1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
22/*	  All Rights Reserved	*/
23
24/*
25 * Copyright (c) 1988, 2010, Oracle and/or its affiliates. All rights reserved.
26 */
27
28#include <sys/param.h>
29#include <sys/t_lock.h>
30#include <sys/types.h>
31#include <sys/tuneable.h>
32#include <sys/sysmacros.h>
33#include <sys/systm.h>
34#include <sys/cpuvar.h>
35#include <sys/lgrp.h>
36#include <sys/user.h>
37#include <sys/proc.h>
38#include <sys/callo.h>
39#include <sys/kmem.h>
40#include <sys/var.h>
41#include <sys/cmn_err.h>
42#include <sys/swap.h>
43#include <sys/vmsystm.h>
44#include <sys/class.h>
45#include <sys/time.h>
46#include <sys/debug.h>
47#include <sys/vtrace.h>
48#include <sys/spl.h>
49#include <sys/atomic.h>
50#include <sys/dumphdr.h>
51#include <sys/archsystm.h>
52#include <sys/fs/swapnode.h>
53#include <sys/panic.h>
54#include <sys/disp.h>
55#include <sys/msacct.h>
56#include <sys/mem_cage.h>
57
58#include <vm/page.h>
59#include <vm/anon.h>
60#include <vm/rm.h>
61#include <sys/cyclic.h>
62#include <sys/cpupart.h>
63#include <sys/rctl.h>
64#include <sys/task.h>
65#include <sys/sdt.h>
66#include <sys/ddi_timer.h>
67#include <sys/random.h>
68#include <sys/modctl.h>
69
70/*
71 * for NTP support
72 */
73#include <sys/timex.h>
74#include <sys/inttypes.h>
75
76#include <sys/sunddi.h>
77#include <sys/clock_impl.h>
78
79/*
80 * clock() is called straight from the clock cyclic; see clock_init().
81 *
82 * Functions:
83 *	reprime clock
84 *	maintain date
85 *	jab the scheduler
86 */
87
88extern kcondvar_t	fsflush_cv;
89extern sysinfo_t	sysinfo;
90extern vminfo_t	vminfo;
91extern int	idleswtch;	/* flag set while idle in pswtch() */
92extern hrtime_t volatile devinfo_freeze;
93
94/*
95 * high-precision avenrun values.  These are needed to make the
96 * regular avenrun values accurate.
97 */
98static uint64_t hp_avenrun[3];
99int	avenrun[3];		/* FSCALED average run queue lengths */
100time_t	time;	/* time in seconds since 1970 - for compatibility only */
101
102static struct loadavg_s loadavg;
103/*
104 * Phase/frequency-lock loop (PLL/FLL) definitions
105 *
106 * The following variables are read and set by the ntp_adjtime() system
107 * call.
108 *
109 * time_state shows the state of the system clock, with values defined
110 * in the timex.h header file.
111 *
112 * time_status shows the status of the system clock, with bits defined
113 * in the timex.h header file.
114 *
115 * time_offset is used by the PLL/FLL to adjust the system time in small
116 * increments.
117 *
118 * time_constant determines the bandwidth or "stiffness" of the PLL.
119 *
120 * time_tolerance determines maximum frequency error or tolerance of the
121 * CPU clock oscillator and is a property of the architecture; however,
122 * in principle it could change as result of the presence of external
123 * discipline signals, for instance.
124 *
125 * time_precision is usually equal to the kernel tick variable; however,
126 * in cases where a precision clock counter or external clock is
127 * available, the resolution can be much less than this and depend on
128 * whether the external clock is working or not.
129 *
130 * time_maxerror is initialized by a ntp_adjtime() call and increased by
131 * the kernel once each second to reflect the maximum error bound
132 * growth.
133 *
134 * time_esterror is set and read by the ntp_adjtime() call, but
135 * otherwise not used by the kernel.
136 */
137int32_t time_state = TIME_OK;	/* clock state */
138int32_t time_status = STA_UNSYNC;	/* clock status bits */
139int32_t time_offset = 0;		/* time offset (us) */
140int32_t time_constant = 0;		/* pll time constant */
141int32_t time_tolerance = MAXFREQ;	/* frequency tolerance (scaled ppm) */
142int32_t time_precision = 1;	/* clock precision (us) */
143int32_t time_maxerror = MAXPHASE;	/* maximum error (us) */
144int32_t time_esterror = MAXPHASE;	/* estimated error (us) */
145
146/*
147 * The following variables establish the state of the PLL/FLL and the
148 * residual time and frequency offset of the local clock. The scale
149 * factors are defined in the timex.h header file.
150 *
151 * time_phase and time_freq are the phase increment and the frequency
152 * increment, respectively, of the kernel time variable.
153 *
154 * time_freq is set via ntp_adjtime() from a value stored in a file when
155 * the synchronization daemon is first started. Its value is retrieved
156 * via ntp_adjtime() and written to the file about once per hour by the
157 * daemon.
158 *
159 * time_adj is the adjustment added to the value of tick at each timer
160 * interrupt and is recomputed from time_phase and time_freq at each
161 * seconds rollover.
162 *
163 * time_reftime is the second's portion of the system time at the last
164 * call to ntp_adjtime(). It is used to adjust the time_freq variable
165 * and to increase the time_maxerror as the time since last update
166 * increases.
167 */
168int32_t time_phase = 0;		/* phase offset (scaled us) */
169int32_t time_freq = 0;		/* frequency offset (scaled ppm) */
170int32_t time_adj = 0;		/* tick adjust (scaled 1 / hz) */
171int32_t time_reftime = 0;		/* time at last adjustment (s) */
172
173/*
174 * The scale factors of the following variables are defined in the
175 * timex.h header file.
176 *
177 * pps_time contains the time at each calibration interval, as read by
178 * microtime(). pps_count counts the seconds of the calibration
179 * interval, the duration of which is nominally pps_shift in powers of
180 * two.
181 *
182 * pps_offset is the time offset produced by the time median filter
183 * pps_tf[], while pps_jitter is the dispersion (jitter) measured by
184 * this filter.
185 *
186 * pps_freq is the frequency offset produced by the frequency median
187 * filter pps_ff[], while pps_stabil is the dispersion (wander) measured
188 * by this filter.
189 *
190 * pps_usec is latched from a high resolution counter or external clock
191 * at pps_time. Here we want the hardware counter contents only, not the
192 * contents plus the time_tv.usec as usual.
193 *
194 * pps_valid counts the number of seconds since the last PPS update. It
195 * is used as a watchdog timer to disable the PPS discipline should the
196 * PPS signal be lost.
197 *
198 * pps_glitch counts the number of seconds since the beginning of an
199 * offset burst more than tick/2 from current nominal offset. It is used
200 * mainly to suppress error bursts due to priority conflicts between the
201 * PPS interrupt and timer interrupt.
202 *
203 * pps_intcnt counts the calibration intervals for use in the interval-
204 * adaptation algorithm. It's just too complicated for words.
205 */
206struct timeval pps_time;	/* kernel time at last interval */
207int32_t pps_tf[] = {0, 0, 0};	/* pps time offset median filter (us) */
208int32_t pps_offset = 0;		/* pps time offset (us) */
209int32_t pps_jitter = MAXTIME;	/* time dispersion (jitter) (us) */
210int32_t pps_ff[] = {0, 0, 0};	/* pps frequency offset median filter */
211int32_t pps_freq = 0;		/* frequency offset (scaled ppm) */
212int32_t pps_stabil = MAXFREQ;	/* frequency dispersion (scaled ppm) */
213int32_t pps_usec = 0;		/* microsec counter at last interval */
214int32_t pps_valid = PPS_VALID;	/* pps signal watchdog counter */
215int32_t pps_glitch = 0;		/* pps signal glitch counter */
216int32_t pps_count = 0;		/* calibration interval counter (s) */
217int32_t pps_shift = PPS_SHIFT;	/* interval duration (s) (shift) */
218int32_t pps_intcnt = 0;		/* intervals at current duration */
219
220/*
221 * PPS signal quality monitors
222 *
223 * pps_jitcnt counts the seconds that have been discarded because the
224 * jitter measured by the time median filter exceeds the limit MAXTIME
225 * (100 us).
226 *
227 * pps_calcnt counts the frequency calibration intervals, which are
228 * variable from 4 s to 256 s.
229 *
230 * pps_errcnt counts the calibration intervals which have been discarded
231 * because the wander exceeds the limit MAXFREQ (100 ppm) or where the
232 * calibration interval jitter exceeds two ticks.
233 *
234 * pps_stbcnt counts the calibration intervals that have been discarded
235 * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us).
236 */
237int32_t pps_jitcnt = 0;		/* jitter limit exceeded */
238int32_t pps_calcnt = 0;		/* calibration intervals */
239int32_t pps_errcnt = 0;		/* calibration errors */
240int32_t pps_stbcnt = 0;		/* stability limit exceeded */
241
242kcondvar_t lbolt_cv;
243
244/*
245 * Hybrid lbolt implementation:
246 *
247 * The service historically provided by the lbolt and lbolt64 variables has
248 * been replaced by the ddi_get_lbolt() and ddi_get_lbolt64() routines, and the
249 * original symbols removed from the system. The once clock driven variables are
250 * now implemented in an event driven fashion, backed by gethrtime() coarsed to
251 * the appropriate clock resolution. The default event driven implementation is
252 * complemented by a cyclic driven one, active only during periods of intense
253 * activity around the DDI lbolt routines, when a lbolt specific cyclic is
254 * reprogramed to fire at a clock tick interval to serve consumers of lbolt who
255 * rely on the original low cost of consulting a memory position.
256 *
257 * The implementation uses the number of calls to these routines and the
258 * frequency of these to determine when to transition from event to cyclic
259 * driven and vice-versa. These values are kept on a per CPU basis for
260 * scalability reasons and to prevent CPUs from constantly invalidating a single
261 * cache line when modifying a global variable. The transition from event to
262 * cyclic mode happens once the thresholds are crossed, and activity on any CPU
263 * can cause such transition.
264 *
265 * The lbolt_hybrid function pointer is called by ddi_get_lbolt() and
266 * ddi_get_lbolt64(), and will point to lbolt_event_driven() or
267 * lbolt_cyclic_driven() according to the current mode. When the thresholds
268 * are exceeded, lbolt_event_driven() will reprogram the lbolt cyclic to
269 * fire at a nsec_per_tick interval and increment an internal variable at
270 * each firing. lbolt_hybrid will then point to lbolt_cyclic_driven(), which
271 * will simply return the value of such variable. lbolt_cyclic() will attempt
272 * to shut itself off at each threshold interval (sampling period for calls
273 * to the DDI lbolt routines), and return to the event driven mode, but will
274 * be prevented from doing so if lbolt_cyclic_driven() is being heavily used.
275 *
276 * lbolt_bootstrap is used during boot to serve lbolt consumers who don't wait
277 * for the cyclic subsystem to be intialized.
278 *
279 */
280int64_t lbolt_bootstrap(void);
281int64_t lbolt_event_driven(void);
282int64_t lbolt_cyclic_driven(void);
283int64_t (*lbolt_hybrid)(void) = lbolt_bootstrap;
284uint_t lbolt_ev_to_cyclic(caddr_t, caddr_t);
285
286/*
287 * lbolt's cyclic, installed by clock_init().
288 */
289static void lbolt_cyclic(void);
290
291/*
292 * Tunable to keep lbolt in cyclic driven mode. This will prevent the system
293 * from switching back to event driven, once it reaches cyclic mode.
294 */
295static boolean_t lbolt_cyc_only = B_FALSE;
296
297/*
298 * Cache aligned, per CPU structure with lbolt usage statistics.
299 */
300static lbolt_cpu_t *lb_cpu;
301
302/*
303 * Single, cache aligned, structure with all the information required by
304 * the lbolt implementation.
305 */
306lbolt_info_t *lb_info;
307
308
309int one_sec = 1; /* turned on once every second */
310static int fsflushcnt;	/* counter for t_fsflushr */
311int	dosynctodr = 1;	/* patchable; enable/disable sync to TOD chip */
312int	tod_needsync = 0;	/* need to sync tod chip with software time */
313static int tod_broken = 0;	/* clock chip doesn't work */
314time_t	boot_time = 0;		/* Boot time in seconds since 1970 */
315cyclic_id_t clock_cyclic;	/* clock()'s cyclic_id */
316cyclic_id_t deadman_cyclic;	/* deadman()'s cyclic_id */
317cyclic_id_t ddi_timer_cyclic;	/* cyclic_timer()'s cyclic_id */
318
319extern void	clock_tick_schedule(int);
320
321static int lgrp_ticks;		/* counter to schedule lgrp load calcs */
322
323/*
324 * for tod fault detection
325 */
326#define	TOD_REF_FREQ		((longlong_t)(NANOSEC))
327#define	TOD_STALL_THRESHOLD	(TOD_REF_FREQ * 3 / 2)
328#define	TOD_JUMP_THRESHOLD	(TOD_REF_FREQ / 2)
329#define	TOD_FILTER_N		4
330#define	TOD_FILTER_SETTLE	(4 * TOD_FILTER_N)
331static int tod_faulted = TOD_NOFAULT;
332
333static int tod_status_flag = 0;		/* used by tod_validate() */
334
335static hrtime_t prev_set_tick = 0;	/* gethrtime() prior to tod_set() */
336static time_t prev_set_tod = 0;		/* tv_sec value passed to tod_set() */
337
338/* patchable via /etc/system */
339int tod_validate_enable = 1;
340
341/* Diagnose/Limit messages about delay(9F) called from interrupt context */
342int			delay_from_interrupt_diagnose = 0;
343volatile uint32_t	delay_from_interrupt_msg = 20;
344
345/*
346 * On non-SPARC systems, TOD validation must be deferred until gethrtime
347 * returns non-zero values (after mach_clkinit's execution).
348 * On SPARC systems, it must be deferred until after hrtime_base
349 * and hres_last_tick are set (in the first invocation of hres_tick).
350 * Since in both cases the prerequisites occur before the invocation of
351 * tod_get() in clock(), the deferment is lifted there.
352 */
353static boolean_t tod_validate_deferred = B_TRUE;
354
355/*
356 * tod_fault_table[] must be aligned with
357 * enum tod_fault_type in systm.h
358 */
359static char *tod_fault_table[] = {
360	"Reversed",			/* TOD_REVERSED */
361	"Stalled",			/* TOD_STALLED */
362	"Jumped",			/* TOD_JUMPED */
363	"Changed in Clock Rate",	/* TOD_RATECHANGED */
364	"Is Read-Only"			/* TOD_RDONLY */
365	/*
366	 * no strings needed for TOD_NOFAULT
367	 */
368};
369
370/*
371 * test hook for tod broken detection in tod_validate
372 */
373int tod_unit_test = 0;
374time_t tod_test_injector;
375
376#define	CLOCK_ADJ_HIST_SIZE	4
377
378static int	adj_hist_entry;
379
380int64_t clock_adj_hist[CLOCK_ADJ_HIST_SIZE];
381
382static void calcloadavg(int, uint64_t *);
383static int genloadavg(struct loadavg_s *);
384static void loadavg_update();
385
386void (*cmm_clock_callout)() = NULL;
387void (*cpucaps_clock_callout)() = NULL;
388
389extern clock_t clock_tick_proc_max;
390
391static int64_t deadman_counter = 0;
392
393static void
394clock(void)
395{
396	kthread_t	*t;
397	uint_t	nrunnable;
398	uint_t	w_io;
399	cpu_t	*cp;
400	cpupart_t *cpupart;
401	extern	void	set_freemem();
402	void	(*funcp)();
403	int32_t ltemp;
404	int64_t lltemp;
405	int s;
406	int do_lgrp_load;
407	int i;
408	clock_t now = LBOLT_NO_ACCOUNT;	/* current tick */
409
410	if (panicstr)
411		return;
412
413	/*
414	 * Make sure that 'freemem' do not drift too far from the truth
415	 */
416	set_freemem();
417
418
419	/*
420	 * Before the section which is repeated is executed, we do
421	 * the time delta processing which occurs every clock tick
422	 *
423	 * There is additional processing which happens every time
424	 * the nanosecond counter rolls over which is described
425	 * below - see the section which begins with : if (one_sec)
426	 *
427	 * This section marks the beginning of the precision-kernel
428	 * code fragment.
429	 *
430	 * First, compute the phase adjustment. If the low-order bits
431	 * (time_phase) of the update overflow, bump the higher order
432	 * bits (time_update).
433	 */
434	time_phase += time_adj;
435	if (time_phase <= -FINEUSEC) {
436		ltemp = -time_phase / SCALE_PHASE;
437		time_phase += ltemp * SCALE_PHASE;
438		s = hr_clock_lock();
439		timedelta -= ltemp * (NANOSEC/MICROSEC);
440		hr_clock_unlock(s);
441	} else if (time_phase >= FINEUSEC) {
442		ltemp = time_phase / SCALE_PHASE;
443		time_phase -= ltemp * SCALE_PHASE;
444		s = hr_clock_lock();
445		timedelta += ltemp * (NANOSEC/MICROSEC);
446		hr_clock_unlock(s);
447	}
448
449	/*
450	 * End of precision-kernel code fragment which is processed
451	 * every timer interrupt.
452	 *
453	 * Continue with the interrupt processing as scheduled.
454	 */
455	/*
456	 * Count the number of runnable threads and the number waiting
457	 * for some form of I/O to complete -- gets added to
458	 * sysinfo.waiting.  To know the state of the system, must add
459	 * wait counts from all CPUs.  Also add up the per-partition
460	 * statistics.
461	 */
462	w_io = 0;
463	nrunnable = 0;
464
465	/*
466	 * keep track of when to update lgrp/part loads
467	 */
468
469	do_lgrp_load = 0;
470	if (lgrp_ticks++ >= hz / 10) {
471		lgrp_ticks = 0;
472		do_lgrp_load = 1;
473	}
474
475	if (one_sec) {
476		loadavg_update();
477		deadman_counter++;
478	}
479
480	/*
481	 * First count the threads waiting on kpreempt queues in each
482	 * CPU partition.
483	 */
484
485	cpupart = cp_list_head;
486	do {
487		uint_t cpupart_nrunnable = cpupart->cp_kp_queue.disp_nrunnable;
488
489		cpupart->cp_updates++;
490		nrunnable += cpupart_nrunnable;
491		cpupart->cp_nrunnable_cum += cpupart_nrunnable;
492		if (one_sec) {
493			cpupart->cp_nrunning = 0;
494			cpupart->cp_nrunnable = cpupart_nrunnable;
495		}
496	} while ((cpupart = cpupart->cp_next) != cp_list_head);
497
498
499	/* Now count the per-CPU statistics. */
500	cp = cpu_list;
501	do {
502		uint_t cpu_nrunnable = cp->cpu_disp->disp_nrunnable;
503
504		nrunnable += cpu_nrunnable;
505		cpupart = cp->cpu_part;
506		cpupart->cp_nrunnable_cum += cpu_nrunnable;
507		if (one_sec) {
508			cpupart->cp_nrunnable += cpu_nrunnable;
509			/*
510			 * Update user, system, and idle cpu times.
511			 */
512			cpupart->cp_nrunning++;
513			/*
514			 * w_io is used to update sysinfo.waiting during
515			 * one_second processing below.  Only gather w_io
516			 * information when we walk the list of cpus if we're
517			 * going to perform one_second processing.
518			 */
519			w_io += CPU_STATS(cp, sys.iowait);
520		}
521
522		if (one_sec && (cp->cpu_flags & CPU_EXISTS)) {
523			int i, load, change;
524			hrtime_t intracct, intrused;
525			const hrtime_t maxnsec = 1000000000;
526			const int precision = 100;
527
528			/*
529			 * Estimate interrupt load on this cpu each second.
530			 * Computes cpu_intrload as %utilization (0-99).
531			 */
532
533			/* add up interrupt time from all micro states */
534			for (intracct = 0, i = 0; i < NCMSTATES; i++)
535				intracct += cp->cpu_intracct[i];
536			scalehrtime(&intracct);
537
538			/* compute nsec used in the past second */
539			intrused = intracct - cp->cpu_intrlast;
540			cp->cpu_intrlast = intracct;
541
542			/* limit the value for safety (and the first pass) */
543			if (intrused >= maxnsec)
544				intrused = maxnsec - 1;
545
546			/* calculate %time in interrupt */
547			load = (precision * intrused) / maxnsec;
548			ASSERT(load >= 0 && load < precision);
549			change = cp->cpu_intrload - load;
550
551			/* jump to new max, or decay the old max */
552			if (change < 0)
553				cp->cpu_intrload = load;
554			else if (change > 0)
555				cp->cpu_intrload -= (change + 3) / 4;
556
557			DTRACE_PROBE3(cpu_intrload,
558			    cpu_t *, cp,
559			    hrtime_t, intracct,
560			    hrtime_t, intrused);
561		}
562
563		if (do_lgrp_load &&
564		    (cp->cpu_flags & CPU_EXISTS)) {
565			/*
566			 * When updating the lgroup's load average,
567			 * account for the thread running on the CPU.
568			 * If the CPU is the current one, then we need
569			 * to account for the underlying thread which
570			 * got the clock interrupt not the thread that is
571			 * handling the interrupt and caculating the load
572			 * average
573			 */
574			t = cp->cpu_thread;
575			if (CPU == cp)
576				t = t->t_intr;
577
578			/*
579			 * Account for the load average for this thread if
580			 * it isn't the idle thread or it is on the interrupt
581			 * stack and not the current CPU handling the clock
582			 * interrupt
583			 */
584			if ((t && t != cp->cpu_idle_thread) || (CPU != cp &&
585			    CPU_ON_INTR(cp))) {
586				if (t->t_lpl == cp->cpu_lpl) {
587					/* local thread */
588					cpu_nrunnable++;
589				} else {
590					/*
591					 * This is a remote thread, charge it
592					 * against its home lgroup.  Note that
593					 * we notice that a thread is remote
594					 * only if it's currently executing.
595					 * This is a reasonable approximation,
596					 * since queued remote threads are rare.
597					 * Note also that if we didn't charge
598					 * it to its home lgroup, remote
599					 * execution would often make a system
600					 * appear balanced even though it was
601					 * not, and thread placement/migration
602					 * would often not be done correctly.
603					 */
604					lgrp_loadavg(t->t_lpl,
605					    LGRP_LOADAVG_IN_THREAD_MAX, 0);
606				}
607			}
608			lgrp_loadavg(cp->cpu_lpl,
609			    cpu_nrunnable * LGRP_LOADAVG_IN_THREAD_MAX, 1);
610		}
611	} while ((cp = cp->cpu_next) != cpu_list);
612
613	clock_tick_schedule(one_sec);
614
615	/*
616	 * Check for a callout that needs be called from the clock
617	 * thread to support the membership protocol in a clustered
618	 * system.  Copy the function pointer so that we can reset
619	 * this to NULL if needed.
620	 */
621	if ((funcp = cmm_clock_callout) != NULL)
622		(*funcp)();
623
624	if ((funcp = cpucaps_clock_callout) != NULL)
625		(*funcp)();
626
627	/*
628	 * Wakeup the cageout thread waiters once per second.
629	 */
630	if (one_sec)
631		kcage_tick();
632
633	if (one_sec) {
634
635		int drift, absdrift;
636		timestruc_t tod;
637		int s;
638
639		/*
640		 * Beginning of precision-kernel code fragment executed
641		 * every second.
642		 *
643		 * On rollover of the second the phase adjustment to be
644		 * used for the next second is calculated.  Also, the
645		 * maximum error is increased by the tolerance.  If the
646		 * PPS frequency discipline code is present, the phase is
647		 * increased to compensate for the CPU clock oscillator
648		 * frequency error.
649		 *
650		 * On a 32-bit machine and given parameters in the timex.h
651		 * header file, the maximum phase adjustment is +-512 ms
652		 * and maximum frequency offset is (a tad less than)
653		 * +-512 ppm. On a 64-bit machine, you shouldn't need to ask.
654		 */
655		time_maxerror += time_tolerance / SCALE_USEC;
656
657		/*
658		 * Leap second processing. If in leap-insert state at
659		 * the end of the day, the system clock is set back one
660		 * second; if in leap-delete state, the system clock is
661		 * set ahead one second. The microtime() routine or
662		 * external clock driver will insure that reported time
663		 * is always monotonic. The ugly divides should be
664		 * replaced.
665		 */
666		switch (time_state) {
667
668		case TIME_OK:
669			if (time_status & STA_INS)
670				time_state = TIME_INS;
671			else if (time_status & STA_DEL)
672				time_state = TIME_DEL;
673			break;
674
675		case TIME_INS:
676			if (hrestime.tv_sec % 86400 == 0) {
677				s = hr_clock_lock();
678				hrestime.tv_sec--;
679				hr_clock_unlock(s);
680				time_state = TIME_OOP;
681			}
682			break;
683
684		case TIME_DEL:
685			if ((hrestime.tv_sec + 1) % 86400 == 0) {
686				s = hr_clock_lock();
687				hrestime.tv_sec++;
688				hr_clock_unlock(s);
689				time_state = TIME_WAIT;
690			}
691			break;
692
693		case TIME_OOP:
694			time_state = TIME_WAIT;
695			break;
696
697		case TIME_WAIT:
698			if (!(time_status & (STA_INS | STA_DEL)))
699				time_state = TIME_OK;
700		default:
701			break;
702		}
703
704		/*
705		 * Compute the phase adjustment for the next second. In
706		 * PLL mode, the offset is reduced by a fixed factor
707		 * times the time constant. In FLL mode the offset is
708		 * used directly. In either mode, the maximum phase
709		 * adjustment for each second is clamped so as to spread
710		 * the adjustment over not more than the number of
711		 * seconds between updates.
712		 */
713		if (time_offset == 0)
714			time_adj = 0;
715		else if (time_offset < 0) {
716			lltemp = -time_offset;
717			if (!(time_status & STA_FLL)) {
718				if ((1 << time_constant) >= SCALE_KG)
719					lltemp *= (1 << time_constant) /
720					    SCALE_KG;
721				else
722					lltemp = (lltemp / SCALE_KG) >>
723					    time_constant;
724			}
725			if (lltemp > (MAXPHASE / MINSEC) * SCALE_UPDATE)
726				lltemp = (MAXPHASE / MINSEC) * SCALE_UPDATE;
727			time_offset += lltemp;
728			time_adj = -(lltemp * SCALE_PHASE) / hz / SCALE_UPDATE;
729		} else {
730			lltemp = time_offset;
731			if (!(time_status & STA_FLL)) {
732				if ((1 << time_constant) >= SCALE_KG)
733					lltemp *= (1 << time_constant) /
734					    SCALE_KG;
735				else
736					lltemp = (lltemp / SCALE_KG) >>
737					    time_constant;
738			}
739			if (lltemp > (MAXPHASE / MINSEC) * SCALE_UPDATE)
740				lltemp = (MAXPHASE / MINSEC) * SCALE_UPDATE;
741			time_offset -= lltemp;
742			time_adj = (lltemp * SCALE_PHASE) / hz / SCALE_UPDATE;
743		}
744
745		/*
746		 * Compute the frequency estimate and additional phase
747		 * adjustment due to frequency error for the next
748		 * second. When the PPS signal is engaged, gnaw on the
749		 * watchdog counter and update the frequency computed by
750		 * the pll and the PPS signal.
751		 */
752		pps_valid++;
753		if (pps_valid == PPS_VALID) {
754			pps_jitter = MAXTIME;
755			pps_stabil = MAXFREQ;
756			time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
757			    STA_PPSWANDER | STA_PPSERROR);
758		}
759		lltemp = time_freq + pps_freq;
760
761		if (lltemp)
762			time_adj += (lltemp * SCALE_PHASE) / (SCALE_USEC * hz);
763
764		/*
765		 * End of precision kernel-code fragment
766		 *
767		 * The section below should be modified if we are planning
768		 * to use NTP for synchronization.
769		 *
770		 * Note: the clock synchronization code now assumes
771		 * the following:
772		 *   - if dosynctodr is 1, then compute the drift between
773		 *	the tod chip and software time and adjust one or
774		 *	the other depending on the circumstances
775		 *
776		 *   - if dosynctodr is 0, then the tod chip is independent
777		 *	of the software clock and should not be adjusted,
778		 *	but allowed to free run.  this allows NTP to sync.
779		 *	hrestime without any interference from the tod chip.
780		 */
781
782		tod_validate_deferred = B_FALSE;
783		mutex_enter(&tod_lock);
784		tod = tod_get();
785		drift = tod.tv_sec - hrestime.tv_sec;
786		absdrift = (drift >= 0) ? drift : -drift;
787		if (tod_needsync || absdrift > 1) {
788			int s;
789			if (absdrift > 2) {
790				if (!tod_broken && tod_faulted == TOD_NOFAULT) {
791					s = hr_clock_lock();
792					hrestime = tod;
793					membar_enter();	/* hrestime visible */
794					timedelta = 0;
795					timechanged++;
796					tod_needsync = 0;
797					hr_clock_unlock(s);
798					callout_hrestime();
799
800				}
801			} else {
802				if (tod_needsync || !dosynctodr) {
803					gethrestime(&tod);
804					tod_set(tod);
805					s = hr_clock_lock();
806					if (timedelta == 0)
807						tod_needsync = 0;
808					hr_clock_unlock(s);
809				} else {
810					/*
811					 * If the drift is 2 seconds on the
812					 * money, then the TOD is adjusting
813					 * the clock;  record that.
814					 */
815					clock_adj_hist[adj_hist_entry++ %
816					    CLOCK_ADJ_HIST_SIZE] = now;
817					s = hr_clock_lock();
818					timedelta = (int64_t)drift*NANOSEC;
819					hr_clock_unlock(s);
820				}
821			}
822		}
823		one_sec = 0;
824		time = gethrestime_sec();  /* for crusty old kmem readers */
825		mutex_exit(&tod_lock);
826
827		/*
828		 * Some drivers still depend on this... XXX
829		 */
830		cv_broadcast(&lbolt_cv);
831
832		vminfo.freemem += freemem;
833		{
834			pgcnt_t maxswap, resv, free;
835			pgcnt_t avail =
836			    MAX((spgcnt_t)(availrmem - swapfs_minfree), 0);
837
838			maxswap = k_anoninfo.ani_mem_resv +
839			    k_anoninfo.ani_max +avail;
840			/* Update ani_free */
841			set_anoninfo();
842			free = k_anoninfo.ani_free + avail;
843			resv = k_anoninfo.ani_phys_resv +
844			    k_anoninfo.ani_mem_resv;
845
846			vminfo.swap_resv += resv;
847			/* number of reserved and allocated pages */
848#ifdef	DEBUG
849			if (maxswap < free)
850				cmn_err(CE_WARN, "clock: maxswap < free");
851			if (maxswap < resv)
852				cmn_err(CE_WARN, "clock: maxswap < resv");
853#endif
854			vminfo.swap_alloc += maxswap - free;
855			vminfo.swap_avail += maxswap - resv;
856			vminfo.swap_free += free;
857		}
858		vminfo.updates++;
859		if (nrunnable) {
860			sysinfo.runque += nrunnable;
861			sysinfo.runocc++;
862		}
863		if (nswapped) {
864			sysinfo.swpque += nswapped;
865			sysinfo.swpocc++;
866		}
867		sysinfo.waiting += w_io;
868		sysinfo.updates++;
869
870		/*
871		 * Wake up fsflush to write out DELWRI
872		 * buffers, dirty pages and other cached
873		 * administrative data, e.g. inodes.
874		 */
875		if (--fsflushcnt <= 0) {
876			fsflushcnt = tune.t_fsflushr;
877			cv_signal(&fsflush_cv);
878		}
879
880		vmmeter();
881		calcloadavg(genloadavg(&loadavg), hp_avenrun);
882		for (i = 0; i < 3; i++)
883			/*
884			 * At the moment avenrun[] can only hold 31
885			 * bits of load average as it is a signed
886			 * int in the API. We need to ensure that
887			 * hp_avenrun[i] >> (16 - FSHIFT) will not be
888			 * too large. If it is, we put the largest value
889			 * that we can use into avenrun[i]. This is
890			 * kludgey, but about all we can do until we
891			 * avenrun[] is declared as an array of uint64[]
892			 */
893			if (hp_avenrun[i] < ((uint64_t)1<<(31+16-FSHIFT)))
894				avenrun[i] = (int32_t)(hp_avenrun[i] >>
895				    (16 - FSHIFT));
896			else
897				avenrun[i] = 0x7fffffff;
898
899		cpupart = cp_list_head;
900		do {
901			calcloadavg(genloadavg(&cpupart->cp_loadavg),
902			    cpupart->cp_hp_avenrun);
903		} while ((cpupart = cpupart->cp_next) != cp_list_head);
904
905		/*
906		 * Wake up the swapper thread if necessary.
907		 */
908		if (runin ||
909		    (runout && (avefree < desfree || wake_sched_sec))) {
910			t = &t0;
911			thread_lock(t);
912			if (t->t_state == TS_STOPPED) {
913				runin = runout = 0;
914				wake_sched_sec = 0;
915				t->t_whystop = 0;
916				t->t_whatstop = 0;
917				t->t_schedflag &= ~TS_ALLSTART;
918				THREAD_TRANSITION(t);
919				setfrontdq(t);
920			}
921			thread_unlock(t);
922		}
923	}
924
925	/*
926	 * Wake up the swapper if any high priority swapped-out threads
927	 * became runable during the last tick.
928	 */
929	if (wake_sched) {
930		t = &t0;
931		thread_lock(t);
932		if (t->t_state == TS_STOPPED) {
933			runin = runout = 0;
934			wake_sched = 0;
935			t->t_whystop = 0;
936			t->t_whatstop = 0;
937			t->t_schedflag &= ~TS_ALLSTART;
938			THREAD_TRANSITION(t);
939			setfrontdq(t);
940		}
941		thread_unlock(t);
942	}
943}
944
945void
946clock_init(void)
947{
948	cyc_handler_t clk_hdlr, timer_hdlr, lbolt_hdlr;
949	cyc_time_t clk_when, lbolt_when;
950	int i, sz;
951	intptr_t buf;
952
953	/*
954	 * Setup handler and timer for the clock cyclic.
955	 */
956	clk_hdlr.cyh_func = (cyc_func_t)clock;
957	clk_hdlr.cyh_level = CY_LOCK_LEVEL;
958	clk_hdlr.cyh_arg = NULL;
959
960	clk_when.cyt_when = 0;
961	clk_when.cyt_interval = nsec_per_tick;
962
963	/*
964	 * cyclic_timer is dedicated to the ddi interface, which
965	 * uses the same clock resolution as the system one.
966	 */
967	timer_hdlr.cyh_func = (cyc_func_t)cyclic_timer;
968	timer_hdlr.cyh_level = CY_LOCK_LEVEL;
969	timer_hdlr.cyh_arg = NULL;
970
971	/*
972	 * The lbolt cyclic will be reprogramed to fire at a nsec_per_tick
973	 * interval to satisfy performance needs of the DDI lbolt consumers.
974	 * It is off by default.
975	 */
976	lbolt_hdlr.cyh_func = (cyc_func_t)lbolt_cyclic;
977	lbolt_hdlr.cyh_level = CY_LOCK_LEVEL;
978	lbolt_hdlr.cyh_arg = NULL;
979
980	lbolt_when.cyt_interval = nsec_per_tick;
981
982	/*
983	 * Allocate cache line aligned space for the per CPU lbolt data and
984	 * lbolt info structures, and initialize them with their default
985	 * values. Note that these structures are also cache line sized.
986	 */
987	sz = sizeof (lbolt_info_t) + CPU_CACHE_COHERENCE_SIZE;
988	buf = (intptr_t)kmem_zalloc(sz, KM_SLEEP);
989	lb_info = (lbolt_info_t *)P2ROUNDUP(buf, CPU_CACHE_COHERENCE_SIZE);
990
991	if (hz != HZ_DEFAULT)
992		lb_info->lbi_thresh_interval = LBOLT_THRESH_INTERVAL *
993		    hz/HZ_DEFAULT;
994	else
995		lb_info->lbi_thresh_interval = LBOLT_THRESH_INTERVAL;
996
997	lb_info->lbi_thresh_calls = LBOLT_THRESH_CALLS;
998
999	sz = (sizeof (lbolt_cpu_t) * max_ncpus) + CPU_CACHE_COHERENCE_SIZE;
1000	buf = (intptr_t)kmem_zalloc(sz, KM_SLEEP);
1001	lb_cpu = (lbolt_cpu_t *)P2ROUNDUP(buf, CPU_CACHE_COHERENCE_SIZE);
1002
1003	for (i = 0; i < max_ncpus; i++)
1004		lb_cpu[i].lbc_counter = lb_info->lbi_thresh_calls;
1005
1006	/*
1007	 * Install the softint used to switch between event and cyclic driven
1008	 * lbolt. We use a soft interrupt to make sure the context of the
1009	 * cyclic reprogram call is safe.
1010	 */
1011	lbolt_softint_add();
1012
1013	/*
1014	 * Since the hybrid lbolt implementation is based on a hardware counter
1015	 * that is reset at every hardware reboot and that we'd like to have
1016	 * the lbolt value starting at zero after both a hardware and a fast
1017	 * reboot, we calculate the number of clock ticks the system's been up
1018	 * and store it in the lbi_debug_time field of the lbolt info structure.
1019	 * The value of this field will be subtracted from lbolt before
1020	 * returning it.
1021	 */
1022	lb_info->lbi_internal = lb_info->lbi_debug_time =
1023	    (gethrtime()/nsec_per_tick);
1024
1025	/*
1026	 * lbolt_hybrid points at lbolt_bootstrap until now. The LBOLT_* macros
1027	 * and lbolt_debug_{enter,return} use this value as an indication that
1028	 * the initializaion above hasn't been completed. Setting lbolt_hybrid
1029	 * to either lbolt_{cyclic,event}_driven here signals those code paths
1030	 * that the lbolt related structures can be used.
1031	 */
1032	if (lbolt_cyc_only) {
1033		lbolt_when.cyt_when = 0;
1034		lbolt_hybrid = lbolt_cyclic_driven;
1035	} else {
1036		lbolt_when.cyt_when = CY_INFINITY;
1037		lbolt_hybrid = lbolt_event_driven;
1038	}
1039
1040	/*
1041	 * Grab cpu_lock and install all three cyclics.
1042	 */
1043	mutex_enter(&cpu_lock);
1044
1045	clock_cyclic = cyclic_add(&clk_hdlr, &clk_when);
1046	ddi_timer_cyclic = cyclic_add(&timer_hdlr, &clk_when);
1047	lb_info->id.lbi_cyclic_id = cyclic_add(&lbolt_hdlr, &lbolt_when);
1048
1049	mutex_exit(&cpu_lock);
1050}
1051
1052/*
1053 * Called before calcloadavg to get 10-sec moving loadavg together
1054 */
1055
1056static int
1057genloadavg(struct loadavg_s *avgs)
1058{
1059	int avg;
1060	int spos; /* starting position */
1061	int cpos; /* moving current position */
1062	int i;
1063	int slen;
1064	hrtime_t hr_avg;
1065
1066	/* 10-second snapshot, calculate first positon */
1067	if (avgs->lg_len == 0) {
1068		return (0);
1069	}
1070	slen = avgs->lg_len < S_MOVAVG_SZ ? avgs->lg_len : S_MOVAVG_SZ;
1071
1072	spos = (avgs->lg_cur - 1) >= 0 ? avgs->lg_cur - 1 :
1073	    S_LOADAVG_SZ + (avgs->lg_cur - 1);
1074	for (i = hr_avg = 0; i < slen; i++) {
1075		cpos = (spos - i) >= 0 ? spos - i : S_LOADAVG_SZ + (spos - i);
1076		hr_avg += avgs->lg_loads[cpos];
1077	}
1078
1079	hr_avg = hr_avg / slen;
1080	avg = hr_avg / (NANOSEC / LGRP_LOADAVG_IN_THREAD_MAX);
1081
1082	return (avg);
1083}
1084
1085/*
1086 * Run every second from clock () to update the loadavg count available to the
1087 * system and cpu-partitions.
1088 *
1089 * This works by sampling the previous usr, sys, wait time elapsed,
1090 * computing a delta, and adding that delta to the elapsed usr, sys,
1091 * wait increase.
1092 */
1093
1094static void
1095loadavg_update()
1096{
1097	cpu_t *cp;
1098	cpupart_t *cpupart;
1099	hrtime_t cpu_total;
1100	int prev;
1101
1102	cp = cpu_list;
1103	loadavg.lg_total = 0;
1104
1105	/*
1106	 * first pass totals up per-cpu statistics for system and cpu
1107	 * partitions
1108	 */
1109
1110	do {
1111		struct loadavg_s *lavg;
1112
1113		lavg = &cp->cpu_loadavg;
1114
1115		cpu_total = cp->cpu_acct[CMS_USER] +
1116		    cp->cpu_acct[CMS_SYSTEM] + cp->cpu_waitrq;
1117		/* compute delta against last total */
1118		scalehrtime(&cpu_total);
1119		prev = (lavg->lg_cur - 1) >= 0 ? lavg->lg_cur - 1 :
1120		    S_LOADAVG_SZ + (lavg->lg_cur - 1);
1121		if (lavg->lg_loads[prev] <= 0) {
1122			lavg->lg_loads[lavg->lg_cur] = cpu_total;
1123			cpu_total = 0;
1124		} else {
1125			lavg->lg_loads[lavg->lg_cur] = cpu_total;
1126			cpu_total = cpu_total - lavg->lg_loads[prev];
1127			if (cpu_total < 0)
1128				cpu_total = 0;
1129		}
1130
1131		lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ;
1132		lavg->lg_len = (lavg->lg_len + 1) < S_LOADAVG_SZ ?
1133		    lavg->lg_len + 1 : S_LOADAVG_SZ;
1134
1135		loadavg.lg_total += cpu_total;
1136		cp->cpu_part->cp_loadavg.lg_total += cpu_total;
1137
1138	} while ((cp = cp->cpu_next) != cpu_list);
1139
1140	loadavg.lg_loads[loadavg.lg_cur] = loadavg.lg_total;
1141	loadavg.lg_cur = (loadavg.lg_cur + 1) % S_LOADAVG_SZ;
1142	loadavg.lg_len = (loadavg.lg_len + 1) < S_LOADAVG_SZ ?
1143	    loadavg.lg_len + 1 : S_LOADAVG_SZ;
1144	/*
1145	 * Second pass updates counts
1146	 */
1147	cpupart = cp_list_head;
1148
1149	do {
1150		struct loadavg_s *lavg;
1151
1152		lavg = &cpupart->cp_loadavg;
1153		lavg->lg_loads[lavg->lg_cur] = lavg->lg_total;
1154		lavg->lg_total = 0;
1155		lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ;
1156		lavg->lg_len = (lavg->lg_len + 1) < S_LOADAVG_SZ ?
1157		    lavg->lg_len + 1 : S_LOADAVG_SZ;
1158
1159	} while ((cpupart = cpupart->cp_next) != cp_list_head);
1160
1161}
1162
1163/*
1164 * clock_update() - local clock update
1165 *
1166 * This routine is called by ntp_adjtime() to update the local clock
1167 * phase and frequency. The implementation is of an
1168 * adaptive-parameter, hybrid phase/frequency-lock loop (PLL/FLL). The
1169 * routine computes new time and frequency offset estimates for each
1170 * call.  The PPS signal itself determines the new time offset,
1171 * instead of the calling argument.  Presumably, calls to
1172 * ntp_adjtime() occur only when the caller believes the local clock
1173 * is valid within some bound (+-128 ms with NTP). If the caller's
1174 * time is far different than the PPS time, an argument will ensue,
1175 * and it's not clear who will lose.
1176 *
1177 * For uncompensated quartz crystal oscillatores and nominal update
1178 * intervals less than 1024 s, operation should be in phase-lock mode
1179 * (STA_FLL = 0), where the loop is disciplined to phase. For update
1180 * intervals greater than this, operation should be in frequency-lock
1181 * mode (STA_FLL = 1), where the loop is disciplined to frequency.
1182 *
1183 * Note: mutex(&tod_lock) is in effect.
1184 */
1185void
1186clock_update(int offset)
1187{
1188	int ltemp, mtemp, s;
1189
1190	ASSERT(MUTEX_HELD(&tod_lock));
1191
1192	if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME))
1193		return;
1194	ltemp = offset;
1195	if ((time_status & STA_PPSTIME) && (time_status & STA_PPSSIGNAL))
1196		ltemp = pps_offset;
1197
1198	/*
1199	 * Scale the phase adjustment and clamp to the operating range.
1200	 */
1201	if (ltemp > MAXPHASE)
1202		time_offset = MAXPHASE * SCALE_UPDATE;
1203	else if (ltemp < -MAXPHASE)
1204		time_offset = -(MAXPHASE * SCALE_UPDATE);
1205	else
1206		time_offset = ltemp * SCALE_UPDATE;
1207
1208	/*
1209	 * Select whether the frequency is to be controlled and in which
1210	 * mode (PLL or FLL). Clamp to the operating range. Ugly
1211	 * multiply/divide should be replaced someday.
1212	 */
1213	if (time_status & STA_FREQHOLD || time_reftime == 0)
1214		time_reftime = hrestime.tv_sec;
1215
1216	mtemp = hrestime.tv_sec - time_reftime;
1217	time_reftime = hrestime.tv_sec;
1218
1219	if (time_status & STA_FLL) {
1220		if (mtemp >= MINSEC) {
1221			ltemp = ((time_offset / mtemp) * (SCALE_USEC /
1222			    SCALE_UPDATE));
1223			if (ltemp)
1224				time_freq += ltemp / SCALE_KH;
1225		}
1226	} else {
1227		if (mtemp < MAXSEC) {
1228			ltemp *= mtemp;
1229			if (ltemp)
1230				time_freq += (int)(((int64_t)ltemp *
1231				    SCALE_USEC) / SCALE_KF)
1232				    / (1 << (time_constant * 2));
1233		}
1234	}
1235	if (time_freq > time_tolerance)
1236		time_freq = time_tolerance;
1237	else if (time_freq < -time_tolerance)
1238		time_freq = -time_tolerance;
1239
1240	s = hr_clock_lock();
1241	tod_needsync = 1;
1242	hr_clock_unlock(s);
1243}
1244
1245/*
1246 * ddi_hardpps() - discipline CPU clock oscillator to external PPS signal
1247 *
1248 * This routine is called at each PPS interrupt in order to discipline
1249 * the CPU clock oscillator to the PPS signal. It measures the PPS phase
1250 * and leaves it in a handy spot for the clock() routine. It
1251 * integrates successive PPS phase differences and calculates the
1252 * frequency offset. This is used in clock() to discipline the CPU
1253 * clock oscillator so that intrinsic frequency error is cancelled out.
1254 * The code requires the caller to capture the time and hardware counter
1255 * value at the on-time PPS signal transition.
1256 *
1257 * Note that, on some Unix systems, this routine runs at an interrupt
1258 * priority level higher than the timer interrupt routine clock().
1259 * Therefore, the variables used are distinct from the clock()
1260 * variables, except for certain exceptions: The PPS frequency pps_freq
1261 * and phase pps_offset variables are determined by this routine and
1262 * updated atomically. The time_tolerance variable can be considered a
1263 * constant, since it is infrequently changed, and then only when the
1264 * PPS signal is disabled. The watchdog counter pps_valid is updated
1265 * once per second by clock() and is atomically cleared in this
1266 * routine.
1267 *
1268 * tvp is the time of the last tick; usec is a microsecond count since the
1269 * last tick.
1270 *
1271 * Note: In Solaris systems, the tick value is actually given by
1272 *       usec_per_tick.  This is called from the serial driver cdintr(),
1273 *	 or equivalent, at a high PIL.  Because the kernel keeps a
1274 *	 highresolution time, the following code can accept either
1275 *	 the traditional argument pair, or the current highres timestamp
1276 *       in tvp and zero in usec.
1277 */
1278void
1279ddi_hardpps(struct timeval *tvp, int usec)
1280{
1281	int u_usec, v_usec, bigtick;
1282	time_t cal_sec;
1283	int cal_usec;
1284
1285	/*
1286	 * An occasional glitch can be produced when the PPS interrupt
1287	 * occurs in the clock() routine before the time variable is
1288	 * updated. Here the offset is discarded when the difference
1289	 * between it and the last one is greater than tick/2, but not
1290	 * if the interval since the first discard exceeds 30 s.
1291	 */
1292	time_status |= STA_PPSSIGNAL;
1293	time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
1294	pps_valid = 0;
1295	u_usec = -tvp->tv_usec;
1296	if (u_usec < -(MICROSEC/2))
1297		u_usec += MICROSEC;
1298	v_usec = pps_offset - u_usec;
1299	if (v_usec < 0)
1300		v_usec = -v_usec;
1301	if (v_usec > (usec_per_tick >> 1)) {
1302		if (pps_glitch > MAXGLITCH) {
1303			pps_glitch = 0;
1304			pps_tf[2] = u_usec;
1305			pps_tf[1] = u_usec;
1306		} else {
1307			pps_glitch++;
1308			u_usec = pps_offset;
1309		}
1310	} else
1311		pps_glitch = 0;
1312
1313	/*
1314	 * A three-stage median filter is used to help deglitch the pps
1315	 * time. The median sample becomes the time offset estimate; the
1316	 * difference between the other two samples becomes the time
1317	 * dispersion (jitter) estimate.
1318	 */
1319	pps_tf[2] = pps_tf[1];
1320	pps_tf[1] = pps_tf[0];
1321	pps_tf[0] = u_usec;
1322	if (pps_tf[0] > pps_tf[1]) {
1323		if (pps_tf[1] > pps_tf[2]) {
1324			pps_offset = pps_tf[1];		/* 0 1 2 */
1325			v_usec = pps_tf[0] - pps_tf[2];
1326		} else if (pps_tf[2] > pps_tf[0]) {
1327			pps_offset = pps_tf[0];		/* 2 0 1 */
1328			v_usec = pps_tf[2] - pps_tf[1];
1329		} else {
1330			pps_offset = pps_tf[2];		/* 0 2 1 */
1331			v_usec = pps_tf[0] - pps_tf[1];
1332		}
1333	} else {
1334		if (pps_tf[1] < pps_tf[2]) {
1335			pps_offset = pps_tf[1];		/* 2 1 0 */
1336			v_usec = pps_tf[2] - pps_tf[0];
1337		} else  if (pps_tf[2] < pps_tf[0]) {
1338			pps_offset = pps_tf[0];		/* 1 0 2 */
1339			v_usec = pps_tf[1] - pps_tf[2];
1340		} else {
1341			pps_offset = pps_tf[2];		/* 1 2 0 */
1342			v_usec = pps_tf[1] - pps_tf[0];
1343		}
1344	}
1345	if (v_usec > MAXTIME)
1346		pps_jitcnt++;
1347	v_usec = (v_usec << PPS_AVG) - pps_jitter;
1348	pps_jitter += v_usec / (1 << PPS_AVG);
1349	if (pps_jitter > (MAXTIME >> 1))
1350		time_status |= STA_PPSJITTER;
1351
1352	/*
1353	 * During the calibration interval adjust the starting time when
1354	 * the tick overflows. At the end of the interval compute the
1355	 * duration of the interval and the difference of the hardware
1356	 * counters at the beginning and end of the interval. This code
1357	 * is deliciously complicated by the fact valid differences may
1358	 * exceed the value of tick when using long calibration
1359	 * intervals and small ticks. Note that the counter can be
1360	 * greater than tick if caught at just the wrong instant, but
1361	 * the values returned and used here are correct.
1362	 */
1363	bigtick = (int)usec_per_tick * SCALE_USEC;
1364	pps_usec -= pps_freq;
1365	if (pps_usec >= bigtick)
1366		pps_usec -= bigtick;
1367	if (pps_usec < 0)
1368		pps_usec += bigtick;
1369	pps_time.tv_sec++;
1370	pps_count++;
1371	if (pps_count < (1 << pps_shift))
1372		return;
1373	pps_count = 0;
1374	pps_calcnt++;
1375	u_usec = usec * SCALE_USEC;
1376	v_usec = pps_usec - u_usec;
1377	if (v_usec >= bigtick >> 1)
1378		v_usec -= bigtick;
1379	if (v_usec < -(bigtick >> 1))
1380		v_usec += bigtick;
1381	if (v_usec < 0)
1382		v_usec = -(-v_usec >> pps_shift);
1383	else
1384		v_usec = v_usec >> pps_shift;
1385	pps_usec = u_usec;
1386	cal_sec = tvp->tv_sec;
1387	cal_usec = tvp->tv_usec;
1388	cal_sec -= pps_time.tv_sec;
1389	cal_usec -= pps_time.tv_usec;
1390	if (cal_usec < 0) {
1391		cal_usec += MICROSEC;
1392		cal_sec--;
1393	}
1394	pps_time = *tvp;
1395
1396	/*
1397	 * Check for lost interrupts, noise, excessive jitter and
1398	 * excessive frequency error. The number of timer ticks during
1399	 * the interval may vary +-1 tick. Add to this a margin of one
1400	 * tick for the PPS signal jitter and maximum frequency
1401	 * deviation. If the limits are exceeded, the calibration
1402	 * interval is reset to the minimum and we start over.
1403	 */
1404	u_usec = (int)usec_per_tick << 1;
1405	if (!((cal_sec == -1 && cal_usec > (MICROSEC - u_usec)) ||
1406	    (cal_sec == 0 && cal_usec < u_usec)) ||
1407	    v_usec > time_tolerance || v_usec < -time_tolerance) {
1408		pps_errcnt++;
1409		pps_shift = PPS_SHIFT;
1410		pps_intcnt = 0;
1411		time_status |= STA_PPSERROR;
1412		return;
1413	}
1414
1415	/*
1416	 * A three-stage median filter is used to help deglitch the pps
1417	 * frequency. The median sample becomes the frequency offset
1418	 * estimate; the difference between the other two samples
1419	 * becomes the frequency dispersion (stability) estimate.
1420	 */
1421	pps_ff[2] = pps_ff[1];
1422	pps_ff[1] = pps_ff[0];
1423	pps_ff[0] = v_usec;
1424	if (pps_ff[0] > pps_ff[1]) {
1425		if (pps_ff[1] > pps_ff[2]) {
1426			u_usec = pps_ff[1];		/* 0 1 2 */
1427			v_usec = pps_ff[0] - pps_ff[2];
1428		} else if (pps_ff[2] > pps_ff[0]) {
1429			u_usec = pps_ff[0];		/* 2 0 1 */
1430			v_usec = pps_ff[2] - pps_ff[1];
1431		} else {
1432			u_usec = pps_ff[2];		/* 0 2 1 */
1433			v_usec = pps_ff[0] - pps_ff[1];
1434		}
1435	} else {
1436		if (pps_ff[1] < pps_ff[2]) {
1437			u_usec = pps_ff[1];		/* 2 1 0 */
1438			v_usec = pps_ff[2] - pps_ff[0];
1439		} else  if (pps_ff[2] < pps_ff[0]) {
1440			u_usec = pps_ff[0];		/* 1 0 2 */
1441			v_usec = pps_ff[1] - pps_ff[2];
1442		} else {
1443			u_usec = pps_ff[2];		/* 1 2 0 */
1444			v_usec = pps_ff[1] - pps_ff[0];
1445		}
1446	}
1447
1448	/*
1449	 * Here the frequency dispersion (stability) is updated. If it
1450	 * is less than one-fourth the maximum (MAXFREQ), the frequency
1451	 * offset is updated as well, but clamped to the tolerance. It
1452	 * will be processed later by the clock() routine.
1453	 */
1454	v_usec = (v_usec >> 1) - pps_stabil;
1455	if (v_usec < 0)
1456		pps_stabil -= -v_usec >> PPS_AVG;
1457	else
1458		pps_stabil += v_usec >> PPS_AVG;
1459	if (pps_stabil > MAXFREQ >> 2) {
1460		pps_stbcnt++;
1461		time_status |= STA_PPSWANDER;
1462		return;
1463	}
1464	if (time_status & STA_PPSFREQ) {
1465		if (u_usec < 0) {
1466			pps_freq -= -u_usec >> PPS_AVG;
1467			if (pps_freq < -time_tolerance)
1468				pps_freq = -time_tolerance;
1469			u_usec = -u_usec;
1470		} else {
1471			pps_freq += u_usec >> PPS_AVG;
1472			if (pps_freq > time_tolerance)
1473				pps_freq = time_tolerance;
1474		}
1475	}
1476
1477	/*
1478	 * Here the calibration interval is adjusted. If the maximum
1479	 * time difference is greater than tick / 4, reduce the interval
1480	 * by half. If this is not the case for four consecutive
1481	 * intervals, double the interval.
1482	 */
1483	if (u_usec << pps_shift > bigtick >> 2) {
1484		pps_intcnt = 0;
1485		if (pps_shift > PPS_SHIFT)
1486			pps_shift--;
1487	} else if (pps_intcnt >= 4) {
1488		pps_intcnt = 0;
1489		if (pps_shift < PPS_SHIFTMAX)
1490			pps_shift++;
1491	} else
1492		pps_intcnt++;
1493
1494	/*
1495	 * If recovering from kmdb, then make sure the tod chip gets resynced.
1496	 * If we took an early exit above, then we don't yet have a stable
1497	 * calibration signal to lock onto, so don't mark the tod for sync
1498	 * until we get all the way here.
1499	 */
1500	{
1501		int s = hr_clock_lock();
1502
1503		tod_needsync = 1;
1504		hr_clock_unlock(s);
1505	}
1506}
1507
1508/*
1509 * Handle clock tick processing for a thread.
1510 * Check for timer action, enforce CPU rlimit, do profiling etc.
1511 */
1512void
1513clock_tick(kthread_t *t, int pending)
1514{
1515	struct proc *pp;
1516	klwp_id_t    lwp;
1517	struct as *as;
1518	clock_t	ticks;
1519	int	poke = 0;		/* notify another CPU */
1520	int	user_mode;
1521	size_t	 rss;
1522	int i, total_usec, usec;
1523	rctl_qty_t secs;
1524
1525	ASSERT(pending > 0);
1526
1527	/* Must be operating on a lwp/thread */
1528	if ((lwp = ttolwp(t)) == NULL) {
1529		panic("clock_tick: no lwp");
1530		/*NOTREACHED*/
1531	}
1532
1533	for (i = 0; i < pending; i++) {
1534		CL_TICK(t);	/* Class specific tick processing */
1535		DTRACE_SCHED1(tick, kthread_t *, t);
1536	}
1537
1538	pp = ttoproc(t);
1539
1540	/* pp->p_lock makes sure that the thread does not exit */
1541	ASSERT(MUTEX_HELD(&pp->p_lock));
1542
1543	user_mode = (lwp->lwp_state == LWP_USER);
1544
1545	ticks = (pp->p_utime + pp->p_stime) % hz;
1546	/*
1547	 * Update process times. Should use high res clock and state
1548	 * changes instead of statistical sampling method. XXX
1549	 */
1550	if (user_mode) {
1551		pp->p_utime += pending;
1552	} else {
1553		pp->p_stime += pending;
1554	}
1555
1556	pp->p_ttime += pending;
1557	as = pp->p_as;
1558
1559	/*
1560	 * Update user profiling statistics. Get the pc from the
1561	 * lwp when the AST happens.
1562	 */
1563	if (pp->p_prof.pr_scale) {
1564		atomic_add_32(&lwp->lwp_oweupc, (int32_t)pending);
1565		if (user_mode) {
1566			poke = 1;
1567			aston(t);
1568		}
1569	}
1570
1571	/*
1572	 * If CPU was in user state, process lwp-virtual time
1573	 * interval timer. The value passed to itimerdecr() has to be
1574	 * in microseconds and has to be less than one second. Hence
1575	 * this loop.
1576	 */
1577	total_usec = usec_per_tick * pending;
1578	while (total_usec > 0) {
1579		usec = MIN(total_usec, (MICROSEC - 1));
1580		if (user_mode &&
1581		    timerisset(&lwp->lwp_timer[ITIMER_VIRTUAL].it_value) &&
1582		    itimerdecr(&lwp->lwp_timer[ITIMER_VIRTUAL], usec) == 0) {
1583			poke = 1;
1584			sigtoproc(pp, t, SIGVTALRM);
1585		}
1586		total_usec -= usec;
1587	}
1588
1589	/*
1590	 * If CPU was in user state, process lwp-profile
1591	 * interval timer.
1592	 */
1593	total_usec = usec_per_tick * pending;
1594	while (total_usec > 0) {
1595		usec = MIN(total_usec, (MICROSEC - 1));
1596		if (timerisset(&lwp->lwp_timer[ITIMER_PROF].it_value) &&
1597		    itimerdecr(&lwp->lwp_timer[ITIMER_PROF], usec) == 0) {
1598			poke = 1;
1599			sigtoproc(pp, t, SIGPROF);
1600		}
1601		total_usec -= usec;
1602	}
1603
1604	/*
1605	 * Enforce CPU resource controls:
1606	 *   (a) process.max-cpu-time resource control
1607	 *
1608	 * Perform the check only if we have accumulated more a second.
1609	 */
1610	if ((ticks + pending) >= hz) {
1611		(void) rctl_test(rctlproc_legacy[RLIMIT_CPU], pp->p_rctls, pp,
1612		    (pp->p_utime + pp->p_stime)/hz, RCA_UNSAFE_SIGINFO);
1613	}
1614
1615	/*
1616	 *   (b) task.max-cpu-time resource control
1617	 *
1618	 * If we have accumulated enough ticks, increment the task CPU
1619	 * time usage and test for the resource limit. This minimizes the
1620	 * number of calls to the rct_test(). The task CPU time mutex
1621	 * is highly contentious as many processes can be sharing a task.
1622	 */
1623	if (pp->p_ttime >= clock_tick_proc_max) {
1624		secs = task_cpu_time_incr(pp->p_task, pp->p_ttime);
1625		pp->p_ttime = 0;
1626		if (secs) {
1627			(void) rctl_test(rc_task_cpu_time, pp->p_task->tk_rctls,
1628			    pp, secs, RCA_UNSAFE_SIGINFO);
1629		}
1630	}
1631
1632	/*
1633	 * Update memory usage for the currently running process.
1634	 */
1635	rss = rm_asrss(as);
1636	PTOU(pp)->u_mem += rss;
1637	if (rss > PTOU(pp)->u_mem_max)
1638		PTOU(pp)->u_mem_max = rss;
1639
1640	/*
1641	 * Notify the CPU the thread is running on.
1642	 */
1643	if (poke && t->t_cpu != CPU)
1644		poke_cpu(t->t_cpu->cpu_id);
1645}
1646
1647void
1648profil_tick(uintptr_t upc)
1649{
1650	int ticks;
1651	proc_t *p = ttoproc(curthread);
1652	klwp_t *lwp = ttolwp(curthread);
1653	struct prof *pr = &p->p_prof;
1654
1655	do {
1656		ticks = lwp->lwp_oweupc;
1657	} while (cas32(&lwp->lwp_oweupc, ticks, 0) != ticks);
1658
1659	mutex_enter(&p->p_pflock);
1660	if (pr->pr_scale >= 2 && upc >= pr->pr_off) {
1661		/*
1662		 * Old-style profiling
1663		 */
1664		uint16_t *slot = pr->pr_base;
1665		uint16_t old, new;
1666		if (pr->pr_scale != 2) {
1667			uintptr_t delta = upc - pr->pr_off;
1668			uintptr_t byteoff = ((delta >> 16) * pr->pr_scale) +
1669			    (((delta & 0xffff) * pr->pr_scale) >> 16);
1670			if (byteoff >= (uintptr_t)pr->pr_size) {
1671				mutex_exit(&p->p_pflock);
1672				return;
1673			}
1674			slot += byteoff / sizeof (uint16_t);
1675		}
1676		if (fuword16(slot, &old) < 0 ||
1677		    (new = old + ticks) > SHRT_MAX ||
1678		    suword16(slot, new) < 0) {
1679			pr->pr_scale = 0;
1680		}
1681	} else if (pr->pr_scale == 1) {
1682		/*
1683		 * PC Sampling
1684		 */
1685		model_t model = lwp_getdatamodel(lwp);
1686		int result;
1687#ifdef __lint
1688		model = model;
1689#endif
1690		while (ticks-- > 0) {
1691			if (pr->pr_samples == pr->pr_size) {
1692				/* buffer full, turn off sampling */
1693				pr->pr_scale = 0;
1694				break;
1695			}
1696			switch (SIZEOF_PTR(model)) {
1697			case sizeof (uint32_t):
1698				result = suword32(pr->pr_base, (uint32_t)upc);
1699				break;
1700#ifdef _LP64
1701			case sizeof (uint64_t):
1702				result = suword64(pr->pr_base, (uint64_t)upc);
1703				break;
1704#endif
1705			default:
1706				cmn_err(CE_WARN, "profil_tick: unexpected "
1707				    "data model");
1708				result = -1;
1709				break;
1710			}
1711			if (result != 0) {
1712				pr->pr_scale = 0;
1713				break;
1714			}
1715			pr->pr_base = (caddr_t)pr->pr_base + SIZEOF_PTR(model);
1716			pr->pr_samples++;
1717		}
1718	}
1719	mutex_exit(&p->p_pflock);
1720}
1721
1722static void
1723delay_wakeup(void *arg)
1724{
1725	kthread_t	*t = arg;
1726
1727	mutex_enter(&t->t_delay_lock);
1728	cv_signal(&t->t_delay_cv);
1729	mutex_exit(&t->t_delay_lock);
1730}
1731
1732/*
1733 * The delay(9F) man page indicates that it can only be called from user or
1734 * kernel context - detect and diagnose bad calls. The following macro will
1735 * produce a limited number of messages identifying bad callers.  This is done
1736 * in a macro so that caller() is meaningful. When a bad caller is identified,
1737 * switching to 'drv_usecwait(TICK_TO_USEC(ticks));' may be appropriate.
1738 */
1739#define	DELAY_CONTEXT_CHECK()	{					\
1740	uint32_t	m;						\
1741	char		*f;						\
1742	ulong_t		off;						\
1743									\
1744	m = delay_from_interrupt_msg;					\
1745	if (delay_from_interrupt_diagnose && servicing_interrupt() &&	\
1746	    !panicstr && !devinfo_freeze &&				\
1747	    atomic_cas_32(&delay_from_interrupt_msg, m ? m : 1, m-1)) {	\
1748		f = modgetsymname((uintptr_t)caller(), &off);		\
1749		cmn_err(CE_WARN, "delay(9F) called from "		\
1750		    "interrupt context: %s`%s",				\
1751		    mod_containing_pc(caller()), f ? f : "...");	\
1752	}								\
1753}
1754
1755/*
1756 * delay_common: common delay code.
1757 */
1758static void
1759delay_common(clock_t ticks)
1760{
1761	kthread_t	*t = curthread;
1762	clock_t		deadline;
1763	clock_t		timeleft;
1764	callout_id_t	id;
1765
1766	/* If timeouts aren't running all we can do is spin. */
1767	if (panicstr || devinfo_freeze) {
1768		/* Convert delay(9F) call into drv_usecwait(9F) call. */
1769		if (ticks > 0)
1770			drv_usecwait(TICK_TO_USEC(ticks));
1771		return;
1772	}
1773
1774	deadline = ddi_get_lbolt() + ticks;
1775	while ((timeleft = deadline - ddi_get_lbolt()) > 0) {
1776		mutex_enter(&t->t_delay_lock);
1777		id = timeout_default(delay_wakeup, t, timeleft);
1778		cv_wait(&t->t_delay_cv, &t->t_delay_lock);
1779		mutex_exit(&t->t_delay_lock);
1780		(void) untimeout_default(id, 0);
1781	}
1782}
1783
1784/*
1785 * Delay specified number of clock ticks.
1786 */
1787void
1788delay(clock_t ticks)
1789{
1790	DELAY_CONTEXT_CHECK();
1791
1792	delay_common(ticks);
1793}
1794
1795/*
1796 * Delay a random number of clock ticks between 1 and ticks.
1797 */
1798void
1799delay_random(clock_t ticks)
1800{
1801	int	r;
1802
1803	DELAY_CONTEXT_CHECK();
1804
1805	(void) random_get_pseudo_bytes((void *)&r, sizeof (r));
1806	if (ticks == 0)
1807		ticks = 1;
1808	ticks = (r % ticks) + 1;
1809	delay_common(ticks);
1810}
1811
1812/*
1813 * Like delay, but interruptible by a signal.
1814 */
1815int
1816delay_sig(clock_t ticks)
1817{
1818	kthread_t	*t = curthread;
1819	clock_t		deadline;
1820	clock_t		rc;
1821
1822	/* If timeouts aren't running all we can do is spin. */
1823	if (panicstr || devinfo_freeze) {
1824		if (ticks > 0)
1825			drv_usecwait(TICK_TO_USEC(ticks));
1826		return (0);
1827	}
1828
1829	deadline = ddi_get_lbolt() + ticks;
1830	mutex_enter(&t->t_delay_lock);
1831	do {
1832		rc = cv_timedwait_sig(&t->t_delay_cv,
1833		    &t->t_delay_lock, deadline);
1834		/* loop until past deadline or signaled */
1835	} while (rc > 0);
1836	mutex_exit(&t->t_delay_lock);
1837	if (rc == 0)
1838		return (EINTR);
1839	return (0);
1840}
1841
1842
1843#define	SECONDS_PER_DAY 86400
1844
1845/*
1846 * Initialize the system time based on the TOD chip.  approx is used as
1847 * an approximation of time (e.g. from the filesystem) in the event that
1848 * the TOD chip has been cleared or is unresponsive.  An approx of -1
1849 * means the filesystem doesn't keep time.
1850 */
1851void
1852clkset(time_t approx)
1853{
1854	timestruc_t ts;
1855	int spl;
1856	int set_clock = 0;
1857
1858	mutex_enter(&tod_lock);
1859	ts = tod_get();
1860
1861	if (ts.tv_sec > 365 * SECONDS_PER_DAY) {
1862		/*
1863		 * If the TOD chip is reporting some time after 1971,
1864		 * then it probably didn't lose power or become otherwise
1865		 * cleared in the recent past;  check to assure that
1866		 * the time coming from the filesystem isn't in the future
1867		 * according to the TOD chip.
1868		 */
1869		if (approx != -1 && approx > ts.tv_sec) {
1870			cmn_err(CE_WARN, "Last shutdown is later "
1871			    "than time on time-of-day chip; check date.");
1872		}
1873	} else {
1874		/*
1875		 * If the TOD chip isn't giving correct time, set it to the
1876		 * greater of i) approx and ii) 1987. That way if approx
1877		 * is negative or is earlier than 1987, we set the clock
1878		 * back to a time when Oliver North, ALF and Dire Straits
1879		 * were all on the collective brain:  1987.
1880		 */
1881		timestruc_t tmp;
1882		time_t diagnose_date = (1987 - 1970) * 365 * SECONDS_PER_DAY;
1883		ts.tv_sec = (approx > diagnose_date ? approx : diagnose_date);
1884		ts.tv_nsec = 0;
1885
1886		/*
1887		 * Attempt to write the new time to the TOD chip.  Set spl high
1888		 * to avoid getting preempted between the tod_set and tod_get.
1889		 */
1890		spl = splhi();
1891		tod_set(ts);
1892		tmp = tod_get();
1893		splx(spl);
1894
1895		if (tmp.tv_sec != ts.tv_sec && tmp.tv_sec != ts.tv_sec + 1) {
1896			tod_broken = 1;
1897			dosynctodr = 0;
1898			cmn_err(CE_WARN, "Time-of-day chip unresponsive.");
1899		} else {
1900			cmn_err(CE_WARN, "Time-of-day chip had "
1901			    "incorrect date; check and reset.");
1902		}
1903		set_clock = 1;
1904	}
1905
1906	if (!boot_time) {
1907		boot_time = ts.tv_sec;
1908		set_clock = 1;
1909	}
1910
1911	if (set_clock)
1912		set_hrestime(&ts);
1913
1914	mutex_exit(&tod_lock);
1915}
1916
1917int	timechanged;	/* for testing if the system time has been reset */
1918
1919void
1920set_hrestime(timestruc_t *ts)
1921{
1922	int spl = hr_clock_lock();
1923	hrestime = *ts;
1924	membar_enter();	/* hrestime must be visible before timechanged++ */
1925	timedelta = 0;
1926	timechanged++;
1927	hr_clock_unlock(spl);
1928	callout_hrestime();
1929}
1930
1931static uint_t deadman_seconds;
1932static uint32_t deadman_panics;
1933static int deadman_enabled = 0;
1934static int deadman_panic_timers = 1;
1935
1936static void
1937deadman(void)
1938{
1939	if (panicstr) {
1940		/*
1941		 * During panic, other CPUs besides the panic
1942		 * master continue to handle cyclics and some other
1943		 * interrupts.  The code below is intended to be
1944		 * single threaded, so any CPU other than the master
1945		 * must keep out.
1946		 */
1947		if (CPU->cpu_id != panic_cpu.cpu_id)
1948			return;
1949
1950		if (!deadman_panic_timers)
1951			return; /* allow all timers to be manually disabled */
1952
1953		/*
1954		 * If we are generating a crash dump or syncing filesystems and
1955		 * the corresponding timer is set, decrement it and re-enter
1956		 * the panic code to abort it and advance to the next state.
1957		 * The panic states and triggers are explained in panic.c.
1958		 */
1959		if (panic_dump) {
1960			if (dump_timeleft && (--dump_timeleft == 0)) {
1961				panic("panic dump timeout");
1962				/*NOTREACHED*/
1963			}
1964		} else if (panic_sync) {
1965			if (sync_timeleft && (--sync_timeleft == 0)) {
1966				panic("panic sync timeout");
1967				/*NOTREACHED*/
1968			}
1969		}
1970
1971		return;
1972	}
1973
1974	if (deadman_counter != CPU->cpu_deadman_counter) {
1975		CPU->cpu_deadman_counter = deadman_counter;
1976		CPU->cpu_deadman_countdown = deadman_seconds;
1977		return;
1978	}
1979
1980	if (--CPU->cpu_deadman_countdown > 0)
1981		return;
1982
1983	/*
1984	 * Regardless of whether or not we actually bring the system down,
1985	 * bump the deadman_panics variable.
1986	 *
1987	 * N.B. deadman_panics is incremented once for each CPU that
1988	 * passes through here.  It's expected that all the CPUs will
1989	 * detect this condition within one second of each other, so
1990	 * when deadman_enabled is off, deadman_panics will
1991	 * typically be a multiple of the total number of CPUs in
1992	 * the system.
1993	 */
1994	atomic_add_32(&deadman_panics, 1);
1995
1996	if (!deadman_enabled) {
1997		CPU->cpu_deadman_countdown = deadman_seconds;
1998		return;
1999	}
2000
2001	/*
2002	 * If we're here, we want to bring the system down.
2003	 */
2004	panic("deadman: timed out after %d seconds of clock "
2005	    "inactivity", deadman_seconds);
2006	/*NOTREACHED*/
2007}
2008
2009/*ARGSUSED*/
2010static void
2011deadman_online(void *arg, cpu_t *cpu, cyc_handler_t *hdlr, cyc_time_t *when)
2012{
2013	cpu->cpu_deadman_counter = 0;
2014	cpu->cpu_deadman_countdown = deadman_seconds;
2015
2016	hdlr->cyh_func = (cyc_func_t)deadman;
2017	hdlr->cyh_level = CY_HIGH_LEVEL;
2018	hdlr->cyh_arg = NULL;
2019
2020	/*
2021	 * Stagger the CPUs so that they don't all run deadman() at
2022	 * the same time.  Simplest reason to do this is to make it
2023	 * more likely that only one CPU will panic in case of a
2024	 * timeout.  This is (strictly speaking) an aesthetic, not a
2025	 * technical consideration.
2026	 */
2027	when->cyt_when = cpu->cpu_id * (NANOSEC / NCPU);
2028	when->cyt_interval = NANOSEC;
2029}
2030
2031
2032void
2033deadman_init(void)
2034{
2035	cyc_omni_handler_t hdlr;
2036
2037	if (deadman_seconds == 0)
2038		deadman_seconds = snoop_interval / MICROSEC;
2039
2040	if (snooping)
2041		deadman_enabled = 1;
2042
2043	hdlr.cyo_online = deadman_online;
2044	hdlr.cyo_offline = NULL;
2045	hdlr.cyo_arg = NULL;
2046
2047	mutex_enter(&cpu_lock);
2048	deadman_cyclic = cyclic_add_omni(&hdlr);
2049	mutex_exit(&cpu_lock);
2050}
2051
2052/*
2053 * tod_fault() is for updating tod validate mechanism state:
2054 * (1) TOD_NOFAULT: for resetting the state to 'normal'.
2055 *     currently used for debugging only
2056 * (2) The following four cases detected by tod validate mechanism:
2057 *       TOD_REVERSED: current tod value is less than previous value.
2058 *       TOD_STALLED: current tod value hasn't advanced.
2059 *       TOD_JUMPED: current tod value advanced too far from previous value.
2060 *       TOD_RATECHANGED: the ratio between average tod delta and
2061 *       average tick delta has changed.
2062 * (3) TOD_RDONLY: when the TOD clock is not writeable e.g. because it is
2063 *     a virtual TOD provided by a hypervisor.
2064 */
2065enum tod_fault_type
2066tod_fault(enum tod_fault_type ftype, int off)
2067{
2068	ASSERT(MUTEX_HELD(&tod_lock));
2069
2070	if (tod_faulted != ftype) {
2071		switch (ftype) {
2072		case TOD_NOFAULT:
2073			plat_tod_fault(TOD_NOFAULT);
2074			cmn_err(CE_NOTE, "Restarted tracking "
2075			    "Time of Day clock.");
2076			tod_faulted = ftype;
2077			break;
2078		case TOD_REVERSED:
2079		case TOD_JUMPED:
2080			if (tod_faulted == TOD_NOFAULT) {
2081				plat_tod_fault(ftype);
2082				cmn_err(CE_WARN, "Time of Day clock error: "
2083				    "reason [%s by 0x%x]. -- "
2084				    " Stopped tracking Time Of Day clock.",
2085				    tod_fault_table[ftype], off);
2086				tod_faulted = ftype;
2087			}
2088			break;
2089		case TOD_STALLED:
2090		case TOD_RATECHANGED:
2091			if (tod_faulted == TOD_NOFAULT) {
2092				plat_tod_fault(ftype);
2093				cmn_err(CE_WARN, "Time of Day clock error: "
2094				    "reason [%s]. -- "
2095				    " Stopped tracking Time Of Day clock.",
2096				    tod_fault_table[ftype]);
2097				tod_faulted = ftype;
2098			}
2099			break;
2100		case TOD_RDONLY:
2101			if (tod_faulted == TOD_NOFAULT) {
2102				plat_tod_fault(ftype);
2103				cmn_err(CE_NOTE, "!Time of Day clock is "
2104				    "Read-Only; set of Date/Time will not "
2105				    "persist across reboot.");
2106				tod_faulted = ftype;
2107			}
2108			break;
2109		default:
2110			break;
2111		}
2112	}
2113	return (tod_faulted);
2114}
2115
2116/*
2117 * Two functions that allow tod_status_flag to be manipulated by functions
2118 * external to this file.
2119 */
2120
2121void
2122tod_status_set(int tod_flag)
2123{
2124	tod_status_flag |= tod_flag;
2125}
2126
2127void
2128tod_status_clear(int tod_flag)
2129{
2130	tod_status_flag &= ~tod_flag;
2131}
2132
2133/*
2134 * Record a timestamp and the value passed to tod_set().  The next call to
2135 * tod_validate() can use these values, prev_set_tick and prev_set_tod,
2136 * when checking the timestruc_t returned by tod_get().  Ordinarily,
2137 * tod_validate() will use prev_tick and prev_tod for this task but these
2138 * become obsolete, and will be re-assigned with the prev_set_* values,
2139 * in the case when the TOD is re-written.
2140 */
2141void
2142tod_set_prev(timestruc_t ts)
2143{
2144	if ((tod_validate_enable == 0) || (tod_faulted != TOD_NOFAULT) ||
2145	    tod_validate_deferred) {
2146		return;
2147	}
2148	prev_set_tick = gethrtime();
2149	/*
2150	 * A negative value will be set to zero in utc_to_tod() so we fake
2151	 * a zero here in such a case.  This would need to change if the
2152	 * behavior of utc_to_tod() changes.
2153	 */
2154	prev_set_tod = ts.tv_sec < 0 ? 0 : ts.tv_sec;
2155}
2156
2157/*
2158 * tod_validate() is used for checking values returned by tod_get().
2159 * Four error cases can be detected by this routine:
2160 *   TOD_REVERSED: current tod value is less than previous.
2161 *   TOD_STALLED: current tod value hasn't advanced.
2162 *   TOD_JUMPED: current tod value advanced too far from previous value.
2163 *   TOD_RATECHANGED: the ratio between average tod delta and
2164 *   average tick delta has changed.
2165 */
2166time_t
2167tod_validate(time_t tod)
2168{
2169	time_t diff_tod;
2170	hrtime_t diff_tick;
2171
2172	long dtick;
2173	int dtick_delta;
2174
2175	int off = 0;
2176	enum tod_fault_type tod_bad = TOD_NOFAULT;
2177
2178	static int firsttime = 1;
2179
2180	static time_t prev_tod = 0;
2181	static hrtime_t prev_tick = 0;
2182	static long dtick_avg = TOD_REF_FREQ;
2183
2184	int cpr_resume_done = 0;
2185	int dr_resume_done = 0;
2186
2187	hrtime_t tick = gethrtime();
2188
2189	ASSERT(MUTEX_HELD(&tod_lock));
2190
2191	/*
2192	 * tod_validate_enable is patchable via /etc/system.
2193	 * If TOD is already faulted, or if TOD validation is deferred,
2194	 * there is nothing to do.
2195	 */
2196	if ((tod_validate_enable == 0) || (tod_faulted != TOD_NOFAULT) ||
2197	    tod_validate_deferred) {
2198		return (tod);
2199	}
2200
2201	/*
2202	 * If this is the first time through, we just need to save the tod
2203	 * we were called with and hrtime so we can use them next time to
2204	 * validate tod_get().
2205	 */
2206	if (firsttime) {
2207		firsttime = 0;
2208		prev_tod = tod;
2209		prev_tick = tick;
2210		return (tod);
2211	}
2212
2213	/*
2214	 * Handle any flags that have been turned on by tod_status_set().
2215	 * In the case where a tod_set() is done and then a subsequent
2216	 * tod_get() fails (ie, both TOD_SET_DONE and TOD_GET_FAILED are
2217	 * true), we treat the TOD_GET_FAILED with precedence by switching
2218	 * off the flag, returning tod and leaving TOD_SET_DONE asserted
2219	 * until such time as tod_get() completes successfully.
2220	 */
2221	if (tod_status_flag & TOD_GET_FAILED) {
2222		/*
2223		 * tod_get() has encountered an issue, possibly transitory,
2224		 * when reading TOD.  We'll just return the incoming tod
2225		 * value (which is actually hrestime.tv_sec in this case)
2226		 * and when we get a genuine tod, following a successful
2227		 * tod_get(), we can validate using prev_tod and prev_tick.
2228		 */
2229		tod_status_flag &= ~TOD_GET_FAILED;
2230		return (tod);
2231	} else if (tod_status_flag & TOD_SET_DONE) {
2232		/*
2233		 * TOD has been modified.  Just before the TOD was written,
2234		 * tod_set_prev() saved tod and hrtime; we can now use
2235		 * those values, prev_set_tod and prev_set_tick, to validate
2236		 * the incoming tod that's just been read.
2237		 */
2238		prev_tod = prev_set_tod;
2239		prev_tick = prev_set_tick;
2240		dtick_avg = TOD_REF_FREQ;
2241		tod_status_flag &= ~TOD_SET_DONE;
2242		/*
2243		 * If a tod_set() preceded a cpr_suspend() without an
2244		 * intervening tod_validate(), we need to ensure that a
2245		 * TOD_JUMPED condition is ignored.
2246		 * Note this isn't a concern in the case of DR as we've
2247		 * just reassigned dtick_avg, above.
2248		 */
2249		if (tod_status_flag & TOD_CPR_RESUME_DONE) {
2250			cpr_resume_done = 1;
2251			tod_status_flag &= ~TOD_CPR_RESUME_DONE;
2252		}
2253	} else if (tod_status_flag & TOD_CPR_RESUME_DONE) {
2254		/*
2255		 * The system's coming back from a checkpoint resume.
2256		 */
2257		cpr_resume_done = 1;
2258		tod_status_flag &= ~TOD_CPR_RESUME_DONE;
2259		/*
2260		 * We need to handle the possibility of a CPR suspend
2261		 * operation having been initiated whilst a DR event was
2262		 * in-flight.
2263		 */
2264		if (tod_status_flag & TOD_DR_RESUME_DONE) {
2265			dr_resume_done = 1;
2266			tod_status_flag &= ~TOD_DR_RESUME_DONE;
2267		}
2268	} else if (tod_status_flag & TOD_DR_RESUME_DONE) {
2269		/*
2270		 * A Dynamic Reconfiguration event has taken place.
2271		 */
2272		dr_resume_done = 1;
2273		tod_status_flag &= ~TOD_DR_RESUME_DONE;
2274	}
2275
2276	/* test hook */
2277	switch (tod_unit_test) {
2278	case 1: /* for testing jumping tod */
2279		tod += tod_test_injector;
2280		tod_unit_test = 0;
2281		break;
2282	case 2:	/* for testing stuck tod bit */
2283		tod |= 1 << tod_test_injector;
2284		tod_unit_test = 0;
2285		break;
2286	case 3:	/* for testing stalled tod */
2287		tod = prev_tod;
2288		tod_unit_test = 0;
2289		break;
2290	case 4:	/* reset tod fault status */
2291		(void) tod_fault(TOD_NOFAULT, 0);
2292		tod_unit_test = 0;
2293		break;
2294	default:
2295		break;
2296	}
2297
2298	diff_tod = tod - prev_tod;
2299	diff_tick = tick - prev_tick;
2300
2301	ASSERT(diff_tick >= 0);
2302
2303	if (diff_tod < 0) {
2304		/* ERROR - tod reversed */
2305		tod_bad = TOD_REVERSED;
2306		off = (int)(prev_tod - tod);
2307	} else if (diff_tod == 0) {
2308		/* tod did not advance */
2309		if (diff_tick > TOD_STALL_THRESHOLD) {
2310			/* ERROR - tod stalled */
2311			tod_bad = TOD_STALLED;
2312		} else {
2313			/*
2314			 * Make sure we don't update prev_tick
2315			 * so that diff_tick is calculated since
2316			 * the first diff_tod == 0
2317			 */
2318			return (tod);
2319		}
2320	} else {
2321		/* calculate dtick */
2322		dtick = diff_tick / diff_tod;
2323
2324		/* update dtick averages */
2325		dtick_avg += ((dtick - dtick_avg) / TOD_FILTER_N);
2326
2327		/*
2328		 * Calculate dtick_delta as
2329		 * variation from reference freq in quartiles
2330		 */
2331		dtick_delta = (dtick_avg - TOD_REF_FREQ) /
2332		    (TOD_REF_FREQ >> 2);
2333
2334		/*
2335		 * Even with a perfectly functioning TOD device,
2336		 * when the number of elapsed seconds is low the
2337		 * algorithm can calculate a rate that is beyond
2338		 * tolerance, causing an error.  The algorithm is
2339		 * inaccurate when elapsed time is low (less than
2340		 * 5 seconds).
2341		 */
2342		if (diff_tod > 4) {
2343			if (dtick < TOD_JUMP_THRESHOLD) {
2344				/*
2345				 * If we've just done a CPR resume, we detect
2346				 * a jump in the TOD but, actually, what's
2347				 * happened is that the TOD has been increasing
2348				 * whilst the system was suspended and the tick
2349				 * count hasn't kept up.  We consider the first
2350				 * occurrence of this after a resume as normal
2351				 * and ignore it; otherwise, in a non-resume
2352				 * case, we regard it as a TOD problem.
2353				 */
2354				if (!cpr_resume_done) {
2355					/* ERROR - tod jumped */
2356					tod_bad = TOD_JUMPED;
2357					off = (int)diff_tod;
2358				}
2359			}
2360			if (dtick_delta) {
2361				/*
2362				 * If we've just done a DR resume, dtick_avg
2363				 * can go a bit askew so we reset it and carry
2364				 * on; otherwise, the TOD is in error.
2365				 */
2366				if (dr_resume_done) {
2367					dtick_avg = TOD_REF_FREQ;
2368				} else {
2369					/* ERROR - change in clock rate */
2370					tod_bad = TOD_RATECHANGED;
2371				}
2372			}
2373		}
2374	}
2375
2376	if (tod_bad != TOD_NOFAULT) {
2377		(void) tod_fault(tod_bad, off);
2378
2379		/*
2380		 * Disable dosynctodr since we are going to fault
2381		 * the TOD chip anyway here
2382		 */
2383		dosynctodr = 0;
2384
2385		/*
2386		 * Set tod to the correct value from hrestime
2387		 */
2388		tod = hrestime.tv_sec;
2389	}
2390
2391	prev_tod = tod;
2392	prev_tick = tick;
2393	return (tod);
2394}
2395
2396static void
2397calcloadavg(int nrun, uint64_t *hp_ave)
2398{
2399	static int64_t f[3] = { 135, 27, 9 };
2400	uint_t i;
2401	int64_t q, r;
2402
2403	/*
2404	 * Compute load average over the last 1, 5, and 15 minutes
2405	 * (60, 300, and 900 seconds).  The constants in f[3] are for
2406	 * exponential decay:
2407	 * (1 - exp(-1/60)) << 13 = 135,
2408	 * (1 - exp(-1/300)) << 13 = 27,
2409	 * (1 - exp(-1/900)) << 13 = 9.
2410	 */
2411
2412	/*
2413	 * a little hoop-jumping to avoid integer overflow
2414	 */
2415	for (i = 0; i < 3; i++) {
2416		q = (hp_ave[i]  >> 16) << 7;
2417		r = (hp_ave[i]  & 0xffff) << 7;
2418		hp_ave[i] += ((nrun - q) * f[i] - ((r * f[i]) >> 16)) >> 4;
2419	}
2420}
2421
2422/*
2423 * lbolt_hybrid() is used by ddi_get_lbolt() and ddi_get_lbolt64() to
2424 * calculate the value of lbolt according to the current mode. In the event
2425 * driven mode (the default), lbolt is calculated by dividing the current hires
2426 * time by the number of nanoseconds per clock tick. In the cyclic driven mode
2427 * an internal variable is incremented at each firing of the lbolt cyclic
2428 * and returned by lbolt_cyclic_driven().
2429 *
2430 * The system will transition from event to cyclic driven mode when the number
2431 * of calls to lbolt_event_driven() exceeds the (per CPU) threshold within a
2432 * window of time. It does so by reprograming lbolt_cyclic from CY_INFINITY to
2433 * nsec_per_tick. The lbolt cyclic will remain ON while at least one CPU is
2434 * causing enough activity to cross the thresholds.
2435 */
2436int64_t
2437lbolt_bootstrap(void)
2438{
2439	return (0);
2440}
2441
2442/* ARGSUSED */
2443uint_t
2444lbolt_ev_to_cyclic(caddr_t arg1, caddr_t arg2)
2445{
2446	hrtime_t ts, exp;
2447	int ret;
2448
2449	ASSERT(lbolt_hybrid != lbolt_cyclic_driven);
2450
2451	kpreempt_disable();
2452
2453	ts = gethrtime();
2454	lb_info->lbi_internal = (ts/nsec_per_tick);
2455
2456	/*
2457	 * Align the next expiration to a clock tick boundary.
2458	 */
2459	exp = ts + nsec_per_tick - 1;
2460	exp = (exp/nsec_per_tick) * nsec_per_tick;
2461
2462	ret = cyclic_reprogram(lb_info->id.lbi_cyclic_id, exp);
2463	ASSERT(ret);
2464
2465	lbolt_hybrid = lbolt_cyclic_driven;
2466	lb_info->lbi_cyc_deactivate = B_FALSE;
2467	lb_info->lbi_cyc_deac_start = lb_info->lbi_internal;
2468
2469	kpreempt_enable();
2470
2471	ret = atomic_dec_32_nv(&lb_info->lbi_token);
2472	ASSERT(ret == 0);
2473
2474	return (1);
2475}
2476
2477int64_t
2478lbolt_event_driven(void)
2479{
2480	hrtime_t ts;
2481	int64_t lb;
2482	int ret, cpu = CPU->cpu_seqid;
2483
2484	ts = gethrtime();
2485	ASSERT(ts > 0);
2486
2487	ASSERT(nsec_per_tick > 0);
2488	lb = (ts/nsec_per_tick);
2489
2490	/*
2491	 * Switch to cyclic mode if the number of calls to this routine
2492	 * has reached the threshold within the interval.
2493	 */
2494	if ((lb - lb_cpu[cpu].lbc_cnt_start) < lb_info->lbi_thresh_interval) {
2495
2496		if (--lb_cpu[cpu].lbc_counter == 0) {
2497			/*
2498			 * Reached the threshold within the interval, reset
2499			 * the usage statistics.
2500			 */
2501			lb_cpu[cpu].lbc_counter = lb_info->lbi_thresh_calls;
2502			lb_cpu[cpu].lbc_cnt_start = lb;
2503
2504			/*
2505			 * Make sure only one thread reprograms the
2506			 * lbolt cyclic and changes the mode.
2507			 */
2508			if (panicstr == NULL &&
2509			    atomic_cas_32(&lb_info->lbi_token, 0, 1) == 0) {
2510
2511				if (lbolt_hybrid == lbolt_cyclic_driven) {
2512					ret = atomic_dec_32_nv(
2513					    &lb_info->lbi_token);
2514					ASSERT(ret == 0);
2515				} else {
2516					lbolt_softint_post();
2517				}
2518			}
2519		}
2520	} else {
2521		/*
2522		 * Exceeded the interval, reset the usage statistics.
2523		 */
2524		lb_cpu[cpu].lbc_counter = lb_info->lbi_thresh_calls;
2525		lb_cpu[cpu].lbc_cnt_start = lb;
2526	}
2527
2528	ASSERT(lb >= lb_info->lbi_debug_time);
2529
2530	return (lb - lb_info->lbi_debug_time);
2531}
2532
2533int64_t
2534lbolt_cyclic_driven(void)
2535{
2536	int64_t lb = lb_info->lbi_internal;
2537	int cpu;
2538
2539	/*
2540	 * If a CPU has already prevented the lbolt cyclic from deactivating
2541	 * itself, don't bother tracking the usage. Otherwise check if we're
2542	 * within the interval and how the per CPU counter is doing.
2543	 */
2544	if (lb_info->lbi_cyc_deactivate) {
2545		cpu = CPU->cpu_seqid;
2546		if ((lb - lb_cpu[cpu].lbc_cnt_start) <
2547		    lb_info->lbi_thresh_interval) {
2548
2549			if (lb_cpu[cpu].lbc_counter == 0)
2550				/*
2551				 * Reached the threshold within the interval,
2552				 * prevent the lbolt cyclic from turning itself
2553				 * off.
2554				 */
2555				lb_info->lbi_cyc_deactivate = B_FALSE;
2556			else
2557				lb_cpu[cpu].lbc_counter--;
2558		} else {
2559			/*
2560			 * Only reset the usage statistics when we have
2561			 * exceeded the interval.
2562			 */
2563			lb_cpu[cpu].lbc_counter = lb_info->lbi_thresh_calls;
2564			lb_cpu[cpu].lbc_cnt_start = lb;
2565		}
2566	}
2567
2568	ASSERT(lb >= lb_info->lbi_debug_time);
2569
2570	return (lb - lb_info->lbi_debug_time);
2571}
2572
2573/*
2574 * The lbolt_cyclic() routine will fire at a nsec_per_tick interval to satisfy
2575 * performance needs of ddi_get_lbolt() and ddi_get_lbolt64() consumers.
2576 * It is inactive by default, and will be activated when switching from event
2577 * to cyclic driven lbolt. The cyclic will turn itself off unless signaled
2578 * by lbolt_cyclic_driven().
2579 */
2580static void
2581lbolt_cyclic(void)
2582{
2583	int ret;
2584
2585	lb_info->lbi_internal++;
2586
2587	if (!lbolt_cyc_only) {
2588
2589		if (lb_info->lbi_cyc_deactivate) {
2590			/*
2591			 * Switching from cyclic to event driven mode.
2592			 */
2593			if (panicstr == NULL &&
2594			    atomic_cas_32(&lb_info->lbi_token, 0, 1) == 0) {
2595
2596				if (lbolt_hybrid == lbolt_event_driven) {
2597					ret = atomic_dec_32_nv(
2598					    &lb_info->lbi_token);
2599					ASSERT(ret == 0);
2600					return;
2601				}
2602
2603				kpreempt_disable();
2604
2605				lbolt_hybrid = lbolt_event_driven;
2606				ret = cyclic_reprogram(
2607				    lb_info->id.lbi_cyclic_id,
2608				    CY_INFINITY);
2609				ASSERT(ret);
2610
2611				kpreempt_enable();
2612
2613				ret = atomic_dec_32_nv(&lb_info->lbi_token);
2614				ASSERT(ret == 0);
2615			}
2616		}
2617
2618		/*
2619		 * The lbolt cyclic should not try to deactivate itself before
2620		 * the sampling period has elapsed.
2621		 */
2622		if (lb_info->lbi_internal - lb_info->lbi_cyc_deac_start >=
2623		    lb_info->lbi_thresh_interval) {
2624			lb_info->lbi_cyc_deactivate = B_TRUE;
2625			lb_info->lbi_cyc_deac_start = lb_info->lbi_internal;
2626		}
2627	}
2628}
2629
2630/*
2631 * Since the lbolt service was historically cyclic driven, it must be 'stopped'
2632 * when the system drops into the kernel debugger. lbolt_debug_entry() is
2633 * called by the KDI system claim callbacks to record a hires timestamp at
2634 * debug enter time. lbolt_debug_return() is called by the sistem release
2635 * callbacks to account for the time spent in the debugger. The value is then
2636 * accumulated in the lb_info structure and used by lbolt_event_driven() and
2637 * lbolt_cyclic_driven(), as well as the mdb_get_lbolt() routine.
2638 */
2639void
2640lbolt_debug_entry(void)
2641{
2642	if (lbolt_hybrid != lbolt_bootstrap) {
2643		ASSERT(lb_info != NULL);
2644		lb_info->lbi_debug_ts = gethrtime();
2645	}
2646}
2647
2648/*
2649 * Calculate the time spent in the debugger and add it to the lbolt info
2650 * structure. We also update the internal lbolt value in case we were in
2651 * cyclic driven mode going in.
2652 */
2653void
2654lbolt_debug_return(void)
2655{
2656	hrtime_t ts;
2657
2658	if (lbolt_hybrid != lbolt_bootstrap) {
2659		ASSERT(lb_info != NULL);
2660		ASSERT(nsec_per_tick > 0);
2661
2662		ts = gethrtime();
2663		lb_info->lbi_internal = (ts/nsec_per_tick);
2664		lb_info->lbi_debug_time +=
2665		    ((ts - lb_info->lbi_debug_ts)/nsec_per_tick);
2666
2667		lb_info->lbi_debug_ts = 0;
2668	}
2669}
2670