1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24 * Use is subject to license terms.
25 */
26
27#ifndef	_SYS_IB_ADAPTERS_TAVOR_EVENT_H
28#define	_SYS_IB_ADAPTERS_TAVOR_EVENT_H
29
30/*
31 * tavor_event.h
32 *    Contains all of the prototypes, #defines, and structures necessary
33 *    for the Interrupt and Event Processing routines
34 *    Specifically it contains the various event types, event flags,
35 *    structures used for managing Tavor event queues, and prototypes for
36 *    many of the functions consumed by other parts of the Tavor driver.
37 */
38
39#include <sys/types.h>
40#include <sys/conf.h>
41#include <sys/ddi.h>
42#include <sys/sunddi.h>
43
44#ifdef __cplusplus
45extern "C" {
46#endif
47
48/*
49 * Tavor UAR Doorbell Write Macro
50 *
51 * If on a 32-bit system, we must hold a lock around the ddi_put64() to
52 * ensure that the 64-bit write is an atomic operation.  This is a
53 * requirement of the Tavor hardware and is to protect from the race
54 * condition present when more than one kernel thread attempts to do each
55 * of their two 32-bit accesses (for 64-bit doorbell) simultaneously.
56 *
57 * If we are on a 64-bit system then the ddi_put64() is completed as one
58 * 64-bit instruction, and the lock is not needed.
59 *
60 * This is done as a preprocessor #if to speed up execution at run-time
61 * since doorbell ringing is a "fast-path" operation.
62 */
63#if (DATAMODEL_NATIVE == DATAMODEL_ILP32)
64#define	TAVOR_UAR_DOORBELL(state, ts_uar, doorbell)		{	\
65	mutex_enter(&state->ts_uar_lock);				\
66	ddi_put64(state->ts_reg_uarhdl, ts_uar, doorbell);		\
67	mutex_exit(&state->ts_uar_lock);				\
68}
69#else
70#define	TAVOR_UAR_DOORBELL(state, ts_uar, doorbell)		{	\
71	ddi_put64(state->ts_reg_uarhdl, ts_uar, doorbell);		\
72}
73#endif
74
75/*
76 * The following defines specify the default number of Event Queues (EQ) and
77 * their default size.  By default the size of each EQ is set to 4K entries,
78 * but this value is controllable through the "log_default_eq_sz"
79 * configuration variable.  We also specify the number of EQs which the Tavor
80 * driver currently uses (TAVOR_NUM_EQ_USED).  Note: this value should be
81 * less than or equal to TAVOR_NUM_EQ.  Because there are only so many classes
82 * of events today, it is unnecessary to allocate all 64 EQs only to leave
83 * several of them unused.
84 */
85#define	TAVOR_NUM_EQ_SHIFT			0x6
86#define	TAVOR_NUM_EQ				(1 << TAVOR_NUM_EQ_SHIFT)
87#define	TAVOR_NUM_EQ_USED			47
88#define	TAVOR_DEFAULT_EQ_SZ_SHIFT		0xC
89
90/*
91 * The following macro determines whether the contents of EQ memory (EQEs)
92 * need to be sync'd (with ddi_dma_sync()).  This decision is based on whether
93 * the EQ memory is in DDR memory (no sync) or system memory (sync required).
94 * Note: It doesn't make much sense to put EQEs in DDR memory (since they are
95 * primarily written by HW and read by the CPU), but the driver does support
96 * that possibility.  And it also supports the possibility that if a CQ in
97 * system memory is mapped DDI_DMA_CONSISTENT, it can be configured to not be
98 * sync'd because of the "sync override" parameter in the config profile.
99 */
100#define	TAVOR_EQ_IS_SYNC_REQ(state, eqinfo)				\
101	((((((state)->ts_cfg_profile->cp_streaming_consistent) &&	\
102	((state)->ts_cfg_profile->cp_consistent_syncoverride))) ||      \
103	((eqinfo).qa_location == TAVOR_QUEUE_LOCATION_INDDR))	\
104	? 0 : 1)
105
106/*
107 * The following defines specify the size of the individual Event Queue
108 * Context (EQC) entries
109 */
110#define	TAVOR_EQC_SIZE_SHIFT			0x6
111#define	TAVOR_EQC_SIZE				(1 << TAVOR_EQC_SIZE_SHIFT)
112
113/*
114 * These are the defines for the Tavor event types.  They are specified by
115 * the Tavor register specification.  Below are the "event type masks" in
116 * which each event type corresponds to one of the 64-bits in the mask.
117 */
118#define	TAVOR_EVT_COMPLETION			0x00
119#define	TAVOR_EVT_PATH_MIGRATED			0x01
120#define	TAVOR_EVT_COMM_ESTABLISHED		0x02
121#define	TAVOR_EVT_SEND_QUEUE_DRAINED		0x03
122#define	TAVOR_EVT_CQ_ERRORS			0x04
123#define	TAVOR_EVT_LOCAL_WQ_CAT_ERROR		0x05
124#define	TAVOR_EVT_LOCAL_EEC_CAT_ERROR		0x06	/* unsupported: RD */
125#define	TAVOR_EVT_PATH_MIGRATE_FAILED		0x07
126#define	TAVOR_EVT_LOCAL_CAT_ERROR		0x08
127#define	TAVOR_EVT_PORT_STATE_CHANGE		0x09
128#define	TAVOR_EVT_COMMAND_INTF_COMP		0x0A
129#define	TAVOR_EVT_WQE_PG_FAULT			0x0B
130#define	TAVOR_EVT_UNSUPPORTED_PG_FAULT		0x0C
131#define	TAVOR_EVT_ECC_DETECTION			0x0E
132#define	TAVOR_EVT_EQ_OVERFLOW			0x0F
133#define	TAVOR_EVT_INV_REQ_LOCAL_WQ_ERROR	0x10
134#define	TAVOR_EVT_LOCAL_ACC_VIO_WQ_ERROR	0x11
135#define	TAVOR_EVT_SRQ_CATASTROPHIC_ERROR	0x12
136#define	TAVOR_EVT_SRQ_LAST_WQE_REACHED		0x13
137
138#define	TAVOR_EVT_MSK_COMPLETION		\
139	(1 << TAVOR_EVT_COMPLETION)
140#define	TAVOR_EVT_MSK_PATH_MIGRATED		\
141	(1 << TAVOR_EVT_PATH_MIGRATED)
142#define	TAVOR_EVT_MSK_COMM_ESTABLISHED		\
143	(1 << TAVOR_EVT_COMM_ESTABLISHED)
144#define	TAVOR_EVT_MSK_SEND_QUEUE_DRAINED	\
145	(1 << TAVOR_EVT_SEND_QUEUE_DRAINED)
146#define	TAVOR_EVT_MSK_CQ_ERRORS			\
147	(1 << TAVOR_EVT_CQ_ERRORS)
148#define	TAVOR_EVT_MSK_LOCAL_WQ_CAT_ERROR	\
149	(1 << TAVOR_EVT_LOCAL_WQ_CAT_ERROR)
150#define	TAVOR_EVT_MSK_LOCAL_EEC_CAT_ERROR	\
151	(1 << TAVOR_EVT_LOCAL_EEC_CAT_ERROR)		/* unsupported: RD */
152#define	TAVOR_EVT_MSK_PATH_MIGRATE_FAILED	\
153	(1 << TAVOR_EVT_PATH_MIGRATE_FAILED)
154#define	TAVOR_EVT_MSK_LOCAL_CAT_ERROR		\
155	(1 << TAVOR_EVT_LOCAL_CAT_ERROR)
156#define	TAVOR_EVT_MSK_PORT_STATE_CHANGE		\
157	(1 << TAVOR_EVT_PORT_STATE_CHANGE)
158#define	TAVOR_EVT_MSK_COMMAND_INTF_COMP		\
159	(1 << TAVOR_EVT_COMMAND_INTF_COMP)
160#define	TAVOR_EVT_MSK_WQE_PG_FAULT		\
161	(1 << TAVOR_EVT_WQE_PG_FAULT)
162#define	TAVOR_EVT_MSK_UNSUPPORTED_PG_FAULT	\
163	(1 << TAVOR_EVT_UNSUPPORTED_PG_FAULT)
164#define	TAVOR_EVT_MSK_INV_REQ_LOCAL_WQ_ERROR	\
165	(1 << TAVOR_EVT_INV_REQ_LOCAL_WQ_ERROR)
166#define	TAVOR_EVT_MSK_LOCAL_ACC_VIO_WQ_ERROR	\
167	(1 << TAVOR_EVT_LOCAL_ACC_VIO_WQ_ERROR)
168#define	TAVOR_EVT_MSK_SRQ_CATASTROPHIC_ERROR	\
169	(1 << TAVOR_EVT_SRQ_CATASTROPHIC_ERROR)
170#define	TAVOR_EVT_MSK_SRQ_LAST_WQE_REACHED	\
171	(1 << TAVOR_EVT_SRQ_LAST_WQE_REACHED)
172#define	TAVOR_EVT_MSK_ECC_DETECTION		\
173	(1 << TAVOR_EVT_ECC_DETECTION)
174#define	TAVOR_EVT_NO_MASK			0
175#define	TAVOR_EVT_CATCHALL_MASK			0x1840
176
177/*
178 * The last defines are used by tavor_eqe_sync() to indicate whether or not
179 * to force a DMA sync.  The case for forcing a DMA sync on a EQE comes from
180 * the possibility that we could receive an interrupt, read of the ECR, and
181 * have each of these operations complete successfully _before_ the hardware
182 * has finished its DMA to the event queue.
183 */
184#define	TAVOR_EQ_SYNC_NORMAL			0x0
185#define	TAVOR_EQ_SYNC_FORCE			0x1
186
187/*
188 * Catastrophic error values.  In case of a catastrophic error, the following
189 * errors are reported in a special buffer space.  The buffer location is
190 * returned from a QUERY_FW command.  We check that buffer against these error
191 * values to determine what kind of error occurred.
192 */
193#define	TAVOR_CATASTROPHIC_INTERNAL_ERROR		0x0
194#define	TAVOR_CATASTROPHIC_UPLINK_BUS_ERROR		0x3
195#define	TAVOR_CATASTROPHIC_DDR_DATA_ERROR		0x4
196#define	TAVOR_CATASTROPHIC_INTERNAL_PARITY_ERROR	0x5
197
198/*
199 * This define is the 'enable' flag used when programming the MSI number
200 * into event queues.  It is or'd with the MSI number and the result is
201 * written into the EX context.
202 */
203
204#define	TAVOR_EQ_MSI_ENABLE_FLAG		0x80
205
206/*
207 * The tavor_sw_eq_s structure is also referred to using the "tavor_eqhdl_t"
208 * typedef (see tavor_typedef.h).  It encodes all the information necessary
209 * to track the various resources needed to allocate, initialize, poll, and
210 * (later) free an event queue (EQ).
211 *
212 * Specifically, it has a consumer index and a lock to ensure single threaded
213 * access to it.  It has pointers to the various resources allocated for the
214 * event queue, i.e. an EQC resource and the memory for the event queue
215 * itself.  It has flags to indicate whether the EQ requires ddi_dma_sync()
216 * ("eq_sync") or to indicate which type of event class(es) the EQ has been
217 * mapped to (eq_evttypemask).
218 *
219 * It also has a pointer to the associated MR handle (for the mapped queue
220 * memory) and a function pointer that points to the handler that should
221 * be called when the corresponding EQ has fired.  Note: the "eq_func"
222 * handler takes a Tavor softstate pointer, a pointer to the EQ handle, and a
223 * pointer to a generic tavor_hw_eqe_t structure.  It is up to the "eq_func"
224 * handler function to determine what specific type of event is being passed.
225 *
226 * Lastly, we have the always necessary backpointer to the resource for the
227 * EQ handle structure itself.
228 */
229struct tavor_sw_eq_s {
230	uint32_t		eq_consindx;
231	uint32_t		eq_eqnum;
232	tavor_hw_eqe_t		*eq_buf;
233	tavor_mrhdl_t		eq_mrhdl;
234	uint32_t		eq_bufsz;
235	uint_t			eq_sync;
236	uint_t			eq_evttypemask;
237	tavor_rsrc_t		*eq_eqcrsrcp;
238	tavor_rsrc_t		*eq_rsrcp;
239	int (*eq_func)(tavor_state_t *state, tavor_eqhdl_t eq,
240	    tavor_hw_eqe_t *eqe);
241
242	struct tavor_qalloc_info_s eq_eqinfo;
243};
244
245int tavor_eq_init_all(tavor_state_t *state);
246int tavor_eq_fini_all(tavor_state_t *state);
247void tavor_eq_arm_all(tavor_state_t *state);
248uint_t tavor_isr(caddr_t arg1, caddr_t arg2);
249void tavor_eq_doorbell(tavor_state_t *state, uint32_t eq_cmd, uint32_t eqn,
250    uint32_t eq_param);
251void tavor_eq_overflow_handler(tavor_state_t *state, tavor_eqhdl_t eq,
252    tavor_hw_eqe_t *eqe);
253
254#ifdef __cplusplus
255}
256#endif
257
258#endif	/* _SYS_IB_ADAPTERS_TAVOR_EVENT_H */
259