1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
23 */
24
25/*
26 * lofi (loopback file) driver - allows you to attach a file to a device,
27 * which can then be accessed through that device. The simple model is that
28 * you tell lofi to open a file, and then use the block device you get as
29 * you would any block device. lofi translates access to the block device
30 * into I/O on the underlying file. This is mostly useful for
31 * mounting images of filesystems.
32 *
33 * lofi is controlled through /dev/lofictl - this is the only device exported
34 * during attach, and is minor number 0. lofiadm communicates with lofi through
35 * ioctls on this device. When a file is attached to lofi, block and character
36 * devices are exported in /dev/lofi and /dev/rlofi. Currently, these devices
37 * are identified by their minor number, and the minor number is also used
38 * as the name in /dev/lofi. If we ever decide to support virtual disks,
39 * we'll have to divide the minor number space to identify fdisk partitions
40 * and slices, and the name will then be the minor number shifted down a
41 * few bits. Minor devices are tracked with state structures handled with
42 * ddi_soft_state(9F) for simplicity.
43 *
44 * A file attached to lofi is opened when attached and not closed until
45 * explicitly detached from lofi. This seems more sensible than deferring
46 * the open until the /dev/lofi device is opened, for a number of reasons.
47 * One is that any failure is likely to be noticed by the person (or script)
48 * running lofiadm. Another is that it would be a security problem if the
49 * file was replaced by another one after being added but before being opened.
50 *
51 * The only hard part about lofi is the ioctls. In order to support things
52 * like 'newfs' on a lofi device, it needs to support certain disk ioctls.
53 * So it has to fake disk geometry and partition information. More may need
54 * to be faked if your favorite utility doesn't work and you think it should
55 * (fdformat doesn't work because it really wants to know the type of floppy
56 * controller to talk to, and that didn't seem easy to fake. Or possibly even
57 * necessary, since we have mkfs_pcfs now).
58 *
59 * Normally, a lofi device cannot be detached if it is open (i.e. busy).  To
60 * support simulation of hotplug events, an optional force flag is provided.
61 * If a lofi device is open when a force detach is requested, then the
62 * underlying file is closed and any subsequent operations return EIO.  When the
63 * device is closed for the last time, it will be cleaned up at that time.  In
64 * addition, the DKIOCSTATE ioctl will return DKIO_DEV_GONE when the device is
65 * detached but not removed.
66 *
67 * Known problems:
68 *
69 *	UFS logging. Mounting a UFS filesystem image "logging"
70 *	works for basic copy testing but wedges during a build of ON through
71 *	that image. Some deadlock in lufs holding the log mutex and then
72 *	getting stuck on a buf. So for now, don't do that.
73 *
74 *	Direct I/O. Since the filesystem data is being cached in the buffer
75 *	cache, _and_ again in the underlying filesystem, it's tempting to
76 *	enable direct I/O on the underlying file. Don't, because that deadlocks.
77 *	I think to fix the cache-twice problem we might need filesystem support.
78 *
79 * Interesting things to do:
80 *
81 *	Allow multiple files for each device. A poor-man's metadisk, basically.
82 *
83 *	Pass-through ioctls on block devices. You can (though it's not
84 *	documented), give lofi a block device as a file name. Then we shouldn't
85 *	need to fake a geometry, however, it may be relevant if you're replacing
86 *	metadisk, or using lofi to get crypto.
87 *	It makes sense to do lofiadm -c aes -a /dev/dsk/c0t0d0s4 /dev/lofi/1
88 *	and then in /etc/vfstab have an entry for /dev/lofi/1 as /export/home.
89 *	In fact this even makes sense if you have lofi "above" metadisk.
90 *
91 * Encryption:
92 *	Each lofi device can have its own symmetric key and cipher.
93 *	They are passed to us by lofiadm(1m) in the correct format for use
94 *	with the misc/kcf crypto_* routines.
95 *
96 *	Each block has its own IV, that is calculated in lofi_blk_mech(), based
97 *	on the "master" key held in the lsp and the block number of the buffer.
98 */
99
100#include <sys/types.h>
101#include <netinet/in.h>
102#include <sys/sysmacros.h>
103#include <sys/uio.h>
104#include <sys/kmem.h>
105#include <sys/cred.h>
106#include <sys/mman.h>
107#include <sys/errno.h>
108#include <sys/aio_req.h>
109#include <sys/stat.h>
110#include <sys/file.h>
111#include <sys/modctl.h>
112#include <sys/conf.h>
113#include <sys/debug.h>
114#include <sys/vnode.h>
115#include <sys/lofi.h>
116#include <sys/fcntl.h>
117#include <sys/pathname.h>
118#include <sys/filio.h>
119#include <sys/fdio.h>
120#include <sys/open.h>
121#include <sys/disp.h>
122#include <vm/seg_map.h>
123#include <sys/ddi.h>
124#include <sys/sunddi.h>
125#include <sys/zmod.h>
126#include <sys/id_space.h>
127#include <sys/mkdev.h>
128#include <sys/crypto/common.h>
129#include <sys/crypto/api.h>
130#include <sys/rctl.h>
131#include <LzmaDec.h>
132
133/*
134 * The basis for CRYOFF is derived from usr/src/uts/common/sys/fs/ufs_fs.h.
135 * Crypto metadata, if it exists, is located at the end of the boot block
136 * (BBOFF + BBSIZE, which is SBOFF).  The super block and everything after
137 * is offset by the size of the crypto metadata which is handled by
138 * lsp->ls_crypto_offset.
139 */
140#define	CRYOFF	((off_t)8192)
141
142#define	NBLOCKS_PROP_NAME	"Nblocks"
143#define	SIZE_PROP_NAME		"Size"
144#define	ZONE_PROP_NAME		"zone"
145
146#define	SETUP_C_DATA(cd, buf, len) 		\
147	(cd).cd_format = CRYPTO_DATA_RAW;	\
148	(cd).cd_offset = 0;			\
149	(cd).cd_miscdata = NULL;		\
150	(cd).cd_length = (len);			\
151	(cd).cd_raw.iov_base = (buf);		\
152	(cd).cd_raw.iov_len = (len);
153
154#define	UIO_CHECK(uio)	\
155	if (((uio)->uio_loffset % DEV_BSIZE) != 0 || \
156	    ((uio)->uio_resid % DEV_BSIZE) != 0) { \
157		return (EINVAL); \
158	}
159
160static dev_info_t *lofi_dip = NULL;
161static void *lofi_statep = NULL;
162static kmutex_t lofi_lock;		/* state lock */
163static id_space_t *lofi_minor_id;
164static list_t lofi_list;
165static zone_key_t lofi_zone_key;
166
167/*
168 * Because lofi_taskq_nthreads limits the actual swamping of the device, the
169 * maxalloc parameter (lofi_taskq_maxalloc) should be tuned conservatively
170 * high.  If we want to be assured that the underlying device is always busy,
171 * we must be sure that the number of bytes enqueued when the number of
172 * enqueued tasks exceeds maxalloc is sufficient to keep the device busy for
173 * the duration of the sleep time in taskq_ent_alloc().  That is, lofi should
174 * set maxalloc to be the maximum throughput (in bytes per second) of the
175 * underlying device divided by the minimum I/O size.  We assume a realistic
176 * maximum throughput of one hundred megabytes per second; we set maxalloc on
177 * the lofi task queue to be 104857600 divided by DEV_BSIZE.
178 */
179static int lofi_taskq_maxalloc = 104857600 / DEV_BSIZE;
180static int lofi_taskq_nthreads = 4;	/* # of taskq threads per device */
181
182const char lofi_crypto_magic[6] = LOFI_CRYPTO_MAGIC;
183
184/*
185 * To avoid decompressing data in a compressed segment multiple times
186 * when accessing small parts of a segment's data, we cache and reuse
187 * the uncompressed segment's data.
188 *
189 * A single cached segment is sufficient to avoid lots of duplicate
190 * segment decompress operations. A small cache size also reduces the
191 * memory footprint.
192 *
193 * lofi_max_comp_cache is the maximum number of decompressed data segments
194 * cached for each compressed lofi image. It can be set to 0 to disable
195 * caching.
196 */
197
198uint32_t lofi_max_comp_cache = 1;
199
200static int gzip_decompress(void *src, size_t srclen, void *dst,
201	size_t *destlen, int level);
202
203static int lzma_decompress(void *src, size_t srclen, void *dst,
204	size_t *dstlen, int level);
205
206lofi_compress_info_t lofi_compress_table[LOFI_COMPRESS_FUNCTIONS] = {
207	{gzip_decompress,	NULL,	6,	"gzip"}, /* default */
208	{gzip_decompress,	NULL,	6,	"gzip-6"},
209	{gzip_decompress,	NULL,	9,	"gzip-9"},
210	{lzma_decompress,	NULL,	0,	"lzma"}
211};
212
213/*ARGSUSED*/
214static void
215*SzAlloc(void *p, size_t size)
216{
217	return (kmem_alloc(size, KM_SLEEP));
218}
219
220/*ARGSUSED*/
221static void
222SzFree(void *p, void *address, size_t size)
223{
224	kmem_free(address, size);
225}
226
227static ISzAlloc g_Alloc = { SzAlloc, SzFree };
228
229/*
230 * Free data referenced by the linked list of cached uncompressed
231 * segments.
232 */
233static void
234lofi_free_comp_cache(struct lofi_state *lsp)
235{
236	struct lofi_comp_cache *lc;
237
238	while ((lc = list_remove_head(&lsp->ls_comp_cache)) != NULL) {
239		kmem_free(lc->lc_data, lsp->ls_uncomp_seg_sz);
240		kmem_free(lc, sizeof (struct lofi_comp_cache));
241		lsp->ls_comp_cache_count--;
242	}
243	ASSERT(lsp->ls_comp_cache_count == 0);
244}
245
246static int
247is_opened(struct lofi_state *lsp)
248{
249	ASSERT(MUTEX_HELD(&lofi_lock));
250	return (lsp->ls_chr_open || lsp->ls_blk_open || lsp->ls_lyr_open_count);
251}
252
253static int
254mark_opened(struct lofi_state *lsp, int otyp)
255{
256	ASSERT(MUTEX_HELD(&lofi_lock));
257	switch (otyp) {
258	case OTYP_CHR:
259		lsp->ls_chr_open = 1;
260		break;
261	case OTYP_BLK:
262		lsp->ls_blk_open = 1;
263		break;
264	case OTYP_LYR:
265		lsp->ls_lyr_open_count++;
266		break;
267	default:
268		return (-1);
269	}
270	return (0);
271}
272
273static void
274mark_closed(struct lofi_state *lsp, int otyp)
275{
276	ASSERT(MUTEX_HELD(&lofi_lock));
277	switch (otyp) {
278	case OTYP_CHR:
279		lsp->ls_chr_open = 0;
280		break;
281	case OTYP_BLK:
282		lsp->ls_blk_open = 0;
283		break;
284	case OTYP_LYR:
285		lsp->ls_lyr_open_count--;
286		break;
287	default:
288		break;
289	}
290}
291
292static void
293lofi_free_crypto(struct lofi_state *lsp)
294{
295	ASSERT(MUTEX_HELD(&lofi_lock));
296
297	if (lsp->ls_crypto_enabled) {
298		/*
299		 * Clean up the crypto state so that it doesn't hang around
300		 * in memory after we are done with it.
301		 */
302		if (lsp->ls_key.ck_data != NULL) {
303			bzero(lsp->ls_key.ck_data,
304			    CRYPTO_BITS2BYTES(lsp->ls_key.ck_length));
305			kmem_free(lsp->ls_key.ck_data,
306			    CRYPTO_BITS2BYTES(lsp->ls_key.ck_length));
307			lsp->ls_key.ck_data = NULL;
308			lsp->ls_key.ck_length = 0;
309		}
310
311		if (lsp->ls_mech.cm_param != NULL) {
312			kmem_free(lsp->ls_mech.cm_param,
313			    lsp->ls_mech.cm_param_len);
314			lsp->ls_mech.cm_param = NULL;
315			lsp->ls_mech.cm_param_len = 0;
316		}
317
318		if (lsp->ls_iv_mech.cm_param != NULL) {
319			kmem_free(lsp->ls_iv_mech.cm_param,
320			    lsp->ls_iv_mech.cm_param_len);
321			lsp->ls_iv_mech.cm_param = NULL;
322			lsp->ls_iv_mech.cm_param_len = 0;
323		}
324
325		mutex_destroy(&lsp->ls_crypto_lock);
326	}
327}
328
329static void
330lofi_destroy(struct lofi_state *lsp, cred_t *credp)
331{
332	minor_t minor = getminor(lsp->ls_dev);
333	int i;
334
335	ASSERT(MUTEX_HELD(&lofi_lock));
336
337	list_remove(&lofi_list, lsp);
338
339	lofi_free_crypto(lsp);
340
341	/*
342	 * Free pre-allocated compressed buffers
343	 */
344	if (lsp->ls_comp_bufs != NULL) {
345		for (i = 0; i < lofi_taskq_nthreads; i++) {
346			if (lsp->ls_comp_bufs[i].bufsize > 0)
347				kmem_free(lsp->ls_comp_bufs[i].buf,
348				    lsp->ls_comp_bufs[i].bufsize);
349		}
350		kmem_free(lsp->ls_comp_bufs,
351		    sizeof (struct compbuf) * lofi_taskq_nthreads);
352	}
353
354	(void) VOP_CLOSE(lsp->ls_vp, lsp->ls_openflag,
355	    1, 0, credp, NULL);
356	VN_RELE(lsp->ls_vp);
357	if (lsp->ls_stacked_vp != lsp->ls_vp)
358		VN_RELE(lsp->ls_stacked_vp);
359
360	taskq_destroy(lsp->ls_taskq);
361
362	if (lsp->ls_kstat != NULL)
363		kstat_delete(lsp->ls_kstat);
364
365	/*
366	 * Free cached decompressed segment data
367	 */
368	lofi_free_comp_cache(lsp);
369	list_destroy(&lsp->ls_comp_cache);
370
371	if (lsp->ls_uncomp_seg_sz > 0) {
372		kmem_free(lsp->ls_comp_index_data, lsp->ls_comp_index_data_sz);
373		lsp->ls_uncomp_seg_sz = 0;
374	}
375
376	rctl_decr_lofi(lsp->ls_zone.zref_zone, 1);
377	zone_rele_ref(&lsp->ls_zone, ZONE_REF_LOFI);
378
379	mutex_destroy(&lsp->ls_comp_cache_lock);
380	mutex_destroy(&lsp->ls_comp_bufs_lock);
381	mutex_destroy(&lsp->ls_kstat_lock);
382	mutex_destroy(&lsp->ls_vp_lock);
383
384	ASSERT(ddi_get_soft_state(lofi_statep, minor) == lsp);
385	ddi_soft_state_free(lofi_statep, minor);
386	id_free(lofi_minor_id, minor);
387}
388
389static void
390lofi_free_dev(dev_t dev)
391{
392	minor_t minor = getminor(dev);
393	char namebuf[50];
394
395	ASSERT(MUTEX_HELD(&lofi_lock));
396
397	(void) ddi_prop_remove(dev, lofi_dip, ZONE_PROP_NAME);
398	(void) ddi_prop_remove(dev, lofi_dip, SIZE_PROP_NAME);
399	(void) ddi_prop_remove(dev, lofi_dip, NBLOCKS_PROP_NAME);
400
401	(void) snprintf(namebuf, sizeof (namebuf), "%d", minor);
402	ddi_remove_minor_node(lofi_dip, namebuf);
403	(void) snprintf(namebuf, sizeof (namebuf), "%d,raw", minor);
404	ddi_remove_minor_node(lofi_dip, namebuf);
405}
406
407/*ARGSUSED*/
408static void
409lofi_zone_shutdown(zoneid_t zoneid, void *arg)
410{
411	struct lofi_state *lsp;
412	struct lofi_state *next;
413
414	mutex_enter(&lofi_lock);
415
416	for (lsp = list_head(&lofi_list); lsp != NULL; lsp = next) {
417
418		/* lofi_destroy() frees lsp */
419		next = list_next(&lofi_list, lsp);
420
421		if (lsp->ls_zone.zref_zone->zone_id != zoneid)
422			continue;
423
424		/*
425		 * No in-zone processes are running, but something has this
426		 * open.  It's either a global zone process, or a lofi
427		 * mount.  In either case we set ls_cleanup so the last
428		 * user destroys the device.
429		 */
430		if (is_opened(lsp)) {
431			lsp->ls_cleanup = 1;
432		} else {
433			lofi_free_dev(lsp->ls_dev);
434			lofi_destroy(lsp, kcred);
435		}
436	}
437
438	mutex_exit(&lofi_lock);
439}
440
441/*ARGSUSED*/
442static int
443lofi_open(dev_t *devp, int flag, int otyp, struct cred *credp)
444{
445	minor_t	minor;
446	struct lofi_state *lsp;
447
448	/*
449	 * lofiadm -a /dev/lofi/1 gets us here.
450	 */
451	if (mutex_owner(&lofi_lock) == curthread)
452		return (EINVAL);
453
454	mutex_enter(&lofi_lock);
455
456	minor = getminor(*devp);
457
458	/* master control device */
459	if (minor == 0) {
460		mutex_exit(&lofi_lock);
461		return (0);
462	}
463
464	/* otherwise, the mapping should already exist */
465	lsp = ddi_get_soft_state(lofi_statep, minor);
466	if (lsp == NULL) {
467		mutex_exit(&lofi_lock);
468		return (EINVAL);
469	}
470
471	if (lsp->ls_vp == NULL) {
472		mutex_exit(&lofi_lock);
473		return (ENXIO);
474	}
475
476	if (mark_opened(lsp, otyp) == -1) {
477		mutex_exit(&lofi_lock);
478		return (EINVAL);
479	}
480
481	mutex_exit(&lofi_lock);
482	return (0);
483}
484
485/*ARGSUSED*/
486static int
487lofi_close(dev_t dev, int flag, int otyp, struct cred *credp)
488{
489	minor_t	minor;
490	struct lofi_state *lsp;
491
492	mutex_enter(&lofi_lock);
493	minor = getminor(dev);
494	lsp = ddi_get_soft_state(lofi_statep, minor);
495	if (lsp == NULL) {
496		mutex_exit(&lofi_lock);
497		return (EINVAL);
498	}
499
500	if (minor == 0) {
501		mutex_exit(&lofi_lock);
502		return (0);
503	}
504
505	mark_closed(lsp, otyp);
506
507	/*
508	 * If we forcibly closed the underlying device (li_force), or
509	 * asked for cleanup (li_cleanup), finish up if we're the last
510	 * out of the door.
511	 */
512	if (!is_opened(lsp) && (lsp->ls_cleanup || lsp->ls_vp == NULL)) {
513		lofi_free_dev(lsp->ls_dev);
514		lofi_destroy(lsp, credp);
515	}
516
517	mutex_exit(&lofi_lock);
518	return (0);
519}
520
521/*
522 * Sets the mechanism's initialization vector (IV) if one is needed.
523 * The IV is computed from the data block number.  lsp->ls_mech is
524 * altered so that:
525 *	lsp->ls_mech.cm_param_len is set to the IV len.
526 *	lsp->ls_mech.cm_param is set to the IV.
527 */
528static int
529lofi_blk_mech(struct lofi_state *lsp, longlong_t lblkno)
530{
531	int	ret;
532	crypto_data_t cdata;
533	char	*iv;
534	size_t	iv_len;
535	size_t	min;
536	void	*data;
537	size_t	datasz;
538
539	ASSERT(MUTEX_HELD(&lsp->ls_crypto_lock));
540
541	if (lsp == NULL)
542		return (CRYPTO_DEVICE_ERROR);
543
544	/* lsp->ls_mech.cm_param{_len} has already been set for static iv */
545	if (lsp->ls_iv_type == IVM_NONE) {
546		return (CRYPTO_SUCCESS);
547	}
548
549	/*
550	 * if kmem already alloced from previous call and it's the same size
551	 * we need now, just recycle it; allocate new kmem only if we have to
552	 */
553	if (lsp->ls_mech.cm_param == NULL ||
554	    lsp->ls_mech.cm_param_len != lsp->ls_iv_len) {
555		iv_len = lsp->ls_iv_len;
556		iv = kmem_zalloc(iv_len, KM_SLEEP);
557	} else {
558		iv_len = lsp->ls_mech.cm_param_len;
559		iv = lsp->ls_mech.cm_param;
560		bzero(iv, iv_len);
561	}
562
563	switch (lsp->ls_iv_type) {
564	case IVM_ENC_BLKNO:
565		/* iv is not static, lblkno changes each time */
566		data = &lblkno;
567		datasz = sizeof (lblkno);
568		break;
569	default:
570		data = 0;
571		datasz = 0;
572		break;
573	}
574
575	/*
576	 * write blkno into the iv buffer padded on the left in case
577	 * blkno ever grows bigger than its current longlong_t size
578	 * or a variation other than blkno is used for the iv data
579	 */
580	min = MIN(datasz, iv_len);
581	bcopy(data, iv + (iv_len - min), min);
582
583	/* encrypt the data in-place to get the IV */
584	SETUP_C_DATA(cdata, iv, iv_len);
585
586	ret = crypto_encrypt(&lsp->ls_iv_mech, &cdata, &lsp->ls_key,
587	    NULL, NULL, NULL);
588	if (ret != CRYPTO_SUCCESS) {
589		cmn_err(CE_WARN, "failed to create iv for block %lld: (0x%x)",
590		    lblkno, ret);
591		if (lsp->ls_mech.cm_param != iv)
592			kmem_free(iv, iv_len);
593
594		return (ret);
595	}
596
597	/* clean up the iv from the last computation */
598	if (lsp->ls_mech.cm_param != NULL && lsp->ls_mech.cm_param != iv)
599		kmem_free(lsp->ls_mech.cm_param, lsp->ls_mech.cm_param_len);
600
601	lsp->ls_mech.cm_param_len = iv_len;
602	lsp->ls_mech.cm_param = iv;
603
604	return (CRYPTO_SUCCESS);
605}
606
607/*
608 * Performs encryption and decryption of a chunk of data of size "len",
609 * one DEV_BSIZE block at a time.  "len" is assumed to be a multiple of
610 * DEV_BSIZE.
611 */
612static int
613lofi_crypto(struct lofi_state *lsp, struct buf *bp, caddr_t plaintext,
614    caddr_t ciphertext, size_t len, boolean_t op_encrypt)
615{
616	crypto_data_t cdata;
617	crypto_data_t wdata;
618	int ret;
619	longlong_t lblkno = bp->b_lblkno;
620
621	mutex_enter(&lsp->ls_crypto_lock);
622
623	/*
624	 * though we could encrypt/decrypt entire "len" chunk of data, we need
625	 * to break it into DEV_BSIZE pieces to capture blkno incrementing
626	 */
627	SETUP_C_DATA(cdata, plaintext, len);
628	cdata.cd_length = DEV_BSIZE;
629	if (ciphertext != NULL) {		/* not in-place crypto */
630		SETUP_C_DATA(wdata, ciphertext, len);
631		wdata.cd_length = DEV_BSIZE;
632	}
633
634	do {
635		ret = lofi_blk_mech(lsp, lblkno);
636		if (ret != CRYPTO_SUCCESS)
637			continue;
638
639		if (op_encrypt) {
640			ret = crypto_encrypt(&lsp->ls_mech, &cdata,
641			    &lsp->ls_key, NULL,
642			    ((ciphertext != NULL) ? &wdata : NULL), NULL);
643		} else {
644			ret = crypto_decrypt(&lsp->ls_mech, &cdata,
645			    &lsp->ls_key, NULL,
646			    ((ciphertext != NULL) ? &wdata : NULL), NULL);
647		}
648
649		cdata.cd_offset += DEV_BSIZE;
650		if (ciphertext != NULL)
651			wdata.cd_offset += DEV_BSIZE;
652		lblkno++;
653	} while (ret == CRYPTO_SUCCESS && cdata.cd_offset < len);
654
655	mutex_exit(&lsp->ls_crypto_lock);
656
657	if (ret != CRYPTO_SUCCESS) {
658		cmn_err(CE_WARN, "%s failed for block %lld:  (0x%x)",
659		    op_encrypt ? "crypto_encrypt()" : "crypto_decrypt()",
660		    lblkno, ret);
661	}
662
663	return (ret);
664}
665
666#define	RDWR_RAW	1
667#define	RDWR_BCOPY	2
668
669static int
670lofi_rdwr(caddr_t bufaddr, offset_t offset, struct buf *bp,
671    struct lofi_state *lsp, size_t len, int method, caddr_t bcopy_locn)
672{
673	ssize_t resid;
674	int isread;
675	int error;
676
677	/*
678	 * Handles reads/writes for both plain and encrypted lofi
679	 * Note:  offset is already shifted by lsp->ls_crypto_offset
680	 * when it gets here.
681	 */
682
683	isread = bp->b_flags & B_READ;
684	if (isread) {
685		if (method == RDWR_BCOPY) {
686			/* DO NOT update bp->b_resid for bcopy */
687			bcopy(bcopy_locn, bufaddr, len);
688			error = 0;
689		} else {		/* RDWR_RAW */
690			error = vn_rdwr(UIO_READ, lsp->ls_vp, bufaddr, len,
691			    offset, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred,
692			    &resid);
693			bp->b_resid = resid;
694		}
695		if (lsp->ls_crypto_enabled && error == 0) {
696			if (lofi_crypto(lsp, bp, bufaddr, NULL, len,
697			    B_FALSE) != CRYPTO_SUCCESS) {
698				/*
699				 * XXX: original code didn't set residual
700				 * back to len because no error was expected
701				 * from bcopy() if encryption is not enabled
702				 */
703				if (method != RDWR_BCOPY)
704					bp->b_resid = len;
705				error = EIO;
706			}
707		}
708		return (error);
709	} else {
710		void *iobuf = bufaddr;
711
712		if (lsp->ls_crypto_enabled) {
713			/* don't do in-place crypto to keep bufaddr intact */
714			iobuf = kmem_alloc(len, KM_SLEEP);
715			if (lofi_crypto(lsp, bp, bufaddr, iobuf, len,
716			    B_TRUE) != CRYPTO_SUCCESS) {
717				kmem_free(iobuf, len);
718				if (method != RDWR_BCOPY)
719					bp->b_resid = len;
720				return (EIO);
721			}
722		}
723		if (method == RDWR_BCOPY) {
724			/* DO NOT update bp->b_resid for bcopy */
725			bcopy(iobuf, bcopy_locn, len);
726			error = 0;
727		} else {		/* RDWR_RAW */
728			error = vn_rdwr(UIO_WRITE, lsp->ls_vp, iobuf, len,
729			    offset, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred,
730			    &resid);
731			bp->b_resid = resid;
732		}
733		if (lsp->ls_crypto_enabled) {
734			kmem_free(iobuf, len);
735		}
736		return (error);
737	}
738}
739
740static int
741lofi_mapped_rdwr(caddr_t bufaddr, offset_t offset, struct buf *bp,
742    struct lofi_state *lsp)
743{
744	int error;
745	offset_t alignedoffset, mapoffset;
746	size_t	xfersize;
747	int	isread;
748	int	smflags;
749	caddr_t	mapaddr;
750	size_t	len;
751	enum seg_rw srw;
752	int	save_error;
753
754	/*
755	 * Note:  offset is already shifted by lsp->ls_crypto_offset
756	 * when it gets here.
757	 */
758	if (lsp->ls_crypto_enabled)
759		ASSERT(lsp->ls_vp_comp_size == lsp->ls_vp_size);
760
761	/*
762	 * segmap always gives us an 8K (MAXBSIZE) chunk, aligned on
763	 * an 8K boundary, but the buf transfer address may not be
764	 * aligned on more than a 512-byte boundary (we don't enforce
765	 * that even though we could). This matters since the initial
766	 * part of the transfer may not start at offset 0 within the
767	 * segmap'd chunk. So we have to compensate for that with
768	 * 'mapoffset'. Subsequent chunks always start off at the
769	 * beginning, and the last is capped by b_resid
770	 *
771	 * Visually, where "|" represents page map boundaries:
772	 *   alignedoffset (mapaddr begins at this segmap boundary)
773	 *    |   offset (from beginning of file)
774	 *    |    |	   len
775	 *    v    v	    v
776	 * ===|====X========|====...======|========X====|====
777	 *	   /-------------...---------------/
778	 *		^ bp->b_bcount/bp->b_resid at start
779	 *    /----/--------/----...------/--------/
780	 *	^	^	^   ^		^
781	 *	|	|	|   |		nth xfersize (<= MAXBSIZE)
782	 *	|	|	2nd thru n-1st xfersize (= MAXBSIZE)
783	 *	|	1st xfersize (<= MAXBSIZE)
784	 *    mapoffset (offset into 1st segmap, non-0 1st time, 0 thereafter)
785	 *
786	 * Notes: "alignedoffset" is "offset" rounded down to nearest
787	 * MAXBSIZE boundary.  "len" is next page boundary of size
788	 * PAGESIZE after "alignedoffset".
789	 */
790	mapoffset = offset & MAXBOFFSET;
791	alignedoffset = offset - mapoffset;
792	bp->b_resid = bp->b_bcount;
793	isread = bp->b_flags & B_READ;
794	srw = isread ? S_READ : S_WRITE;
795	do {
796		xfersize = MIN(lsp->ls_vp_comp_size - offset,
797		    MIN(MAXBSIZE - mapoffset, bp->b_resid));
798		len = roundup(mapoffset + xfersize, PAGESIZE);
799		mapaddr = segmap_getmapflt(segkmap, lsp->ls_vp,
800		    alignedoffset, MAXBSIZE, 1, srw);
801		/*
802		 * Now fault in the pages. This lets us check
803		 * for errors before we reference mapaddr and
804		 * try to resolve the fault in bcopy (which would
805		 * panic instead). And this can easily happen,
806		 * particularly if you've lofi'd a file over NFS
807		 * and someone deletes the file on the server.
808		 */
809		error = segmap_fault(kas.a_hat, segkmap, mapaddr,
810		    len, F_SOFTLOCK, srw);
811		if (error) {
812			(void) segmap_release(segkmap, mapaddr, 0);
813			if (FC_CODE(error) == FC_OBJERR)
814				error = FC_ERRNO(error);
815			else
816				error = EIO;
817			break;
818		}
819		/* error may be non-zero for encrypted lofi */
820		error = lofi_rdwr(bufaddr, 0, bp, lsp, xfersize,
821		    RDWR_BCOPY, mapaddr + mapoffset);
822		if (error == 0) {
823			bp->b_resid -= xfersize;
824			bufaddr += xfersize;
825			offset += xfersize;
826		}
827		smflags = 0;
828		if (isread) {
829			smflags |= SM_FREE;
830			/*
831			 * If we're reading an entire page starting
832			 * at a page boundary, there's a good chance
833			 * we won't need it again. Put it on the
834			 * head of the freelist.
835			 */
836			if (mapoffset == 0 && xfersize == MAXBSIZE)
837				smflags |= SM_DONTNEED;
838		} else {
839			/*
840			 * Write back good pages, it is okay to
841			 * always release asynchronous here as we'll
842			 * follow with VOP_FSYNC for B_SYNC buffers.
843			 */
844			if (error == 0)
845				smflags |= SM_WRITE | SM_ASYNC;
846		}
847		(void) segmap_fault(kas.a_hat, segkmap, mapaddr,
848		    len, F_SOFTUNLOCK, srw);
849		save_error = segmap_release(segkmap, mapaddr, smflags);
850		if (error == 0)
851			error = save_error;
852		/* only the first map may start partial */
853		mapoffset = 0;
854		alignedoffset += MAXBSIZE;
855	} while ((error == 0) && (bp->b_resid > 0) &&
856	    (offset < lsp->ls_vp_comp_size));
857
858	return (error);
859}
860
861/*
862 * Check if segment seg_index is present in the decompressed segment
863 * data cache.
864 *
865 * Returns a pointer to the decompressed segment data cache entry if
866 * found, and NULL when decompressed data for this segment is not yet
867 * cached.
868 */
869static struct lofi_comp_cache *
870lofi_find_comp_data(struct lofi_state *lsp, uint64_t seg_index)
871{
872	struct lofi_comp_cache *lc;
873
874	ASSERT(MUTEX_HELD(&lsp->ls_comp_cache_lock));
875
876	for (lc = list_head(&lsp->ls_comp_cache); lc != NULL;
877	    lc = list_next(&lsp->ls_comp_cache, lc)) {
878		if (lc->lc_index == seg_index) {
879			/*
880			 * Decompressed segment data was found in the
881			 * cache.
882			 *
883			 * The cache uses an LRU replacement strategy;
884			 * move the entry to head of list.
885			 */
886			list_remove(&lsp->ls_comp_cache, lc);
887			list_insert_head(&lsp->ls_comp_cache, lc);
888			return (lc);
889		}
890	}
891	return (NULL);
892}
893
894/*
895 * Add the data for a decompressed segment at segment index
896 * seg_index to the cache of the decompressed segments.
897 *
898 * Returns a pointer to the cache element structure in case
899 * the data was added to the cache; returns NULL when the data
900 * wasn't cached.
901 */
902static struct lofi_comp_cache *
903lofi_add_comp_data(struct lofi_state *lsp, uint64_t seg_index,
904    uchar_t *data)
905{
906	struct lofi_comp_cache *lc;
907
908	ASSERT(MUTEX_HELD(&lsp->ls_comp_cache_lock));
909
910	while (lsp->ls_comp_cache_count > lofi_max_comp_cache) {
911		lc = list_remove_tail(&lsp->ls_comp_cache);
912		ASSERT(lc != NULL);
913		kmem_free(lc->lc_data, lsp->ls_uncomp_seg_sz);
914		kmem_free(lc, sizeof (struct lofi_comp_cache));
915		lsp->ls_comp_cache_count--;
916	}
917
918	/*
919	 * Do not cache when disabled by tunable variable
920	 */
921	if (lofi_max_comp_cache == 0)
922		return (NULL);
923
924	/*
925	 * When the cache has not yet reached the maximum allowed
926	 * number of segments, allocate a new cache element.
927	 * Otherwise the cache is full; reuse the last list element
928	 * (LRU) for caching the decompressed segment data.
929	 *
930	 * The cache element for the new decompressed segment data is
931	 * added to the head of the list.
932	 */
933	if (lsp->ls_comp_cache_count < lofi_max_comp_cache) {
934		lc = kmem_alloc(sizeof (struct lofi_comp_cache), KM_SLEEP);
935		lc->lc_data = NULL;
936		list_insert_head(&lsp->ls_comp_cache, lc);
937		lsp->ls_comp_cache_count++;
938	} else {
939		lc = list_remove_tail(&lsp->ls_comp_cache);
940		if (lc == NULL)
941			return (NULL);
942		list_insert_head(&lsp->ls_comp_cache, lc);
943	}
944
945	/*
946	 * Free old uncompressed segment data when reusing a cache
947	 * entry.
948	 */
949	if (lc->lc_data != NULL)
950		kmem_free(lc->lc_data, lsp->ls_uncomp_seg_sz);
951
952	lc->lc_data = data;
953	lc->lc_index = seg_index;
954	return (lc);
955}
956
957
958/*ARGSUSED*/
959static int
960gzip_decompress(void *src, size_t srclen, void *dst,
961    size_t *dstlen, int level)
962{
963	ASSERT(*dstlen >= srclen);
964
965	if (z_uncompress(dst, dstlen, src, srclen) != Z_OK)
966		return (-1);
967	return (0);
968}
969
970#define	LZMA_HEADER_SIZE	(LZMA_PROPS_SIZE + 8)
971/*ARGSUSED*/
972static int
973lzma_decompress(void *src, size_t srclen, void *dst,
974	size_t *dstlen, int level)
975{
976	size_t insizepure;
977	void *actual_src;
978	ELzmaStatus status;
979
980	insizepure = srclen - LZMA_HEADER_SIZE;
981	actual_src = (void *)((Byte *)src + LZMA_HEADER_SIZE);
982
983	if (LzmaDecode((Byte *)dst, (size_t *)dstlen,
984	    (const Byte *)actual_src, &insizepure,
985	    (const Byte *)src, LZMA_PROPS_SIZE, LZMA_FINISH_ANY, &status,
986	    &g_Alloc) != SZ_OK) {
987		return (-1);
988	}
989	return (0);
990}
991
992/*
993 * This is basically what strategy used to be before we found we
994 * needed task queues.
995 */
996static void
997lofi_strategy_task(void *arg)
998{
999	struct buf *bp = (struct buf *)arg;
1000	int error;
1001	int syncflag = 0;
1002	struct lofi_state *lsp;
1003	offset_t offset;
1004	caddr_t	bufaddr;
1005	size_t	len;
1006	size_t	xfersize;
1007	boolean_t bufinited = B_FALSE;
1008
1009	lsp = ddi_get_soft_state(lofi_statep, getminor(bp->b_edev));
1010	if (lsp == NULL) {
1011		error = ENXIO;
1012		goto errout;
1013	}
1014	if (lsp->ls_kstat) {
1015		mutex_enter(lsp->ls_kstat->ks_lock);
1016		kstat_waitq_to_runq(KSTAT_IO_PTR(lsp->ls_kstat));
1017		mutex_exit(lsp->ls_kstat->ks_lock);
1018	}
1019	bp_mapin(bp);
1020	bufaddr = bp->b_un.b_addr;
1021	offset = bp->b_lblkno * DEV_BSIZE;	/* offset within file */
1022	if (lsp->ls_crypto_enabled) {
1023		/* encrypted data really begins after crypto header */
1024		offset += lsp->ls_crypto_offset;
1025	}
1026	len = bp->b_bcount;
1027	bufinited = B_TRUE;
1028
1029	if (lsp->ls_vp == NULL || lsp->ls_vp_closereq) {
1030		error = EIO;
1031		goto errout;
1032	}
1033
1034	/*
1035	 * If we're writing and the buffer was not B_ASYNC
1036	 * we'll follow up with a VOP_FSYNC() to force any
1037	 * asynchronous I/O to stable storage.
1038	 */
1039	if (!(bp->b_flags & B_READ) && !(bp->b_flags & B_ASYNC))
1040		syncflag = FSYNC;
1041
1042	/*
1043	 * We used to always use vn_rdwr here, but we cannot do that because
1044	 * we might decide to read or write from the the underlying
1045	 * file during this call, which would be a deadlock because
1046	 * we have the rw_lock. So instead we page, unless it's not
1047	 * mapable or it's a character device or it's an encrypted lofi.
1048	 */
1049	if ((lsp->ls_vp->v_flag & VNOMAP) || (lsp->ls_vp->v_type == VCHR) ||
1050	    lsp->ls_crypto_enabled) {
1051		error = lofi_rdwr(bufaddr, offset, bp, lsp, len, RDWR_RAW,
1052		    NULL);
1053	} else if (lsp->ls_uncomp_seg_sz == 0) {
1054		error = lofi_mapped_rdwr(bufaddr, offset, bp, lsp);
1055	} else {
1056		uchar_t *compressed_seg = NULL, *cmpbuf;
1057		uchar_t *uncompressed_seg = NULL;
1058		lofi_compress_info_t *li;
1059		size_t oblkcount;
1060		ulong_t seglen;
1061		uint64_t sblkno, eblkno, cmpbytes;
1062		uint64_t uncompressed_seg_index;
1063		struct lofi_comp_cache *lc;
1064		offset_t sblkoff, eblkoff;
1065		u_offset_t salign, ealign;
1066		u_offset_t sdiff;
1067		uint32_t comp_data_sz;
1068		uint64_t i;
1069		int j;
1070
1071		/*
1072		 * From here on we're dealing primarily with compressed files
1073		 */
1074		ASSERT(!lsp->ls_crypto_enabled);
1075
1076		/*
1077		 * Compressed files can only be read from and
1078		 * not written to
1079		 */
1080		if (!(bp->b_flags & B_READ)) {
1081			bp->b_resid = bp->b_bcount;
1082			error = EROFS;
1083			goto done;
1084		}
1085
1086		ASSERT(lsp->ls_comp_algorithm_index >= 0);
1087		li = &lofi_compress_table[lsp->ls_comp_algorithm_index];
1088		/*
1089		 * Compute starting and ending compressed segment numbers
1090		 * We use only bitwise operations avoiding division and
1091		 * modulus because we enforce the compression segment size
1092		 * to a power of 2
1093		 */
1094		sblkno = offset >> lsp->ls_comp_seg_shift;
1095		sblkoff = offset & (lsp->ls_uncomp_seg_sz - 1);
1096		eblkno = (offset + bp->b_bcount) >> lsp->ls_comp_seg_shift;
1097		eblkoff = (offset + bp->b_bcount) & (lsp->ls_uncomp_seg_sz - 1);
1098
1099		/*
1100		 * Check the decompressed segment cache.
1101		 *
1102		 * The cache is used only when the requested data
1103		 * is within a segment. Requests that cross
1104		 * segment boundaries bypass the cache.
1105		 */
1106		if (sblkno == eblkno ||
1107		    (sblkno + 1 == eblkno && eblkoff == 0)) {
1108			/*
1109			 * Request doesn't cross a segment boundary,
1110			 * now check the cache.
1111			 */
1112			mutex_enter(&lsp->ls_comp_cache_lock);
1113			lc = lofi_find_comp_data(lsp, sblkno);
1114			if (lc != NULL) {
1115				/*
1116				 * We've found the decompressed segment
1117				 * data in the cache; reuse it.
1118				 */
1119				bcopy(lc->lc_data + sblkoff, bufaddr,
1120				    bp->b_bcount);
1121				mutex_exit(&lsp->ls_comp_cache_lock);
1122				bp->b_resid = 0;
1123				error = 0;
1124				goto done;
1125			}
1126			mutex_exit(&lsp->ls_comp_cache_lock);
1127		}
1128
1129		/*
1130		 * Align start offset to block boundary for segmap
1131		 */
1132		salign = lsp->ls_comp_seg_index[sblkno];
1133		sdiff = salign & (DEV_BSIZE - 1);
1134		salign -= sdiff;
1135		if (eblkno >= (lsp->ls_comp_index_sz - 1)) {
1136			/*
1137			 * We're dealing with the last segment of
1138			 * the compressed file -- the size of this
1139			 * segment *may not* be the same as the
1140			 * segment size for the file
1141			 */
1142			eblkoff = (offset + bp->b_bcount) &
1143			    (lsp->ls_uncomp_last_seg_sz - 1);
1144			ealign = lsp->ls_vp_comp_size;
1145		} else {
1146			ealign = lsp->ls_comp_seg_index[eblkno + 1];
1147		}
1148
1149		/*
1150		 * Preserve original request paramaters
1151		 */
1152		oblkcount = bp->b_bcount;
1153
1154		/*
1155		 * Assign the calculated parameters
1156		 */
1157		comp_data_sz = ealign - salign;
1158		bp->b_bcount = comp_data_sz;
1159
1160		/*
1161		 * Buffers to hold compressed segments are pre-allocated
1162		 * on a per-thread basis. Find a pre-allocated buffer
1163		 * that is not currently in use and mark it for use.
1164		 */
1165		mutex_enter(&lsp->ls_comp_bufs_lock);
1166		for (j = 0; j < lofi_taskq_nthreads; j++) {
1167			if (lsp->ls_comp_bufs[j].inuse == 0) {
1168				lsp->ls_comp_bufs[j].inuse = 1;
1169				break;
1170			}
1171		}
1172
1173		mutex_exit(&lsp->ls_comp_bufs_lock);
1174		ASSERT(j < lofi_taskq_nthreads);
1175
1176		/*
1177		 * If the pre-allocated buffer size does not match
1178		 * the size of the I/O request, re-allocate it with
1179		 * the appropriate size
1180		 */
1181		if (lsp->ls_comp_bufs[j].bufsize < bp->b_bcount) {
1182			if (lsp->ls_comp_bufs[j].bufsize > 0)
1183				kmem_free(lsp->ls_comp_bufs[j].buf,
1184				    lsp->ls_comp_bufs[j].bufsize);
1185			lsp->ls_comp_bufs[j].buf = kmem_alloc(bp->b_bcount,
1186			    KM_SLEEP);
1187			lsp->ls_comp_bufs[j].bufsize = bp->b_bcount;
1188		}
1189		compressed_seg = lsp->ls_comp_bufs[j].buf;
1190
1191		/*
1192		 * Map in the calculated number of blocks
1193		 */
1194		error = lofi_mapped_rdwr((caddr_t)compressed_seg, salign,
1195		    bp, lsp);
1196
1197		bp->b_bcount = oblkcount;
1198		bp->b_resid = oblkcount;
1199		if (error != 0)
1200			goto done;
1201
1202		/*
1203		 * decompress compressed blocks start
1204		 */
1205		cmpbuf = compressed_seg + sdiff;
1206		for (i = sblkno; i <= eblkno; i++) {
1207			ASSERT(i < lsp->ls_comp_index_sz - 1);
1208			uchar_t *useg;
1209
1210			/*
1211			 * The last segment is special in that it is
1212			 * most likely not going to be the same
1213			 * (uncompressed) size as the other segments.
1214			 */
1215			if (i == (lsp->ls_comp_index_sz - 2)) {
1216				seglen = lsp->ls_uncomp_last_seg_sz;
1217			} else {
1218				seglen = lsp->ls_uncomp_seg_sz;
1219			}
1220
1221			/*
1222			 * Each of the segment index entries contains
1223			 * the starting block number for that segment.
1224			 * The number of compressed bytes in a segment
1225			 * is thus the difference between the starting
1226			 * block number of this segment and the starting
1227			 * block number of the next segment.
1228			 */
1229			cmpbytes = lsp->ls_comp_seg_index[i + 1] -
1230			    lsp->ls_comp_seg_index[i];
1231
1232			/*
1233			 * The first byte in a compressed segment is a flag
1234			 * that indicates whether this segment is compressed
1235			 * at all.
1236			 *
1237			 * The variable 'useg' is used (instead of
1238			 * uncompressed_seg) in this loop to keep a
1239			 * reference to the uncompressed segment.
1240			 *
1241			 * N.B. If 'useg' is replaced with uncompressed_seg,
1242			 * it leads to memory leaks and heap corruption in
1243			 * corner cases where compressed segments lie
1244			 * adjacent to uncompressed segments.
1245			 */
1246			if (*cmpbuf == UNCOMPRESSED) {
1247				useg = cmpbuf + SEGHDR;
1248			} else {
1249				if (uncompressed_seg == NULL)
1250					uncompressed_seg =
1251					    kmem_alloc(lsp->ls_uncomp_seg_sz,
1252					    KM_SLEEP);
1253				useg = uncompressed_seg;
1254				uncompressed_seg_index = i;
1255
1256				if (li->l_decompress((cmpbuf + SEGHDR),
1257				    (cmpbytes - SEGHDR), uncompressed_seg,
1258				    &seglen, li->l_level) != 0) {
1259					error = EIO;
1260					goto done;
1261				}
1262			}
1263
1264			/*
1265			 * Determine how much uncompressed data we
1266			 * have to copy and copy it
1267			 */
1268			xfersize = lsp->ls_uncomp_seg_sz - sblkoff;
1269			if (i == eblkno)
1270				xfersize -= (lsp->ls_uncomp_seg_sz - eblkoff);
1271
1272			bcopy((useg + sblkoff), bufaddr, xfersize);
1273
1274			cmpbuf += cmpbytes;
1275			bufaddr += xfersize;
1276			bp->b_resid -= xfersize;
1277			sblkoff = 0;
1278
1279			if (bp->b_resid == 0)
1280				break;
1281		} /* decompress compressed blocks ends */
1282
1283		/*
1284		 * Skip to done if there is no uncompressed data to cache
1285		 */
1286		if (uncompressed_seg == NULL)
1287			goto done;
1288
1289		/*
1290		 * Add the data for the last decompressed segment to
1291		 * the cache.
1292		 *
1293		 * In case the uncompressed segment data was added to (and
1294		 * is referenced by) the cache, make sure we don't free it
1295		 * here.
1296		 */
1297		mutex_enter(&lsp->ls_comp_cache_lock);
1298		if ((lc = lofi_add_comp_data(lsp, uncompressed_seg_index,
1299		    uncompressed_seg)) != NULL) {
1300			uncompressed_seg = NULL;
1301		}
1302		mutex_exit(&lsp->ls_comp_cache_lock);
1303
1304done:
1305		if (compressed_seg != NULL) {
1306			mutex_enter(&lsp->ls_comp_bufs_lock);
1307			lsp->ls_comp_bufs[j].inuse = 0;
1308			mutex_exit(&lsp->ls_comp_bufs_lock);
1309		}
1310		if (uncompressed_seg != NULL)
1311			kmem_free(uncompressed_seg, lsp->ls_uncomp_seg_sz);
1312	} /* end of handling compressed files */
1313
1314	if ((error == 0) && (syncflag != 0))
1315		error = VOP_FSYNC(lsp->ls_vp, syncflag, kcred, NULL);
1316
1317errout:
1318	if (bufinited && lsp->ls_kstat) {
1319		size_t n_done = bp->b_bcount - bp->b_resid;
1320		kstat_io_t *kioptr;
1321
1322		mutex_enter(lsp->ls_kstat->ks_lock);
1323		kioptr = KSTAT_IO_PTR(lsp->ls_kstat);
1324		if (bp->b_flags & B_READ) {
1325			kioptr->nread += n_done;
1326			kioptr->reads++;
1327		} else {
1328			kioptr->nwritten += n_done;
1329			kioptr->writes++;
1330		}
1331		kstat_runq_exit(kioptr);
1332		mutex_exit(lsp->ls_kstat->ks_lock);
1333	}
1334
1335	mutex_enter(&lsp->ls_vp_lock);
1336	if (--lsp->ls_vp_iocount == 0)
1337		cv_broadcast(&lsp->ls_vp_cv);
1338	mutex_exit(&lsp->ls_vp_lock);
1339
1340	bioerror(bp, error);
1341	biodone(bp);
1342}
1343
1344static int
1345lofi_strategy(struct buf *bp)
1346{
1347	struct lofi_state *lsp;
1348	offset_t	offset;
1349
1350	/*
1351	 * We cannot just do I/O here, because the current thread
1352	 * _might_ end up back in here because the underlying filesystem
1353	 * wants a buffer, which eventually gets into bio_recycle and
1354	 * might call into lofi to write out a delayed-write buffer.
1355	 * This is bad if the filesystem above lofi is the same as below.
1356	 *
1357	 * We could come up with a complex strategy using threads to
1358	 * do the I/O asynchronously, or we could use task queues. task
1359	 * queues were incredibly easy so they win.
1360	 */
1361	lsp = ddi_get_soft_state(lofi_statep, getminor(bp->b_edev));
1362	if (lsp == NULL) {
1363		bioerror(bp, ENXIO);
1364		biodone(bp);
1365		return (0);
1366	}
1367
1368	mutex_enter(&lsp->ls_vp_lock);
1369	if (lsp->ls_vp == NULL || lsp->ls_vp_closereq) {
1370		bioerror(bp, EIO);
1371		biodone(bp);
1372		mutex_exit(&lsp->ls_vp_lock);
1373		return (0);
1374	}
1375
1376	offset = bp->b_lblkno * DEV_BSIZE;	/* offset within file */
1377	if (lsp->ls_crypto_enabled) {
1378		/* encrypted data really begins after crypto header */
1379		offset += lsp->ls_crypto_offset;
1380	}
1381	if (offset == lsp->ls_vp_size) {
1382		/* EOF */
1383		if ((bp->b_flags & B_READ) != 0) {
1384			bp->b_resid = bp->b_bcount;
1385			bioerror(bp, 0);
1386		} else {
1387			/* writes should fail */
1388			bioerror(bp, ENXIO);
1389		}
1390		biodone(bp);
1391		mutex_exit(&lsp->ls_vp_lock);
1392		return (0);
1393	}
1394	if (offset > lsp->ls_vp_size) {
1395		bioerror(bp, ENXIO);
1396		biodone(bp);
1397		mutex_exit(&lsp->ls_vp_lock);
1398		return (0);
1399	}
1400	lsp->ls_vp_iocount++;
1401	mutex_exit(&lsp->ls_vp_lock);
1402
1403	if (lsp->ls_kstat) {
1404		mutex_enter(lsp->ls_kstat->ks_lock);
1405		kstat_waitq_enter(KSTAT_IO_PTR(lsp->ls_kstat));
1406		mutex_exit(lsp->ls_kstat->ks_lock);
1407	}
1408	(void) taskq_dispatch(lsp->ls_taskq, lofi_strategy_task, bp, KM_SLEEP);
1409	return (0);
1410}
1411
1412/*ARGSUSED2*/
1413static int
1414lofi_read(dev_t dev, struct uio *uio, struct cred *credp)
1415{
1416	if (getminor(dev) == 0)
1417		return (EINVAL);
1418	UIO_CHECK(uio);
1419	return (physio(lofi_strategy, NULL, dev, B_READ, minphys, uio));
1420}
1421
1422/*ARGSUSED2*/
1423static int
1424lofi_write(dev_t dev, struct uio *uio, struct cred *credp)
1425{
1426	if (getminor(dev) == 0)
1427		return (EINVAL);
1428	UIO_CHECK(uio);
1429	return (physio(lofi_strategy, NULL, dev, B_WRITE, minphys, uio));
1430}
1431
1432/*ARGSUSED2*/
1433static int
1434lofi_aread(dev_t dev, struct aio_req *aio, struct cred *credp)
1435{
1436	if (getminor(dev) == 0)
1437		return (EINVAL);
1438	UIO_CHECK(aio->aio_uio);
1439	return (aphysio(lofi_strategy, anocancel, dev, B_READ, minphys, aio));
1440}
1441
1442/*ARGSUSED2*/
1443static int
1444lofi_awrite(dev_t dev, struct aio_req *aio, struct cred *credp)
1445{
1446	if (getminor(dev) == 0)
1447		return (EINVAL);
1448	UIO_CHECK(aio->aio_uio);
1449	return (aphysio(lofi_strategy, anocancel, dev, B_WRITE, minphys, aio));
1450}
1451
1452/*ARGSUSED*/
1453static int
1454lofi_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
1455{
1456	switch (infocmd) {
1457	case DDI_INFO_DEVT2DEVINFO:
1458		*result = lofi_dip;
1459		return (DDI_SUCCESS);
1460	case DDI_INFO_DEVT2INSTANCE:
1461		*result = 0;
1462		return (DDI_SUCCESS);
1463	}
1464	return (DDI_FAILURE);
1465}
1466
1467static int
1468lofi_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
1469{
1470	int	error;
1471
1472	if (cmd != DDI_ATTACH)
1473		return (DDI_FAILURE);
1474
1475	lofi_minor_id = id_space_create("lofi_minor_id", 1, L_MAXMIN32 + 1);
1476
1477	if (!lofi_minor_id)
1478		return (DDI_FAILURE);
1479
1480	error = ddi_soft_state_zalloc(lofi_statep, 0);
1481	if (error == DDI_FAILURE) {
1482		id_space_destroy(lofi_minor_id);
1483		return (DDI_FAILURE);
1484	}
1485	error = ddi_create_minor_node(dip, LOFI_CTL_NODE, S_IFCHR, 0,
1486	    DDI_PSEUDO, NULL);
1487	if (error == DDI_FAILURE) {
1488		ddi_soft_state_free(lofi_statep, 0);
1489		id_space_destroy(lofi_minor_id);
1490		return (DDI_FAILURE);
1491	}
1492	/* driver handles kernel-issued IOCTLs */
1493	if (ddi_prop_create(DDI_DEV_T_NONE, dip, DDI_PROP_CANSLEEP,
1494	    DDI_KERNEL_IOCTL, NULL, 0) != DDI_PROP_SUCCESS) {
1495		ddi_remove_minor_node(dip, NULL);
1496		ddi_soft_state_free(lofi_statep, 0);
1497		id_space_destroy(lofi_minor_id);
1498		return (DDI_FAILURE);
1499	}
1500
1501	zone_key_create(&lofi_zone_key, NULL, lofi_zone_shutdown, NULL);
1502
1503	lofi_dip = dip;
1504	ddi_report_dev(dip);
1505	return (DDI_SUCCESS);
1506}
1507
1508static int
1509lofi_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
1510{
1511	if (cmd != DDI_DETACH)
1512		return (DDI_FAILURE);
1513
1514	mutex_enter(&lofi_lock);
1515
1516	if (!list_is_empty(&lofi_list)) {
1517		mutex_exit(&lofi_lock);
1518		return (DDI_FAILURE);
1519	}
1520
1521	lofi_dip = NULL;
1522	ddi_remove_minor_node(dip, NULL);
1523	ddi_prop_remove_all(dip);
1524
1525	mutex_exit(&lofi_lock);
1526
1527	if (zone_key_delete(lofi_zone_key) != 0)
1528		cmn_err(CE_WARN, "failed to delete zone key");
1529
1530	ddi_soft_state_free(lofi_statep, 0);
1531
1532	id_space_destroy(lofi_minor_id);
1533
1534	return (DDI_SUCCESS);
1535}
1536
1537/*
1538 * With addition of encryption, be careful that encryption key is wiped before
1539 * kernel memory structures are freed, and also that key is not accidentally
1540 * passed out into userland structures.
1541 */
1542static void
1543free_lofi_ioctl(struct lofi_ioctl *klip)
1544{
1545	/* Make sure this encryption key doesn't stick around */
1546	bzero(klip->li_key, sizeof (klip->li_key));
1547	kmem_free(klip, sizeof (struct lofi_ioctl));
1548}
1549
1550/*
1551 * These two just simplify the rest of the ioctls that need to copyin/out
1552 * the lofi_ioctl structure.
1553 */
1554int
1555copy_in_lofi_ioctl(const struct lofi_ioctl *ulip, struct lofi_ioctl **klipp,
1556    int flag)
1557{
1558	struct lofi_ioctl *klip;
1559	int	error;
1560
1561	klip = *klipp = kmem_alloc(sizeof (struct lofi_ioctl), KM_SLEEP);
1562	error = ddi_copyin(ulip, klip, sizeof (struct lofi_ioctl), flag);
1563	if (error)
1564		goto err;
1565
1566	/* ensure NULL termination */
1567	klip->li_filename[MAXPATHLEN-1] = '\0';
1568	klip->li_algorithm[MAXALGLEN-1] = '\0';
1569	klip->li_cipher[CRYPTO_MAX_MECH_NAME-1] = '\0';
1570	klip->li_iv_cipher[CRYPTO_MAX_MECH_NAME-1] = '\0';
1571
1572	if (klip->li_minor > L_MAXMIN32) {
1573		error = EINVAL;
1574		goto err;
1575	}
1576
1577	return (0);
1578
1579err:
1580	free_lofi_ioctl(klip);
1581	return (error);
1582}
1583
1584int
1585copy_out_lofi_ioctl(const struct lofi_ioctl *klip, struct lofi_ioctl *ulip,
1586	int flag)
1587{
1588	int	error;
1589
1590	/*
1591	 * NOTE: Do NOT copy the crypto_key_t "back" to userland.
1592	 * This ensures that an attacker can't trivially find the
1593	 * key for a mapping just by issuing the ioctl.
1594	 *
1595	 * It can still be found by poking around in kmem with mdb(1),
1596	 * but there is no point in making it easy when the info isn't
1597	 * of any use in this direction anyway.
1598	 *
1599	 * Either way we don't actually have the raw key stored in
1600	 * a form that we can get it anyway, since we just used it
1601	 * to create a ctx template and didn't keep "the original".
1602	 */
1603	error = ddi_copyout(klip, ulip, sizeof (struct lofi_ioctl), flag);
1604	if (error)
1605		return (EFAULT);
1606	return (0);
1607}
1608
1609static int
1610lofi_access(struct lofi_state *lsp)
1611{
1612	ASSERT(MUTEX_HELD(&lofi_lock));
1613	if (INGLOBALZONE(curproc) || lsp->ls_zone.zref_zone == curzone)
1614		return (0);
1615	return (EPERM);
1616}
1617
1618/*
1619 * Find the lofi state for the given filename. We compare by vnode to
1620 * allow the global zone visibility into NGZ lofi nodes.
1621 */
1622static int
1623file_to_lofi_nocheck(char *filename, struct lofi_state **lspp)
1624{
1625	struct lofi_state *lsp;
1626	vnode_t *vp = NULL;
1627	int err = 0;
1628
1629	ASSERT(MUTEX_HELD(&lofi_lock));
1630
1631	if ((err = lookupname(filename, UIO_SYSSPACE, FOLLOW,
1632	    NULLVPP, &vp)) != 0)
1633		goto out;
1634
1635	if (vp->v_type == VREG) {
1636		vnode_t *realvp;
1637		if (VOP_REALVP(vp, &realvp, NULL) == 0) {
1638			VN_HOLD(realvp);
1639			VN_RELE(vp);
1640			vp = realvp;
1641		}
1642	}
1643
1644	for (lsp = list_head(&lofi_list); lsp != NULL;
1645	    lsp = list_next(&lofi_list, lsp)) {
1646		if (lsp->ls_vp == vp) {
1647			if (lspp != NULL)
1648				*lspp = lsp;
1649			goto out;
1650		}
1651	}
1652
1653	err = ENOENT;
1654
1655out:
1656	if (vp != NULL)
1657		VN_RELE(vp);
1658	return (err);
1659}
1660
1661/*
1662 * Find the minor for the given filename, checking the zone can access
1663 * it.
1664 */
1665static int
1666file_to_lofi(char *filename, struct lofi_state **lspp)
1667{
1668	int err = 0;
1669
1670	ASSERT(MUTEX_HELD(&lofi_lock));
1671
1672	if ((err = file_to_lofi_nocheck(filename, lspp)) != 0)
1673		return (err);
1674
1675	if ((err = lofi_access(*lspp)) != 0)
1676		return (err);
1677
1678	return (0);
1679}
1680
1681/*
1682 * Fakes up a disk geometry, and one big partition, based on the size
1683 * of the file. This is needed because we allow newfs'ing the device,
1684 * and newfs will do several disk ioctls to figure out the geometry and
1685 * partition information. It uses that information to determine the parameters
1686 * to pass to mkfs. Geometry is pretty much irrelevant these days, but we
1687 * have to support it.
1688 */
1689static void
1690fake_disk_geometry(struct lofi_state *lsp)
1691{
1692	u_offset_t dsize = lsp->ls_vp_size - lsp->ls_crypto_offset;
1693
1694	/* dk_geom - see dkio(7I) */
1695	/*
1696	 * dkg_ncyl _could_ be set to one here (one big cylinder with gobs
1697	 * of sectors), but that breaks programs like fdisk which want to
1698	 * partition a disk by cylinder. With one cylinder, you can't create
1699	 * an fdisk partition and put pcfs on it for testing (hard to pick
1700	 * a number between one and one).
1701	 *
1702	 * The cheezy floppy test is an attempt to not have too few cylinders
1703	 * for a small file, or so many on a big file that you waste space
1704	 * for backup superblocks or cylinder group structures.
1705	 */
1706	if (dsize < (2 * 1024 * 1024)) /* floppy? */
1707		lsp->ls_dkg.dkg_ncyl = dsize / (100 * 1024);
1708	else
1709		lsp->ls_dkg.dkg_ncyl = dsize / (300 * 1024);
1710	/* in case file file is < 100k */
1711	if (lsp->ls_dkg.dkg_ncyl == 0)
1712		lsp->ls_dkg.dkg_ncyl = 1;
1713	lsp->ls_dkg.dkg_acyl = 0;
1714	lsp->ls_dkg.dkg_bcyl = 0;
1715	lsp->ls_dkg.dkg_nhead = 1;
1716	lsp->ls_dkg.dkg_obs1 = 0;
1717	lsp->ls_dkg.dkg_intrlv = 0;
1718	lsp->ls_dkg.dkg_obs2 = 0;
1719	lsp->ls_dkg.dkg_obs3 = 0;
1720	lsp->ls_dkg.dkg_apc = 0;
1721	lsp->ls_dkg.dkg_rpm = 7200;
1722	lsp->ls_dkg.dkg_pcyl = lsp->ls_dkg.dkg_ncyl + lsp->ls_dkg.dkg_acyl;
1723	lsp->ls_dkg.dkg_nsect = dsize / (DEV_BSIZE * lsp->ls_dkg.dkg_ncyl);
1724	lsp->ls_dkg.dkg_write_reinstruct = 0;
1725	lsp->ls_dkg.dkg_read_reinstruct = 0;
1726
1727	/* vtoc - see dkio(7I) */
1728	bzero(&lsp->ls_vtoc, sizeof (struct vtoc));
1729	lsp->ls_vtoc.v_sanity = VTOC_SANE;
1730	lsp->ls_vtoc.v_version = V_VERSION;
1731	(void) strncpy(lsp->ls_vtoc.v_volume, LOFI_DRIVER_NAME,
1732	    sizeof (lsp->ls_vtoc.v_volume));
1733	lsp->ls_vtoc.v_sectorsz = DEV_BSIZE;
1734	lsp->ls_vtoc.v_nparts = 1;
1735	lsp->ls_vtoc.v_part[0].p_tag = V_UNASSIGNED;
1736
1737	/*
1738	 * A compressed file is read-only, other files can
1739	 * be read-write
1740	 */
1741	if (lsp->ls_uncomp_seg_sz > 0) {
1742		lsp->ls_vtoc.v_part[0].p_flag = V_UNMNT | V_RONLY;
1743	} else {
1744		lsp->ls_vtoc.v_part[0].p_flag = V_UNMNT;
1745	}
1746	lsp->ls_vtoc.v_part[0].p_start = (daddr_t)0;
1747	/*
1748	 * The partition size cannot just be the number of sectors, because
1749	 * that might not end on a cylinder boundary. And if that's the case,
1750	 * newfs/mkfs will print a scary warning. So just figure the size
1751	 * based on the number of cylinders and sectors/cylinder.
1752	 */
1753	lsp->ls_vtoc.v_part[0].p_size = lsp->ls_dkg.dkg_pcyl *
1754	    lsp->ls_dkg.dkg_nsect * lsp->ls_dkg.dkg_nhead;
1755
1756	/* dk_cinfo - see dkio(7I) */
1757	bzero(&lsp->ls_ci, sizeof (struct dk_cinfo));
1758	(void) strcpy(lsp->ls_ci.dki_cname, LOFI_DRIVER_NAME);
1759	lsp->ls_ci.dki_ctype = DKC_MD;
1760	lsp->ls_ci.dki_flags = 0;
1761	lsp->ls_ci.dki_cnum = 0;
1762	lsp->ls_ci.dki_addr = 0;
1763	lsp->ls_ci.dki_space = 0;
1764	lsp->ls_ci.dki_prio = 0;
1765	lsp->ls_ci.dki_vec = 0;
1766	(void) strcpy(lsp->ls_ci.dki_dname, LOFI_DRIVER_NAME);
1767	lsp->ls_ci.dki_unit = 0;
1768	lsp->ls_ci.dki_slave = 0;
1769	lsp->ls_ci.dki_partition = 0;
1770	/*
1771	 * newfs uses this to set maxcontig. Must not be < 16, or it
1772	 * will be 0 when newfs multiplies it by DEV_BSIZE and divides
1773	 * it by the block size. Then tunefs doesn't work because
1774	 * maxcontig is 0.
1775	 */
1776	lsp->ls_ci.dki_maxtransfer = 16;
1777}
1778
1779/*
1780 * map in a compressed file
1781 *
1782 * Read in the header and the index that follows.
1783 *
1784 * The header is as follows -
1785 *
1786 * Signature (name of the compression algorithm)
1787 * Compression segment size (a multiple of 512)
1788 * Number of index entries
1789 * Size of the last block
1790 * The array containing the index entries
1791 *
1792 * The header information is always stored in
1793 * network byte order on disk.
1794 */
1795static int
1796lofi_map_compressed_file(struct lofi_state *lsp, char *buf)
1797{
1798	uint32_t index_sz, header_len, i;
1799	ssize_t	resid;
1800	enum uio_rw rw;
1801	char *tbuf = buf;
1802	int error;
1803
1804	/* The signature has already been read */
1805	tbuf += sizeof (lsp->ls_comp_algorithm);
1806	bcopy(tbuf, &(lsp->ls_uncomp_seg_sz), sizeof (lsp->ls_uncomp_seg_sz));
1807	lsp->ls_uncomp_seg_sz = ntohl(lsp->ls_uncomp_seg_sz);
1808
1809	/*
1810	 * The compressed segment size must be a power of 2
1811	 */
1812	if (lsp->ls_uncomp_seg_sz < DEV_BSIZE ||
1813	    !ISP2(lsp->ls_uncomp_seg_sz))
1814		return (EINVAL);
1815
1816	for (i = 0; !((lsp->ls_uncomp_seg_sz >> i) & 1); i++)
1817		;
1818
1819	lsp->ls_comp_seg_shift = i;
1820
1821	tbuf += sizeof (lsp->ls_uncomp_seg_sz);
1822	bcopy(tbuf, &(lsp->ls_comp_index_sz), sizeof (lsp->ls_comp_index_sz));
1823	lsp->ls_comp_index_sz = ntohl(lsp->ls_comp_index_sz);
1824
1825	tbuf += sizeof (lsp->ls_comp_index_sz);
1826	bcopy(tbuf, &(lsp->ls_uncomp_last_seg_sz),
1827	    sizeof (lsp->ls_uncomp_last_seg_sz));
1828	lsp->ls_uncomp_last_seg_sz = ntohl(lsp->ls_uncomp_last_seg_sz);
1829
1830	/*
1831	 * Compute the total size of the uncompressed data
1832	 * for use in fake_disk_geometry and other calculations.
1833	 * Disk geometry has to be faked with respect to the
1834	 * actual uncompressed data size rather than the
1835	 * compressed file size.
1836	 */
1837	lsp->ls_vp_size =
1838	    (u_offset_t)(lsp->ls_comp_index_sz - 2) * lsp->ls_uncomp_seg_sz
1839	    + lsp->ls_uncomp_last_seg_sz;
1840
1841	/*
1842	 * Index size is rounded up to DEV_BSIZE for ease
1843	 * of segmapping
1844	 */
1845	index_sz = sizeof (*lsp->ls_comp_seg_index) * lsp->ls_comp_index_sz;
1846	header_len = sizeof (lsp->ls_comp_algorithm) +
1847	    sizeof (lsp->ls_uncomp_seg_sz) +
1848	    sizeof (lsp->ls_comp_index_sz) +
1849	    sizeof (lsp->ls_uncomp_last_seg_sz);
1850	lsp->ls_comp_offbase = header_len + index_sz;
1851
1852	index_sz += header_len;
1853	index_sz = roundup(index_sz, DEV_BSIZE);
1854
1855	lsp->ls_comp_index_data = kmem_alloc(index_sz, KM_SLEEP);
1856	lsp->ls_comp_index_data_sz = index_sz;
1857
1858	/*
1859	 * Read in the index -- this has a side-effect
1860	 * of reading in the header as well
1861	 */
1862	rw = UIO_READ;
1863	error = vn_rdwr(rw, lsp->ls_vp, lsp->ls_comp_index_data, index_sz,
1864	    0, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred, &resid);
1865
1866	if (error != 0)
1867		return (error);
1868
1869	/* Skip the header, this is where the index really begins */
1870	lsp->ls_comp_seg_index =
1871	    /*LINTED*/
1872	    (uint64_t *)(lsp->ls_comp_index_data + header_len);
1873
1874	/*
1875	 * Now recompute offsets in the index to account for
1876	 * the header length
1877	 */
1878	for (i = 0; i < lsp->ls_comp_index_sz; i++) {
1879		lsp->ls_comp_seg_index[i] = lsp->ls_comp_offbase +
1880		    BE_64(lsp->ls_comp_seg_index[i]);
1881	}
1882
1883	return (error);
1884}
1885
1886static int
1887lofi_init_crypto(struct lofi_state *lsp, struct lofi_ioctl *klip)
1888{
1889	struct crypto_meta chead;
1890	char buf[DEV_BSIZE];
1891	ssize_t	resid;
1892	char *marker;
1893	int error;
1894	int ret;
1895	int i;
1896
1897	if (!klip->li_crypto_enabled)
1898		return (0);
1899
1900	/*
1901	 * All current algorithms have a max of 448 bits.
1902	 */
1903	if (klip->li_iv_len > CRYPTO_BITS2BYTES(512))
1904		return (EINVAL);
1905
1906	if (CRYPTO_BITS2BYTES(klip->li_key_len) > sizeof (klip->li_key))
1907		return (EINVAL);
1908
1909	lsp->ls_crypto_enabled = klip->li_crypto_enabled;
1910
1911	mutex_init(&lsp->ls_crypto_lock, NULL, MUTEX_DRIVER, NULL);
1912
1913	lsp->ls_mech.cm_type = crypto_mech2id(klip->li_cipher);
1914	if (lsp->ls_mech.cm_type == CRYPTO_MECH_INVALID) {
1915		cmn_err(CE_WARN, "invalid cipher %s requested for %s",
1916		    klip->li_cipher, klip->li_filename);
1917		return (EINVAL);
1918	}
1919
1920	/* this is just initialization here */
1921	lsp->ls_mech.cm_param = NULL;
1922	lsp->ls_mech.cm_param_len = 0;
1923
1924	lsp->ls_iv_type = klip->li_iv_type;
1925	lsp->ls_iv_mech.cm_type = crypto_mech2id(klip->li_iv_cipher);
1926	if (lsp->ls_iv_mech.cm_type == CRYPTO_MECH_INVALID) {
1927		cmn_err(CE_WARN, "invalid iv cipher %s requested"
1928		    " for %s", klip->li_iv_cipher, klip->li_filename);
1929		return (EINVAL);
1930	}
1931
1932	/* iv mech must itself take a null iv */
1933	lsp->ls_iv_mech.cm_param = NULL;
1934	lsp->ls_iv_mech.cm_param_len = 0;
1935	lsp->ls_iv_len = klip->li_iv_len;
1936
1937	/*
1938	 * Create ctx using li_cipher & the raw li_key after checking
1939	 * that it isn't a weak key.
1940	 */
1941	lsp->ls_key.ck_format = CRYPTO_KEY_RAW;
1942	lsp->ls_key.ck_length = klip->li_key_len;
1943	lsp->ls_key.ck_data = kmem_alloc(
1944	    CRYPTO_BITS2BYTES(lsp->ls_key.ck_length), KM_SLEEP);
1945	bcopy(klip->li_key, lsp->ls_key.ck_data,
1946	    CRYPTO_BITS2BYTES(lsp->ls_key.ck_length));
1947
1948	ret = crypto_key_check(&lsp->ls_mech, &lsp->ls_key);
1949	if (ret != CRYPTO_SUCCESS) {
1950		cmn_err(CE_WARN, "weak key check failed for cipher "
1951		    "%s on file %s (0x%x)", klip->li_cipher,
1952		    klip->li_filename, ret);
1953		return (EINVAL);
1954	}
1955
1956	error = vn_rdwr(UIO_READ, lsp->ls_vp, buf, DEV_BSIZE,
1957	    CRYOFF, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred, &resid);
1958	if (error != 0)
1959		return (error);
1960
1961	/*
1962	 * This is the case where the header in the lofi image is already
1963	 * initialized to indicate it is encrypted.
1964	 */
1965	if (strncmp(buf, lofi_crypto_magic, sizeof (lofi_crypto_magic)) == 0) {
1966		/*
1967		 * The encryption header information is laid out this way:
1968		 *	6 bytes:	hex "CFLOFI"
1969		 *	2 bytes:	version = 0 ... for now
1970		 *	96 bytes:	reserved1 (not implemented yet)
1971		 *	4 bytes:	data_sector = 2 ... for now
1972		 *	more...		not implemented yet
1973		 */
1974
1975		marker = buf;
1976
1977		/* copy the magic */
1978		bcopy(marker, lsp->ls_crypto.magic,
1979		    sizeof (lsp->ls_crypto.magic));
1980		marker += sizeof (lsp->ls_crypto.magic);
1981
1982		/* read the encryption version number */
1983		bcopy(marker, &(lsp->ls_crypto.version),
1984		    sizeof (lsp->ls_crypto.version));
1985		lsp->ls_crypto.version = ntohs(lsp->ls_crypto.version);
1986		marker += sizeof (lsp->ls_crypto.version);
1987
1988		/* read a chunk of reserved data */
1989		bcopy(marker, lsp->ls_crypto.reserved1,
1990		    sizeof (lsp->ls_crypto.reserved1));
1991		marker += sizeof (lsp->ls_crypto.reserved1);
1992
1993		/* read block number where encrypted data begins */
1994		bcopy(marker, &(lsp->ls_crypto.data_sector),
1995		    sizeof (lsp->ls_crypto.data_sector));
1996		lsp->ls_crypto.data_sector = ntohl(lsp->ls_crypto.data_sector);
1997		marker += sizeof (lsp->ls_crypto.data_sector);
1998
1999		/* and ignore the rest until it is implemented */
2000
2001		lsp->ls_crypto_offset = lsp->ls_crypto.data_sector * DEV_BSIZE;
2002		return (0);
2003	}
2004
2005	/*
2006	 * We've requested encryption, but no magic was found, so it must be
2007	 * a new image.
2008	 */
2009
2010	for (i = 0; i < sizeof (struct crypto_meta); i++) {
2011		if (buf[i] != '\0')
2012			return (EINVAL);
2013	}
2014
2015	marker = buf;
2016	bcopy(lofi_crypto_magic, marker, sizeof (lofi_crypto_magic));
2017	marker += sizeof (lofi_crypto_magic);
2018	chead.version = htons(LOFI_CRYPTO_VERSION);
2019	bcopy(&(chead.version), marker, sizeof (chead.version));
2020	marker += sizeof (chead.version);
2021	marker += sizeof (chead.reserved1);
2022	chead.data_sector = htonl(LOFI_CRYPTO_DATA_SECTOR);
2023	bcopy(&(chead.data_sector), marker, sizeof (chead.data_sector));
2024
2025	/* write the header */
2026	error = vn_rdwr(UIO_WRITE, lsp->ls_vp, buf, DEV_BSIZE,
2027	    CRYOFF, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred, &resid);
2028	if (error != 0)
2029		return (error);
2030
2031	/* fix things up so it looks like we read this info */
2032	bcopy(lofi_crypto_magic, lsp->ls_crypto.magic,
2033	    sizeof (lofi_crypto_magic));
2034	lsp->ls_crypto.version = LOFI_CRYPTO_VERSION;
2035	lsp->ls_crypto.data_sector = LOFI_CRYPTO_DATA_SECTOR;
2036	lsp->ls_crypto_offset = lsp->ls_crypto.data_sector * DEV_BSIZE;
2037	return (0);
2038}
2039
2040/*
2041 * Check to see if the passed in signature is a valid one.  If it is
2042 * valid, return the index into lofi_compress_table.
2043 *
2044 * Return -1 if it is invalid
2045 */
2046static int
2047lofi_compress_select(const char *signature)
2048{
2049	int i;
2050
2051	for (i = 0; i < LOFI_COMPRESS_FUNCTIONS; i++) {
2052		if (strcmp(lofi_compress_table[i].l_name, signature) == 0)
2053			return (i);
2054	}
2055
2056	return (-1);
2057}
2058
2059static int
2060lofi_init_compress(struct lofi_state *lsp)
2061{
2062	char buf[DEV_BSIZE];
2063	int compress_index;
2064	ssize_t	resid;
2065	int error;
2066
2067	error = vn_rdwr(UIO_READ, lsp->ls_vp, buf, DEV_BSIZE, 0, UIO_SYSSPACE,
2068	    0, RLIM64_INFINITY, kcred, &resid);
2069
2070	if (error != 0)
2071		return (error);
2072
2073	if ((compress_index = lofi_compress_select(buf)) == -1)
2074		return (0);
2075
2076	/* compression and encryption are mutually exclusive */
2077	if (lsp->ls_crypto_enabled)
2078		return (ENOTSUP);
2079
2080	/* initialize compression info for compressed lofi */
2081	lsp->ls_comp_algorithm_index = compress_index;
2082	(void) strlcpy(lsp->ls_comp_algorithm,
2083	    lofi_compress_table[compress_index].l_name,
2084	    sizeof (lsp->ls_comp_algorithm));
2085
2086	/* Finally setup per-thread pre-allocated buffers */
2087	lsp->ls_comp_bufs = kmem_zalloc(lofi_taskq_nthreads *
2088	    sizeof (struct compbuf), KM_SLEEP);
2089
2090	return (lofi_map_compressed_file(lsp, buf));
2091}
2092
2093/*
2094 * map a file to a minor number. Return the minor number.
2095 */
2096static int
2097lofi_map_file(dev_t dev, struct lofi_ioctl *ulip, int pickminor,
2098    int *rvalp, struct cred *credp, int ioctl_flag)
2099{
2100	minor_t	minor = (minor_t)-1;
2101	struct lofi_state *lsp = NULL;
2102	struct lofi_ioctl *klip;
2103	int	error;
2104	struct vnode *vp = NULL;
2105	vattr_t	vattr;
2106	int	flag;
2107	dev_t	newdev;
2108	char	namebuf[50];
2109
2110	error = copy_in_lofi_ioctl(ulip, &klip, ioctl_flag);
2111	if (error != 0)
2112		return (error);
2113
2114	mutex_enter(&lofi_lock);
2115
2116	mutex_enter(&curproc->p_lock);
2117	if ((error = rctl_incr_lofi(curproc, curproc->p_zone, 1)) != 0) {
2118		mutex_exit(&curproc->p_lock);
2119		mutex_exit(&lofi_lock);
2120		free_lofi_ioctl(klip);
2121		return (error);
2122	}
2123	mutex_exit(&curproc->p_lock);
2124
2125	if (file_to_lofi_nocheck(klip->li_filename, NULL) == 0) {
2126		error = EBUSY;
2127		goto err;
2128	}
2129
2130	if (pickminor) {
2131		minor = (minor_t)id_allocff_nosleep(lofi_minor_id);
2132		if (minor == (minor_t)-1) {
2133			error = EAGAIN;
2134			goto err;
2135		}
2136	} else {
2137		if (ddi_get_soft_state(lofi_statep, klip->li_minor) != NULL) {
2138			error = EEXIST;
2139			goto err;
2140		}
2141
2142		minor = (minor_t)
2143		    id_alloc_specific_nosleep(lofi_minor_id, klip->li_minor);
2144		ASSERT(minor != (minor_t)-1);
2145	}
2146
2147	flag = FREAD | FWRITE | FOFFMAX | FEXCL;
2148	error = vn_open(klip->li_filename, UIO_SYSSPACE, flag, 0, &vp, 0, 0);
2149	if (error) {
2150		/* try read-only */
2151		flag &= ~FWRITE;
2152		error = vn_open(klip->li_filename, UIO_SYSSPACE, flag, 0,
2153		    &vp, 0, 0);
2154		if (error)
2155			goto err;
2156	}
2157
2158	if (!V_ISLOFIABLE(vp->v_type)) {
2159		error = EINVAL;
2160		goto err;
2161	}
2162
2163	vattr.va_mask = AT_SIZE;
2164	error = VOP_GETATTR(vp, &vattr, 0, credp, NULL);
2165	if (error)
2166		goto err;
2167
2168	/* the file needs to be a multiple of the block size */
2169	if ((vattr.va_size % DEV_BSIZE) != 0) {
2170		error = EINVAL;
2171		goto err;
2172	}
2173
2174	/* lsp alloc+init */
2175
2176	error = ddi_soft_state_zalloc(lofi_statep, minor);
2177	if (error == DDI_FAILURE) {
2178		error = ENOMEM;
2179		goto err;
2180	}
2181
2182	lsp = ddi_get_soft_state(lofi_statep, minor);
2183	list_insert_tail(&lofi_list, lsp);
2184
2185	newdev = makedevice(getmajor(dev), minor);
2186	lsp->ls_dev = newdev;
2187	zone_init_ref(&lsp->ls_zone);
2188	zone_hold_ref(curzone, &lsp->ls_zone, ZONE_REF_LOFI);
2189	lsp->ls_uncomp_seg_sz = 0;
2190	lsp->ls_comp_algorithm[0] = '\0';
2191	lsp->ls_crypto_offset = 0;
2192
2193	cv_init(&lsp->ls_vp_cv, NULL, CV_DRIVER, NULL);
2194	mutex_init(&lsp->ls_comp_cache_lock, NULL, MUTEX_DRIVER, NULL);
2195	mutex_init(&lsp->ls_comp_bufs_lock, NULL, MUTEX_DRIVER, NULL);
2196	mutex_init(&lsp->ls_kstat_lock, NULL, MUTEX_DRIVER, NULL);
2197	mutex_init(&lsp->ls_vp_lock, NULL, MUTEX_DRIVER, NULL);
2198
2199	(void) snprintf(namebuf, sizeof (namebuf), "%s_taskq_%d",
2200	    LOFI_DRIVER_NAME, minor);
2201	lsp->ls_taskq = taskq_create_proc(namebuf, lofi_taskq_nthreads,
2202	    minclsyspri, 1, lofi_taskq_maxalloc, curzone->zone_zsched, 0);
2203
2204	list_create(&lsp->ls_comp_cache, sizeof (struct lofi_comp_cache),
2205	    offsetof(struct lofi_comp_cache, lc_list));
2206
2207	/*
2208	 * save open mode so file can be closed properly and vnode counts
2209	 * updated correctly.
2210	 */
2211	lsp->ls_openflag = flag;
2212
2213	lsp->ls_vp = vp;
2214	lsp->ls_stacked_vp = vp;
2215	/*
2216	 * Try to handle stacked lofs vnodes.
2217	 */
2218	if (vp->v_type == VREG) {
2219		vnode_t *realvp;
2220
2221		if (VOP_REALVP(vp, &realvp, NULL) == 0) {
2222			/*
2223			 * We need to use the realvp for uniqueness
2224			 * checking, but keep the stacked vp for
2225			 * LOFI_GET_FILENAME display.
2226			 */
2227			VN_HOLD(realvp);
2228			lsp->ls_vp = realvp;
2229		}
2230	}
2231
2232	lsp->ls_vp_size = vattr.va_size;
2233	lsp->ls_vp_comp_size = lsp->ls_vp_size;
2234
2235	lsp->ls_kstat = kstat_create_zone(LOFI_DRIVER_NAME, minor,
2236	    NULL, "disk", KSTAT_TYPE_IO, 1, 0, getzoneid());
2237
2238	if (lsp->ls_kstat == NULL) {
2239		error = ENOMEM;
2240		goto err;
2241	}
2242
2243	lsp->ls_kstat->ks_lock = &lsp->ls_kstat_lock;
2244	kstat_zone_add(lsp->ls_kstat, GLOBAL_ZONEID);
2245
2246	if ((error = lofi_init_crypto(lsp, klip)) != 0)
2247		goto err;
2248
2249	if ((error = lofi_init_compress(lsp)) != 0)
2250		goto err;
2251
2252	fake_disk_geometry(lsp);
2253
2254	/* create minor nodes */
2255
2256	(void) snprintf(namebuf, sizeof (namebuf), "%d", minor);
2257	error = ddi_create_minor_node(lofi_dip, namebuf, S_IFBLK, minor,
2258	    DDI_PSEUDO, NULL);
2259	if (error != DDI_SUCCESS) {
2260		error = ENXIO;
2261		goto err;
2262	}
2263
2264	(void) snprintf(namebuf, sizeof (namebuf), "%d,raw", minor);
2265	error = ddi_create_minor_node(lofi_dip, namebuf, S_IFCHR, minor,
2266	    DDI_PSEUDO, NULL);
2267	if (error != DDI_SUCCESS) {
2268		/* remove block node */
2269		(void) snprintf(namebuf, sizeof (namebuf), "%d", minor);
2270		ddi_remove_minor_node(lofi_dip, namebuf);
2271		error = ENXIO;
2272		goto err;
2273	}
2274
2275	/* create DDI properties */
2276
2277	if ((ddi_prop_update_int64(newdev, lofi_dip, SIZE_PROP_NAME,
2278	    lsp->ls_vp_size - lsp->ls_crypto_offset)) != DDI_PROP_SUCCESS) {
2279		error = EINVAL;
2280		goto nodeerr;
2281	}
2282
2283	if ((ddi_prop_update_int64(newdev, lofi_dip, NBLOCKS_PROP_NAME,
2284	    (lsp->ls_vp_size - lsp->ls_crypto_offset) / DEV_BSIZE))
2285	    != DDI_PROP_SUCCESS) {
2286		error = EINVAL;
2287		goto nodeerr;
2288	}
2289
2290	if (ddi_prop_update_string(newdev, lofi_dip, ZONE_PROP_NAME,
2291	    (char *)curproc->p_zone->zone_name) != DDI_PROP_SUCCESS) {
2292		error = EINVAL;
2293		goto nodeerr;
2294	}
2295
2296	kstat_install(lsp->ls_kstat);
2297
2298	mutex_exit(&lofi_lock);
2299
2300	if (rvalp)
2301		*rvalp = (int)minor;
2302	klip->li_minor = minor;
2303	(void) copy_out_lofi_ioctl(klip, ulip, ioctl_flag);
2304	free_lofi_ioctl(klip);
2305	return (0);
2306
2307nodeerr:
2308	lofi_free_dev(newdev);
2309err:
2310	if (lsp != NULL) {
2311		lofi_destroy(lsp, credp);
2312	} else {
2313		if (vp != NULL) {
2314			(void) VOP_CLOSE(vp, flag, 1, 0, credp, NULL);
2315			VN_RELE(vp);
2316		}
2317
2318		if (minor != (minor_t)-1)
2319			id_free(lofi_minor_id, minor);
2320
2321		rctl_decr_lofi(curproc->p_zone, 1);
2322	}
2323
2324	mutex_exit(&lofi_lock);
2325	free_lofi_ioctl(klip);
2326	return (error);
2327}
2328
2329/*
2330 * unmap a file.
2331 */
2332static int
2333lofi_unmap_file(struct lofi_ioctl *ulip, int byfilename,
2334    struct cred *credp, int ioctl_flag)
2335{
2336	struct lofi_state *lsp;
2337	struct lofi_ioctl *klip;
2338	int err;
2339
2340	err = copy_in_lofi_ioctl(ulip, &klip, ioctl_flag);
2341	if (err != 0)
2342		return (err);
2343
2344	mutex_enter(&lofi_lock);
2345	if (byfilename) {
2346		if ((err = file_to_lofi(klip->li_filename, &lsp)) != 0) {
2347			mutex_exit(&lofi_lock);
2348			return (err);
2349		}
2350	} else if (klip->li_minor == 0) {
2351		mutex_exit(&lofi_lock);
2352		free_lofi_ioctl(klip);
2353		return (ENXIO);
2354	} else {
2355		lsp = ddi_get_soft_state(lofi_statep, klip->li_minor);
2356	}
2357
2358	if (lsp == NULL || lsp->ls_vp == NULL || lofi_access(lsp) != 0) {
2359		mutex_exit(&lofi_lock);
2360		free_lofi_ioctl(klip);
2361		return (ENXIO);
2362	}
2363
2364	klip->li_minor = getminor(lsp->ls_dev);
2365
2366	/*
2367	 * If it's still held open, we'll do one of three things:
2368	 *
2369	 * If no flag is set, just return EBUSY.
2370	 *
2371	 * If the 'cleanup' flag is set, unmap and remove the device when
2372	 * the last user finishes.
2373	 *
2374	 * If the 'force' flag is set, then we forcibly close the underlying
2375	 * file.  Subsequent operations will fail, and the DKIOCSTATE ioctl
2376	 * will return DKIO_DEV_GONE.  When the device is last closed, the
2377	 * device will be cleaned up appropriately.
2378	 *
2379	 * This is complicated by the fact that we may have outstanding
2380	 * dispatched I/Os.  Rather than having a single mutex to serialize all
2381	 * I/O, we keep a count of the number of outstanding I/O requests
2382	 * (ls_vp_iocount), as well as a flag to indicate that no new I/Os
2383	 * should be dispatched (ls_vp_closereq).
2384	 *
2385	 * We set the flag, wait for the number of outstanding I/Os to reach 0,
2386	 * and then close the underlying vnode.
2387	 */
2388	if (is_opened(lsp)) {
2389		if (klip->li_force) {
2390			mutex_enter(&lsp->ls_vp_lock);
2391			lsp->ls_vp_closereq = B_TRUE;
2392			/* wake up any threads waiting on dkiocstate */
2393			cv_broadcast(&lsp->ls_vp_cv);
2394			while (lsp->ls_vp_iocount > 0)
2395				cv_wait(&lsp->ls_vp_cv, &lsp->ls_vp_lock);
2396			mutex_exit(&lsp->ls_vp_lock);
2397
2398			goto out;
2399		} else if (klip->li_cleanup) {
2400			lsp->ls_cleanup = 1;
2401			mutex_exit(&lofi_lock);
2402			free_lofi_ioctl(klip);
2403			return (0);
2404		}
2405
2406		mutex_exit(&lofi_lock);
2407		free_lofi_ioctl(klip);
2408		return (EBUSY);
2409	}
2410
2411out:
2412	lofi_free_dev(lsp->ls_dev);
2413	lofi_destroy(lsp, credp);
2414
2415	mutex_exit(&lofi_lock);
2416	(void) copy_out_lofi_ioctl(klip, ulip, ioctl_flag);
2417	free_lofi_ioctl(klip);
2418	return (0);
2419}
2420
2421/*
2422 * get the filename given the minor number, or the minor number given
2423 * the name.
2424 */
2425/*ARGSUSED*/
2426static int
2427lofi_get_info(dev_t dev, struct lofi_ioctl *ulip, int which,
2428    struct cred *credp, int ioctl_flag)
2429{
2430	struct lofi_ioctl *klip;
2431	struct lofi_state *lsp;
2432	int	error;
2433
2434	error = copy_in_lofi_ioctl(ulip, &klip, ioctl_flag);
2435	if (error != 0)
2436		return (error);
2437
2438	switch (which) {
2439	case LOFI_GET_FILENAME:
2440		if (klip->li_minor == 0) {
2441			free_lofi_ioctl(klip);
2442			return (EINVAL);
2443		}
2444
2445		mutex_enter(&lofi_lock);
2446		lsp = ddi_get_soft_state(lofi_statep, klip->li_minor);
2447		if (lsp == NULL || lofi_access(lsp) != 0) {
2448			mutex_exit(&lofi_lock);
2449			free_lofi_ioctl(klip);
2450			return (ENXIO);
2451		}
2452
2453		/*
2454		 * This may fail if, for example, we're trying to look
2455		 * up a zoned NFS path from the global zone.
2456		 */
2457		if (vnodetopath(NULL, lsp->ls_stacked_vp, klip->li_filename,
2458		    sizeof (klip->li_filename), CRED()) != 0) {
2459			(void) strlcpy(klip->li_filename, "?",
2460			    sizeof (klip->li_filename));
2461		}
2462
2463		(void) strlcpy(klip->li_algorithm, lsp->ls_comp_algorithm,
2464		    sizeof (klip->li_algorithm));
2465		klip->li_crypto_enabled = lsp->ls_crypto_enabled;
2466		mutex_exit(&lofi_lock);
2467		error = copy_out_lofi_ioctl(klip, ulip, ioctl_flag);
2468		free_lofi_ioctl(klip);
2469		return (error);
2470	case LOFI_GET_MINOR:
2471		mutex_enter(&lofi_lock);
2472		error = file_to_lofi(klip->li_filename, &lsp);
2473		if (error == 0)
2474			klip->li_minor = getminor(lsp->ls_dev);
2475		mutex_exit(&lofi_lock);
2476
2477		if (error == 0)
2478			error = copy_out_lofi_ioctl(klip, ulip, ioctl_flag);
2479
2480		free_lofi_ioctl(klip);
2481		return (error);
2482	case LOFI_CHECK_COMPRESSED:
2483		mutex_enter(&lofi_lock);
2484		error = file_to_lofi(klip->li_filename, &lsp);
2485		if (error != 0) {
2486			mutex_exit(&lofi_lock);
2487			free_lofi_ioctl(klip);
2488			return (error);
2489		}
2490
2491		klip->li_minor = getminor(lsp->ls_dev);
2492		(void) strlcpy(klip->li_algorithm, lsp->ls_comp_algorithm,
2493		    sizeof (klip->li_algorithm));
2494
2495		mutex_exit(&lofi_lock);
2496		error = copy_out_lofi_ioctl(klip, ulip, ioctl_flag);
2497		free_lofi_ioctl(klip);
2498		return (error);
2499	default:
2500		free_lofi_ioctl(klip);
2501		return (EINVAL);
2502	}
2503}
2504
2505static int
2506lofi_ioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *credp,
2507    int *rvalp)
2508{
2509	int	error;
2510	enum dkio_state dkstate;
2511	struct lofi_state *lsp;
2512	minor_t	minor;
2513
2514	minor = getminor(dev);
2515	/* lofi ioctls only apply to the master device */
2516	if (minor == 0) {
2517		struct lofi_ioctl *lip = (struct lofi_ioctl *)arg;
2518
2519		/*
2520		 * the query command only need read-access - i.e., normal
2521		 * users are allowed to do those on the ctl device as
2522		 * long as they can open it read-only.
2523		 */
2524		switch (cmd) {
2525		case LOFI_MAP_FILE:
2526			if ((flag & FWRITE) == 0)
2527				return (EPERM);
2528			return (lofi_map_file(dev, lip, 1, rvalp, credp, flag));
2529		case LOFI_MAP_FILE_MINOR:
2530			if ((flag & FWRITE) == 0)
2531				return (EPERM);
2532			return (lofi_map_file(dev, lip, 0, rvalp, credp, flag));
2533		case LOFI_UNMAP_FILE:
2534			if ((flag & FWRITE) == 0)
2535				return (EPERM);
2536			return (lofi_unmap_file(lip, 1, credp, flag));
2537		case LOFI_UNMAP_FILE_MINOR:
2538			if ((flag & FWRITE) == 0)
2539				return (EPERM);
2540			return (lofi_unmap_file(lip, 0, credp, flag));
2541		case LOFI_GET_FILENAME:
2542			return (lofi_get_info(dev, lip, LOFI_GET_FILENAME,
2543			    credp, flag));
2544		case LOFI_GET_MINOR:
2545			return (lofi_get_info(dev, lip, LOFI_GET_MINOR,
2546			    credp, flag));
2547
2548		/*
2549		 * This API made limited sense when this value was fixed
2550		 * at LOFI_MAX_FILES.  However, its use to iterate
2551		 * across all possible devices in lofiadm means we don't
2552		 * want to return L_MAXMIN32, but the highest
2553		 * *allocated* minor.
2554		 */
2555		case LOFI_GET_MAXMINOR:
2556			minor = 0;
2557
2558			mutex_enter(&lofi_lock);
2559
2560			for (lsp = list_head(&lofi_list); lsp != NULL;
2561			    lsp = list_next(&lofi_list, lsp)) {
2562				if (lofi_access(lsp) != 0)
2563					continue;
2564
2565				if (getminor(lsp->ls_dev) > minor)
2566					minor = getminor(lsp->ls_dev);
2567			}
2568
2569			mutex_exit(&lofi_lock);
2570
2571			error = ddi_copyout(&minor, &lip->li_minor,
2572			    sizeof (minor), flag);
2573			if (error)
2574				return (EFAULT);
2575			return (0);
2576
2577		case LOFI_CHECK_COMPRESSED:
2578			return (lofi_get_info(dev, lip, LOFI_CHECK_COMPRESSED,
2579			    credp, flag));
2580		default:
2581			return (EINVAL);
2582		}
2583	}
2584
2585	mutex_enter(&lofi_lock);
2586	lsp = ddi_get_soft_state(lofi_statep, minor);
2587	if (lsp == NULL || lsp->ls_vp_closereq) {
2588		mutex_exit(&lofi_lock);
2589		return (ENXIO);
2590	}
2591	mutex_exit(&lofi_lock);
2592
2593	/*
2594	 * We explicitly allow DKIOCSTATE, but all other ioctls should fail with
2595	 * EIO as if the device was no longer present.
2596	 */
2597	if (lsp->ls_vp == NULL && cmd != DKIOCSTATE)
2598		return (EIO);
2599
2600	/* these are for faking out utilities like newfs */
2601	switch (cmd) {
2602	case DKIOCGVTOC:
2603		switch (ddi_model_convert_from(flag & FMODELS)) {
2604		case DDI_MODEL_ILP32: {
2605			struct vtoc32 vtoc32;
2606
2607			vtoctovtoc32(lsp->ls_vtoc, vtoc32);
2608			if (ddi_copyout(&vtoc32, (void *)arg,
2609			    sizeof (struct vtoc32), flag))
2610				return (EFAULT);
2611			break;
2612			}
2613
2614		case DDI_MODEL_NONE:
2615			if (ddi_copyout(&lsp->ls_vtoc, (void *)arg,
2616			    sizeof (struct vtoc), flag))
2617				return (EFAULT);
2618			break;
2619		}
2620		return (0);
2621	case DKIOCINFO:
2622		error = ddi_copyout(&lsp->ls_ci, (void *)arg,
2623		    sizeof (struct dk_cinfo), flag);
2624		if (error)
2625			return (EFAULT);
2626		return (0);
2627	case DKIOCG_VIRTGEOM:
2628	case DKIOCG_PHYGEOM:
2629	case DKIOCGGEOM:
2630		error = ddi_copyout(&lsp->ls_dkg, (void *)arg,
2631		    sizeof (struct dk_geom), flag);
2632		if (error)
2633			return (EFAULT);
2634		return (0);
2635	case DKIOCSTATE:
2636		/*
2637		 * Normally, lofi devices are always in the INSERTED state.  If
2638		 * a device is forcefully unmapped, then the device transitions
2639		 * to the DKIO_DEV_GONE state.
2640		 */
2641		if (ddi_copyin((void *)arg, &dkstate, sizeof (dkstate),
2642		    flag) != 0)
2643			return (EFAULT);
2644
2645		mutex_enter(&lsp->ls_vp_lock);
2646		lsp->ls_vp_iocount++;
2647		while (((dkstate == DKIO_INSERTED && lsp->ls_vp != NULL) ||
2648		    (dkstate == DKIO_DEV_GONE && lsp->ls_vp == NULL)) &&
2649		    !lsp->ls_vp_closereq) {
2650			/*
2651			 * By virtue of having the device open, we know that
2652			 * 'lsp' will remain valid when we return.
2653			 */
2654			if (!cv_wait_sig(&lsp->ls_vp_cv,
2655			    &lsp->ls_vp_lock)) {
2656				lsp->ls_vp_iocount--;
2657				cv_broadcast(&lsp->ls_vp_cv);
2658				mutex_exit(&lsp->ls_vp_lock);
2659				return (EINTR);
2660			}
2661		}
2662
2663		dkstate = (!lsp->ls_vp_closereq && lsp->ls_vp != NULL ?
2664		    DKIO_INSERTED : DKIO_DEV_GONE);
2665		lsp->ls_vp_iocount--;
2666		cv_broadcast(&lsp->ls_vp_cv);
2667		mutex_exit(&lsp->ls_vp_lock);
2668
2669		if (ddi_copyout(&dkstate, (void *)arg,
2670		    sizeof (dkstate), flag) != 0)
2671			return (EFAULT);
2672		return (0);
2673	default:
2674		return (ENOTTY);
2675	}
2676}
2677
2678static struct cb_ops lofi_cb_ops = {
2679	lofi_open,		/* open */
2680	lofi_close,		/* close */
2681	lofi_strategy,		/* strategy */
2682	nodev,			/* print */
2683	nodev,			/* dump */
2684	lofi_read,		/* read */
2685	lofi_write,		/* write */
2686	lofi_ioctl,		/* ioctl */
2687	nodev,			/* devmap */
2688	nodev,			/* mmap */
2689	nodev,			/* segmap */
2690	nochpoll,		/* poll */
2691	ddi_prop_op,		/* prop_op */
2692	0,			/* streamtab  */
2693	D_64BIT | D_NEW | D_MP,	/* Driver compatibility flag */
2694	CB_REV,
2695	lofi_aread,
2696	lofi_awrite
2697};
2698
2699static struct dev_ops lofi_ops = {
2700	DEVO_REV,		/* devo_rev, */
2701	0,			/* refcnt  */
2702	lofi_info,		/* info */
2703	nulldev,		/* identify */
2704	nulldev,		/* probe */
2705	lofi_attach,		/* attach */
2706	lofi_detach,		/* detach */
2707	nodev,			/* reset */
2708	&lofi_cb_ops,		/* driver operations */
2709	NULL,			/* no bus operations */
2710	NULL,			/* power */
2711	ddi_quiesce_not_needed,	/* quiesce */
2712};
2713
2714static struct modldrv modldrv = {
2715	&mod_driverops,
2716	"loopback file driver",
2717	&lofi_ops,
2718};
2719
2720static struct modlinkage modlinkage = {
2721	MODREV_1,
2722	&modldrv,
2723	NULL
2724};
2725
2726int
2727_init(void)
2728{
2729	int error;
2730
2731	list_create(&lofi_list, sizeof (struct lofi_state),
2732	    offsetof(struct lofi_state, ls_list));
2733
2734	error = ddi_soft_state_init(&lofi_statep,
2735	    sizeof (struct lofi_state), 0);
2736	if (error)
2737		return (error);
2738
2739	mutex_init(&lofi_lock, NULL, MUTEX_DRIVER, NULL);
2740
2741	error = mod_install(&modlinkage);
2742	if (error) {
2743		mutex_destroy(&lofi_lock);
2744		ddi_soft_state_fini(&lofi_statep);
2745		list_destroy(&lofi_list);
2746	}
2747
2748	return (error);
2749}
2750
2751int
2752_fini(void)
2753{
2754	int	error;
2755
2756	mutex_enter(&lofi_lock);
2757
2758	if (!list_is_empty(&lofi_list)) {
2759		mutex_exit(&lofi_lock);
2760		return (EBUSY);
2761	}
2762
2763	mutex_exit(&lofi_lock);
2764
2765	error = mod_remove(&modlinkage);
2766	if (error)
2767		return (error);
2768
2769	mutex_destroy(&lofi_lock);
2770	ddi_soft_state_fini(&lofi_statep);
2771	list_destroy(&lofi_list);
2772
2773	return (error);
2774}
2775
2776int
2777_info(struct modinfo *modinfop)
2778{
2779	return (mod_info(&modlinkage, modinfop));
2780}
2781