1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
24 * Use is subject to license terms.
25 */
26
27#include <sys/param.h>
28#include <sys/types.h>
29#include <sys/sysmacros.h>
30#include <sys/systm.h>
31#include <sys/thread.h>
32#include <sys/proc.h>
33#include <sys/task.h>
34#include <sys/project.h>
35#include <sys/signal.h>
36#include <sys/errno.h>
37#include <sys/vmparam.h>
38#include <sys/stack.h>
39#include <sys/procfs.h>
40#include <sys/prsystm.h>
41#include <sys/cpuvar.h>
42#include <sys/kmem.h>
43#include <sys/vtrace.h>
44#include <sys/door.h>
45#include <vm/seg_kp.h>
46#include <sys/debug.h>
47#include <sys/tnf.h>
48#include <sys/schedctl.h>
49#include <sys/poll.h>
50#include <sys/copyops.h>
51#include <sys/lwp_upimutex_impl.h>
52#include <sys/cpupart.h>
53#include <sys/lgrp.h>
54#include <sys/rctl.h>
55#include <sys/contract_impl.h>
56#include <sys/cpc_impl.h>
57#include <sys/sdt.h>
58#include <sys/cmn_err.h>
59#include <sys/brand.h>
60#include <sys/cyclic.h>
61#include <sys/pool.h>
62
63/* hash function for the lwpid hash table, p->p_tidhash[] */
64#define	TIDHASH(tid, hash_sz)	((tid) & ((hash_sz) - 1))
65
66void *segkp_lwp;		/* cookie for pool of segkp resources */
67extern void reapq_move_lq_to_tq(kthread_t *);
68extern void freectx_ctx(struct ctxop *);
69
70/*
71 * Create a kernel thread associated with a particular system process.  Give
72 * it an LWP so that microstate accounting will be available for it.
73 */
74kthread_t *
75lwp_kernel_create(proc_t *p, void (*proc)(), void *arg, int state, pri_t pri)
76{
77	klwp_t *lwp;
78
79	VERIFY((p->p_flag & SSYS) != 0);
80
81	lwp = lwp_create(proc, arg, 0, p, state, pri, &t0.t_hold, syscid, 0);
82
83	VERIFY(lwp != NULL);
84
85	return (lwptot(lwp));
86}
87
88/*
89 * Create a thread that appears to be stopped at sys_rtt.
90 */
91klwp_t *
92lwp_create(void (*proc)(), caddr_t arg, size_t len, proc_t *p,
93    int state, int pri, const k_sigset_t *smask, int cid, id_t lwpid)
94{
95	klwp_t *lwp = NULL;
96	kthread_t *t;
97	kthread_t *tx;
98	cpupart_t *oldpart = NULL;
99	size_t	stksize;
100	caddr_t lwpdata = NULL;
101	processorid_t	binding;
102	int err = 0;
103	kproject_t *oldkpj, *newkpj;
104	void *bufp = NULL;
105	klwp_t *curlwp;
106	lwpent_t *lep;
107	lwpdir_t *old_dir = NULL;
108	uint_t old_dirsz = 0;
109	tidhash_t *old_hash = NULL;
110	uint_t old_hashsz = 0;
111	ret_tidhash_t *ret_tidhash = NULL;
112	int i;
113	int rctlfail = 0;
114	boolean_t branded = 0;
115	struct ctxop *ctx = NULL;
116
117	ASSERT(cid != sysdccid);	/* system threads must start in SYS */
118
119	ASSERT(p != &p0);		/* No new LWPs in p0. */
120
121	mutex_enter(&p->p_lock);
122	mutex_enter(&p->p_zone->zone_nlwps_lock);
123	/*
124	 * don't enforce rctl limits on system processes
125	 */
126	if (!CLASS_KERNEL(cid)) {
127		if (p->p_task->tk_nlwps >= p->p_task->tk_nlwps_ctl)
128			if (rctl_test(rc_task_lwps, p->p_task->tk_rctls, p,
129			    1, 0) & RCT_DENY)
130				rctlfail = 1;
131		if (p->p_task->tk_proj->kpj_nlwps >=
132		    p->p_task->tk_proj->kpj_nlwps_ctl)
133			if (rctl_test(rc_project_nlwps,
134			    p->p_task->tk_proj->kpj_rctls, p, 1, 0)
135			    & RCT_DENY)
136				rctlfail = 1;
137		if (p->p_zone->zone_nlwps >= p->p_zone->zone_nlwps_ctl)
138			if (rctl_test(rc_zone_nlwps, p->p_zone->zone_rctls, p,
139			    1, 0) & RCT_DENY)
140				rctlfail = 1;
141	}
142	if (rctlfail) {
143		mutex_exit(&p->p_zone->zone_nlwps_lock);
144		mutex_exit(&p->p_lock);
145		return (NULL);
146	}
147	p->p_task->tk_nlwps++;
148	p->p_task->tk_proj->kpj_nlwps++;
149	p->p_zone->zone_nlwps++;
150	mutex_exit(&p->p_zone->zone_nlwps_lock);
151	mutex_exit(&p->p_lock);
152
153	curlwp = ttolwp(curthread);
154	if (curlwp == NULL || (stksize = curlwp->lwp_childstksz) == 0)
155		stksize = lwp_default_stksize;
156
157	if (CLASS_KERNEL(cid)) {
158		/*
159		 * Since we are creating an LWP in an SSYS process, we do not
160		 * inherit anything from the current thread's LWP.  We set
161		 * stksize and lwpdata to 0 in order to let thread_create()
162		 * allocate a regular kernel thread stack for this thread.
163		 */
164		curlwp = NULL;
165		stksize = 0;
166		lwpdata = NULL;
167
168	} else if (stksize == lwp_default_stksize) {
169		/*
170		 * Try to reuse an <lwp,stack> from the LWP deathrow.
171		 */
172		if (lwp_reapcnt > 0) {
173			mutex_enter(&reaplock);
174			if ((t = lwp_deathrow) != NULL) {
175				ASSERT(t->t_swap);
176				lwp_deathrow = t->t_forw;
177				lwp_reapcnt--;
178				lwpdata = t->t_swap;
179				lwp = t->t_lwp;
180				ctx = t->t_ctx;
181				t->t_swap = NULL;
182				t->t_lwp = NULL;
183				t->t_ctx = NULL;
184				reapq_move_lq_to_tq(t);
185			}
186			mutex_exit(&reaplock);
187			if (lwp != NULL) {
188				lwp_stk_fini(lwp);
189			}
190			if (ctx != NULL) {
191				freectx_ctx(ctx);
192			}
193		}
194		if (lwpdata == NULL &&
195		    (lwpdata = (caddr_t)segkp_cache_get(segkp_lwp)) == NULL) {
196			mutex_enter(&p->p_lock);
197			mutex_enter(&p->p_zone->zone_nlwps_lock);
198			p->p_task->tk_nlwps--;
199			p->p_task->tk_proj->kpj_nlwps--;
200			p->p_zone->zone_nlwps--;
201			mutex_exit(&p->p_zone->zone_nlwps_lock);
202			mutex_exit(&p->p_lock);
203			return (NULL);
204		}
205	} else {
206		stksize = roundup(stksize, PAGESIZE);
207		if ((lwpdata = (caddr_t)segkp_get(segkp, stksize,
208		    (KPD_NOWAIT | KPD_HASREDZONE | KPD_LOCKED))) == NULL) {
209			mutex_enter(&p->p_lock);
210			mutex_enter(&p->p_zone->zone_nlwps_lock);
211			p->p_task->tk_nlwps--;
212			p->p_task->tk_proj->kpj_nlwps--;
213			p->p_zone->zone_nlwps--;
214			mutex_exit(&p->p_zone->zone_nlwps_lock);
215			mutex_exit(&p->p_lock);
216			return (NULL);
217		}
218	}
219
220	/*
221	 * Create a thread, initializing the stack pointer
222	 */
223	t = thread_create(lwpdata, stksize, NULL, NULL, 0, p, TS_STOPPED, pri);
224
225	/*
226	 * If a non-NULL stack base is passed in, thread_create() assumes
227	 * that the stack might be statically allocated (as opposed to being
228	 * allocated from segkp), and so it does not set t_swap.  Since
229	 * the lwpdata was allocated from segkp, we must set t_swap to point
230	 * to it ourselves.
231	 *
232	 * This would be less confusing if t_swap had a better name; it really
233	 * indicates that the stack is allocated from segkp, regardless of
234	 * whether or not it is swappable.
235	 */
236	if (lwpdata != NULL) {
237		ASSERT(!CLASS_KERNEL(cid));
238		ASSERT(t->t_swap == NULL);
239		t->t_swap = lwpdata;	/* Start of page-able data */
240	}
241
242	/*
243	 * If the stack and lwp can be reused, mark the thread as such.
244	 * When we get to reapq_add() from resume_from_zombie(), these
245	 * threads will go onto lwp_deathrow instead of thread_deathrow.
246	 */
247	if (!CLASS_KERNEL(cid) && stksize == lwp_default_stksize)
248		t->t_flag |= T_LWPREUSE;
249
250	if (lwp == NULL)
251		lwp = kmem_cache_alloc(lwp_cache, KM_SLEEP);
252	bzero(lwp, sizeof (*lwp));
253	t->t_lwp = lwp;
254
255	t->t_hold = *smask;
256	lwp->lwp_thread = t;
257	lwp->lwp_procp = p;
258	lwp->lwp_sigaltstack.ss_flags = SS_DISABLE;
259	if (curlwp != NULL && curlwp->lwp_childstksz != 0)
260		lwp->lwp_childstksz = curlwp->lwp_childstksz;
261
262	t->t_stk = lwp_stk_init(lwp, t->t_stk);
263	thread_load(t, proc, arg, len);
264
265	/*
266	 * Allocate the SIGPROF buffer if ITIMER_REALPROF is in effect.
267	 */
268	if (p->p_rprof_cyclic != CYCLIC_NONE)
269		t->t_rprof = kmem_zalloc(sizeof (struct rprof), KM_SLEEP);
270
271	if (cid != NOCLASS)
272		(void) CL_ALLOC(&bufp, cid, KM_SLEEP);
273
274	/*
275	 * Allocate an lwp directory entry for the new lwp.
276	 */
277	lep = kmem_zalloc(sizeof (*lep), KM_SLEEP);
278
279	mutex_enter(&p->p_lock);
280grow:
281	/*
282	 * Grow the lwp (thread) directory and lwpid hash table if necessary.
283	 * A note on the growth algorithm:
284	 *	The new lwp directory size is computed as:
285	 *		new = 2 * old + 2
286	 *	Starting with an initial size of 2 (see exec_common()),
287	 *	this yields numbers that are a power of two minus 2:
288	 *		2, 6, 14, 30, 62, 126, 254, 510, 1022, ...
289	 *	The size of the lwpid hash table must be a power of two
290	 *	and must be commensurate in size with the lwp directory
291	 *	so that hash bucket chains remain short.  Therefore,
292	 *	the lwpid hash table size is computed as:
293	 *		hashsz = (dirsz + 2) / 2
294	 *	which leads to these hash table sizes corresponding to
295	 *	the above directory sizes:
296	 *		2, 4, 8, 16, 32, 64, 128, 256, 512, ...
297	 * A note on growing the hash table:
298	 *	For performance reasons, code in lwp_unpark() does not
299	 *	acquire curproc->p_lock when searching the hash table.
300	 *	Rather, it calls lwp_hash_lookup_and_lock() which
301	 *	acquires only the individual hash bucket lock, taking
302	 *	care to deal with reallocation of the hash table
303	 *	during the time it takes to acquire the lock.
304	 *
305	 *	This is sufficient to protect the integrity of the
306	 *	hash table, but it requires us to acquire all of the
307	 *	old hash bucket locks before growing the hash table
308	 *	and to release them afterwards.  It also requires us
309	 *	not to free the old hash table because some thread
310	 *	in lwp_hash_lookup_and_lock() might still be trying
311	 *	to acquire the old bucket lock.
312	 *
313	 *	So we adopt the tactic of keeping all of the retired
314	 *	hash tables on a linked list, so they can be safely
315	 *	freed when the process exits or execs.
316	 *
317	 *	Because the hash table grows in powers of two, the
318	 *	total size of all of the hash tables will be slightly
319	 *	less than twice the size of the largest hash table.
320	 */
321	while (p->p_lwpfree == NULL) {
322		uint_t dirsz = p->p_lwpdir_sz;
323		lwpdir_t *new_dir;
324		uint_t new_dirsz;
325		lwpdir_t *ldp;
326		tidhash_t *new_hash;
327		uint_t new_hashsz;
328
329		mutex_exit(&p->p_lock);
330
331		/*
332		 * Prepare to remember the old p_tidhash for later
333		 * kmem_free()ing when the process exits or execs.
334		 */
335		if (ret_tidhash == NULL)
336			ret_tidhash = kmem_zalloc(sizeof (ret_tidhash_t),
337			    KM_SLEEP);
338		if (old_dir != NULL)
339			kmem_free(old_dir, old_dirsz * sizeof (*old_dir));
340		if (old_hash != NULL)
341			kmem_free(old_hash, old_hashsz * sizeof (*old_hash));
342
343		new_dirsz = 2 * dirsz + 2;
344		new_dir = kmem_zalloc(new_dirsz * sizeof (lwpdir_t), KM_SLEEP);
345		for (ldp = new_dir, i = 1; i < new_dirsz; i++, ldp++)
346			ldp->ld_next = ldp + 1;
347		new_hashsz = (new_dirsz + 2) / 2;
348		new_hash = kmem_zalloc(new_hashsz * sizeof (tidhash_t),
349		    KM_SLEEP);
350
351		mutex_enter(&p->p_lock);
352		if (p == curproc)
353			prbarrier(p);
354
355		if (dirsz != p->p_lwpdir_sz || p->p_lwpfree != NULL) {
356			/*
357			 * Someone else beat us to it or some lwp exited.
358			 * Set up to free our memory and take a lap.
359			 */
360			old_dir = new_dir;
361			old_dirsz = new_dirsz;
362			old_hash = new_hash;
363			old_hashsz = new_hashsz;
364		} else {
365			/*
366			 * For the benefit of lwp_hash_lookup_and_lock(),
367			 * called from lwp_unpark(), which searches the
368			 * tid hash table without acquiring p->p_lock,
369			 * we must acquire all of the tid hash table
370			 * locks before replacing p->p_tidhash.
371			 */
372			old_hash = p->p_tidhash;
373			old_hashsz = p->p_tidhash_sz;
374			for (i = 0; i < old_hashsz; i++) {
375				mutex_enter(&old_hash[i].th_lock);
376				mutex_enter(&new_hash[i].th_lock);
377			}
378
379			/*
380			 * We simply hash in all of the old directory entries.
381			 * This works because the old directory has no empty
382			 * slots and the new hash table starts out empty.
383			 * This reproduces the original directory ordering
384			 * (required for /proc directory semantics).
385			 */
386			old_dir = p->p_lwpdir;
387			old_dirsz = p->p_lwpdir_sz;
388			p->p_lwpdir = new_dir;
389			p->p_lwpfree = new_dir;
390			p->p_lwpdir_sz = new_dirsz;
391			for (ldp = old_dir, i = 0; i < old_dirsz; i++, ldp++)
392				lwp_hash_in(p, ldp->ld_entry,
393				    new_hash, new_hashsz, 0);
394
395			/*
396			 * Remember the old hash table along with all
397			 * of the previously-remembered hash tables.
398			 * We will free them at process exit or exec.
399			 */
400			ret_tidhash->rth_tidhash = old_hash;
401			ret_tidhash->rth_tidhash_sz = old_hashsz;
402			ret_tidhash->rth_next = p->p_ret_tidhash;
403			p->p_ret_tidhash = ret_tidhash;
404
405			/*
406			 * Now establish the new tid hash table.
407			 * As soon as we assign p->p_tidhash,
408			 * code in lwp_unpark() can start using it.
409			 */
410			membar_producer();
411			p->p_tidhash = new_hash;
412
413			/*
414			 * It is necessary that p_tidhash reach global
415			 * visibility before p_tidhash_sz.  Otherwise,
416			 * code in lwp_hash_lookup_and_lock() could
417			 * index into the old p_tidhash using the new
418			 * p_tidhash_sz and thereby access invalid data.
419			 */
420			membar_producer();
421			p->p_tidhash_sz = new_hashsz;
422
423			/*
424			 * Release the locks; allow lwp_unpark() to carry on.
425			 */
426			for (i = 0; i < old_hashsz; i++) {
427				mutex_exit(&old_hash[i].th_lock);
428				mutex_exit(&new_hash[i].th_lock);
429			}
430
431			/*
432			 * Avoid freeing these objects below.
433			 */
434			ret_tidhash = NULL;
435			old_hash = NULL;
436			old_hashsz = 0;
437		}
438	}
439
440	/*
441	 * Block the process against /proc while we manipulate p->p_tlist,
442	 * unless lwp_create() was called by /proc for the PCAGENT operation.
443	 * We want to do this early enough so that we don't drop p->p_lock
444	 * until the thread is put on the p->p_tlist.
445	 */
446	if (p == curproc) {
447		prbarrier(p);
448		/*
449		 * If the current lwp has been requested to stop, do so now.
450		 * Otherwise we have a race condition between /proc attempting
451		 * to stop the process and this thread creating a new lwp
452		 * that was not seen when the /proc PCSTOP request was issued.
453		 * We rely on stop() to call prbarrier(p) before returning.
454		 */
455		while ((curthread->t_proc_flag & TP_PRSTOP) &&
456		    !ttolwp(curthread)->lwp_nostop) {
457			/*
458			 * We called pool_barrier_enter() before calling
459			 * here to lwp_create(). We have to call
460			 * pool_barrier_exit() before stopping.
461			 */
462			pool_barrier_exit();
463			prbarrier(p);
464			stop(PR_REQUESTED, 0);
465			/*
466			 * And we have to repeat the call to
467			 * pool_barrier_enter after stopping.
468			 */
469			pool_barrier_enter();
470			prbarrier(p);
471		}
472
473		/*
474		 * If process is exiting, there could be a race between
475		 * the agent lwp creation and the new lwp currently being
476		 * created. So to prevent this race lwp creation is failed
477		 * if the process is exiting.
478		 */
479		if (p->p_flag & (SEXITLWPS|SKILLED)) {
480			err = 1;
481			goto error;
482		}
483
484		/*
485		 * Since we might have dropped p->p_lock, the
486		 * lwp directory free list might have changed.
487		 */
488		if (p->p_lwpfree == NULL)
489			goto grow;
490	}
491
492	kpreempt_disable();	/* can't grab cpu_lock here */
493
494	/*
495	 * Inherit processor and processor set bindings from curthread.
496	 *
497	 * For kernel LWPs, we do not inherit processor set bindings at
498	 * process creation time (i.e. when p != curproc).  After the
499	 * kernel process is created, any subsequent LWPs must be created
500	 * by threads in the kernel process, at which point we *will*
501	 * inherit processor set bindings.
502	 */
503	if (CLASS_KERNEL(cid) && p != curproc) {
504		t->t_bind_cpu = binding = PBIND_NONE;
505		t->t_cpupart = oldpart = &cp_default;
506		t->t_bind_pset = PS_NONE;
507		t->t_bindflag = (uchar_t)default_binding_mode;
508	} else {
509		binding = curthread->t_bind_cpu;
510		t->t_bind_cpu = binding;
511		oldpart = t->t_cpupart;
512		t->t_cpupart = curthread->t_cpupart;
513		t->t_bind_pset = curthread->t_bind_pset;
514		t->t_bindflag = curthread->t_bindflag |
515		    (uchar_t)default_binding_mode;
516	}
517
518	/*
519	 * thread_create() initializes this thread's home lgroup to the root.
520	 * Choose a more suitable lgroup, since this thread is associated
521	 * with an lwp.
522	 */
523	ASSERT(oldpart != NULL);
524	if (binding != PBIND_NONE && t->t_affinitycnt == 0) {
525		t->t_bound_cpu = cpu[binding];
526		if (t->t_lpl != t->t_bound_cpu->cpu_lpl)
527			lgrp_move_thread(t, t->t_bound_cpu->cpu_lpl, 1);
528	} else if (CLASS_KERNEL(cid)) {
529		/*
530		 * Kernel threads are always in the root lgrp.
531		 */
532		lgrp_move_thread(t,
533		    &t->t_cpupart->cp_lgrploads[LGRP_ROOTID], 1);
534	} else {
535		lgrp_move_thread(t, lgrp_choose(t, t->t_cpupart), 1);
536	}
537
538	kpreempt_enable();
539
540	/*
541	 * make sure lpl points to our own partition
542	 */
543	ASSERT(t->t_lpl >= t->t_cpupart->cp_lgrploads);
544	ASSERT(t->t_lpl < t->t_cpupart->cp_lgrploads +
545	    t->t_cpupart->cp_nlgrploads);
546
547	/*
548	 * It is safe to point the thread to the new project without holding it
549	 * since we're holding the target process' p_lock here and therefore
550	 * we're guaranteed that it will not move to another project.
551	 */
552	newkpj = p->p_task->tk_proj;
553	oldkpj = ttoproj(t);
554	if (newkpj != oldkpj) {
555		t->t_proj = newkpj;
556		(void) project_hold(newkpj);
557		project_rele(oldkpj);
558	}
559
560	if (cid != NOCLASS) {
561		/*
562		 * If the lwp is being created in the current process
563		 * and matches the current thread's scheduling class,
564		 * we should propagate the current thread's scheduling
565		 * parameters by calling CL_FORK.  Otherwise just use
566		 * the defaults by calling CL_ENTERCLASS.
567		 */
568		if (p != curproc || curthread->t_cid != cid) {
569			err = CL_ENTERCLASS(t, cid, NULL, NULL, bufp);
570			t->t_pri = pri;	/* CL_ENTERCLASS may have changed it */
571			/*
572			 * We don't call schedctl_set_cidpri(t) here
573			 * because the schedctl data is not yet set
574			 * up for the newly-created lwp.
575			 */
576		} else {
577			t->t_clfuncs = &(sclass[cid].cl_funcs->thread);
578			err = CL_FORK(curthread, t, bufp);
579			t->t_cid = cid;
580		}
581		if (err)
582			goto error;
583		else
584			bufp = NULL;
585	}
586
587	/*
588	 * If we were given an lwpid then use it, else allocate one.
589	 */
590	if (lwpid != 0)
591		t->t_tid = lwpid;
592	else {
593		/*
594		 * lwp/thread id 0 is never valid; reserved for special checks.
595		 * lwp/thread id 1 is reserved for the main thread.
596		 * Start again at 2 when INT_MAX has been reached
597		 * (id_t is a signed 32-bit integer).
598		 */
599		id_t prev_id = p->p_lwpid;	/* last allocated tid */
600
601		do {			/* avoid lwpid duplication */
602			if (p->p_lwpid == INT_MAX) {
603				p->p_flag |= SLWPWRAP;
604				p->p_lwpid = 1;
605			}
606			if ((t->t_tid = ++p->p_lwpid) == prev_id) {
607				/*
608				 * All lwpids are allocated; fail the request.
609				 */
610				err = 1;
611				goto error;
612			}
613			/*
614			 * We only need to worry about colliding with an id
615			 * that's already in use if this process has
616			 * cycled through all available lwp ids.
617			 */
618			if ((p->p_flag & SLWPWRAP) == 0)
619				break;
620		} while (lwp_hash_lookup(p, t->t_tid) != NULL);
621	}
622
623	/*
624	 * If this is a branded process, let the brand do any necessary lwp
625	 * initialization.
626	 */
627	if (PROC_IS_BRANDED(p)) {
628		if (BROP(p)->b_initlwp(lwp)) {
629			err = 1;
630			goto error;
631		}
632		branded = 1;
633	}
634
635	if (t->t_tid == 1) {
636		kpreempt_disable();
637		ASSERT(t->t_lpl != NULL);
638		p->p_t1_lgrpid = t->t_lpl->lpl_lgrpid;
639		kpreempt_enable();
640		if (p->p_tr_lgrpid != LGRP_NONE &&
641		    p->p_tr_lgrpid != p->p_t1_lgrpid) {
642			lgrp_update_trthr_migrations(1);
643		}
644	}
645
646	p->p_lwpcnt++;
647	t->t_waitfor = -1;
648
649	/*
650	 * Turn microstate accounting on for thread if on for process.
651	 */
652	if (p->p_flag & SMSACCT)
653		t->t_proc_flag |= TP_MSACCT;
654
655	/*
656	 * If the process has watchpoints, mark the new thread as such.
657	 */
658	if (pr_watch_active(p))
659		watch_enable(t);
660
661	/*
662	 * The lwp is being created in the stopped state.
663	 * We set all the necessary flags to indicate that fact here.
664	 * We omit the TS_CREATE flag from t_schedflag so that the lwp
665	 * cannot be set running until the caller is finished with it,
666	 * even if lwp_continue() is called on it after we drop p->p_lock.
667	 * When the caller is finished with the newly-created lwp,
668	 * the caller must call lwp_create_done() to allow the lwp
669	 * to be set running.  If the TP_HOLDLWP is left set, the
670	 * lwp will suspend itself after reaching system call exit.
671	 */
672	init_mstate(t, LMS_STOPPED);
673	t->t_proc_flag |= TP_HOLDLWP;
674	t->t_schedflag |= (TS_ALLSTART & ~(TS_CSTART | TS_CREATE));
675	t->t_whystop = PR_SUSPENDED;
676	t->t_whatstop = SUSPEND_NORMAL;
677	t->t_sig_check = 1;	/* ensure that TP_HOLDLWP is honored */
678
679	/*
680	 * Set system call processing flags in case tracing or profiling
681	 * is set.  The first system call will evaluate these and turn
682	 * them off if they aren't needed.
683	 */
684	t->t_pre_sys = 1;
685	t->t_post_sys = 1;
686
687	/*
688	 * Insert the new thread into the list of all threads.
689	 */
690	if ((tx = p->p_tlist) == NULL) {
691		t->t_back = t;
692		t->t_forw = t;
693		p->p_tlist = t;
694	} else {
695		t->t_forw = tx;
696		t->t_back = tx->t_back;
697		tx->t_back->t_forw = t;
698		tx->t_back = t;
699	}
700
701	/*
702	 * Insert the new lwp into an lwp directory slot position
703	 * and into the lwpid hash table.
704	 */
705	lep->le_thread = t;
706	lep->le_lwpid = t->t_tid;
707	lep->le_start = t->t_start;
708	lwp_hash_in(p, lep, p->p_tidhash, p->p_tidhash_sz, 1);
709
710	if (state == TS_RUN) {
711		/*
712		 * We set the new lwp running immediately.
713		 */
714		t->t_proc_flag &= ~TP_HOLDLWP;
715		lwp_create_done(t);
716	}
717
718error:
719	if (err) {
720		if (CLASS_KERNEL(cid)) {
721			/*
722			 * This should only happen if a system process runs
723			 * out of lwpids, which shouldn't occur.
724			 */
725			panic("Failed to create a system LWP");
726		}
727		/*
728		 * We have failed to create an lwp, so decrement the number
729		 * of lwps in the task and let the lgroup load averages know
730		 * that this thread isn't going to show up.
731		 */
732		kpreempt_disable();
733		lgrp_move_thread(t, NULL, 1);
734		kpreempt_enable();
735
736		ASSERT(MUTEX_HELD(&p->p_lock));
737		mutex_enter(&p->p_zone->zone_nlwps_lock);
738		p->p_task->tk_nlwps--;
739		p->p_task->tk_proj->kpj_nlwps--;
740		p->p_zone->zone_nlwps--;
741		mutex_exit(&p->p_zone->zone_nlwps_lock);
742		if (cid != NOCLASS && bufp != NULL)
743			CL_FREE(cid, bufp);
744
745		if (branded)
746			BROP(p)->b_freelwp(lwp);
747
748		mutex_exit(&p->p_lock);
749		t->t_state = TS_FREE;
750		thread_rele(t);
751
752		/*
753		 * We need to remove t from the list of all threads
754		 * because thread_exit()/lwp_exit() isn't called on t.
755		 */
756		mutex_enter(&pidlock);
757		ASSERT(t != t->t_next);		/* t0 never exits */
758		t->t_next->t_prev = t->t_prev;
759		t->t_prev->t_next = t->t_next;
760		mutex_exit(&pidlock);
761
762		thread_free(t);
763		kmem_free(lep, sizeof (*lep));
764		lwp = NULL;
765	} else {
766		mutex_exit(&p->p_lock);
767	}
768
769	if (old_dir != NULL)
770		kmem_free(old_dir, old_dirsz * sizeof (*old_dir));
771	if (old_hash != NULL)
772		kmem_free(old_hash, old_hashsz * sizeof (*old_hash));
773	if (ret_tidhash != NULL)
774		kmem_free(ret_tidhash, sizeof (ret_tidhash_t));
775
776	DTRACE_PROC1(lwp__create, kthread_t *, t);
777	return (lwp);
778}
779
780/*
781 * lwp_create_done() is called by the caller of lwp_create() to set the
782 * newly-created lwp running after the caller has finished manipulating it.
783 */
784void
785lwp_create_done(kthread_t *t)
786{
787	proc_t *p = ttoproc(t);
788
789	ASSERT(MUTEX_HELD(&p->p_lock));
790
791	/*
792	 * We set the TS_CREATE and TS_CSTART flags and call setrun_locked().
793	 * (The absence of the TS_CREATE flag prevents the lwp from running
794	 * until we are finished with it, even if lwp_continue() is called on
795	 * it by some other lwp in the process or elsewhere in the kernel.)
796	 */
797	thread_lock(t);
798	ASSERT(t->t_state == TS_STOPPED && !(t->t_schedflag & TS_CREATE));
799	/*
800	 * If TS_CSTART is set, lwp_continue(t) has been called and
801	 * has already incremented p_lwprcnt; avoid doing this twice.
802	 */
803	if (!(t->t_schedflag & TS_CSTART))
804		p->p_lwprcnt++;
805	t->t_schedflag |= (TS_CSTART | TS_CREATE);
806	setrun_locked(t);
807	thread_unlock(t);
808}
809
810/*
811 * Copy an LWP's active templates, and clear the latest contracts.
812 */
813void
814lwp_ctmpl_copy(klwp_t *dst, klwp_t *src)
815{
816	int i;
817
818	for (i = 0; i < ct_ntypes; i++) {
819		dst->lwp_ct_active[i] = ctmpl_dup(src->lwp_ct_active[i]);
820		dst->lwp_ct_latest[i] = NULL;
821	}
822}
823
824/*
825 * Clear an LWP's contract template state.
826 */
827void
828lwp_ctmpl_clear(klwp_t *lwp)
829{
830	ct_template_t *tmpl;
831	int i;
832
833	for (i = 0; i < ct_ntypes; i++) {
834		if ((tmpl = lwp->lwp_ct_active[i]) != NULL) {
835			ctmpl_free(tmpl);
836			lwp->lwp_ct_active[i] = NULL;
837		}
838
839		if (lwp->lwp_ct_latest[i] != NULL) {
840			contract_rele(lwp->lwp_ct_latest[i]);
841			lwp->lwp_ct_latest[i] = NULL;
842		}
843	}
844}
845
846/*
847 * Individual lwp exit.
848 * If this is the last lwp, exit the whole process.
849 */
850void
851lwp_exit(void)
852{
853	kthread_t *t = curthread;
854	klwp_t *lwp = ttolwp(t);
855	proc_t *p = ttoproc(t);
856
857	ASSERT(MUTEX_HELD(&p->p_lock));
858
859	mutex_exit(&p->p_lock);
860
861#if defined(__sparc)
862	/*
863	 * Ensure that the user stack is fully abandoned..
864	 */
865	trash_user_windows();
866#endif
867
868	tsd_exit();			/* free thread specific data */
869
870	kcpc_passivate();		/* Clean up performance counter state */
871
872	pollcleanup();
873
874	if (t->t_door)
875		door_slam();
876
877	if (t->t_schedctl != NULL)
878		schedctl_lwp_cleanup(t);
879
880	if (t->t_upimutex != NULL)
881		upimutex_cleanup();
882
883	/*
884	 * Perform any brand specific exit processing, then release any
885	 * brand data associated with the lwp
886	 */
887	if (PROC_IS_BRANDED(p))
888		BROP(p)->b_lwpexit(lwp);
889
890	lwp_pcb_exit();
891
892	mutex_enter(&p->p_lock);
893	lwp_cleanup();
894
895	/*
896	 * When this process is dumping core, its lwps are held here
897	 * until the core dump is finished. Then exitlwps() is called
898	 * again to release these lwps so that they can finish exiting.
899	 */
900	if (p->p_flag & SCOREDUMP)
901		stop(PR_SUSPENDED, SUSPEND_NORMAL);
902
903	/*
904	 * Block the process against /proc now that we have really acquired
905	 * p->p_lock (to decrement p_lwpcnt and manipulate p_tlist at least).
906	 */
907	prbarrier(p);
908
909	/*
910	 * Call proc_exit() if this is the last non-daemon lwp in the process.
911	 */
912	if (!(t->t_proc_flag & TP_DAEMON) &&
913	    p->p_lwpcnt == p->p_lwpdaemon + 1) {
914		mutex_exit(&p->p_lock);
915		if (proc_exit(CLD_EXITED, 0) == 0) {
916			/* Restarting init. */
917			return;
918		}
919
920		/*
921		 * proc_exit() returns a non-zero value when some other
922		 * lwp got there first.  We just have to continue in
923		 * lwp_exit().
924		 */
925		mutex_enter(&p->p_lock);
926		ASSERT(curproc->p_flag & SEXITLWPS);
927		prbarrier(p);
928	}
929
930	DTRACE_PROC(lwp__exit);
931
932	/*
933	 * If the lwp is a detached lwp or if the process is exiting,
934	 * remove (lwp_hash_out()) the lwp from the lwp directory.
935	 * Otherwise null out the lwp's le_thread pointer in the lwp
936	 * directory so that other threads will see it as a zombie lwp.
937	 */
938	prlwpexit(t);		/* notify /proc */
939	if (!(t->t_proc_flag & TP_TWAIT) || (p->p_flag & SEXITLWPS))
940		lwp_hash_out(p, t->t_tid);
941	else {
942		ASSERT(!(t->t_proc_flag & TP_DAEMON));
943		p->p_lwpdir[t->t_dslot].ld_entry->le_thread = NULL;
944		p->p_zombcnt++;
945		cv_broadcast(&p->p_lwpexit);
946	}
947	if (t->t_proc_flag & TP_DAEMON) {
948		p->p_lwpdaemon--;
949		t->t_proc_flag &= ~TP_DAEMON;
950	}
951	t->t_proc_flag &= ~TP_TWAIT;
952
953	/*
954	 * Maintain accurate lwp count for task.max-lwps resource control.
955	 */
956	mutex_enter(&p->p_zone->zone_nlwps_lock);
957	p->p_task->tk_nlwps--;
958	p->p_task->tk_proj->kpj_nlwps--;
959	p->p_zone->zone_nlwps--;
960	mutex_exit(&p->p_zone->zone_nlwps_lock);
961
962	CL_EXIT(t);		/* tell the scheduler that t is exiting */
963	ASSERT(p->p_lwpcnt != 0);
964	p->p_lwpcnt--;
965
966	/*
967	 * If all remaining non-daemon lwps are waiting in lwp_wait(),
968	 * wake them up so someone can return EDEADLK.
969	 * (See the block comment preceeding lwp_wait().)
970	 */
971	if (p->p_lwpcnt == p->p_lwpdaemon + (p->p_lwpwait - p->p_lwpdwait))
972		cv_broadcast(&p->p_lwpexit);
973
974	t->t_proc_flag |= TP_LWPEXIT;
975	term_mstate(t);
976
977#ifndef NPROBE
978	/* Kernel probe */
979	if (t->t_tnf_tpdp)
980		tnf_thread_exit();
981#endif /* NPROBE */
982
983	t->t_forw->t_back = t->t_back;
984	t->t_back->t_forw = t->t_forw;
985	if (t == p->p_tlist)
986		p->p_tlist = t->t_forw;
987
988	/*
989	 * Clean up the signal state.
990	 */
991	if (t->t_sigqueue != NULL)
992		sigdelq(p, t, 0);
993	if (lwp->lwp_curinfo != NULL) {
994		siginfofree(lwp->lwp_curinfo);
995		lwp->lwp_curinfo = NULL;
996	}
997
998	thread_rele(t);
999
1000	/*
1001	 * Terminated lwps are associated with process zero and are put onto
1002	 * death-row by resume().  Avoid preemption after resetting t->t_procp.
1003	 */
1004	t->t_preempt++;
1005
1006	if (t->t_ctx != NULL)
1007		exitctx(t);
1008	if (p->p_pctx != NULL)
1009		exitpctx(p);
1010
1011	t->t_procp = &p0;
1012
1013	/*
1014	 * Notify the HAT about the change of address space
1015	 */
1016	hat_thread_exit(t);
1017	/*
1018	 * When this is the last running lwp in this process and some lwp is
1019	 * waiting for this condition to become true, or this thread was being
1020	 * suspended, then the waiting lwp is awakened.
1021	 *
1022	 * Also, if the process is exiting, we may have a thread waiting in
1023	 * exitlwps() that needs to be notified.
1024	 */
1025	if (--p->p_lwprcnt == 0 || (t->t_proc_flag & TP_HOLDLWP) ||
1026	    (p->p_flag & SEXITLWPS))
1027		cv_broadcast(&p->p_holdlwps);
1028
1029	/*
1030	 * Need to drop p_lock so we can reacquire pidlock.
1031	 */
1032	mutex_exit(&p->p_lock);
1033	mutex_enter(&pidlock);
1034
1035	ASSERT(t != t->t_next);		/* t0 never exits */
1036	t->t_next->t_prev = t->t_prev;
1037	t->t_prev->t_next = t->t_next;
1038	cv_broadcast(&t->t_joincv);	/* wake up anyone in thread_join */
1039	mutex_exit(&pidlock);
1040
1041	t->t_state = TS_ZOMB;
1042	swtch_from_zombie();
1043	/* never returns */
1044}
1045
1046
1047/*
1048 * Cleanup function for an exiting lwp.
1049 * Called both from lwp_exit() and from proc_exit().
1050 * p->p_lock is repeatedly released and grabbed in this function.
1051 */
1052void
1053lwp_cleanup(void)
1054{
1055	kthread_t *t = curthread;
1056	proc_t *p = ttoproc(t);
1057
1058	ASSERT(MUTEX_HELD(&p->p_lock));
1059
1060	/* untimeout any lwp-bound realtime timers */
1061	if (p->p_itimer != NULL)
1062		timer_lwpexit();
1063
1064	/*
1065	 * If this is the /proc agent lwp that is exiting, readjust p_lwpid
1066	 * so it appears that the agent never existed, and clear p_agenttp.
1067	 */
1068	if (t == p->p_agenttp) {
1069		ASSERT(t->t_tid == p->p_lwpid);
1070		p->p_lwpid--;
1071		p->p_agenttp = NULL;
1072	}
1073
1074	/*
1075	 * Do lgroup bookkeeping to account for thread exiting.
1076	 */
1077	kpreempt_disable();
1078	lgrp_move_thread(t, NULL, 1);
1079	if (t->t_tid == 1) {
1080		p->p_t1_lgrpid = LGRP_NONE;
1081	}
1082	kpreempt_enable();
1083
1084	lwp_ctmpl_clear(ttolwp(t));
1085}
1086
1087int
1088lwp_suspend(kthread_t *t)
1089{
1090	int tid;
1091	proc_t *p = ttoproc(t);
1092
1093	ASSERT(MUTEX_HELD(&p->p_lock));
1094
1095	/*
1096	 * Set the thread's TP_HOLDLWP flag so it will stop in holdlwp().
1097	 * If an lwp is stopping itself, there is no need to wait.
1098	 */
1099top:
1100	t->t_proc_flag |= TP_HOLDLWP;
1101	if (t == curthread) {
1102		t->t_sig_check = 1;
1103	} else {
1104		/*
1105		 * Make sure the lwp stops promptly.
1106		 */
1107		thread_lock(t);
1108		t->t_sig_check = 1;
1109		/*
1110		 * XXX Should use virtual stop like /proc does instead of
1111		 * XXX waking the thread to get it to stop.
1112		 */
1113		if (ISWAKEABLE(t) || ISWAITING(t)) {
1114			setrun_locked(t);
1115		} else if (t->t_state == TS_ONPROC && t->t_cpu != CPU) {
1116			poke_cpu(t->t_cpu->cpu_id);
1117		}
1118
1119		tid = t->t_tid;	 /* remember thread ID */
1120		/*
1121		 * Wait for lwp to stop
1122		 */
1123		while (!SUSPENDED(t)) {
1124			/*
1125			 * Drop the thread lock before waiting and reacquire it
1126			 * afterwards, so the thread can change its t_state
1127			 * field.
1128			 */
1129			thread_unlock(t);
1130
1131			/*
1132			 * Check if aborted by exitlwps().
1133			 */
1134			if (p->p_flag & SEXITLWPS)
1135				lwp_exit();
1136
1137			/*
1138			 * Cooperate with jobcontrol signals and /proc stopping
1139			 * by calling cv_wait_sig() to wait for the target
1140			 * lwp to stop.  Just using cv_wait() can lead to
1141			 * deadlock because, if some other lwp has stopped
1142			 * by either of these mechanisms, then p_lwprcnt will
1143			 * never become zero if we do a cv_wait().
1144			 */
1145			if (!cv_wait_sig(&p->p_holdlwps, &p->p_lock))
1146				return (EINTR);
1147
1148			/*
1149			 * Check to see if thread died while we were
1150			 * waiting for it to suspend.
1151			 */
1152			if (idtot(p, tid) == NULL)
1153				return (ESRCH);
1154
1155			thread_lock(t);
1156			/*
1157			 * If the TP_HOLDLWP flag went away, lwp_continue()
1158			 * or vfork() must have been called while we were
1159			 * waiting, so start over again.
1160			 */
1161			if ((t->t_proc_flag & TP_HOLDLWP) == 0) {
1162				thread_unlock(t);
1163				goto top;
1164			}
1165		}
1166		thread_unlock(t);
1167	}
1168	return (0);
1169}
1170
1171/*
1172 * continue a lwp that's been stopped by lwp_suspend().
1173 */
1174void
1175lwp_continue(kthread_t *t)
1176{
1177	proc_t *p = ttoproc(t);
1178	int was_suspended = t->t_proc_flag & TP_HOLDLWP;
1179
1180	ASSERT(MUTEX_HELD(&p->p_lock));
1181
1182	t->t_proc_flag &= ~TP_HOLDLWP;
1183	thread_lock(t);
1184	if (SUSPENDED(t) &&
1185	    !(p->p_flag & (SHOLDFORK | SHOLDFORK1 | SHOLDWATCH))) {
1186		p->p_lwprcnt++;
1187		t->t_schedflag |= TS_CSTART;
1188		setrun_locked(t);
1189	}
1190	thread_unlock(t);
1191	/*
1192	 * Wakeup anyone waiting for this thread to be suspended
1193	 */
1194	if (was_suspended)
1195		cv_broadcast(&p->p_holdlwps);
1196}
1197
1198/*
1199 * ********************************
1200 *  Miscellaneous lwp routines	  *
1201 * ********************************
1202 */
1203/*
1204 * When a process is undergoing a forkall(), its p_flag is set to SHOLDFORK.
1205 * This will cause the process's lwps to stop at a hold point.  A hold
1206 * point is where a kernel thread has a flat stack.  This is at the
1207 * return from a system call and at the return from a user level trap.
1208 *
1209 * When a process is undergoing a fork1() or vfork(), its p_flag is set to
1210 * SHOLDFORK1.  This will cause the process's lwps to stop at a modified
1211 * hold point.  The lwps in the process are not being cloned, so they
1212 * are held at the usual hold points and also within issig_forreal().
1213 * This has the side-effect that their system calls do not return
1214 * showing EINTR.
1215 *
1216 * An lwp can also be held.  This is identified by the TP_HOLDLWP flag on
1217 * the thread.  The TP_HOLDLWP flag is set in lwp_suspend(), where the active
1218 * lwp is waiting for the target lwp to be stopped.
1219 */
1220void
1221holdlwp(void)
1222{
1223	proc_t *p = curproc;
1224	kthread_t *t = curthread;
1225
1226	mutex_enter(&p->p_lock);
1227	/*
1228	 * Don't terminate immediately if the process is dumping core.
1229	 * Once the process has dumped core, all lwps are terminated.
1230	 */
1231	if (!(p->p_flag & SCOREDUMP)) {
1232		if ((p->p_flag & SEXITLWPS) || (t->t_proc_flag & TP_EXITLWP))
1233			lwp_exit();
1234	}
1235	if (!(ISHOLD(p)) && !(p->p_flag & (SHOLDFORK1 | SHOLDWATCH))) {
1236		mutex_exit(&p->p_lock);
1237		return;
1238	}
1239	/*
1240	 * stop() decrements p->p_lwprcnt and cv_signal()s &p->p_holdlwps
1241	 * when p->p_lwprcnt becomes zero.
1242	 */
1243	stop(PR_SUSPENDED, SUSPEND_NORMAL);
1244	if (p->p_flag & SEXITLWPS)
1245		lwp_exit();
1246	mutex_exit(&p->p_lock);
1247}
1248
1249/*
1250 * Have all lwps within the process hold at a point where they are
1251 * cloneable (SHOLDFORK) or just safe w.r.t. fork1 (SHOLDFORK1).
1252 */
1253int
1254holdlwps(int holdflag)
1255{
1256	proc_t *p = curproc;
1257
1258	ASSERT(holdflag == SHOLDFORK || holdflag == SHOLDFORK1);
1259	mutex_enter(&p->p_lock);
1260	schedctl_finish_sigblock(curthread);
1261again:
1262	while (p->p_flag & (SEXITLWPS | SHOLDFORK | SHOLDFORK1 | SHOLDWATCH)) {
1263		/*
1264		 * If another lwp is doing a forkall() or proc_exit(), bail out.
1265		 */
1266		if (p->p_flag & (SEXITLWPS | SHOLDFORK)) {
1267			mutex_exit(&p->p_lock);
1268			return (0);
1269		}
1270		/*
1271		 * Another lwp is doing a fork1() or is undergoing
1272		 * watchpoint activity.  We hold here for it to complete.
1273		 */
1274		stop(PR_SUSPENDED, SUSPEND_NORMAL);
1275	}
1276	p->p_flag |= holdflag;
1277	pokelwps(p);
1278	--p->p_lwprcnt;
1279	/*
1280	 * Wait for the process to become quiescent (p->p_lwprcnt == 0).
1281	 */
1282	while (p->p_lwprcnt > 0) {
1283		/*
1284		 * Check if aborted by exitlwps().
1285		 * Also check if SHOLDWATCH is set; it takes precedence.
1286		 */
1287		if (p->p_flag & (SEXITLWPS | SHOLDWATCH)) {
1288			p->p_lwprcnt++;
1289			p->p_flag &= ~holdflag;
1290			cv_broadcast(&p->p_holdlwps);
1291			goto again;
1292		}
1293		/*
1294		 * Cooperate with jobcontrol signals and /proc stopping.
1295		 * If some other lwp has stopped by either of these
1296		 * mechanisms, then p_lwprcnt will never become zero
1297		 * and the process will appear deadlocked unless we
1298		 * stop here in sympathy with the other lwp before
1299		 * doing the cv_wait() below.
1300		 *
1301		 * If the other lwp stops after we do the cv_wait(), it
1302		 * will wake us up to loop around and do the sympathy stop.
1303		 *
1304		 * Since stop() drops p->p_lock, we must start from
1305		 * the top again on returning from stop().
1306		 */
1307		if (p->p_stopsig | (curthread->t_proc_flag & TP_PRSTOP)) {
1308			int whystop = p->p_stopsig? PR_JOBCONTROL :
1309			    PR_REQUESTED;
1310			p->p_lwprcnt++;
1311			p->p_flag &= ~holdflag;
1312			stop(whystop, p->p_stopsig);
1313			goto again;
1314		}
1315		cv_wait(&p->p_holdlwps, &p->p_lock);
1316	}
1317	p->p_lwprcnt++;
1318	p->p_flag &= ~holdflag;
1319	mutex_exit(&p->p_lock);
1320	return (1);
1321}
1322
1323/*
1324 * See comments for holdwatch(), below.
1325 */
1326static int
1327holdcheck(int clearflags)
1328{
1329	proc_t *p = curproc;
1330
1331	/*
1332	 * If we are trying to exit, that takes precedence over anything else.
1333	 */
1334	if (p->p_flag & SEXITLWPS) {
1335		p->p_lwprcnt++;
1336		p->p_flag &= ~clearflags;
1337		lwp_exit();
1338	}
1339
1340	/*
1341	 * If another thread is calling fork1(), stop the current thread so the
1342	 * other can complete.
1343	 */
1344	if (p->p_flag & SHOLDFORK1) {
1345		p->p_lwprcnt++;
1346		stop(PR_SUSPENDED, SUSPEND_NORMAL);
1347		if (p->p_flag & SEXITLWPS) {
1348			p->p_flag &= ~clearflags;
1349			lwp_exit();
1350		}
1351		return (-1);
1352	}
1353
1354	/*
1355	 * If another thread is calling fork(), then indicate we are doing
1356	 * watchpoint activity.  This will cause holdlwps() above to stop the
1357	 * forking thread, at which point we can continue with watchpoint
1358	 * activity.
1359	 */
1360	if (p->p_flag & SHOLDFORK) {
1361		p->p_lwprcnt++;
1362		while (p->p_flag & SHOLDFORK) {
1363			p->p_flag |= SHOLDWATCH;
1364			cv_broadcast(&p->p_holdlwps);
1365			cv_wait(&p->p_holdlwps, &p->p_lock);
1366			p->p_flag &= ~SHOLDWATCH;
1367		}
1368		return (-1);
1369	}
1370
1371	return (0);
1372}
1373
1374/*
1375 * Stop all lwps within the process, holding themselves in the kernel while the
1376 * active lwp undergoes watchpoint activity.  This is more complicated than
1377 * expected because stop() relies on calling holdwatch() in order to copyin data
1378 * from the user's address space.  A double barrier is used to prevent an
1379 * infinite loop.
1380 *
1381 * 	o The first thread into holdwatch() is the 'master' thread and does
1382 *        the following:
1383 *
1384 *              - Sets SHOLDWATCH on the current process
1385 *              - Sets TP_WATCHSTOP on the current thread
1386 *              - Waits for all threads to be either stopped or have
1387 *                TP_WATCHSTOP set.
1388 *              - Sets the SWATCHOK flag on the process
1389 *              - Unsets TP_WATCHSTOP
1390 *              - Waits for the other threads to completely stop
1391 *              - Unsets SWATCHOK
1392 *
1393 * 	o If SHOLDWATCH is already set when we enter this function, then another
1394 *        thread is already trying to stop this thread.  This 'slave' thread
1395 *        does the following:
1396 *
1397 *              - Sets TP_WATCHSTOP on the current thread
1398 *              - Waits for SWATCHOK flag to be set
1399 *              - Calls stop()
1400 *
1401 * 	o If SWATCHOK is set on the process, then this function immediately
1402 *        returns, as we must have been called via stop().
1403 *
1404 * In addition, there are other flags that take precedence over SHOLDWATCH:
1405 *
1406 * 	o If SEXITLWPS is set, exit immediately.
1407 *
1408 * 	o If SHOLDFORK1 is set, wait for fork1() to complete.
1409 *
1410 * 	o If SHOLDFORK is set, then watchpoint activity takes precedence In this
1411 *        case, set SHOLDWATCH, signalling the forking thread to stop first.
1412 *
1413 * 	o If the process is being stopped via /proc (TP_PRSTOP is set), then we
1414 *        stop the current thread.
1415 *
1416 * Returns 0 if all threads have been quiesced.  Returns non-zero if not all
1417 * threads were stopped, or the list of watched pages has changed.
1418 */
1419int
1420holdwatch(void)
1421{
1422	proc_t *p = curproc;
1423	kthread_t *t = curthread;
1424	int ret = 0;
1425
1426	mutex_enter(&p->p_lock);
1427
1428	p->p_lwprcnt--;
1429
1430	/*
1431	 * Check for bail-out conditions as outlined above.
1432	 */
1433	if (holdcheck(0) != 0) {
1434		mutex_exit(&p->p_lock);
1435		return (-1);
1436	}
1437
1438	if (!(p->p_flag & SHOLDWATCH)) {
1439		/*
1440		 * We are the master watchpoint thread.  Set SHOLDWATCH and poke
1441		 * the other threads.
1442		 */
1443		p->p_flag |= SHOLDWATCH;
1444		pokelwps(p);
1445
1446		/*
1447		 * Wait for all threads to be stopped or have TP_WATCHSTOP set.
1448		 */
1449		while (pr_allstopped(p, 1) > 0) {
1450			if (holdcheck(SHOLDWATCH) != 0) {
1451				p->p_flag &= ~SHOLDWATCH;
1452				mutex_exit(&p->p_lock);
1453				return (-1);
1454			}
1455
1456			cv_wait(&p->p_holdlwps, &p->p_lock);
1457		}
1458
1459		/*
1460		 * All threads are now stopped or in the process of stopping.
1461		 * Set SWATCHOK and let them stop completely.
1462		 */
1463		p->p_flag |= SWATCHOK;
1464		t->t_proc_flag &= ~TP_WATCHSTOP;
1465		cv_broadcast(&p->p_holdlwps);
1466
1467		while (pr_allstopped(p, 0) > 0) {
1468			/*
1469			 * At first glance, it may appear that we don't need a
1470			 * call to holdcheck() here.  But if the process gets a
1471			 * SIGKILL signal, one of our stopped threads may have
1472			 * been awakened and is waiting in exitlwps(), which
1473			 * takes precedence over watchpoints.
1474			 */
1475			if (holdcheck(SHOLDWATCH | SWATCHOK) != 0) {
1476				p->p_flag &= ~(SHOLDWATCH | SWATCHOK);
1477				mutex_exit(&p->p_lock);
1478				return (-1);
1479			}
1480
1481			cv_wait(&p->p_holdlwps, &p->p_lock);
1482		}
1483
1484		/*
1485		 * All threads are now completely stopped.
1486		 */
1487		p->p_flag &= ~SWATCHOK;
1488		p->p_flag &= ~SHOLDWATCH;
1489		p->p_lwprcnt++;
1490
1491	} else if (!(p->p_flag & SWATCHOK)) {
1492
1493		/*
1494		 * SHOLDWATCH is set, so another thread is trying to do
1495		 * watchpoint activity.  Indicate this thread is stopping, and
1496		 * wait for the OK from the master thread.
1497		 */
1498		t->t_proc_flag |= TP_WATCHSTOP;
1499		cv_broadcast(&p->p_holdlwps);
1500
1501		while (!(p->p_flag & SWATCHOK)) {
1502			if (holdcheck(0) != 0) {
1503				t->t_proc_flag &= ~TP_WATCHSTOP;
1504				mutex_exit(&p->p_lock);
1505				return (-1);
1506			}
1507
1508			cv_wait(&p->p_holdlwps, &p->p_lock);
1509		}
1510
1511		/*
1512		 * Once the master thread has given the OK, this thread can
1513		 * actually call stop().
1514		 */
1515		t->t_proc_flag &= ~TP_WATCHSTOP;
1516		p->p_lwprcnt++;
1517
1518		stop(PR_SUSPENDED, SUSPEND_NORMAL);
1519
1520		/*
1521		 * It's not OK to do watchpoint activity, notify caller to
1522		 * retry.
1523		 */
1524		ret = -1;
1525
1526	} else {
1527
1528		/*
1529		 * The only way we can hit the case where SHOLDWATCH is set and
1530		 * SWATCHOK is set is if we are triggering this from within a
1531		 * stop() call.  Assert that this is the case.
1532		 */
1533
1534		ASSERT(t->t_proc_flag & TP_STOPPING);
1535		p->p_lwprcnt++;
1536	}
1537
1538	mutex_exit(&p->p_lock);
1539
1540	return (ret);
1541}
1542
1543/*
1544 * force all interruptible lwps to trap into the kernel.
1545 */
1546void
1547pokelwps(proc_t *p)
1548{
1549	kthread_t *t;
1550
1551	ASSERT(MUTEX_HELD(&p->p_lock));
1552
1553	t = p->p_tlist;
1554	do {
1555		if (t == curthread)
1556			continue;
1557		thread_lock(t);
1558		aston(t);	/* make thread trap or do post_syscall */
1559		if (ISWAKEABLE(t) || ISWAITING(t)) {
1560			setrun_locked(t);
1561		} else if (t->t_state == TS_STOPPED) {
1562			/*
1563			 * Ensure that proc_exit() is not blocked by lwps
1564			 * that were stopped via jobcontrol or /proc.
1565			 */
1566			if (p->p_flag & SEXITLWPS) {
1567				p->p_stopsig = 0;
1568				t->t_schedflag |= (TS_XSTART | TS_PSTART);
1569				setrun_locked(t);
1570			}
1571			/*
1572			 * If we are holding lwps for a forkall(),
1573			 * force lwps that have been suspended via
1574			 * lwp_suspend() and are suspended inside
1575			 * of a system call to proceed to their
1576			 * holdlwp() points where they are clonable.
1577			 */
1578			if ((p->p_flag & SHOLDFORK) && SUSPENDED(t)) {
1579				if ((t->t_schedflag & TS_CSTART) == 0) {
1580					p->p_lwprcnt++;
1581					t->t_schedflag |= TS_CSTART;
1582					setrun_locked(t);
1583				}
1584			}
1585		} else if (t->t_state == TS_ONPROC) {
1586			if (t->t_cpu != CPU)
1587				poke_cpu(t->t_cpu->cpu_id);
1588		}
1589		thread_unlock(t);
1590	} while ((t = t->t_forw) != p->p_tlist);
1591}
1592
1593/*
1594 * undo the effects of holdlwps() or holdwatch().
1595 */
1596void
1597continuelwps(proc_t *p)
1598{
1599	kthread_t *t;
1600
1601	/*
1602	 * If this flag is set, then the original holdwatch() didn't actually
1603	 * stop the process.  See comments for holdwatch().
1604	 */
1605	if (p->p_flag & SWATCHOK) {
1606		ASSERT(curthread->t_proc_flag & TP_STOPPING);
1607		return;
1608	}
1609
1610	ASSERT(MUTEX_HELD(&p->p_lock));
1611	ASSERT((p->p_flag & (SHOLDFORK | SHOLDFORK1 | SHOLDWATCH)) == 0);
1612
1613	t = p->p_tlist;
1614	do {
1615		thread_lock(t);		/* SUSPENDED looks at t_schedflag */
1616		if (SUSPENDED(t) && !(t->t_proc_flag & TP_HOLDLWP)) {
1617			p->p_lwprcnt++;
1618			t->t_schedflag |= TS_CSTART;
1619			setrun_locked(t);
1620		}
1621		thread_unlock(t);
1622	} while ((t = t->t_forw) != p->p_tlist);
1623}
1624
1625/*
1626 * Force all other LWPs in the current process other than the caller to exit,
1627 * and then cv_wait() on p_holdlwps for them to exit.  The exitlwps() function
1628 * is typically used in these situations:
1629 *
1630 *   (a) prior to an exec() system call
1631 *   (b) prior to dumping a core file
1632 *   (c) prior to a uadmin() shutdown
1633 *
1634 * If the 'coredump' flag is set, other LWPs are quiesced but not destroyed.
1635 * Multiple threads in the process can call this function at one time by
1636 * triggering execs or core dumps simultaneously, so the SEXITLWPS bit is used
1637 * to declare one particular thread the winner who gets to kill the others.
1638 * If a thread wins the exitlwps() dance, zero is returned; otherwise an
1639 * appropriate errno value is returned to caller for its system call to return.
1640 */
1641int
1642exitlwps(int coredump)
1643{
1644	proc_t *p = curproc;
1645	int heldcnt;
1646
1647	if (curthread->t_door)
1648		door_slam();
1649	if (p->p_door_list)
1650		door_revoke_all();
1651	if (curthread->t_schedctl != NULL)
1652		schedctl_lwp_cleanup(curthread);
1653
1654	/*
1655	 * Ensure that before starting to wait for other lwps to exit,
1656	 * cleanup all upimutexes held by curthread. Otherwise, some other
1657	 * lwp could be waiting (uninterruptibly) for a upimutex held by
1658	 * curthread, and the call to pokelwps() below would deadlock.
1659	 * Even if a blocked upimutex_lock is made interruptible,
1660	 * curthread's upimutexes need to be unlocked: do it here.
1661	 */
1662	if (curthread->t_upimutex != NULL)
1663		upimutex_cleanup();
1664
1665	/*
1666	 * Grab p_lock in order to check and set SEXITLWPS to declare a winner.
1667	 * We must also block any further /proc access from this point forward.
1668	 */
1669	mutex_enter(&p->p_lock);
1670	prbarrier(p);
1671
1672	if (p->p_flag & SEXITLWPS) {
1673		mutex_exit(&p->p_lock);
1674		aston(curthread);	/* force a trip through post_syscall */
1675		return (set_errno(EINTR));
1676	}
1677
1678	p->p_flag |= SEXITLWPS;
1679	if (coredump)		/* tell other lwps to stop, not exit */
1680		p->p_flag |= SCOREDUMP;
1681
1682	/*
1683	 * Give precedence to exitlwps() if a holdlwps() is
1684	 * in progress. The lwp doing the holdlwps() operation
1685	 * is aborted when it is awakened.
1686	 */
1687	while (p->p_flag & (SHOLDFORK | SHOLDFORK1 | SHOLDWATCH)) {
1688		cv_broadcast(&p->p_holdlwps);
1689		cv_wait(&p->p_holdlwps, &p->p_lock);
1690		prbarrier(p);
1691	}
1692	p->p_flag |= SHOLDFORK;
1693	pokelwps(p);
1694
1695	/*
1696	 * Wait for process to become quiescent.
1697	 */
1698	--p->p_lwprcnt;
1699	while (p->p_lwprcnt > 0) {
1700		cv_wait(&p->p_holdlwps, &p->p_lock);
1701		prbarrier(p);
1702	}
1703	p->p_lwprcnt++;
1704	ASSERT(p->p_lwprcnt == 1);
1705
1706	/*
1707	 * The SCOREDUMP flag puts the process into a quiescent
1708	 * state.  The process's lwps remain attached to this
1709	 * process until exitlwps() is called again without the
1710	 * 'coredump' flag set, then the lwps are terminated
1711	 * and the process can exit.
1712	 */
1713	if (coredump) {
1714		p->p_flag &= ~(SCOREDUMP | SHOLDFORK | SEXITLWPS);
1715		goto out;
1716	}
1717
1718	/*
1719	 * Determine if there are any lwps left dangling in
1720	 * the stopped state.  This happens when exitlwps()
1721	 * aborts a holdlwps() operation.
1722	 */
1723	p->p_flag &= ~SHOLDFORK;
1724	if ((heldcnt = p->p_lwpcnt) > 1) {
1725		kthread_t *t;
1726		for (t = curthread->t_forw; --heldcnt > 0; t = t->t_forw) {
1727			t->t_proc_flag &= ~TP_TWAIT;
1728			lwp_continue(t);
1729		}
1730	}
1731
1732	/*
1733	 * Wait for all other lwps to exit.
1734	 */
1735	--p->p_lwprcnt;
1736	while (p->p_lwpcnt > 1) {
1737		cv_wait(&p->p_holdlwps, &p->p_lock);
1738		prbarrier(p);
1739	}
1740	++p->p_lwprcnt;
1741	ASSERT(p->p_lwpcnt == 1 && p->p_lwprcnt == 1);
1742
1743	p->p_flag &= ~SEXITLWPS;
1744	curthread->t_proc_flag &= ~TP_TWAIT;
1745
1746out:
1747	if (!coredump && p->p_zombcnt) {	/* cleanup the zombie lwps */
1748		lwpdir_t *ldp;
1749		lwpent_t *lep;
1750		int i;
1751
1752		for (ldp = p->p_lwpdir, i = 0; i < p->p_lwpdir_sz; i++, ldp++) {
1753			lep = ldp->ld_entry;
1754			if (lep != NULL && lep->le_thread != curthread) {
1755				ASSERT(lep->le_thread == NULL);
1756				p->p_zombcnt--;
1757				lwp_hash_out(p, lep->le_lwpid);
1758			}
1759		}
1760		ASSERT(p->p_zombcnt == 0);
1761	}
1762
1763	/*
1764	 * If some other LWP in the process wanted us to suspend ourself,
1765	 * then we will not do it.  The other LWP is now terminated and
1766	 * no one will ever continue us again if we suspend ourself.
1767	 */
1768	curthread->t_proc_flag &= ~TP_HOLDLWP;
1769	p->p_flag &= ~(SHOLDFORK | SHOLDFORK1 | SHOLDWATCH | SLWPWRAP);
1770	mutex_exit(&p->p_lock);
1771	return (0);
1772}
1773
1774/*
1775 * duplicate a lwp.
1776 */
1777klwp_t *
1778forklwp(klwp_t *lwp, proc_t *cp, id_t lwpid)
1779{
1780	klwp_t *clwp;
1781	void *tregs, *tfpu;
1782	kthread_t *t = lwptot(lwp);
1783	kthread_t *ct;
1784	proc_t *p = lwptoproc(lwp);
1785	int cid;
1786	void *bufp;
1787	void *brand_data;
1788	int val;
1789
1790	ASSERT(p == curproc);
1791	ASSERT(t == curthread || (SUSPENDED(t) && lwp->lwp_asleep == 0));
1792
1793#if defined(__sparc)
1794	if (t == curthread)
1795		(void) flush_user_windows_to_stack(NULL);
1796#endif
1797
1798	if (t == curthread)
1799		/* copy args out of registers first */
1800		(void) save_syscall_args();
1801
1802	clwp = lwp_create(cp->p_lwpcnt == 0 ? lwp_rtt_initial : lwp_rtt,
1803	    NULL, 0, cp, TS_STOPPED, t->t_pri, &t->t_hold, NOCLASS, lwpid);
1804	if (clwp == NULL)
1805		return (NULL);
1806
1807	/*
1808	 * most of the parent's lwp can be copied to its duplicate,
1809	 * except for the fields that are unique to each lwp, like
1810	 * lwp_thread, lwp_procp, lwp_regs, and lwp_ap.
1811	 */
1812	ct = clwp->lwp_thread;
1813	tregs = clwp->lwp_regs;
1814	tfpu = clwp->lwp_fpu;
1815	brand_data = clwp->lwp_brand;
1816
1817	/*
1818	 * Copy parent lwp to child lwp.  Hold child's p_lock to prevent
1819	 * mstate_aggr_state() from reading stale mstate entries copied
1820	 * from lwp to clwp.
1821	 */
1822	mutex_enter(&cp->p_lock);
1823	*clwp = *lwp;
1824
1825	/* clear microstate and resource usage data in new lwp */
1826	init_mstate(ct, LMS_STOPPED);
1827	bzero(&clwp->lwp_ru, sizeof (clwp->lwp_ru));
1828	mutex_exit(&cp->p_lock);
1829
1830	/* fix up child's lwp */
1831
1832	clwp->lwp_pcb.pcb_flags = 0;
1833#if defined(__sparc)
1834	clwp->lwp_pcb.pcb_step = STEP_NONE;
1835#endif
1836	clwp->lwp_cursig = 0;
1837	clwp->lwp_extsig = 0;
1838	clwp->lwp_curinfo = (struct sigqueue *)0;
1839	clwp->lwp_thread = ct;
1840	ct->t_sysnum = t->t_sysnum;
1841	clwp->lwp_regs = tregs;
1842	clwp->lwp_fpu = tfpu;
1843	clwp->lwp_brand = brand_data;
1844	clwp->lwp_ap = clwp->lwp_arg;
1845	clwp->lwp_procp = cp;
1846	bzero(clwp->lwp_timer, sizeof (clwp->lwp_timer));
1847	clwp->lwp_lastfault = 0;
1848	clwp->lwp_lastfaddr = 0;
1849
1850	/* copy parent's struct regs to child. */
1851	lwp_forkregs(lwp, clwp);
1852
1853	/*
1854	 * Fork thread context ops, if any.
1855	 */
1856	if (t->t_ctx)
1857		forkctx(t, ct);
1858
1859	/* fix door state in the child */
1860	if (t->t_door)
1861		door_fork(t, ct);
1862
1863	/* copy current contract templates, clear latest contracts */
1864	lwp_ctmpl_copy(clwp, lwp);
1865
1866	mutex_enter(&cp->p_lock);
1867	/* lwp_create() set the TP_HOLDLWP flag */
1868	if (!(t->t_proc_flag & TP_HOLDLWP))
1869		ct->t_proc_flag &= ~TP_HOLDLWP;
1870	if (cp->p_flag & SMSACCT)
1871		ct->t_proc_flag |= TP_MSACCT;
1872	mutex_exit(&cp->p_lock);
1873
1874	/* Allow brand to propagate brand-specific state */
1875	if (PROC_IS_BRANDED(p))
1876		BROP(p)->b_forklwp(lwp, clwp);
1877
1878retry:
1879	cid = t->t_cid;
1880
1881	val = CL_ALLOC(&bufp, cid, KM_SLEEP);
1882	ASSERT(val == 0);
1883
1884	mutex_enter(&p->p_lock);
1885	if (cid != t->t_cid) {
1886		/*
1887		 * Someone just changed this thread's scheduling class,
1888		 * so try pre-allocating the buffer again.  Hopefully we
1889		 * don't hit this often.
1890		 */
1891		mutex_exit(&p->p_lock);
1892		CL_FREE(cid, bufp);
1893		goto retry;
1894	}
1895
1896	ct->t_unpark = t->t_unpark;
1897	ct->t_clfuncs = t->t_clfuncs;
1898	CL_FORK(t, ct, bufp);
1899	ct->t_cid = t->t_cid;	/* after data allocated so prgetpsinfo works */
1900	mutex_exit(&p->p_lock);
1901
1902	return (clwp);
1903}
1904
1905/*
1906 * Add a new lwp entry to the lwp directory and to the lwpid hash table.
1907 */
1908void
1909lwp_hash_in(proc_t *p, lwpent_t *lep, tidhash_t *tidhash, uint_t tidhash_sz,
1910    int do_lock)
1911{
1912	tidhash_t *thp = &tidhash[TIDHASH(lep->le_lwpid, tidhash_sz)];
1913	lwpdir_t **ldpp;
1914	lwpdir_t *ldp;
1915	kthread_t *t;
1916
1917	/*
1918	 * Allocate a directory element from the free list.
1919	 * Code elsewhere guarantees a free slot.
1920	 */
1921	ldp = p->p_lwpfree;
1922	p->p_lwpfree = ldp->ld_next;
1923	ASSERT(ldp->ld_entry == NULL);
1924	ldp->ld_entry = lep;
1925
1926	if (do_lock)
1927		mutex_enter(&thp->th_lock);
1928
1929	/*
1930	 * Insert it into the lwpid hash table.
1931	 */
1932	ldpp = &thp->th_list;
1933	ldp->ld_next = *ldpp;
1934	*ldpp = ldp;
1935
1936	/*
1937	 * Set the active thread's directory slot entry.
1938	 */
1939	if ((t = lep->le_thread) != NULL) {
1940		ASSERT(lep->le_lwpid == t->t_tid);
1941		t->t_dslot = (int)(ldp - p->p_lwpdir);
1942	}
1943
1944	if (do_lock)
1945		mutex_exit(&thp->th_lock);
1946}
1947
1948/*
1949 * Remove an lwp from the lwpid hash table and free its directory entry.
1950 * This is done when a detached lwp exits in lwp_exit() or
1951 * when a non-detached lwp is waited for in lwp_wait() or
1952 * when a zombie lwp is detached in lwp_detach().
1953 */
1954void
1955lwp_hash_out(proc_t *p, id_t lwpid)
1956{
1957	tidhash_t *thp = &p->p_tidhash[TIDHASH(lwpid, p->p_tidhash_sz)];
1958	lwpdir_t **ldpp;
1959	lwpdir_t *ldp;
1960	lwpent_t *lep;
1961
1962	mutex_enter(&thp->th_lock);
1963	for (ldpp = &thp->th_list;
1964	    (ldp = *ldpp) != NULL; ldpp = &ldp->ld_next) {
1965		lep = ldp->ld_entry;
1966		if (lep->le_lwpid == lwpid) {
1967			prlwpfree(p, lep);	/* /proc deals with le_trace */
1968			*ldpp = ldp->ld_next;
1969			ldp->ld_entry = NULL;
1970			ldp->ld_next = p->p_lwpfree;
1971			p->p_lwpfree = ldp;
1972			kmem_free(lep, sizeof (*lep));
1973			break;
1974		}
1975	}
1976	mutex_exit(&thp->th_lock);
1977}
1978
1979/*
1980 * Lookup an lwp in the lwpid hash table by lwpid.
1981 */
1982lwpdir_t *
1983lwp_hash_lookup(proc_t *p, id_t lwpid)
1984{
1985	tidhash_t *thp;
1986	lwpdir_t *ldp;
1987
1988	/*
1989	 * The process may be exiting, after p_tidhash has been set to NULL in
1990	 * proc_exit() but before prfee() has been called.  Return failure in
1991	 * this case.
1992	 */
1993	if (p->p_tidhash == NULL)
1994		return (NULL);
1995
1996	thp = &p->p_tidhash[TIDHASH(lwpid, p->p_tidhash_sz)];
1997	for (ldp = thp->th_list; ldp != NULL; ldp = ldp->ld_next) {
1998		if (ldp->ld_entry->le_lwpid == lwpid)
1999			return (ldp);
2000	}
2001
2002	return (NULL);
2003}
2004
2005/*
2006 * Same as lwp_hash_lookup(), but acquire and return
2007 * the tid hash table entry lock on success.
2008 */
2009lwpdir_t *
2010lwp_hash_lookup_and_lock(proc_t *p, id_t lwpid, kmutex_t **mpp)
2011{
2012	tidhash_t *tidhash;
2013	uint_t tidhash_sz;
2014	tidhash_t *thp;
2015	lwpdir_t *ldp;
2016
2017top:
2018	tidhash_sz = p->p_tidhash_sz;
2019	membar_consumer();
2020	if ((tidhash = p->p_tidhash) == NULL)
2021		return (NULL);
2022
2023	thp = &tidhash[TIDHASH(lwpid, tidhash_sz)];
2024	mutex_enter(&thp->th_lock);
2025
2026	/*
2027	 * Since we are not holding p->p_lock, the tid hash table
2028	 * may have changed.  If so, start over.  If not, then
2029	 * it cannot change until after we drop &thp->th_lock;
2030	 */
2031	if (tidhash != p->p_tidhash || tidhash_sz != p->p_tidhash_sz) {
2032		mutex_exit(&thp->th_lock);
2033		goto top;
2034	}
2035
2036	for (ldp = thp->th_list; ldp != NULL; ldp = ldp->ld_next) {
2037		if (ldp->ld_entry->le_lwpid == lwpid) {
2038			*mpp = &thp->th_lock;
2039			return (ldp);
2040		}
2041	}
2042
2043	mutex_exit(&thp->th_lock);
2044	return (NULL);
2045}
2046
2047/*
2048 * Update the indicated LWP usage statistic for the current LWP.
2049 */
2050void
2051lwp_stat_update(lwp_stat_id_t lwp_stat_id, long inc)
2052{
2053	klwp_t *lwp = ttolwp(curthread);
2054
2055	if (lwp == NULL)
2056		return;
2057
2058	switch (lwp_stat_id) {
2059	case LWP_STAT_INBLK:
2060		lwp->lwp_ru.inblock += inc;
2061		break;
2062	case LWP_STAT_OUBLK:
2063		lwp->lwp_ru.oublock += inc;
2064		break;
2065	case LWP_STAT_MSGRCV:
2066		lwp->lwp_ru.msgrcv += inc;
2067		break;
2068	case LWP_STAT_MSGSND:
2069		lwp->lwp_ru.msgsnd += inc;
2070		break;
2071	default:
2072		panic("lwp_stat_update: invalid lwp_stat_id 0x%x", lwp_stat_id);
2073	}
2074}
2075