1/*	$NetBSD: queue.h,v 1.42 2005/07/13 15:08:24 wiz Exp $	*/
2
3/*
4 * Copyright (c) 1991, 1993
5 *	The Regents of the University of California.  All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 *    may be used to endorse or promote products derived from this software
17 *    without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 *	@(#)queue.h	8.5 (Berkeley) 8/20/94
32 */
33/*
34 * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
35 * Use is subject to license terms.
36 */
37
38#ifndef	_SYS_QUEUE_H
39#define	_SYS_QUEUE_H
40
41#include <sys/note.h>
42
43#ifdef	__cplusplus
44extern "C" {
45#endif
46
47/*
48 * This file defines five types of data structures: singly-linked lists,
49 * lists, simple queues, tail queues, and circular queues.
50 *
51 * A singly-linked list is headed by a single forward pointer. The
52 * elements are singly linked for minimum space and pointer manipulation
53 * overhead at the expense of O(n) removal for arbitrary elements. New
54 * elements can be added to the list after an existing element or at the
55 * head of the list.  Elements being removed from the head of the list
56 * should use the explicit macro for this purpose for optimum
57 * efficiency. A singly-linked list may only be traversed in the forward
58 * direction.  Singly-linked lists are ideal for applications with large
59 * datasets and few or no removals or for implementing a LIFO queue.
60 *
61 * A list is headed by a single forward pointer (or an array of forward
62 * pointers for a hash table header). The elements are doubly linked
63 * so that an arbitrary element can be removed without a need to
64 * traverse the list. New elements can be added to the list before
65 * or after an existing element or at the head of the list. A list
66 * may only be traversed in the forward direction.
67 *
68 * A simple queue is headed by a pair of pointers, one the head of the
69 * list and the other to the tail of the list. The elements are singly
70 * linked to save space, so elements can only be removed from the
71 * head of the list. New elements can be added to the list after
72 * an existing element, at the head of the list, or at the end of the
73 * list. A simple queue may only be traversed in the forward direction.
74 *
75 * A tail queue is headed by a pair of pointers, one to the head of the
76 * list and the other to the tail of the list. The elements are doubly
77 * linked so that an arbitrary element can be removed without a need to
78 * traverse the list. New elements can be added to the list before or
79 * after an existing element, at the head of the list, or at the end of
80 * the list. A tail queue may be traversed in either direction.
81 *
82 * A circle queue is headed by a pair of pointers, one to the head of the
83 * list and the other to the tail of the list. The elements are doubly
84 * linked so that an arbitrary element can be removed without a need to
85 * traverse the list. New elements can be added to the list before or after
86 * an existing element, at the head of the list, or at the end of the list.
87 * A circle queue may be traversed in either direction, but has a more
88 * complex end of list detection.
89 *
90 * For details on the use of these macros, see the queue(3) manual page.
91 */
92
93/*
94 * List definitions.
95 */
96#define	LIST_HEAD(name, type)						\
97struct name {								\
98	struct type *lh_first;	/* first element */			\
99}
100
101#define	LIST_HEAD_INITIALIZER(head)					\
102	{ NULL }
103
104#define	LIST_ENTRY(type)						\
105struct {								\
106	struct type *le_next;	/* next element */			\
107	struct type **le_prev;	/* address of previous next element */	\
108}
109
110/*
111 * List functions.
112 */
113#if defined(_KERNEL) && defined(QUEUEDEBUG)
114#define	QUEUEDEBUG_LIST_INSERT_HEAD(head, elm, field)			\
115	if ((head)->lh_first &&						\
116	    (head)->lh_first->field.le_prev != &(head)->lh_first)	\
117		panic("LIST_INSERT_HEAD %p %s:%d", (head), __FILE__, __LINE__);
118#define	QUEUEDEBUG_LIST_OP(elm, field)					\
119	if ((elm)->field.le_next &&					\
120	    (elm)->field.le_next->field.le_prev !=			\
121	    &(elm)->field.le_next)					\
122		panic("LIST_* forw %p %s:%d", (elm), __FILE__, __LINE__);\
123	if (*(elm)->field.le_prev != (elm))				\
124		panic("LIST_* back %p %s:%d", (elm), __FILE__, __LINE__);
125#define	QUEUEDEBUG_LIST_POSTREMOVE(elm, field)				\
126	(elm)->field.le_next = (void *)1L;				\
127	(elm)->field.le_prev = (void *)1L;
128#else
129#define	QUEUEDEBUG_LIST_INSERT_HEAD(head, elm, field)
130#define	QUEUEDEBUG_LIST_OP(elm, field)
131#define	QUEUEDEBUG_LIST_POSTREMOVE(elm, field)
132#endif
133
134#define	LIST_INIT(head) do {						\
135	(head)->lh_first = NULL;					\
136	_NOTE(CONSTCOND)						\
137} while (0)
138
139#define	LIST_INSERT_AFTER(listelm, elm, field) do {			\
140	QUEUEDEBUG_LIST_OP((listelm), field)				\
141	if (((elm)->field.le_next = (listelm)->field.le_next) != NULL)	\
142		(listelm)->field.le_next->field.le_prev =		\
143		    &(elm)->field.le_next;				\
144	(listelm)->field.le_next = (elm);				\
145	(elm)->field.le_prev = &(listelm)->field.le_next;		\
146	_NOTE(CONSTCOND)						\
147} while (0)
148
149#define	LIST_INSERT_BEFORE(listelm, elm, field) do {			\
150	QUEUEDEBUG_LIST_OP((listelm), field)				\
151	(elm)->field.le_prev = (listelm)->field.le_prev;		\
152	(elm)->field.le_next = (listelm);				\
153	*(listelm)->field.le_prev = (elm);				\
154	(listelm)->field.le_prev = &(elm)->field.le_next;		\
155	_NOTE(CONSTCOND)						\
156} while (0)
157
158#define	LIST_INSERT_HEAD(head, elm, field) do {				\
159	QUEUEDEBUG_LIST_INSERT_HEAD((head), (elm), field)		\
160	if (((elm)->field.le_next = (head)->lh_first) != NULL)		\
161		(head)->lh_first->field.le_prev = &(elm)->field.le_next;\
162	(head)->lh_first = (elm);					\
163	(elm)->field.le_prev = &(head)->lh_first;			\
164	_NOTE(CONSTCOND)						\
165} while (0)
166
167#define	LIST_REMOVE(elm, field) do {					\
168	QUEUEDEBUG_LIST_OP((elm), field)				\
169	if ((elm)->field.le_next != NULL)				\
170		(elm)->field.le_next->field.le_prev = 			\
171		    (elm)->field.le_prev;				\
172	*(elm)->field.le_prev = (elm)->field.le_next;			\
173	QUEUEDEBUG_LIST_POSTREMOVE((elm), field)			\
174	_NOTE(CONSTCOND)						\
175} while (0)
176
177#define	LIST_FOREACH(var, head, field)					\
178	for ((var) = ((head)->lh_first);				\
179		(var);							\
180		(var) = ((var)->field.le_next))
181
182/*
183 * List access methods.
184 */
185#define	LIST_EMPTY(head)		((head)->lh_first == NULL)
186#define	LIST_FIRST(head)		((head)->lh_first)
187#define	LIST_NEXT(elm, field)		((elm)->field.le_next)
188
189
190/*
191 * Singly-linked List definitions.
192 */
193#define	SLIST_HEAD(name, type)						\
194struct name {								\
195	struct type *slh_first;	/* first element */			\
196}
197
198#define	SLIST_HEAD_INITIALIZER(head)					\
199	{ NULL }
200
201#define	SLIST_ENTRY(type)						\
202struct {								\
203	struct type *sle_next;	/* next element */			\
204}
205
206/*
207 * Singly-linked List functions.
208 */
209#define	SLIST_INIT(head) do {						\
210	(head)->slh_first = NULL;					\
211	_NOTE(CONSTCOND)						\
212} while (0)
213
214#define	SLIST_INSERT_AFTER(slistelm, elm, field) do {			\
215	(elm)->field.sle_next = (slistelm)->field.sle_next;		\
216	(slistelm)->field.sle_next = (elm);				\
217	_NOTE(CONSTCOND)						\
218} while (0)
219
220#define	SLIST_INSERT_HEAD(head, elm, field) do {			\
221	(elm)->field.sle_next = (head)->slh_first;			\
222	(head)->slh_first = (elm);					\
223	_NOTE(CONSTCOND)						\
224} while (0)
225
226#define	SLIST_REMOVE_HEAD(head, field) do {				\
227	(head)->slh_first = (head)->slh_first->field.sle_next;		\
228	_NOTE(CONSTCOND)						\
229} while (0)
230
231#define	SLIST_REMOVE(head, elm, type, field) do {			\
232	if ((head)->slh_first == (elm)) {				\
233		SLIST_REMOVE_HEAD((head), field);			\
234	}								\
235	else {								\
236		struct type *curelm = (head)->slh_first;		\
237		while (curelm->field.sle_next != (elm))			\
238			curelm = curelm->field.sle_next;		\
239		curelm->field.sle_next =				\
240		    curelm->field.sle_next->field.sle_next;		\
241	}								\
242	_NOTE(CONSTCOND)						\
243} while (0)
244
245#define	SLIST_FOREACH(var, head, field)					\
246	for ((var) = (head)->slh_first; (var); (var) = (var)->field.sle_next)
247
248/*
249 * Singly-linked List access methods.
250 */
251#define	SLIST_EMPTY(head)	((head)->slh_first == NULL)
252#define	SLIST_FIRST(head)	((head)->slh_first)
253#define	SLIST_NEXT(elm, field)	((elm)->field.sle_next)
254
255
256/*
257 * Singly-linked Tail queue declarations.
258 */
259#define	STAILQ_HEAD(name, type)						\
260struct name {								\
261	struct type *stqh_first;	/* first element */		\
262	struct type **stqh_last;	/* addr of last next element */	\
263}
264
265#define	STAILQ_HEAD_INITIALIZER(head)					\
266	{ NULL, &(head).stqh_first }
267
268#define	STAILQ_ENTRY(type)						\
269struct {								\
270	struct type *stqe_next;	/* next element */		\
271}
272
273/*
274 * Singly-linked Tail queue functions.
275 */
276#define	STAILQ_INIT(head) do {						\
277	(head)->stqh_first = NULL;					\
278	(head)->stqh_last = &(head)->stqh_first;			\
279	_NOTE(CONSTCOND)						\
280} while (0)
281
282#define	STAILQ_INSERT_HEAD(head, elm, field) do {			\
283	if (((elm)->field.stqe_next = (head)->stqh_first) == NULL)	\
284		(head)->stqh_last = &(elm)->field.stqe_next;		\
285	(head)->stqh_first = (elm);					\
286	_NOTE(CONSTCOND)						\
287} while (0)
288
289#define	STAILQ_INSERT_TAIL(head, elm, field) do {			\
290	(elm)->field.stqe_next = NULL;					\
291	*(head)->stqh_last = (elm);					\
292	(head)->stqh_last = &(elm)->field.stqe_next;			\
293	_NOTE(CONSTCOND)						\
294} while (0)
295
296#define	STAILQ_INSERT_AFTER(head, listelm, elm, field) do {		\
297	if (((elm)->field.stqe_next = (listelm)->field.stqe_next)	\
298	    == NULL)							\
299		(head)->stqh_last = &(elm)->field.stqe_next;		\
300	(listelm)->field.stqe_next = (elm);				\
301	_NOTE(CONSTCOND)						\
302} while (0)
303
304#define	STAILQ_REMOVE_HEAD(head, field) do {				\
305	if (((head)->stqh_first = (head)->stqh_first->field.stqe_next)	\
306	    == NULL) 							\
307		(head)->stqh_last = &(head)->stqh_first;		\
308	_NOTE(CONSTCOND)						\
309} while (0)
310
311#define	STAILQ_REMOVE(head, elm, type, field) do {			\
312	if ((head)->stqh_first == (elm)) {				\
313		STAILQ_REMOVE_HEAD((head), field);			\
314	} else {							\
315		struct type *curelm = (head)->stqh_first;		\
316		while (curelm->field.stqe_next != (elm))		\
317			curelm = curelm->field.stqe_next;		\
318		if ((curelm->field.stqe_next =				\
319			curelm->field.stqe_next->field.stqe_next) == NULL) \
320			    (head)->stqh_last = &(curelm)->field.stqe_next; \
321	}								\
322	_NOTE(CONSTCOND)						\
323} while (0)
324
325#define	STAILQ_FOREACH(var, head, field)				\
326	for ((var) = ((head)->stqh_first);				\
327		(var);							\
328		(var) = ((var)->field.stqe_next))
329
330/*
331 * Singly-linked Tail queue access methods.
332 */
333#define	STAILQ_EMPTY(head)	((head)->stqh_first == NULL)
334#define	STAILQ_FIRST(head)	((head)->stqh_first)
335#define	STAILQ_NEXT(elm, field)	((elm)->field.stqe_next)
336
337
338/*
339 * Simple queue definitions.
340 */
341#define	SIMPLEQ_HEAD(name, type)					\
342struct name {								\
343	struct type *sqh_first;	/* first element */		\
344	struct type **sqh_last;	/* addr of last next element */	\
345}
346
347#define	SIMPLEQ_HEAD_INITIALIZER(head)					\
348	{ NULL, &(head).sqh_first }
349
350#define	SIMPLEQ_ENTRY(type)						\
351struct {								\
352	struct type *sqe_next;	/* next element */			\
353}
354
355/*
356 * Simple queue functions.
357 */
358#define	SIMPLEQ_INIT(head) do {						\
359	(head)->sqh_first = NULL;					\
360	(head)->sqh_last = &(head)->sqh_first;				\
361	_NOTE(CONSTCOND)						\
362} while (0)
363
364#define	SIMPLEQ_INSERT_HEAD(head, elm, field) do {			\
365	if (((elm)->field.sqe_next = (head)->sqh_first) == NULL)	\
366		(head)->sqh_last = &(elm)->field.sqe_next;		\
367	(head)->sqh_first = (elm);					\
368	_NOTE(CONSTCOND)						\
369} while (0)
370
371#define	SIMPLEQ_INSERT_TAIL(head, elm, field) do {			\
372	(elm)->field.sqe_next = NULL;					\
373	*(head)->sqh_last = (elm);					\
374	(head)->sqh_last = &(elm)->field.sqe_next;			\
375	_NOTE(CONSTCOND)						\
376} while (0)
377
378#define	SIMPLEQ_INSERT_AFTER(head, listelm, elm, field) do {		\
379	if (((elm)->field.sqe_next = (listelm)->field.sqe_next) == NULL)\
380		(head)->sqh_last = &(elm)->field.sqe_next;		\
381	(listelm)->field.sqe_next = (elm);				\
382	_NOTE(CONSTCOND)						\
383} while (0)
384
385#define	SIMPLEQ_REMOVE_HEAD(head, field) do {				\
386	if (((head)->sqh_first = (head)->sqh_first->field.sqe_next) == NULL) \
387		(head)->sqh_last = &(head)->sqh_first;			\
388	_NOTE(CONSTCOND)						\
389} while (0)
390
391#define	SIMPLEQ_REMOVE(head, elm, type, field) do {			\
392	if ((head)->sqh_first == (elm)) {				\
393		SIMPLEQ_REMOVE_HEAD((head), field);			\
394	} else {							\
395		struct type *curelm = (head)->sqh_first;		\
396		while (curelm->field.sqe_next != (elm))			\
397			curelm = curelm->field.sqe_next;		\
398		if ((curelm->field.sqe_next =				\
399			curelm->field.sqe_next->field.sqe_next) == NULL) \
400			    (head)->sqh_last = &(curelm)->field.sqe_next; \
401	}								\
402	_NOTE(CONSTCOND)						\
403} while (0)
404
405#define	SIMPLEQ_FOREACH(var, head, field)				\
406	for ((var) = ((head)->sqh_first);				\
407		(var);							\
408		(var) = ((var)->field.sqe_next))
409
410/*
411 * Simple queue access methods.
412 */
413#define	SIMPLEQ_EMPTY(head)		((head)->sqh_first == NULL)
414#define	SIMPLEQ_FIRST(head)		((head)->sqh_first)
415#define	SIMPLEQ_NEXT(elm, field)	((elm)->field.sqe_next)
416
417
418/*
419 * Tail queue definitions.
420 */
421#define	_TAILQ_HEAD(name, type)						\
422struct name {								\
423	type *tqh_first;		/* first element */		\
424	type **tqh_last;	/* addr of last next element */		\
425}
426#define	TAILQ_HEAD(name, type)	_TAILQ_HEAD(name, struct type)
427
428#define	TAILQ_HEAD_INITIALIZER(head)					\
429	{ NULL, &(head).tqh_first }
430
431#define	_TAILQ_ENTRY(type)						\
432struct {								\
433	type *tqe_next;		/* next element */			\
434	type **tqe_prev;	/* address of previous next element */\
435}
436#define	TAILQ_ENTRY(type)	_TAILQ_ENTRY(struct type)
437
438/*
439 * Tail queue functions.
440 */
441#if defined(_KERNEL) && defined(QUEUEDEBUG)
442#define	QUEUEDEBUG_TAILQ_INSERT_HEAD(head, elm, field)			\
443	if ((head)->tqh_first &&					\
444	    (head)->tqh_first->field.tqe_prev != &(head)->tqh_first)	\
445		panic("TAILQ_INSERT_HEAD %p %s:%d", (void *)(head),	\
446		    __FILE__, __LINE__);
447#define	QUEUEDEBUG_TAILQ_INSERT_TAIL(head, elm, field)			\
448	if (*(head)->tqh_last != NULL)					\
449		panic("TAILQ_INSERT_TAIL %p %s:%d", (void *)(head),	\
450		    __FILE__, __LINE__);
451#define	QUEUEDEBUG_TAILQ_OP(elm, field)					\
452	if ((elm)->field.tqe_next &&					\
453	    (elm)->field.tqe_next->field.tqe_prev !=			\
454	    &(elm)->field.tqe_next)					\
455		panic("TAILQ_* forw %p %s:%d", (void *)(elm),		\
456		    __FILE__, __LINE__);\
457	if (*(elm)->field.tqe_prev != (elm))				\
458		panic("TAILQ_* back %p %s:%d", (void *)(elm),		\
459		    __FILE__, __LINE__);
460#define	QUEUEDEBUG_TAILQ_PREREMOVE(head, elm, field)			\
461	if ((elm)->field.tqe_next == NULL &&				\
462	    (head)->tqh_last != &(elm)->field.tqe_next)			\
463		panic("TAILQ_PREREMOVE head %p elm %p %s:%d",		\
464		    (void *)(head), (void *)(elm), __FILE__, __LINE__);
465#define	QUEUEDEBUG_TAILQ_POSTREMOVE(elm, field)				\
466	(elm)->field.tqe_next = (void *)1L;				\
467	(elm)->field.tqe_prev = (void *)1L;
468#else
469#define	QUEUEDEBUG_TAILQ_INSERT_HEAD(head, elm, field)
470#define	QUEUEDEBUG_TAILQ_INSERT_TAIL(head, elm, field)
471#define	QUEUEDEBUG_TAILQ_OP(elm, field)
472#define	QUEUEDEBUG_TAILQ_PREREMOVE(head, elm, field)
473#define	QUEUEDEBUG_TAILQ_POSTREMOVE(elm, field)
474#endif
475
476#define	TAILQ_INIT(head) do {						\
477	(head)->tqh_first = NULL;					\
478	(head)->tqh_last = &(head)->tqh_first;				\
479	_NOTE(CONSTCOND)						\
480} while (0)
481
482#define	TAILQ_INSERT_HEAD(head, elm, field) do {			\
483	QUEUEDEBUG_TAILQ_INSERT_HEAD((head), (elm), field)		\
484	if (((elm)->field.tqe_next = (head)->tqh_first) != NULL)	\
485		(head)->tqh_first->field.tqe_prev =			\
486		    &(elm)->field.tqe_next;				\
487	else								\
488		(head)->tqh_last = &(elm)->field.tqe_next;		\
489	(head)->tqh_first = (elm);					\
490	(elm)->field.tqe_prev = &(head)->tqh_first;			\
491	_NOTE(CONSTCOND)						\
492} while (0)
493
494#define	TAILQ_INSERT_TAIL(head, elm, field) do {			\
495	QUEUEDEBUG_TAILQ_INSERT_TAIL((head), (elm), field)		\
496	(elm)->field.tqe_next = NULL;					\
497	(elm)->field.tqe_prev = (head)->tqh_last;			\
498	*(head)->tqh_last = (elm);					\
499	(head)->tqh_last = &(elm)->field.tqe_next;			\
500	_NOTE(CONSTCOND)						\
501} while (0)
502
503#define	TAILQ_INSERT_AFTER(head, listelm, elm, field) do {		\
504	QUEUEDEBUG_TAILQ_OP((listelm), field)				\
505	if (((elm)->field.tqe_next = (listelm)->field.tqe_next) != NULL)\
506		(elm)->field.tqe_next->field.tqe_prev = 		\
507		    &(elm)->field.tqe_next;				\
508	else								\
509		(head)->tqh_last = &(elm)->field.tqe_next;		\
510	(listelm)->field.tqe_next = (elm);				\
511	(elm)->field.tqe_prev = &(listelm)->field.tqe_next;		\
512	_NOTE(CONSTCOND)						\
513} while (0)
514
515#define	TAILQ_INSERT_BEFORE(listelm, elm, field) do {			\
516	QUEUEDEBUG_TAILQ_OP((listelm), field)				\
517	(elm)->field.tqe_prev = (listelm)->field.tqe_prev;		\
518	(elm)->field.tqe_next = (listelm);				\
519	*(listelm)->field.tqe_prev = (elm);				\
520	(listelm)->field.tqe_prev = &(elm)->field.tqe_next;		\
521	_NOTE(CONSTCOND)						\
522} while (0)
523
524#define	TAILQ_REMOVE(head, elm, field) do {				\
525	QUEUEDEBUG_TAILQ_PREREMOVE((head), (elm), field)		\
526	QUEUEDEBUG_TAILQ_OP((elm), field)				\
527	if (((elm)->field.tqe_next) != NULL)				\
528		(elm)->field.tqe_next->field.tqe_prev = 		\
529		    (elm)->field.tqe_prev;				\
530	else								\
531		(head)->tqh_last = (elm)->field.tqe_prev;		\
532	*(elm)->field.tqe_prev = (elm)->field.tqe_next;			\
533	QUEUEDEBUG_TAILQ_POSTREMOVE((elm), field);			\
534	_NOTE(CONSTCOND)						\
535} while (0)
536
537#define	TAILQ_FOREACH(var, head, field)					\
538	for ((var) = ((head)->tqh_first);				\
539		(var);							\
540		(var) = ((var)->field.tqe_next))
541
542#define	TAILQ_FOREACH_REVERSE(var, head, headname, field)		\
543	for ((var) = (*(((struct headname *)((head)->tqh_last))->tqh_last));\
544		(var);							\
545		(var) = 						\
546		    (*(((struct headname *)((var)->field.tqe_prev))->tqh_last)))
547
548/*
549 * Tail queue access methods.
550 */
551#define	TAILQ_EMPTY(head)		((head)->tqh_first == NULL)
552#define	TAILQ_FIRST(head)		((head)->tqh_first)
553#define	TAILQ_NEXT(elm, field)		((elm)->field.tqe_next)
554
555#define	TAILQ_LAST(head, headname) \
556	(*(((struct headname *)((head)->tqh_last))->tqh_last))
557#define	TAILQ_PREV(elm, headname, field) \
558	(*(((struct headname *)((elm)->field.tqe_prev))->tqh_last))
559
560
561/*
562 * Circular queue definitions.
563 */
564#define	CIRCLEQ_HEAD(name, type)					\
565struct name {								\
566	struct type *cqh_first;		/* first element */	\
567	struct type *cqh_last;		/* last element */		\
568}
569
570#define	CIRCLEQ_HEAD_INITIALIZER(head)					\
571	{ (void *)&head, (void *)&head }
572
573#define	CIRCLEQ_ENTRY(type)						\
574struct {								\
575	struct type *cqe_next;		/* next element */		\
576	struct type *cqe_prev;		/* previous element */		\
577}
578
579/*
580 * Circular queue functions.
581 */
582#define	CIRCLEQ_INIT(head) do {						\
583	(head)->cqh_first = (void *)(head);				\
584	(head)->cqh_last = (void *)(head);				\
585	_NOTE(CONSTCOND)						\
586} while (0)
587
588#define	CIRCLEQ_INSERT_AFTER(head, listelm, elm, field) do {		\
589	(elm)->field.cqe_next = (listelm)->field.cqe_next;		\
590	(elm)->field.cqe_prev = (listelm);				\
591	if ((listelm)->field.cqe_next == (void *)(head))		\
592		(head)->cqh_last = (elm);				\
593	else								\
594		(listelm)->field.cqe_next->field.cqe_prev = (elm);	\
595	(listelm)->field.cqe_next = (elm);				\
596	_NOTE(CONSTCOND)						\
597} while (0)
598
599#define	CIRCLEQ_INSERT_BEFORE(head, listelm, elm, field) do {		\
600	(elm)->field.cqe_next = (listelm);				\
601	(elm)->field.cqe_prev = (listelm)->field.cqe_prev;		\
602	if ((listelm)->field.cqe_prev == (void *)(head))		\
603		(head)->cqh_first = (elm);				\
604	else								\
605		(listelm)->field.cqe_prev->field.cqe_next = (elm);	\
606	(listelm)->field.cqe_prev = (elm);				\
607	_NOTE(CONSTCOND)						\
608} while (0)
609
610#define	CIRCLEQ_INSERT_HEAD(head, elm, field) do {			\
611	(elm)->field.cqe_next = (head)->cqh_first;			\
612	(elm)->field.cqe_prev = (void *)(head);				\
613	if ((head)->cqh_last == (void *)(head))			\
614		(head)->cqh_last = (elm);				\
615	else								\
616		(head)->cqh_first->field.cqe_prev = (elm);		\
617	(head)->cqh_first = (elm);					\
618	_NOTE(CONSTCOND)						\
619} while (0)
620
621#define	CIRCLEQ_INSERT_TAIL(head, elm, field) do {			\
622	(elm)->field.cqe_next = (void *)(head);				\
623	(elm)->field.cqe_prev = (head)->cqh_last;			\
624	if ((head)->cqh_first == (void *)(head))			\
625		(head)->cqh_first = (elm);				\
626	else								\
627		(head)->cqh_last->field.cqe_next = (elm);		\
628	(head)->cqh_last = (elm);					\
629	_NOTE(CONSTCOND)						\
630} while (0)
631
632#define	CIRCLEQ_REMOVE(head, elm, field) do {				\
633	if ((elm)->field.cqe_next == (void *)(head))			\
634		(head)->cqh_last = (elm)->field.cqe_prev;		\
635	else								\
636		(elm)->field.cqe_next->field.cqe_prev =			\
637		    (elm)->field.cqe_prev;				\
638	if ((elm)->field.cqe_prev == (void *)(head))			\
639		(head)->cqh_first = (elm)->field.cqe_next;		\
640	else								\
641		(elm)->field.cqe_prev->field.cqe_next =			\
642		    (elm)->field.cqe_next;				\
643	_NOTE(CONSTCOND)						\
644} while (0)
645
646#define	CIRCLEQ_FOREACH(var, head, field)				\
647	for ((var) = ((head)->cqh_first);				\
648		(var) != (void *)(head);				\
649		(var) = ((var)->field.cqe_next))
650
651#define	CIRCLEQ_FOREACH_REVERSE(var, head, field)			\
652	for ((var) = ((head)->cqh_last);				\
653		(var) != (void *)(head);				\
654		(var) = ((var)->field.cqe_prev))
655
656/*
657 * Circular queue access methods.
658 */
659#define	CIRCLEQ_EMPTY(head)		((head)->cqh_first == (void *)(head))
660#define	CIRCLEQ_FIRST(head)		((head)->cqh_first)
661#define	CIRCLEQ_LAST(head)		((head)->cqh_last)
662#define	CIRCLEQ_NEXT(elm, field)	((elm)->field.cqe_next)
663#define	CIRCLEQ_PREV(elm, field)	((elm)->field.cqe_prev)
664
665#define	CIRCLEQ_LOOP_NEXT(head, elm, field)				\
666	(((elm)->field.cqe_next == (void *)(head))			\
667	    ? ((head)->cqh_first)					\
668	    : (elm->field.cqe_next))
669#define	CIRCLEQ_LOOP_PREV(head, elm, field)				\
670	(((elm)->field.cqe_prev == (void *)(head))			\
671	    ? ((head)->cqh_last)					\
672	    : (elm->field.cqe_prev))
673
674#ifdef	__cplusplus
675}
676#endif
677
678#endif	/* !_SYS_QUEUE_H */
679