
8868			if (pamp != NULL) {
8869				ASSERT(svd->type == MAP_SHARED);
8870				ptag = (void *)pamp;
8871				paddr = (caddr_t)((addr - seg->s_base) +
8872				    ptob(svd->anon_index));
8873			} else {
8874				ptag = (void *)seg;
8875				paddr = addr;
8876			}
8877			(*preclaim_callback)(ptag, paddr, len, *ppp, rw, 0);
8878		} else {
8879			ASSERT((*ppp)[npages] == PCACHE_SHWLIST ||
8880			    IS_SWAPFSVP((*ppp)[npages]->p_vnode));
8881			len = lpgeaddr - lpgaddr;
8882			npages = btop(len);
8883			seg_pinactive(seg, pamp, paddr, len,
8884			    *ppp - adjustpages, rw, pflags, preclaim_callback);
8885		}
8886
8887		if (pamp != NULL) {
8888			ASSERT(svd->type == MAP_SHARED);
8889			ASSERT(svd->softlockcnt >= npages);
8890			atomic_add_long((ulong_t *)&svd->softlockcnt, -npages);
8891		}
8892
8893		if (sftlck_sbase) {
8894			ASSERT(svd->softlockcnt_sbase > 0);
8895			atomic_add_long((ulong_t *)&svd->softlockcnt_sbase, -1);
8896		}
8897		if (sftlck_send) {
8898			ASSERT(svd->softlockcnt_send > 0);
8899			atomic_add_long((ulong_t *)&svd->softlockcnt_send, -1);
8900		}
8901
8902		/*
8903		 * If someone is blocked while unmapping, we purge
8904		 * segment page cache and thus reclaim pplist synchronously
8905		 * without waiting for seg_pasync_thread. This speeds up
8906		 * unmapping in cases where munmap(2) is called, while
8907		 * raw async i/o is still in progress or where a thread
8908		 * exits on data fault in a multithreaded application.
8909		 */
8910		if (AS_ISUNMAPWAIT(seg->s_as)) {
8911			if (svd->softlockcnt == 0) {
8912				mutex_enter(&seg->s_as->a_contents);
8913				if (AS_ISUNMAPWAIT(seg->s_as)) {
8914					AS_CLRUNMAPWAIT(seg->s_as);
8915					cv_broadcast(&seg->s_as->a_cv);
8916				}
8917				mutex_exit(&seg->s_as->a_contents);
8918			} else if (pamp == NULL) {
8919				/*
8920				 * softlockcnt is not 0 and this is a
8921				 * MAP_PRIVATE segment. Try to purge its
8922				 * pcache entries to reduce softlockcnt.
8923				 * If it drops to 0 segvn_reclaim()
8924				 * will wake up a thread waiting on
8925				 * unmapwait flag.
8926				 *
8927				 * We don't purge MAP_SHARED segments with non
8928				 * 0 softlockcnt since IO is still in progress
8929				 * for such segments.
8930				 */
8931				ASSERT(svd->type == MAP_PRIVATE);
8932				segvn_purge(seg);
8933			}
8934		}
8935		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
8936		TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEGVN_UNLOCK_END,
8937		    "segvn_pagelock: unlock seg %p addr %p", seg, addr);
8938		return (0);
8939	}
8940
8941	/* The L_PAGELOCK case ... */
8942
8943	VM_STAT_ADD(segvnvmstats.pagelock[1]);
8944
8945	/*
8946	 * For MAP_SHARED segments we have to check protections before
8947	 * seg_plookup() since pcache entries may be shared by many segments
8948	 * with potentially different page protections.
8949	 */
8950	if (pamp != NULL) {
8951		ASSERT(svd->type == MAP_SHARED);
8952		if (svd->pageprot == 0) {
8953			if ((svd->prot & protchk) == 0) {
8954				error = EACCES;
8955				goto out;
8956			}
8957		} else {
8958			/*
8959			 * check page protections
8960			 */
8961			caddr_t ea;
8962
8963			if (seg->s_szc) {
8964				a = lpgaddr;
8965				ea = lpgeaddr;
8966			} else {
8967				a = addr;
8968				ea = addr + len;
8969			}
8970			for (; a < ea; a += pgsz) {
8971				struct vpage *vp;
8972
8973				ASSERT(seg->s_szc == 0 ||
8974				    sameprot(seg, a, pgsz));
8975				vp = &svd->vpage[seg_page(seg, a)];
8976				if ((VPP_PROT(vp) & protchk) == 0) {
8977					error = EACCES;
8978					goto out;
8979				}
8980			}
8981		}
8982	}
8983
8984	/*
8985	 * try to find pages in segment page cache
8986	 */
8987	pplist = seg_plookup(seg, pamp, paddr, lpgeaddr - lpgaddr, rw, pflags);
8988	if (pplist != NULL) {
8989		if (pamp != NULL) {
8990			npages = btop((uintptr_t)(lpgeaddr - lpgaddr));
8991			ASSERT(svd->type == MAP_SHARED);
8992			atomic_add_long((ulong_t *)&svd->softlockcnt,
8993			    npages);
8994		}
8995		if (sftlck_sbase) {
8996			atomic_add_long((ulong_t *)&svd->softlockcnt_sbase, 1);
8997		}
8998		if (sftlck_send) {
8999			atomic_add_long((ulong_t *)&svd->softlockcnt_send, 1);
9000		}
9001		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
9002		*ppp = pplist + adjustpages;
9003		TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEGVN_HIT_END,
9004		    "segvn_pagelock: cache hit seg %p addr %p", seg, addr);
9005		return (0);
9006	}
9007
9008	/*
9009	 * For MAP_SHARED segments we already verified above that segment
9010	 * protections allow this pagelock operation.
9011	 */
9012	if (pamp == NULL) {
9013		ASSERT(svd->type == MAP_PRIVATE);
9014		if (svd->pageprot == 0) {
9015			if ((svd->prot & protchk) == 0) {
9016				error = EACCES;
9017				goto out;
9018			}
9019			if (svd->prot & PROT_WRITE) {
9020				wlen = lpgeaddr - lpgaddr;
9021			} else {
9022				wlen = 0;
9023				ASSERT(rw == S_READ);
9024			}
9025		} else {
9026			int wcont = 1;
9027			/*
9028			 * check page protections
9029			 */
9030			for (a = lpgaddr, wlen = 0; a < lpgeaddr; a += pgsz) {
9031				struct vpage *vp;
9032
9033				ASSERT(seg->s_szc == 0 ||
9034				    sameprot(seg, a, pgsz));
9035				vp = &svd->vpage[seg_page(seg, a)];
9036				if ((VPP_PROT(vp) & protchk) == 0) {
9037					error = EACCES;
9038					goto out;
9039				}
9040				if (wcont && (VPP_PROT(vp) & PROT_WRITE)) {
9041					wlen += pgsz;
9042				} else {
9043					wcont = 0;
9044					ASSERT(rw == S_READ);
9045				}
9046			}
9047		}
9048		ASSERT(rw == S_READ || wlen == lpgeaddr - lpgaddr);
9049		ASSERT(rw == S_WRITE || wlen <= lpgeaddr - lpgaddr);
9050	}
9051
9052	/*
9053	 * Only build large page adjusted shadow list if we expect to insert
9054	 * it into pcache. For large enough pages it's a big overhead to
9055	 * create a shadow list of the entire large page. But this overhead
9056	 * should be amortized over repeated pcache hits on subsequent reuse
9057	 * of this shadow list (IO into any range within this shadow list will
9058	 * find it in pcache since we large page align the request for pcache
9059	 * lookups). pcache performance is improved with bigger shadow lists
9060	 * as it reduces the time to pcache the entire big segment and reduces
9061	 * pcache chain length.
9062	 */
9063	if (seg_pinsert_check(seg, pamp, paddr,
9064	    lpgeaddr - lpgaddr, pflags) == SEGP_SUCCESS) {
9065		addr = lpgaddr;
9066		len = lpgeaddr - lpgaddr;
9067		use_pcache = 1;
9068	} else {
9069		use_pcache = 0;
9070		/*
9071		 * Since this entry will not be inserted into the pcache, we
9072		 * will not do any adjustments to the starting address or
9073		 * size of the memory to be locked.
9074		 */
9075		adjustpages = 0;
9076	}
9077	npages = btop(len);
9078
9079	pplist = kmem_alloc(sizeof (page_t *) * (npages + 1), KM_SLEEP);
9080	pl = pplist;
9081	*ppp = pplist + adjustpages;
9082	/*
9083	 * If use_pcache is 0 this shadow list is not large page adjusted.
9084	 * Record this info in the last entry of shadow array so that
9085	 * L_PAGEUNLOCK can determine if it should large page adjust the
9086	 * address range to find the real range that was locked.
9087	 */
9088	pl[npages] = use_pcache ? PCACHE_SHWLIST : NOPCACHE_SHWLIST;
9089
9090	page = seg_page(seg, addr);
9091	anon_index = svd->anon_index + page;
9092
9093	anlock = 0;
9094	ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
9095	ASSERT(amp->a_szc >= seg->s_szc);
9096	anpgcnt = page_get_pagecnt(amp->a_szc);
9097	for (a = addr; a < addr + len; a += PAGESIZE, anon_index++) {
9098		struct anon *ap;
9099		struct vnode *vp;
9100		u_offset_t off;
9101
9102		/*
9103		 * Lock and unlock anon array only once per large page.
9104		 * anon_array_enter() locks the root anon slot according to
9105		 * a_szc which can't change while anon map is locked.  We lock
9106		 * anon the first time through this loop and each time we
9107		 * reach anon index that corresponds to a root of a large
9108		 * page.
9109		 */
9110		if (a == addr || P2PHASE(anon_index, anpgcnt) == 0) {
9111			ASSERT(anlock == 0);
9112			anon_array_enter(amp, anon_index, &cookie);
9113			anlock = 1;
9114		}
9115		ap = anon_get_ptr(amp->ahp, anon_index);
9116
9117		/*
9118		 * We must never use seg_pcache for COW pages
9119		 * because we might end up with original page still
9120		 * lying in seg_pcache even after private page is
9121		 * created. This leads to data corruption as
9122		 * aio_write refers to the page still in cache
9123		 * while all other accesses refer to the private
9124		 * page.
9125		 */
9126		if (ap == NULL || ap->an_refcnt != 1) {
9127			struct vpage *vpage;
9128
9129			if (seg->s_szc) {
9130				error = EFAULT;
9131				break;
9132			}
9133			if (svd->vpage != NULL) {
9134				vpage = &svd->vpage[seg_page(seg, a)];
9135			} else {
9136				vpage = NULL;
9137			}
9138			ASSERT(anlock);
9139			anon_array_exit(&cookie);
9140			anlock = 0;
9141			pp = NULL;
9142			error = segvn_faultpage(seg->s_as->a_hat, seg, a, 0,
9143			    vpage, &pp, 0, F_INVAL, rw, 1);
9144			if (error) {
9145				error = fc_decode(error);
9146				break;
9147			}
9148			anon_array_enter(amp, anon_index, &cookie);
9149			anlock = 1;
9150			ap = anon_get_ptr(amp->ahp, anon_index);
9151			if (ap == NULL || ap->an_refcnt != 1) {
9152				error = EFAULT;
9153				break;
9154			}
9155		}
9156		swap_xlate(ap, &vp, &off);
9157		pp = page_lookup_nowait(vp, off, SE_SHARED);
9158		if (pp == NULL) {
9159			error = EFAULT;
9160			break;
9161		}
9162		if (ap->an_pvp != NULL) {
9163			anon_swap_free(ap, pp);
9164		}
9165		/*
9166		 * Unlock anon if this is the last slot in a large page.
9167		 */
9168		if (P2PHASE(anon_index, anpgcnt) == anpgcnt - 1) {
9169			ASSERT(anlock);
9170			anon_array_exit(&cookie);
9171			anlock = 0;
9172		}
9173		*pplist++ = pp;
9174	}
9175	if (anlock) {		/* Ensure the lock is dropped */
9176		anon_array_exit(&cookie);
9177	}
9178	ANON_LOCK_EXIT(&amp->a_rwlock);
9179
9180	if (a >= addr + len) {
9181		atomic_add_long((ulong_t *)&svd->softlockcnt, npages);
9182		if (pamp != NULL) {
9183			ASSERT(svd->type == MAP_SHARED);
9184			atomic_add_long((ulong_t *)&pamp->a_softlockcnt,
9185			    npages);
9186			wlen = len;
9187		}
9188		if (sftlck_sbase) {
9189			atomic_add_long((ulong_t *)&svd->softlockcnt_sbase, 1);
9190		}
9191		if (sftlck_send) {
9192			atomic_add_long((ulong_t *)&svd->softlockcnt_send, 1);
9193		}
9194		if (use_pcache) {
9195			(void) seg_pinsert(seg, pamp, paddr, len, wlen, pl,
9196			    rw, pflags, preclaim_callback);
9197		}
9198		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
9199		TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEGVN_FILL_END,
9200		    "segvn_pagelock: cache fill seg %p addr %p", seg, addr);
9201		return (0);
9202	}
9203
9204	pplist = pl;
9205	np = ((uintptr_t)(a - addr)) >> PAGESHIFT;
9206	while (np > (uint_t)0) {
9207		ASSERT(PAGE_LOCKED(*pplist));
9208		page_unlock(*pplist);
9209		np--;
9210		pplist++;
9211	}
9212	kmem_free(pl, sizeof (page_t *) * (npages + 1));
9213out:
9214	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
9215	*ppp = NULL;
9216	TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEGVN_MISS_END,
9217	    "segvn_pagelock: cache miss seg %p addr %p", seg, addr);
9218	return (error);
9219}
9220
9221/*
9222 * purge any cached pages in the I/O page cache
9223 */
9224static void
9225segvn_purge(struct seg *seg)
9226{
9227	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
9228
9229	/*
9230	 * pcache is only used by pure anon segments.
9231	 */
9232	if (svd->amp == NULL || svd->vp != NULL) {
9233		return;
9234	}
9235
9236	/*
9237	 * For MAP_SHARED segments non 0 segment's softlockcnt means
9238	 * active IO is still in progress via this segment. So we only
9239	 * purge MAP_SHARED segments when their softlockcnt is 0.
9240	 */
9241	if (svd->type == MAP_PRIVATE) {
9242		if (svd->softlockcnt) {
9243			seg_ppurge(seg, NULL, 0);
9244		}
9245	} else if (svd->softlockcnt == 0 && svd->amp->a_softlockcnt != 0) {
9246		seg_ppurge(seg, svd->amp, 0);
9247	}
9248}
9249
9250/*
9251 * If async argument is not 0 we are called from pcache async thread and don't
9252 * hold AS lock.
9253 */
9254
9255/*ARGSUSED*/
9256static int
9257segvn_reclaim(void *ptag, caddr_t addr, size_t len, struct page **pplist,
9258	enum seg_rw rw, int async)
9259{
9260	struct seg *seg = (struct seg *)ptag;
9261	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
9262	pgcnt_t np, npages;
9263	struct page **pl;
9264
9265	npages = np = btop(len);
9266	ASSERT(npages);
9267
9268	ASSERT(svd->vp == NULL && svd->amp != NULL);
9269	ASSERT(svd->softlockcnt >= npages);
9270	ASSERT(async || AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
9271
9272	pl = pplist;
9273
9274	ASSERT(pl[np] == NOPCACHE_SHWLIST || pl[np] == PCACHE_SHWLIST);
9275	ASSERT(!async || pl[np] == PCACHE_SHWLIST);
9276
9277	while (np > (uint_t)0) {
9278		if (rw == S_WRITE) {
9279			hat_setrefmod(*pplist);
9280		} else {
9281			hat_setref(*pplist);
9282		}
9283		page_unlock(*pplist);
9284		np--;
9285		pplist++;
9286	}
9287
9288	kmem_free(pl, sizeof (page_t *) * (npages + 1));
9289
9290	/*
9291	 * If we are pcache async thread we don't hold AS lock. This means if
9292	 * softlockcnt drops to 0 after the decrement below address space may
9293	 * get freed. We can't allow it since after softlock derement to 0 we
9294	 * still need to access as structure for possible wakeup of unmap
9295	 * waiters. To prevent the disappearance of as we take this segment
9296	 * segfree_syncmtx. segvn_free() also takes this mutex as a barrier to
9297	 * make sure this routine completes before segment is freed.
9298	 *
9299	 * The second complication we have to deal with in async case is a
9300	 * possibility of missed wake up of unmap wait thread. When we don't
9301	 * hold as lock here we may take a_contents lock before unmap wait
9302	 * thread that was first to see softlockcnt was still not 0. As a
9303	 * result we'll fail to wake up an unmap wait thread. To avoid this
9304	 * race we set nounmapwait flag in as structure if we drop softlockcnt
9305	 * to 0 when we were called by pcache async thread.  unmapwait thread
9306	 * will not block if this flag is set.
9307	 */
9308	if (async) {
9309		mutex_enter(&svd->segfree_syncmtx);
9310	}
9311
9312	if (!atomic_add_long_nv((ulong_t *)&svd->softlockcnt, -npages)) {
9313		if (async || AS_ISUNMAPWAIT(seg->s_as)) {
9314			mutex_enter(&seg->s_as->a_contents);
9315			if (async) {
9316				AS_SETNOUNMAPWAIT(seg->s_as);
9317			}
9318			if (AS_ISUNMAPWAIT(seg->s_as)) {
9319				AS_CLRUNMAPWAIT(seg->s_as);
9320				cv_broadcast(&seg->s_as->a_cv);
9321			}
9322			mutex_exit(&seg->s_as->a_contents);
9323		}
9324	}
9325
9326	if (async) {
9327		mutex_exit(&svd->segfree_syncmtx);
9328	}
9329	return (0);
9330}
9331
9332/*ARGSUSED*/
9333static int
9334shamp_reclaim(void *ptag, caddr_t addr, size_t len, struct page **pplist,
9335	enum seg_rw rw, int async)
9336{
9337	amp_t *amp = (amp_t *)ptag;
9338	pgcnt_t np, npages;
9339	struct page **pl;
9340
9341	npages = np = btop(len);
9342	ASSERT(npages);
9343	ASSERT(amp->a_softlockcnt >= npages);
9344
9345	pl = pplist;
9346
9347	ASSERT(pl[np] == NOPCACHE_SHWLIST || pl[np] == PCACHE_SHWLIST);
9348	ASSERT(!async || pl[np] == PCACHE_SHWLIST);
9349
9350	while (np > (uint_t)0) {
9351		if (rw == S_WRITE) {
9352			hat_setrefmod(*pplist);
9353		} else {
9354			hat_setref(*pplist);
9355		}
9356		page_unlock(*pplist);
9357		np--;
9358		pplist++;
9359	}
9360
9361	kmem_free(pl, sizeof (page_t *) * (npages + 1));
9362
9363	/*
9364	 * If somebody sleeps in anonmap_purge() wake them up if a_softlockcnt
9365	 * drops to 0. anon map can't be freed until a_softlockcnt drops to 0
9366	 * and anonmap_purge() acquires a_purgemtx.
9367	 */
9368	mutex_enter(&amp->a_purgemtx);
9369	if (!atomic_add_long_nv((ulong_t *)&amp->a_softlockcnt, -npages) &&
9370	    amp->a_purgewait) {
9371		amp->a_purgewait = 0;
9372		cv_broadcast(&amp->a_purgecv);
9373	}
9374	mutex_exit(&amp->a_purgemtx);
9375	return (0);
9376}
9377
9378/*
9379 * get a memory ID for an addr in a given segment
9380 *
9381 * XXX only creates PAGESIZE pages if anon slots are not initialized.
9382 * At fault time they will be relocated into larger pages.
9383 */
9384static int
9385segvn_getmemid(struct seg *seg, caddr_t addr, memid_t *memidp)
9386{
9387	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
9388	struct anon 	*ap = NULL;
9389	ulong_t		anon_index;
9390	struct anon_map	*amp;
9391	anon_sync_obj_t cookie;
9392
9393	if (svd->type == MAP_PRIVATE) {
9394		memidp->val[0] = (uintptr_t)seg->s_as;
9395		memidp->val[1] = (uintptr_t)addr;
9396		return (0);
9397	}
9398
9399	if (svd->type == MAP_SHARED) {
9400		if (svd->vp) {
9401			memidp->val[0] = (uintptr_t)svd->vp;
9402			memidp->val[1] = (u_longlong_t)svd->offset +
9403			    (uintptr_t)(addr - seg->s_base);
9404			return (0);
9405		} else {
9406
9407			SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
9408			if ((amp = svd->amp) != NULL) {
9409				anon_index = svd->anon_index +
9410				    seg_page(seg, addr);
9411			}
9412			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
9413
9414			ASSERT(amp != NULL);
9415
9416			ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
9417			anon_array_enter(amp, anon_index, &cookie);
9418			ap = anon_get_ptr(amp->ahp, anon_index);
9419			if (ap == NULL) {
9420				page_t		*pp;
9421
9422				pp = anon_zero(seg, addr, &ap, svd->cred);
9423				if (pp == NULL) {
9424					anon_array_exit(&cookie);
9425					ANON_LOCK_EXIT(&amp->a_rwlock);
9426					return (ENOMEM);
9427				}
9428				ASSERT(anon_get_ptr(amp->ahp, anon_index)
9429				    == NULL);
9430				(void) anon_set_ptr(amp->ahp, anon_index,
9431				    ap, ANON_SLEEP);
9432				page_unlock(pp);
9433			}
9434
9435			anon_array_exit(&cookie);
9436			ANON_LOCK_EXIT(&amp->a_rwlock);
9437
9438			memidp->val[0] = (uintptr_t)ap;
9439			memidp->val[1] = (uintptr_t)addr & PAGEOFFSET;
9440			return (0);
9441		}
9442	}
9443	return (EINVAL);
9444}
9445
9446static int
9447sameprot(struct seg *seg, caddr_t a, size_t len)
9448{
9449	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
9450	struct vpage *vpage;
9451	spgcnt_t pages = btop(len);
9452	uint_t prot;
9453
9454	if (svd->pageprot == 0)
9455		return (1);
9456
9457	ASSERT(svd->vpage != NULL);
9458
9459	vpage = &svd->vpage[seg_page(seg, a)];
9460	prot = VPP_PROT(vpage);
9461	vpage++;
9462	pages--;
9463	while (pages-- > 0) {
9464		if (prot != VPP_PROT(vpage))
9465			return (0);
9466		vpage++;
9467	}
9468	return (1);
9469}
9470
9471/*
9472 * Get memory allocation policy info for specified address in given segment
9473 */
9474static lgrp_mem_policy_info_t *
9475segvn_getpolicy(struct seg *seg, caddr_t addr)
9476{
9477	struct anon_map		*amp;
9478	ulong_t			anon_index;
9479	lgrp_mem_policy_info_t	*policy_info;
9480	struct segvn_data	*svn_data;
9481	u_offset_t		vn_off;
9482	vnode_t			*vp;
9483
9484	ASSERT(seg != NULL);
9485
9486	svn_data = (struct segvn_data *)seg->s_data;
9487	if (svn_data == NULL)
9488		return (NULL);
9489
9490	/*
9491	 * Get policy info for private or shared memory
9492	 */
9493	if (svn_data->type != MAP_SHARED) {
9494		if (svn_data->tr_state != SEGVN_TR_ON) {
9495			policy_info = &svn_data->policy_info;
9496		} else {
9497			policy_info = &svn_data->tr_policy_info;
9498			ASSERT(policy_info->mem_policy ==
9499			    LGRP_MEM_POLICY_NEXT_SEG);
9500		}
9501	} else {
9502		amp = svn_data->amp;
9503		anon_index = svn_data->anon_index + seg_page(seg, addr);
9504		vp = svn_data->vp;
9505		vn_off = svn_data->offset + (uintptr_t)(addr - seg->s_base);
9506		policy_info = lgrp_shm_policy_get(amp, anon_index, vp, vn_off);
9507	}
9508
9509	return (policy_info);
9510}
9511
9512/*ARGSUSED*/
9513static int
9514segvn_capable(struct seg *seg, segcapability_t capability)
9515{
9516	return (0);
9517}
9518
9519/*
9520 * Bind text vnode segment to an amp. If we bind successfully mappings will be
9521 * established to per vnode mapping per lgroup amp pages instead of to vnode
9522 * pages. There's one amp per vnode text mapping per lgroup. Many processes
9523 * may share the same text replication amp. If a suitable amp doesn't already
9524 * exist in svntr hash table create a new one.  We may fail to bind to amp if
9525 * segment is not eligible for text replication.  Code below first checks for
9526 * these conditions. If binding is successful segment tr_state is set to on
9527 * and svd->amp points to the amp to use. Otherwise tr_state is set to off and
9528 * svd->amp remains as NULL.
9529 */
9530static void
9531segvn_textrepl(struct seg *seg)
9532{
9533	struct segvn_data	*svd = (struct segvn_data *)seg->s_data;
9534	vnode_t			*vp = svd->vp;
9535	u_offset_t		off = svd->offset;
9536	size_t			size = seg->s_size;
9537	u_offset_t		eoff = off + size;
9538	uint_t			szc = seg->s_szc;
9539	ulong_t			hash = SVNTR_HASH_FUNC(vp);
9540	svntr_t			*svntrp;
9541	struct vattr		va;
9542	proc_t			*p = seg->s_as->a_proc;
9543	lgrp_id_t		lgrp_id;
9544	lgrp_id_t		olid;
9545	int			first;
9546	struct anon_map		*amp;
9547
9548	ASSERT(AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
9549	ASSERT(SEGVN_WRITE_HELD(seg->s_as, &svd->lock));
9550	ASSERT(p != NULL);
9551	ASSERT(svd->tr_state == SEGVN_TR_INIT);
9552	ASSERT(!HAT_IS_REGION_COOKIE_VALID(svd->rcookie));
9553	ASSERT(svd->flags & MAP_TEXT);
9554	ASSERT(svd->type == MAP_PRIVATE);
9555	ASSERT(vp != NULL && svd->amp == NULL);
9556	ASSERT(!svd->pageprot && !(svd->prot & PROT_WRITE));
9557	ASSERT(!(svd->flags & MAP_NORESERVE) && svd->swresv == 0);
9558	ASSERT(seg->s_as != &kas);
9559	ASSERT(off < eoff);
9560	ASSERT(svntr_hashtab != NULL);
9561
9562	/*
9563	 * If numa optimizations are no longer desired bail out.
9564	 */
9565	if (!lgrp_optimizations()) {
9566		svd->tr_state = SEGVN_TR_OFF;
9567		return;
9568	}
9569
9570	/*
9571	 * Avoid creating anon maps with size bigger than the file size.
9572	 * If VOP_GETATTR() call fails bail out.
9573	 */
9574	va.va_mask = AT_SIZE | AT_MTIME | AT_CTIME;
9575	if (VOP_GETATTR(vp, &va, 0, svd->cred, NULL) != 0) {
9576		svd->tr_state = SEGVN_TR_OFF;
9577		SEGVN_TR_ADDSTAT(gaerr);
9578		return;
9579	}
9580	if (btopr(va.va_size) < btopr(eoff)) {
9581		svd->tr_state = SEGVN_TR_OFF;
9582		SEGVN_TR_ADDSTAT(overmap);
9583		return;
9584	}
9585
9586	/*
9587	 * VVMEXEC may not be set yet if exec() prefaults text segment. Set
9588	 * this flag now before vn_is_mapped(V_WRITE) so that MAP_SHARED
9589	 * mapping that checks if trcache for this vnode needs to be
9590	 * invalidated can't miss us.
9591	 */
9592	if (!(vp->v_flag & VVMEXEC)) {
9593		mutex_enter(&vp->v_lock);
9594		vp->v_flag |= VVMEXEC;
9595		mutex_exit(&vp->v_lock);
9596	}
9597	mutex_enter(&svntr_hashtab[hash].tr_lock);
9598	/*
9599	 * Bail out if potentially MAP_SHARED writable mappings exist to this
9600	 * vnode.  We don't want to use old file contents from existing
9601	 * replicas if this mapping was established after the original file
9602	 * was changed.
9603	 */
9604	if (vn_is_mapped(vp, V_WRITE)) {
9605		mutex_exit(&svntr_hashtab[hash].tr_lock);
9606		svd->tr_state = SEGVN_TR_OFF;
9607		SEGVN_TR_ADDSTAT(wrcnt);
9608		return;
9609	}
9610	svntrp = svntr_hashtab[hash].tr_head;
9611	for (; svntrp != NULL; svntrp = svntrp->tr_next) {
9612		ASSERT(svntrp->tr_refcnt != 0);
9613		if (svntrp->tr_vp != vp) {
9614			continue;
9615		}
9616
9617		/*
9618		 * Bail out if the file or its attributes were changed after
9619		 * this replication entry was created since we need to use the
9620		 * latest file contents. Note that mtime test alone is not
9621		 * sufficient because a user can explicitly change mtime via
9622		 * utimes(2) interfaces back to the old value after modifiying
9623		 * the file contents. To detect this case we also have to test
9624		 * ctime which among other things records the time of the last
9625		 * mtime change by utimes(2). ctime is not changed when the file
9626		 * is only read or executed so we expect that typically existing
9627		 * replication amp's can be used most of the time.
9628		 */
9629		if (!svntrp->tr_valid ||
9630		    svntrp->tr_mtime.tv_sec != va.va_mtime.tv_sec ||
9631		    svntrp->tr_mtime.tv_nsec != va.va_mtime.tv_nsec ||
9632		    svntrp->tr_ctime.tv_sec != va.va_ctime.tv_sec ||
9633		    svntrp->tr_ctime.tv_nsec != va.va_ctime.tv_nsec) {
9634			mutex_exit(&svntr_hashtab[hash].tr_lock);
9635			svd->tr_state = SEGVN_TR_OFF;
9636			SEGVN_TR_ADDSTAT(stale);
9637			return;
9638		}
9639		/*
9640		 * if off, eoff and szc match current segment we found the
9641		 * existing entry we can use.
9642		 */
9643		if (svntrp->tr_off == off && svntrp->tr_eoff == eoff &&
9644		    svntrp->tr_szc == szc) {
9645			break;
9646		}
9647		/*
9648		 * Don't create different but overlapping in file offsets
9649		 * entries to avoid replication of the same file pages more
9650		 * than once per lgroup.
9651		 */
9652		if ((off >= svntrp->tr_off && off < svntrp->tr_eoff) ||
9653		    (eoff > svntrp->tr_off && eoff <= svntrp->tr_eoff)) {
9654			mutex_exit(&svntr_hashtab[hash].tr_lock);
9655			svd->tr_state = SEGVN_TR_OFF;
9656			SEGVN_TR_ADDSTAT(overlap);
9657			return;
9658		}
9659	}
9660	/*
9661	 * If we didn't find existing entry create a new one.
9662	 */
9663	if (svntrp == NULL) {
9664		svntrp = kmem_cache_alloc(svntr_cache, KM_NOSLEEP);
9665		if (svntrp == NULL) {
9666			mutex_exit(&svntr_hashtab[hash].tr_lock);
9667			svd->tr_state = SEGVN_TR_OFF;
9668			SEGVN_TR_ADDSTAT(nokmem);
9669			return;
9670		}
9671#ifdef DEBUG
9672		{
9673			lgrp_id_t i;
9674			for (i = 0; i < NLGRPS_MAX; i++) {
9675				ASSERT(svntrp->tr_amp[i] == NULL);
9676			}
9677		}
9678#endif /* DEBUG */
9679		svntrp->tr_vp = vp;
9680		svntrp->tr_off = off;
9681		svntrp->tr_eoff = eoff;
9682		svntrp->tr_szc = szc;
9683		svntrp->tr_valid = 1;
9684		svntrp->tr_mtime = va.va_mtime;
9685		svntrp->tr_ctime = va.va_ctime;
9686		svntrp->tr_refcnt = 0;
9687		svntrp->tr_next = svntr_hashtab[hash].tr_head;
9688		svntr_hashtab[hash].tr_head = svntrp;
9689	}
9690	first = 1;
9691again:
9692	/*
9693	 * We want to pick a replica with pages on main thread's (t_tid = 1,
9694	 * aka T1) lgrp. Currently text replication is only optimized for
9695	 * workloads that either have all threads of a process on the same
9696	 * lgrp or execute their large text primarily on main thread.
9697	 */
9698	lgrp_id = p->p_t1_lgrpid;
9699	if (lgrp_id == LGRP_NONE) {
9700		/*
9701		 * In case exec() prefaults text on non main thread use
9702		 * current thread lgrpid.  It will become main thread anyway
9703		 * soon.
9704		 */
9705		lgrp_id = lgrp_home_id(curthread);
9706	}
9707	/*
9708	 * Set p_tr_lgrpid to lgrpid if it hasn't been set yet.  Otherwise
9709	 * just set it to NLGRPS_MAX if it's different from current process T1
9710	 * home lgrp.  p_tr_lgrpid is used to detect if process uses text
9711	 * replication and T1 new home is different from lgrp used for text
9712	 * replication. When this happens asyncronous segvn thread rechecks if
9713	 * segments should change lgrps used for text replication.  If we fail
9714	 * to set p_tr_lgrpid with cas32 then set it to NLGRPS_MAX without cas
9715	 * if it's not already NLGRPS_MAX and not equal lgrp_id we want to
9716	 * use.  We don't need to use cas in this case because another thread
9717	 * that races in between our non atomic check and set may only change
9718	 * p_tr_lgrpid to NLGRPS_MAX at this point.
9719	 */
9720	ASSERT(lgrp_id != LGRP_NONE && lgrp_id < NLGRPS_MAX);
9721	olid = p->p_tr_lgrpid;
9722	if (lgrp_id != olid && olid != NLGRPS_MAX) {
9723		lgrp_id_t nlid = (olid == LGRP_NONE) ? lgrp_id : NLGRPS_MAX;
9724		if (cas32((uint32_t *)&p->p_tr_lgrpid, olid, nlid) != olid) {
9725			olid = p->p_tr_lgrpid;
9726			ASSERT(olid != LGRP_NONE);
9727			if (olid != lgrp_id && olid != NLGRPS_MAX) {
9728				p->p_tr_lgrpid = NLGRPS_MAX;
9729			}
9730		}
9731		ASSERT(p->p_tr_lgrpid != LGRP_NONE);
9732		membar_producer();
9733		/*
9734		 * lgrp_move_thread() won't schedule async recheck after
9735		 * p->p_t1_lgrpid update unless p->p_tr_lgrpid is not
9736		 * LGRP_NONE. Recheck p_t1_lgrpid once now that p->p_tr_lgrpid
9737		 * is not LGRP_NONE.
9738		 */
9739		if (first && p->p_t1_lgrpid != LGRP_NONE &&
9740		    p->p_t1_lgrpid != lgrp_id) {
9741			first = 0;
9742			goto again;
9743		}
9744	}
9745	/*
9746	 * If no amp was created yet for lgrp_id create a new one as long as
9747	 * we have enough memory to afford it.
9748	 */
9749	if ((amp = svntrp->tr_amp[lgrp_id]) == NULL) {
9750		size_t trmem = atomic_add_long_nv(&segvn_textrepl_bytes, size);
9751		if (trmem > segvn_textrepl_max_bytes) {
9752			SEGVN_TR_ADDSTAT(normem);
9753			goto fail;
9754		}
9755		if (anon_try_resv_zone(size, NULL) == 0) {
9756			SEGVN_TR_ADDSTAT(noanon);
9757			goto fail;
9758		}
9759		amp = anonmap_alloc(size, size, ANON_NOSLEEP);
9760		if (amp == NULL) {
9761			anon_unresv_zone(size, NULL);
9762			SEGVN_TR_ADDSTAT(nokmem);
9763			goto fail;
9764		}
9765		ASSERT(amp->refcnt == 1);
9766		amp->a_szc = szc;
9767		svntrp->tr_amp[lgrp_id] = amp;
9768		SEGVN_TR_ADDSTAT(newamp);
9769	}
9770	svntrp->tr_refcnt++;
9771	ASSERT(svd->svn_trnext == NULL);
9772	ASSERT(svd->svn_trprev == NULL);
9773	svd->svn_trnext = svntrp->tr_svnhead;
9774	svd->svn_trprev = NULL;
9775	if (svntrp->tr_svnhead != NULL) {
9776		svntrp->tr_svnhead->svn_trprev = svd;
9777	}
9778	svntrp->tr_svnhead = svd;
9779	ASSERT(amp->a_szc == szc && amp->size == size && amp->swresv == size);
9780	ASSERT(amp->refcnt >= 1);
9781	svd->amp = amp;
9782	svd->anon_index = 0;
9783	svd->tr_policy_info.mem_policy = LGRP_MEM_POLICY_NEXT_SEG;
9784	svd->tr_policy_info.mem_lgrpid = lgrp_id;
9785	svd->tr_state = SEGVN_TR_ON;
9786	mutex_exit(&svntr_hashtab[hash].tr_lock);
9787	SEGVN_TR_ADDSTAT(repl);
9788	return;
9789fail:
9790	ASSERT(segvn_textrepl_bytes >= size);
9791	atomic_add_long(&segvn_textrepl_bytes, -size);
9792	ASSERT(svntrp != NULL);
9793	ASSERT(svntrp->tr_amp[lgrp_id] == NULL);
9794	if (svntrp->tr_refcnt == 0) {
9795		ASSERT(svntrp == svntr_hashtab[hash].tr_head);
9796		svntr_hashtab[hash].tr_head = svntrp->tr_next;
9797		mutex_exit(&svntr_hashtab[hash].tr_lock);
9798		kmem_cache_free(svntr_cache, svntrp);
9799	} else {
9800		mutex_exit(&svntr_hashtab[hash].tr_lock);
9801	}
9802	svd->tr_state = SEGVN_TR_OFF;
9803}
9804
9805/*
9806 * Convert seg back to regular vnode mapping seg by unbinding it from its text
9807 * replication amp.  This routine is most typically called when segment is
9808 * unmapped but can also be called when segment no longer qualifies for text
9809 * replication (e.g. due to protection changes). If unload_unmap is set use
9810 * HAT_UNLOAD_UNMAP flag in hat_unload_callback().  If we are the last user of
9811 * svntr free all its anon maps and remove it from the hash table.
9812 */
9813static void
9814segvn_textunrepl(struct seg *seg, int unload_unmap)
9815{
9816	struct segvn_data	*svd = (struct segvn_data *)seg->s_data;
9817	vnode_t			*vp = svd->vp;
9818	u_offset_t		off = svd->offset;
9819	size_t			size = seg->s_size;
9820	u_offset_t		eoff = off + size;
9821	uint_t			szc = seg->s_szc;
9822	ulong_t			hash = SVNTR_HASH_FUNC(vp);
9823	svntr_t			*svntrp;
9824	svntr_t			**prv_svntrp;
9825	lgrp_id_t		lgrp_id = svd->tr_policy_info.mem_lgrpid;
9826	lgrp_id_t		i;
9827
9828	ASSERT(AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
9829	ASSERT(AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock) ||
9830	    SEGVN_WRITE_HELD(seg->s_as, &svd->lock));
9831	ASSERT(svd->tr_state == SEGVN_TR_ON);
9832	ASSERT(!HAT_IS_REGION_COOKIE_VALID(svd->rcookie));
9833	ASSERT(svd->amp != NULL);
9834	ASSERT(svd->amp->refcnt >= 1);
9835	ASSERT(svd->anon_index == 0);
9836	ASSERT(lgrp_id != LGRP_NONE && lgrp_id < NLGRPS_MAX);
9837	ASSERT(svntr_hashtab != NULL);
9838
9839	mutex_enter(&svntr_hashtab[hash].tr_lock);
9840	prv_svntrp = &svntr_hashtab[hash].tr_head;
9841	for (; (svntrp = *prv_svntrp) != NULL; prv_svntrp = &svntrp->tr_next) {
9842		ASSERT(svntrp->tr_refcnt != 0);
9843		if (svntrp->tr_vp == vp && svntrp->tr_off == off &&
9844		    svntrp->tr_eoff == eoff && svntrp->tr_szc == szc) {
9845			break;
9846		}
9847	}
9848	if (svntrp == NULL) {
9849		panic("segvn_textunrepl: svntr record not found");
9850	}
9851	if (svntrp->tr_amp[lgrp_id] != svd->amp) {
9852		panic("segvn_textunrepl: amp mismatch");
9853	}
9854	svd->tr_state = SEGVN_TR_OFF;
9855	svd->amp = NULL;
9856	if (svd->svn_trprev == NULL) {
9857		ASSERT(svntrp->tr_svnhead == svd);
9858		svntrp->tr_svnhead = svd->svn_trnext;
9859		if (svntrp->tr_svnhead != NULL) {
9860			svntrp->tr_svnhead->svn_trprev = NULL;
9861		}
9862		svd->svn_trnext = NULL;
9863	} else {
9864		svd->svn_trprev->svn_trnext = svd->svn_trnext;
9865		if (svd->svn_trnext != NULL) {
9866			svd->svn_trnext->svn_trprev = svd->svn_trprev;
9867			svd->svn_trnext = NULL;
9868		}
9869		svd->svn_trprev = NULL;
9870	}
9871	if (--svntrp->tr_refcnt) {
9872		mutex_exit(&svntr_hashtab[hash].tr_lock);
9873		goto done;
9874	}
9875	*prv_svntrp = svntrp->tr_next;
9876	mutex_exit(&svntr_hashtab[hash].tr_lock);
9877	for (i = 0; i < NLGRPS_MAX; i++) {
9878		struct anon_map *amp = svntrp->tr_amp[i];
9879		if (amp == NULL) {
9880			continue;
9881		}
9882		ASSERT(amp->refcnt == 1);
9883		ASSERT(amp->swresv == size);
9884		ASSERT(amp->size == size);
9885		ASSERT(amp->a_szc == szc);
9886		if (amp->a_szc != 0) {
9887			anon_free_pages(amp->ahp, 0, size, szc);
9888		} else {
9889			anon_free(amp->ahp, 0, size);
9890		}
9891		svntrp->tr_amp[i] = NULL;
9892		ASSERT(segvn_textrepl_bytes >= size);
9893		atomic_add_long(&segvn_textrepl_bytes, -size);
9894		anon_unresv_zone(amp->swresv, NULL);
9895		amp->refcnt = 0;
9896		anonmap_free(amp);
9897	}
9898	kmem_cache_free(svntr_cache, svntrp);
9899done:
9900	hat_unload_callback(seg->s_as->a_hat, seg->s_base, size,
9901	    unload_unmap ? HAT_UNLOAD_UNMAP : 0, NULL);
9902}
9903
9904/*
9905 * This is called when a MAP_SHARED writable mapping is created to a vnode
9906 * that is currently used for execution (VVMEXEC flag is set). In this case we
9907 * need to prevent further use of existing replicas.
9908 */
9909static void
9910segvn_inval_trcache(vnode_t *vp)
9911{
9912	ulong_t			hash = SVNTR_HASH_FUNC(vp);
9913	svntr_t			*svntrp;
9914
9915	ASSERT(vp->v_flag & VVMEXEC);
9916
9917	if (svntr_hashtab == NULL) {
9918		return;
9919	}
9920
9921	mutex_enter(&svntr_hashtab[hash].tr_lock);
9922	svntrp = svntr_hashtab[hash].tr_head;
9923	for (; svntrp != NULL; svntrp = svntrp->tr_next) {
9924		ASSERT(svntrp->tr_refcnt != 0);
9925		if (svntrp->tr_vp == vp && svntrp->tr_valid) {
9926			svntrp->tr_valid = 0;
9927		}
9928	}
9929	mutex_exit(&svntr_hashtab[hash].tr_lock);
9930}
9931
9932static void
9933segvn_trasync_thread(void)
9934{
9935	callb_cpr_t cpr_info;
9936	kmutex_t cpr_lock;	/* just for CPR stuff */
9937
9938	mutex_init(&cpr_lock, NULL, MUTEX_DEFAULT, NULL);
9939
9940	CALLB_CPR_INIT(&cpr_info, &cpr_lock,
9941	    callb_generic_cpr, "segvn_async");
9942
9943	if (segvn_update_textrepl_interval == 0) {
9944		segvn_update_textrepl_interval = segvn_update_tr_time * hz;
9945	} else {
9946		segvn_update_textrepl_interval *= hz;
9947	}
9948	(void) timeout(segvn_trupdate_wakeup, NULL,
9949	    segvn_update_textrepl_interval);
9950
9951	for (;;) {
9952		mutex_enter(&cpr_lock);
9953		CALLB_CPR_SAFE_BEGIN(&cpr_info);
9954		mutex_exit(&cpr_lock);
9955		sema_p(&segvn_trasync_sem);
9956		mutex_enter(&cpr_lock);
9957		CALLB_CPR_SAFE_END(&cpr_info, &cpr_lock);
9958		mutex_exit(&cpr_lock);
9959		segvn_trupdate();
9960	}
9961}
9962
9963static uint64_t segvn_lgrp_trthr_migrs_snpsht = 0;
9964
9965static void
9966segvn_trupdate_wakeup(void *dummy)
9967{
9968	uint64_t cur_lgrp_trthr_migrs = lgrp_get_trthr_migrations();
9969
9970	if (cur_lgrp_trthr_migrs != segvn_lgrp_trthr_migrs_snpsht) {
9971		segvn_lgrp_trthr_migrs_snpsht = cur_lgrp_trthr_migrs;
9972		sema_v(&segvn_trasync_sem);
9973	}
9974
9975	if (!segvn_disable_textrepl_update &&
9976	    segvn_update_textrepl_interval != 0) {
9977		(void) timeout(segvn_trupdate_wakeup, dummy,
9978		    segvn_update_textrepl_interval);
9979	}
9980}
9981
9982static void
9983segvn_trupdate(void)
9984{
9985	ulong_t		hash;
9986	svntr_t		*svntrp;
9987	segvn_data_t	*svd;
9988
9989	ASSERT(svntr_hashtab != NULL);
9990
9991	for (hash = 0; hash < svntr_hashtab_sz; hash++) {
9992		mutex_enter(&svntr_hashtab[hash].tr_lock);
9993		svntrp = svntr_hashtab[hash].tr_head;
9994		for (; svntrp != NULL; svntrp = svntrp->tr_next) {
9995			ASSERT(svntrp->tr_refcnt != 0);
9996			svd = svntrp->tr_svnhead;
9997			for (; svd != NULL; svd = svd->svn_trnext) {
9998				segvn_trupdate_seg(svd->seg, svd, svntrp,
9999				    hash);
10000			}
10001		}
10002		mutex_exit(&svntr_hashtab[hash].tr_lock);
10003	}
10004}
10005
10006static void
10007segvn_trupdate_seg(struct seg *seg,
10008	segvn_data_t *svd,
10009	svntr_t *svntrp,
10010	ulong_t hash)
10011{
10012	proc_t			*p;
10013	lgrp_id_t		lgrp_id;
10014	struct as		*as;
10015	size_t			size;
10016	struct anon_map		*amp;
10017
10018	ASSERT(svd->vp != NULL);
10019	ASSERT(svd->vp == svntrp->tr_vp);
10020	ASSERT(svd->offset == svntrp->tr_off);
10021	ASSERT(svd->offset + seg->s_size == svntrp->tr_eoff);
10022	ASSERT(seg != NULL);
10023	ASSERT(svd->seg == seg);
10024	ASSERT(seg->s_data == (void *)svd);
10025	ASSERT(seg->s_szc == svntrp->tr_szc);
10026	ASSERT(svd->tr_state == SEGVN_TR_ON);
10027	ASSERT(!HAT_IS_REGION_COOKIE_VALID(svd->rcookie));
10028	ASSERT(svd->amp != NULL);
10029	ASSERT(svd->tr_policy_info.mem_policy == LGRP_MEM_POLICY_NEXT_SEG);
10030	ASSERT(svd->tr_policy_info.mem_lgrpid != LGRP_NONE);
10031	ASSERT(svd->tr_policy_info.mem_lgrpid < NLGRPS_MAX);
10032	ASSERT(svntrp->tr_amp[svd->tr_policy_info.mem_lgrpid] == svd->amp);
10033	ASSERT(svntrp->tr_refcnt != 0);
10034	ASSERT(mutex_owned(&svntr_hashtab[hash].tr_lock));
10035
10036	as = seg->s_as;
10037	ASSERT(as != NULL && as != &kas);
10038	p = as->a_proc;
10039	ASSERT(p != NULL);
10040	ASSERT(p->p_tr_lgrpid != LGRP_NONE);
10041	lgrp_id = p->p_t1_lgrpid;
10042	if (lgrp_id == LGRP_NONE) {
10043		return;
10044	}
10045	ASSERT(lgrp_id < NLGRPS_MAX);
10046	if (svd->tr_policy_info.mem_lgrpid == lgrp_id) {
10047		return;
10048	}
10049
10050	/*
10051	 * Use tryenter locking since we are locking as/seg and svntr hash
10052	 * lock in reverse from syncrounous thread order.
10053	 */
10054	if (!AS_LOCK_TRYENTER(as, &as->a_lock, RW_READER)) {
10055		SEGVN_TR_ADDSTAT(nolock);
10056		if (segvn_lgrp_trthr_migrs_snpsht) {
10057			segvn_lgrp_trthr_migrs_snpsht = 0;
10058		}
10059		return;
10060	}
10061	if (!SEGVN_LOCK_TRYENTER(seg->s_as, &svd->lock, RW_WRITER)) {
10062		AS_LOCK_EXIT(as, &as->a_lock);
10063		SEGVN_TR_ADDSTAT(nolock);
10064		if (segvn_lgrp_trthr_migrs_snpsht) {
10065			segvn_lgrp_trthr_migrs_snpsht = 0;
10066		}
10067		return;
10068	}
10069	size = seg->s_size;
10070	if (svntrp->tr_amp[lgrp_id] == NULL) {
10071		size_t trmem = atomic_add_long_nv(&segvn_textrepl_bytes, size);
10072		if (trmem > segvn_textrepl_max_bytes) {
10073			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
10074			AS_LOCK_EXIT(as, &as->a_lock);
10075			atomic_add_long(&segvn_textrepl_bytes, -size);
10076			SEGVN_TR_ADDSTAT(normem);
10077			return;
10078		}
10079		if (anon_try_resv_zone(size, NULL) == 0) {
10080			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
10081			AS_LOCK_EXIT(as, &as->a_lock);
10082			atomic_add_long(&segvn_textrepl_bytes, -size);
10083			SEGVN_TR_ADDSTAT(noanon);
10084			return;
10085		}
10086		amp = anonmap_alloc(size, size, KM_NOSLEEP);
10087		if (amp == NULL) {
10088			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
10089			AS_LOCK_EXIT(as, &as->a_lock);
10090			atomic_add_long(&segvn_textrepl_bytes, -size);
10091			anon_unresv_zone(size, NULL);
10092			SEGVN_TR_ADDSTAT(nokmem);
10093			return;
10094		}
10095		ASSERT(amp->refcnt == 1);
10096		amp->a_szc = seg->s_szc;
10097		svntrp->tr_amp[lgrp_id] = amp;
10098	}
10099	/*
10100	 * We don't need to drop the bucket lock but here we give other
10101	 * threads a chance.  svntr and svd can't be unlinked as long as
10102	 * segment lock is held as a writer and AS held as well.  After we
10103	 * retake bucket lock we'll continue from where we left. We'll be able
10104	 * to reach the end of either list since new entries are always added
10105	 * to the beginning of the lists.
10106	 */
10107	mutex_exit(&svntr_hashtab[hash].tr_lock);
10108	hat_unload_callback(as->a_hat, seg->s_base, size, 0, NULL);
10109	mutex_enter(&svntr_hashtab[hash].tr_lock);
10110
10111	ASSERT(svd->tr_state == SEGVN_TR_ON);
10112	ASSERT(svd->amp != NULL);
10113	ASSERT(svd->tr_policy_info.mem_policy == LGRP_MEM_POLICY_NEXT_SEG);
10114	ASSERT(svd->tr_policy_info.mem_lgrpid != lgrp_id);
10115	ASSERT(svd->amp != svntrp->tr_amp[lgrp_id]);
10116
10117	svd->tr_policy_info.mem_lgrpid = lgrp_id;
10118	svd->amp = svntrp->tr_amp[lgrp_id];
10119	p->p_tr_lgrpid = NLGRPS_MAX;
10120	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
10121	AS_LOCK_EXIT(as, &as->a_lock);
10122
10123	ASSERT(svntrp->tr_refcnt != 0);
10124	ASSERT(svd->vp == svntrp->tr_vp);
10125	ASSERT(svd->tr_policy_info.mem_lgrpid == lgrp_id);
10126	ASSERT(svd->amp != NULL && svd->amp == svntrp->tr_amp[lgrp_id]);
10127	ASSERT(svd->seg == seg);
10128	ASSERT(svd->tr_state == SEGVN_TR_ON);
10129
10130	SEGVN_TR_ADDSTAT(asyncrepl);
10131}
10132