1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright(c) 2007-2010 Intel Corporation. All rights reserved.
24 */
25
26/*
27 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
28 */
29
30/* IntelVersion: 1.108 v3_3_14_3_BHSW1 */
31
32#include "igb_api.h"
33
34static s32 e1000_set_default_fc_generic(struct e1000_hw *hw);
35static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw);
36static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw);
37static s32 e1000_validate_mdi_setting_generic(struct e1000_hw *hw);
38static void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw);
39
40/*
41 * e1000_init_mac_ops_generic - Initialize MAC function pointers
42 * @hw: pointer to the HW structure
43 *
44 * Setups up the function pointers to no-op functions
45 */
46void
47e1000_init_mac_ops_generic(struct e1000_hw *hw)
48{
49	struct e1000_mac_info *mac = &hw->mac;
50	DEBUGFUNC("e1000_init_mac_ops_generic");
51
52	/* General Setup */
53	mac->ops.init_params = e1000_null_ops_generic;
54	mac->ops.init_hw = e1000_null_ops_generic;
55	mac->ops.reset_hw = e1000_null_ops_generic;
56	mac->ops.setup_physical_interface = e1000_null_ops_generic;
57	mac->ops.get_bus_info = e1000_null_ops_generic;
58	mac->ops.set_lan_id = e1000_set_lan_id_multi_port_pcie;
59	mac->ops.read_mac_addr = e1000_read_mac_addr_generic;
60	mac->ops.config_collision_dist = e1000_config_collision_dist_generic;
61	mac->ops.clear_hw_cntrs = e1000_null_mac_generic;
62	/* LED */
63	mac->ops.cleanup_led = e1000_null_ops_generic;
64	mac->ops.setup_led = e1000_null_ops_generic;
65	mac->ops.blink_led = e1000_null_ops_generic;
66	mac->ops.led_on = e1000_null_ops_generic;
67	mac->ops.led_off = e1000_null_ops_generic;
68	/* LINK */
69	mac->ops.setup_link = e1000_null_ops_generic;
70	mac->ops.get_link_up_info = e1000_null_link_info;
71	mac->ops.check_for_link = e1000_null_ops_generic;
72	mac->ops.wait_autoneg = e1000_wait_autoneg_generic;
73	/* Management */
74	mac->ops.check_mng_mode = e1000_null_mng_mode;
75	mac->ops.mng_host_if_write = e1000_mng_host_if_write_generic;
76	mac->ops.mng_write_cmd_header = e1000_mng_write_cmd_header_generic;
77	mac->ops.mng_enable_host_if = e1000_mng_enable_host_if_generic;
78	/* VLAN, MC, etc. */
79	mac->ops.update_mc_addr_list = e1000_null_update_mc;
80	mac->ops.clear_vfta = e1000_null_mac_generic;
81	mac->ops.write_vfta = e1000_null_write_vfta;
82	mac->ops.mta_set = e1000_null_mta_set;
83	mac->ops.rar_set = e1000_rar_set_generic;
84	mac->ops.validate_mdi_setting = e1000_validate_mdi_setting_generic;
85}
86
87/*
88 * e1000_null_ops_generic - No-op function, returns 0
89 * @hw: pointer to the HW structure
90 */
91s32
92e1000_null_ops_generic(struct e1000_hw *hw)
93{
94	DEBUGFUNC("e1000_null_ops_generic");
95	UNREFERENCED_1PARAMETER(hw);
96	return (E1000_SUCCESS);
97}
98
99/*
100 * e1000_null_mac_generic - No-op function, return void
101 * @hw: pointer to the HW structure
102 */
103void
104e1000_null_mac_generic(struct e1000_hw *hw)
105{
106	DEBUGFUNC("e1000_null_mac_generic");
107	UNREFERENCED_1PARAMETER(hw);
108}
109
110/*
111 * e1000_null_link_info - No-op function, return 0
112 * @hw: pointer to the HW structure
113 */
114s32
115e1000_null_link_info(struct e1000_hw *hw, u16 *s, u16 *d)
116{
117	DEBUGFUNC("e1000_null_link_info");
118	UNREFERENCED_3PARAMETER(hw, s, d);
119	return (E1000_SUCCESS);
120}
121
122/*
123 * e1000_null_mng_mode - No-op function, return false
124 * @hw: pointer to the HW structure
125 */
126bool
127e1000_null_mng_mode(struct e1000_hw *hw)
128{
129	DEBUGFUNC("e1000_null_mng_mode");
130	UNREFERENCED_1PARAMETER(hw);
131	return (false);
132}
133
134/*
135 * e1000_null_update_mc - No-op function, return void
136 * @hw: pointer to the HW structure
137 */
138void
139e1000_null_update_mc(struct e1000_hw *hw, u8 *h, u32 a)
140{
141	DEBUGFUNC("e1000_null_update_mc");
142	UNREFERENCED_3PARAMETER(hw, h, a);
143}
144
145/*
146 * e1000_null_write_vfta - No-op function, return void
147 * @hw: pointer to the HW structure
148 */
149void
150e1000_null_write_vfta(struct e1000_hw *hw, u32 a, u32 b)
151{
152	DEBUGFUNC("e1000_null_write_vfta");
153	UNREFERENCED_3PARAMETER(hw, a, b);
154}
155
156/*
157 * e1000_null_set_mta - No-op function, return void
158 * @hw: pointer to the HW structure
159 */
160void
161e1000_null_mta_set(struct e1000_hw *hw, u32 a)
162{
163	DEBUGFUNC("e1000_null_mta_set");
164	UNREFERENCED_2PARAMETER(hw, a);
165}
166
167/*
168 * e1000_null_rar_set - No-op function, return void
169 * @hw: pointer to the HW structure
170 */
171void
172e1000_null_rar_set(struct e1000_hw *hw, u8 *h, u32 a)
173{
174	DEBUGFUNC("e1000_null_rar_set");
175	UNREFERENCED_3PARAMETER(hw, h, a);
176}
177
178/*
179 * e1000_get_bus_info_pcie_generic - Get PCIe bus information
180 * @hw: pointer to the HW structure
181 *
182 * Determines and stores the system bus information for a particular
183 * network interface.  The following bus information is determined and stored:
184 * bus speed, bus width, type (PCIe), and PCIe function.
185 */
186s32
187e1000_get_bus_info_pcie_generic(struct e1000_hw *hw)
188{
189	struct e1000_mac_info *mac = &hw->mac;
190	struct e1000_bus_info *bus = &hw->bus;
191	s32 ret_val;
192	u16 pcie_link_status;
193
194	DEBUGFUNC("e1000_get_bus_info_pcie_generic");
195
196	bus->type = e1000_bus_type_pci_express;
197	bus->speed = e1000_bus_speed_2500;
198
199	ret_val = e1000_read_pcie_cap_reg(hw,
200	    PCIE_LINK_STATUS, &pcie_link_status);
201	if (ret_val)
202		bus->width = e1000_bus_width_unknown;
203	else
204		bus->width = (enum e1000_bus_width)((pcie_link_status &
205		    PCIE_LINK_WIDTH_MASK) >> PCIE_LINK_WIDTH_SHIFT);
206
207	mac->ops.set_lan_id(hw);
208
209	return (E1000_SUCCESS);
210}
211
212/*
213 * e1000_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
214 *
215 * @hw: pointer to the HW structure
216 *
217 * Determines the LAN function id by reading memory-mapped registers
218 * and swaps the port value if requested.
219 */
220static void
221e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw)
222{
223	struct e1000_bus_info *bus = &hw->bus;
224	u32 reg;
225
226	/*
227	 * The status register reports the correct function number
228	 * for the device regardless of function swap state.
229	 */
230	reg = E1000_READ_REG(hw, E1000_STATUS);
231	bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
232}
233
234/*
235 * e1000_set_lan_id_single_port - Set LAN id for a single port device
236 * @hw: pointer to the HW structure
237 *
238 * Sets the LAN function id to zero for a single port device.
239 */
240void
241e1000_set_lan_id_single_port(struct e1000_hw *hw)
242{
243	struct e1000_bus_info *bus = &hw->bus;
244
245	bus->func = 0;
246}
247
248/*
249 * e1000_clear_vfta_generic - Clear VLAN filter table
250 * @hw: pointer to the HW structure
251 *
252 * Clears the register array which contains the VLAN filter table by
253 * setting all the values to 0.
254 */
255void
256e1000_clear_vfta_generic(struct e1000_hw *hw)
257{
258	u32 offset;
259
260	DEBUGFUNC("e1000_clear_vfta_generic");
261
262	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
263		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0);
264		E1000_WRITE_FLUSH(hw);
265	}
266}
267
268/*
269 * e1000_write_vfta_generic - Write value to VLAN filter table
270 * @hw: pointer to the HW structure
271 * @offset: register offset in VLAN filter table
272 * @value: register value written to VLAN filter table
273 *
274 * Writes value at the given offset in the register array which stores
275 * the VLAN filter table.
276 */
277void
278e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value)
279{
280	DEBUGFUNC("e1000_write_vfta_generic");
281
282	E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
283	E1000_WRITE_FLUSH(hw);
284}
285
286/*
287 * e1000_init_rx_addrs_generic - Initialize receive address's
288 * @hw: pointer to the HW structure
289 * @rar_count: receive address registers
290 *
291 * Setups the receive address registers by setting the base receive address
292 * register to the devices MAC address and clearing all the other receive
293 * address registers to 0.
294 */
295void
296e1000_init_rx_addrs_generic(struct e1000_hw *hw, u16 rar_count)
297{
298	u32 i;
299	u8 mac_addr[ETH_ADDR_LEN] = {0};
300
301	DEBUGFUNC("e1000_init_rx_addrs_generic");
302
303	/* Setup the receive address */
304	DEBUGOUT("Programming MAC Address into RAR[0]\n");
305
306	hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
307
308	/* Zero out the other (rar_entry_count - 1) receive addresses */
309	DEBUGOUT1("Clearing RAR[1-%u]\n", rar_count-1);
310	for (i = 1; i < rar_count; i++)
311		hw->mac.ops.rar_set(hw, mac_addr, i);
312}
313
314/*
315 * e1000_check_alt_mac_addr_generic - Check for alternate MAC addr
316 * @hw: pointer to the HW structure
317 *
318 * Checks the nvm for an alternate MAC address.  An alternate MAC address
319 * can be setup by pre-boot software and must be treated like a permanent
320 * address and must override the actual permanent MAC address.  If an
321 * alternate MAC address is found it is programmed into RAR0, replacing
322 * the permanent address that was installed into RAR0 by the Si on reset.
323 * This function will return SUCCESS unless it encounters an error while
324 * reading the EEPROM.
325 */
326s32
327e1000_check_alt_mac_addr_generic(struct e1000_hw *hw)
328{
329	u32 i;
330	s32 ret_val = E1000_SUCCESS;
331	u16 offset, nvm_alt_mac_addr_offset, nvm_data;
332	u8 alt_mac_addr[ETH_ADDR_LEN];
333
334	DEBUGFUNC("e1000_check_alt_mac_addr_generic");
335
336	ret_val = hw->nvm.ops.read(hw, NVM_ALT_MAC_ADDR_PTR, 1,
337	    &nvm_alt_mac_addr_offset);
338	if (ret_val) {
339		DEBUGOUT("NVM Read Error\n");
340		goto out;
341	}
342
343	if (nvm_alt_mac_addr_offset == 0xFFFF) {
344		/* There is no Alternate MAC Address */
345		goto out;
346	}
347
348	if (hw->bus.func == E1000_FUNC_1)
349		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
350	if (hw->bus.func == E1000_FUNC_2)
351		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN2;
352	if (hw->bus.func == E1000_FUNC_3)
353		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN3;
354	for (i = 0; i < ETH_ADDR_LEN; i += 2) {
355		offset = nvm_alt_mac_addr_offset + (i >> 1);
356		ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
357		if (ret_val) {
358			DEBUGOUT("NVM Read Error\n");
359			goto out;
360		}
361
362		alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
363		alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
364	}
365
366	/* if multicast bit is set, the alternate address will not be used */
367	if (alt_mac_addr[0] & 0x01) {
368		DEBUGOUT("Ignoring Alternate Mac Address with MC bit set\n");
369		goto out;
370	}
371
372	/*
373	 * We have a valid alternate MAC address, and we want to treat it the
374	 * same as the normal permanent MAC address stored by the HW into the
375	 * RAR. Do this by mapping this address into RAR0.
376	 */
377	hw->mac.ops.rar_set(hw, alt_mac_addr, 0);
378
379out:
380	return (ret_val);
381}
382
383/*
384 * e1000_rar_set_generic - Set receive address register
385 * @hw: pointer to the HW structure
386 * @addr: pointer to the receive address
387 * @index: receive address array register
388 *
389 * Sets the receive address array register at index to the address passed
390 * in by addr.
391 */
392void
393e1000_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index)
394{
395	u32 rar_low, rar_high;
396
397	DEBUGFUNC("e1000_rar_set_generic");
398
399	/*
400	 * HW expects these in little endian so we reverse the byte order
401	 * from network order (big endian) to little endian
402	 */
403	rar_low = ((u32) addr[0] |
404	    ((u32) addr[1] << 8) |
405	    ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
406
407	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
408
409	/* If MAC address zero, no need to set the AV bit */
410	if (rar_low || rar_high)
411		rar_high |= E1000_RAH_AV;
412
413	/*
414	 * Some bridges will combine consecutive 32-bit writes into
415	 * a single burst write, which will malfunction on some parts.
416	 * The flushes avoid this.
417	 */
418	E1000_WRITE_REG(hw, E1000_RAL(index), rar_low);
419	E1000_WRITE_FLUSH(hw);
420	E1000_WRITE_REG(hw, E1000_RAH(index), rar_high);
421	E1000_WRITE_FLUSH(hw);
422}
423
424/*
425 * e1000_mta_set_generic - Set multicast filter table address
426 * @hw: pointer to the HW structure
427 * @hash_value: determines the MTA register and bit to set
428 *
429 * The multicast table address is a register array of 32-bit registers.
430 * The hash_value is used to determine what register the bit is in, the
431 * current value is read, the new bit is OR'd in and the new value is
432 * written back into the register.
433 */
434void
435e1000_mta_set_generic(struct e1000_hw *hw, u32 hash_value)
436{
437	u32 hash_bit, hash_reg, mta;
438
439	DEBUGFUNC("e1000_mta_set_generic");
440	/*
441	 * The MTA is a register array of 32-bit registers. It is
442	 * treated like an array of (32*mta_reg_count) bits.  We want to
443	 * set bit BitArray[hash_value]. So we figure out what register
444	 * the bit is in, read it, OR in the new bit, then write
445	 * back the new value.  The (hw->mac.mta_reg_count - 1) serves as a
446	 * mask to bits 31:5 of the hash value which gives us the
447	 * register we're modifying.  The hash bit within that register
448	 * is determined by the lower 5 bits of the hash value.
449	 */
450	hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
451	hash_bit = hash_value & 0x1F;
452
453	mta = E1000_READ_REG_ARRAY(hw, E1000_MTA, hash_reg);
454
455	mta |= (1 << hash_bit);
456
457	E1000_WRITE_REG_ARRAY(hw, E1000_MTA, hash_reg, mta);
458	E1000_WRITE_FLUSH(hw);
459}
460
461/*
462 * e1000_update_mc_addr_list_generic - Update Multicast addresses
463 * @hw: pointer to the HW structure
464 * @mc_addr_list: array of multicast addresses to program
465 * @mc_addr_count: number of multicast addresses to program
466 *
467 * Updates the Multicast Table Array.
468 * The caller must have a packed mc_addr_list of multicast addresses.
469 */
470void
471e1000_update_mc_addr_list_generic(struct e1000_hw *hw,
472    u8 *mc_addr_list, u32 mc_addr_count)
473{
474	u32 hash_value, hash_bit, hash_reg;
475	int i;
476
477	DEBUGFUNC("e1000_update_mc_addr_list_generic");
478
479	/* clear mta_shadow */
480	(void) memset(&hw->mac.mta_shadow, 0, sizeof (hw->mac.mta_shadow));
481
482	/* update mta_shadow from mc_addr_list */
483	for (i = 0; (u32) i < mc_addr_count; i++) {
484		hash_value = e1000_hash_mc_addr_generic(hw, mc_addr_list);
485
486		hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
487		hash_bit = hash_value & 0x1F;
488
489		hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit);
490		mc_addr_list += (ETH_ADDR_LEN);
491	}
492
493	/* replace the entire MTA table */
494	for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
495		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, hw->mac.mta_shadow[i]);
496	E1000_WRITE_FLUSH(hw);
497}
498
499/*
500 * e1000_hash_mc_addr_generic - Generate a multicast hash value
501 * @hw: pointer to the HW structure
502 * @mc_addr: pointer to a multicast address
503 *
504 * Generates a multicast address hash value which is used to determine
505 * the multicast filter table array address and new table value.  See
506 * e1000_mta_set_generic()
507 */
508u32
509e1000_hash_mc_addr_generic(struct e1000_hw *hw, u8 *mc_addr)
510{
511	u32 hash_value, hash_mask;
512	u8 bit_shift = 0;
513
514	DEBUGFUNC("e1000_hash_mc_addr_generic");
515
516	/* Register count multiplied by bits per register */
517	hash_mask = (hw->mac.mta_reg_count * 32) - 1;
518
519	/*
520	 * For a mc_filter_type of 0, bit_shift is the number of left-shifts
521	 * where 0xFF would still fall within the hash mask.
522	 */
523	while (hash_mask >> bit_shift != 0xFF)
524		bit_shift++;
525
526	/*
527	 * The portion of the address that is used for the hash table
528	 * is determined by the mc_filter_type setting.
529	 * The algorithm is such that there is a total of 8 bits of shifting.
530	 * The bit_shift for a mc_filter_type of 0 represents the number of
531	 * left-shifts where the MSB of mc_addr[5] would still fall within
532	 * the hash_mask.  Case 0 does this exactly.  Since there are a total
533	 * of 8 bits of shifting, then mc_addr[4] will shift right the
534	 * remaining number of bits. Thus 8 - bit_shift.  The rest of the
535	 * cases are a variation of this algorithm...essentially raising the
536	 * number of bits to shift mc_addr[5] left, while still keeping the
537	 * 8-bit shifting total.
538	 *
539	 * For example, given the following Destination MAC Address and an
540	 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
541	 * we can see that the bit_shift for case 0 is 4.  These are the hash
542	 * values resulting from each mc_filter_type...
543	 * [0] [1] [2] [3] [4] [5]
544	 * 01  AA  00  12  34  56
545	 * LSB			MSB
546	 *
547	 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
548	 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
549	 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
550	 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
551	 */
552	switch (hw->mac.mc_filter_type) {
553		default:
554		case 0:
555			break;
556		case 1:
557			bit_shift += 1;
558			break;
559		case 2:
560			bit_shift += 2;
561			break;
562		case 3:
563			bit_shift += 4;
564			break;
565	}
566
567	hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
568	    (((u16) mc_addr[5]) << bit_shift)));
569
570	return (hash_value);
571}
572
573/*
574 * e1000_clear_hw_cntrs_base_generic - Clear base hardware counters
575 * @hw: pointer to the HW structure
576 *
577 * Clears the base hardware counters by reading the counter registers.
578 */
579void
580e1000_clear_hw_cntrs_base_generic(struct e1000_hw *hw)
581{
582	DEBUGFUNC("e1000_clear_hw_cntrs_base_generic");
583
584	(void) E1000_READ_REG(hw, E1000_CRCERRS);
585	(void) E1000_READ_REG(hw, E1000_SYMERRS);
586	(void) E1000_READ_REG(hw, E1000_MPC);
587	(void) E1000_READ_REG(hw, E1000_SCC);
588	(void) E1000_READ_REG(hw, E1000_ECOL);
589	(void) E1000_READ_REG(hw, E1000_MCC);
590	(void) E1000_READ_REG(hw, E1000_LATECOL);
591	(void) E1000_READ_REG(hw, E1000_COLC);
592	(void) E1000_READ_REG(hw, E1000_DC);
593	(void) E1000_READ_REG(hw, E1000_SEC);
594	(void) E1000_READ_REG(hw, E1000_RLEC);
595	(void) E1000_READ_REG(hw, E1000_XONRXC);
596	(void) E1000_READ_REG(hw, E1000_XONTXC);
597	(void) E1000_READ_REG(hw, E1000_XOFFRXC);
598	(void) E1000_READ_REG(hw, E1000_XOFFTXC);
599	(void) E1000_READ_REG(hw, E1000_FCRUC);
600	(void) E1000_READ_REG(hw, E1000_GPRC);
601	(void) E1000_READ_REG(hw, E1000_BPRC);
602	(void) E1000_READ_REG(hw, E1000_MPRC);
603	(void) E1000_READ_REG(hw, E1000_GPTC);
604	(void) E1000_READ_REG(hw, E1000_GORCL);
605	(void) E1000_READ_REG(hw, E1000_GORCH);
606	(void) E1000_READ_REG(hw, E1000_GOTCL);
607	(void) E1000_READ_REG(hw, E1000_GOTCH);
608	(void) E1000_READ_REG(hw, E1000_RNBC);
609	(void) E1000_READ_REG(hw, E1000_RUC);
610	(void) E1000_READ_REG(hw, E1000_RFC);
611	(void) E1000_READ_REG(hw, E1000_ROC);
612	(void) E1000_READ_REG(hw, E1000_RJC);
613	(void) E1000_READ_REG(hw, E1000_TORL);
614	(void) E1000_READ_REG(hw, E1000_TORH);
615	(void) E1000_READ_REG(hw, E1000_TOTL);
616	(void) E1000_READ_REG(hw, E1000_TOTH);
617	(void) E1000_READ_REG(hw, E1000_TPR);
618	(void) E1000_READ_REG(hw, E1000_TPT);
619	(void) E1000_READ_REG(hw, E1000_MPTC);
620	(void) E1000_READ_REG(hw, E1000_BPTC);
621}
622
623/*
624 * e1000_check_for_copper_link_generic - Check for link (Copper)
625 * @hw: pointer to the HW structure
626 *
627 * Checks to see of the link status of the hardware has changed.  If a
628 * change in link status has been detected, then we read the PHY registers
629 * to get the current speed/duplex if link exists.
630 */
631s32
632e1000_check_for_copper_link_generic(struct e1000_hw *hw)
633{
634	struct e1000_mac_info *mac = &hw->mac;
635	s32 ret_val;
636	bool link;
637
638	DEBUGFUNC("e1000_check_for_copper_link");
639
640	/*
641	 * We only want to go out to the PHY registers to see if Auto-Neg
642	 * has completed and/or if our link status has changed.  The
643	 * get_link_status flag is set upon receiving a Link Status
644	 * Change or Rx Sequence Error interrupt.
645	 */
646	if (!mac->get_link_status) {
647		ret_val = E1000_SUCCESS;
648		goto out;
649	}
650
651	/*
652	 * First we want to see if the MII Status Register reports
653	 * link.  If so, then we want to get the current speed/duplex
654	 * of the PHY.
655	 */
656	ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
657	if (ret_val)
658		goto out;
659
660	if (!link)
661		goto out; /* No link detected */
662
663	mac->get_link_status = false;
664
665	/*
666	 * Check if there was DownShift, must be checked
667	 * immediately after link-up
668	 */
669	(void) e1000_check_downshift_generic(hw);
670
671	/*
672	 * If we are forcing speed/duplex, then we simply return since
673	 * we have already determined whether we have link or not.
674	 */
675	if (!mac->autoneg) {
676		ret_val = -E1000_ERR_CONFIG;
677		goto out;
678	}
679
680	/*
681	 * Auto-Neg is enabled.  Auto Speed Detection takes care
682	 * of MAC speed/duplex configuration.  So we only need to
683	 * configure Collision Distance in the MAC.
684	 */
685	e1000_config_collision_dist_generic(hw);
686
687	/*
688	 * Configure Flow Control now that Auto-Neg has completed.
689	 * First, we need to restore the desired flow control
690	 * settings because we may have had to re-autoneg with a
691	 * different link partner.
692	 */
693	ret_val = e1000_config_fc_after_link_up_generic(hw);
694	if (ret_val)
695		DEBUGOUT("Error configuring flow control\n");
696
697out:
698	return (ret_val);
699}
700
701/*
702 * e1000_check_for_fiber_link_generic - Check for link (Fiber)
703 * @hw: pointer to the HW structure
704 *
705 * Checks for link up on the hardware.  If link is not up and we have
706 * a signal, then we need to force link up.
707 */
708s32
709e1000_check_for_fiber_link_generic(struct e1000_hw *hw)
710{
711	struct e1000_mac_info *mac = &hw->mac;
712	u32 rxcw;
713	u32 ctrl;
714	u32 status;
715	s32 ret_val = E1000_SUCCESS;
716
717	DEBUGFUNC("e1000_check_for_fiber_link_generic");
718
719	ctrl = E1000_READ_REG(hw, E1000_CTRL);
720	status = E1000_READ_REG(hw, E1000_STATUS);
721	rxcw = E1000_READ_REG(hw, E1000_RXCW);
722
723	/*
724	 * If we don't have link (auto-negotiation failed or link partner
725	 * cannot auto-negotiate), the cable is plugged in (we have signal),
726	 * and our link partner is not trying to auto-negotiate with us (we
727	 * are receiving idles or data), we need to force link up. We also
728	 * need to give auto-negotiation time to complete, in case the cable
729	 * was just plugged in. The autoneg_failed flag does this.
730	 */
731	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
732	if ((ctrl & E1000_CTRL_SWDPIN1) && (!(status & E1000_STATUS_LU)) &&
733	    (!(rxcw & E1000_RXCW_C))) {
734		if (mac->autoneg_failed == 0) {
735			mac->autoneg_failed = 1;
736			goto out;
737		}
738		DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n");
739
740		/* Disable auto-negotiation in the TXCW register */
741		E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE));
742
743		/* Force link-up and also force full-duplex. */
744		ctrl = E1000_READ_REG(hw, E1000_CTRL);
745		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
746		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
747
748		/* Configure Flow Control after forcing link up. */
749		ret_val = e1000_config_fc_after_link_up_generic(hw);
750		if (ret_val) {
751			DEBUGOUT("Error configuring flow control\n");
752			goto out;
753		}
754	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
755		/*
756		 * If we are forcing link and we are receiving /C/ ordered
757		 * sets, re-enable auto-negotiation in the TXCW register
758		 * and disable forced link in the Device Control register
759		 * in an attempt to auto-negotiate with our link partner.
760		 */
761		DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n");
762		E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw);
763		E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU));
764
765		mac->serdes_has_link = true;
766	}
767
768out:
769	return (ret_val);
770}
771
772/*
773 * e1000_check_for_serdes_link_generic - Check for link (Serdes)
774 * @hw: pointer to the HW structure
775 *
776 * Checks for link up on the hardware.  If link is not up and we have
777 * a signal, then we need to force link up.
778 */
779s32
780e1000_check_for_serdes_link_generic(struct e1000_hw *hw)
781{
782	struct e1000_mac_info *mac = &hw->mac;
783	u32 rxcw;
784	u32 ctrl;
785	u32 status;
786	s32 ret_val = E1000_SUCCESS;
787
788	DEBUGFUNC("e1000_check_for_serdes_link_generic");
789
790	ctrl = E1000_READ_REG(hw, E1000_CTRL);
791	status = E1000_READ_REG(hw, E1000_STATUS);
792	rxcw = E1000_READ_REG(hw, E1000_RXCW);
793
794	/*
795	 * If we don't have link (auto-negotiation failed or link partner
796	 * cannot auto-negotiate), and our link partner is not trying to
797	 * auto-negotiate with us (we are receiving idles or data),
798	 * we need to force link up. We also need to give auto-negotiation
799	 * time to complete.
800	 */
801	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
802	if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) {
803		if (mac->autoneg_failed == 0) {
804			mac->autoneg_failed = 1;
805			goto out;
806		}
807		DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n");
808
809		/* Disable auto-negotiation in the TXCW register */
810		E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE));
811
812		/* Force link-up and also force full-duplex. */
813		ctrl = E1000_READ_REG(hw, E1000_CTRL);
814		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
815		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
816
817		/* Configure Flow Control after forcing link up. */
818		ret_val = e1000_config_fc_after_link_up_generic(hw);
819		if (ret_val) {
820			DEBUGOUT("Error configuring flow control\n");
821			goto out;
822		}
823	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
824		/*
825		 * If we are forcing link and we are receiving /C/ ordered
826		 * sets, re-enable auto-negotiation in the TXCW register
827		 * and disable forced link in the Device Control register
828		 * in an attempt to auto-negotiate with our link partner.
829		 */
830		DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n");
831		E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw);
832		E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU));
833
834		mac->serdes_has_link = true;
835	} else if (!(E1000_TXCW_ANE & E1000_READ_REG(hw, E1000_TXCW))) {
836		/*
837		 * If we force link for non-auto-negotiation switch, check
838		 * link status based on MAC synchronization for internal
839		 * serdes media type.
840		 */
841		/* SYNCH bit and IV bit are sticky. */
842		usec_delay(10);
843		rxcw = E1000_READ_REG(hw, E1000_RXCW);
844		if (rxcw & E1000_RXCW_SYNCH) {
845			if (!(rxcw & E1000_RXCW_IV)) {
846				mac->serdes_has_link = true;
847				DEBUGOUT("SERDES: Link up - forced.\n");
848			}
849		} else {
850			mac->serdes_has_link = false;
851			DEBUGOUT("SERDES: Link down - force failed.\n");
852		}
853	}
854
855	if (E1000_TXCW_ANE & E1000_READ_REG(hw, E1000_TXCW)) {
856		status = E1000_READ_REG(hw, E1000_STATUS);
857		if (status & E1000_STATUS_LU) {
858			/* SYNCH bit and IV bit are sticky, so reread rxcw. */
859			usec_delay(10);
860			rxcw = E1000_READ_REG(hw, E1000_RXCW);
861			if (rxcw & E1000_RXCW_SYNCH) {
862				if (!(rxcw & E1000_RXCW_IV)) {
863					mac->serdes_has_link = true;
864					DEBUGOUT("SERDES: Link up - autoneg "
865					    "completed sucessfully.\n");
866				} else {
867					mac->serdes_has_link = false;
868					DEBUGOUT("SERDES: Link down - invalid"
869					    "codewords detected in autoneg.\n");
870				}
871			} else {
872				mac->serdes_has_link = false;
873				DEBUGOUT("SERDES: Link down - no sync.\n");
874			}
875		} else {
876			mac->serdes_has_link = false;
877			DEBUGOUT("SERDES: Link down - autoneg failed\n");
878		}
879	}
880
881out:
882	return (ret_val);
883}
884
885/*
886 * e1000_setup_link_generic - Setup flow control and link settings
887 * @hw: pointer to the HW structure
888 *
889 * Determines which flow control settings to use, then configures flow
890 * control.  Calls the appropriate media-specific link configuration
891 * function.  Assuming the adapter has a valid link partner, a valid link
892 * should be established.  Assumes the hardware has previously been reset
893 * and the transmitter and receiver are not enabled.
894 */
895s32
896e1000_setup_link_generic(struct e1000_hw *hw)
897{
898	s32 ret_val = E1000_SUCCESS;
899
900	DEBUGFUNC("e1000_setup_link_generic");
901
902	/*
903	 * In the case of the phy reset being blocked, we already have a link.
904	 * We do not need to set it up again.
905	 */
906	if (hw->phy.ops.check_reset_block)
907		if (hw->phy.ops.check_reset_block(hw))
908			goto out;
909
910	/*
911	 * If requested flow control is set to default, set flow control
912	 * based on the EEPROM flow control settings.
913	 */
914	if (hw->fc.requested_mode == e1000_fc_default) {
915		ret_val = e1000_set_default_fc_generic(hw);
916		if (ret_val)
917			goto out;
918	}
919
920	/*
921	 * Save off the requested flow control mode for use later.  Depending
922	 * on the link partner's capabilities, we may or may not use this mode.
923	 */
924	hw->fc.current_mode = hw->fc.requested_mode;
925
926	DEBUGOUT1("After fix-ups FlowControl is now = %x\n",
927	    hw->fc.current_mode);
928
929	/* Call the necessary media_type subroutine to configure the link. */
930	ret_val = hw->mac.ops.setup_physical_interface(hw);
931	if (ret_val)
932		goto out;
933
934	/*
935	 * Initialize the flow control address, type, and PAUSE timer
936	 * registers to their default values.  This is done even if flow
937	 * control is disabled, because it does not hurt anything to
938	 * initialize these registers.
939	 */
940	DEBUGOUT("Initializing the Flow Control address,type and timer regs\n");
941	E1000_WRITE_REG(hw, E1000_FCT, FLOW_CONTROL_TYPE);
942	E1000_WRITE_REG(hw, E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH);
943	E1000_WRITE_REG(hw, E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW);
944
945	E1000_WRITE_REG(hw, E1000_FCTTV, hw->fc.pause_time);
946
947	ret_val = e1000_set_fc_watermarks_generic(hw);
948
949out:
950	return (ret_val);
951}
952
953/*
954 * e1000_setup_fiber_serdes_link_generic - Setup link for fiber/serdes
955 * @hw: pointer to the HW structure
956 *
957 * Configures collision distance and flow control for fiber and serdes
958 * links.  Upon successful setup, poll for link.
959 */
960s32
961e1000_setup_fiber_serdes_link_generic(struct e1000_hw *hw)
962{
963	u32 ctrl;
964	s32 ret_val = E1000_SUCCESS;
965
966	DEBUGFUNC("e1000_setup_fiber_serdes_link_generic");
967
968	ctrl = E1000_READ_REG(hw, E1000_CTRL);
969
970	/* Take the link out of reset */
971	ctrl &= ~E1000_CTRL_LRST;
972
973	e1000_config_collision_dist_generic(hw);
974
975	ret_val = e1000_commit_fc_settings_generic(hw);
976	if (ret_val)
977		goto out;
978
979	/*
980	 * Since auto-negotiation is enabled, take the link out of reset (the
981	 * link will be in reset, because we previously reset the chip). This
982	 * will restart auto-negotiation.  If auto-negotiation is successful
983	 * then the link-up status bit will be set and the flow control enable
984	 * bits (RFCE and TFCE) will be set according to their negotiated value.
985	 */
986	DEBUGOUT("Auto-negotiation enabled\n");
987
988	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
989	E1000_WRITE_FLUSH(hw);
990	msec_delay(1);
991
992	/*
993	 * For these adapters, the SW definable pin 1 is set when the optics
994	 * detect a signal.  If we have a signal, then poll for a "Link-Up"
995	 * indication.
996	 */
997	if (hw->phy.media_type == e1000_media_type_internal_serdes ||
998	    (E1000_READ_REG(hw, E1000_CTRL) & E1000_CTRL_SWDPIN1)) {
999		ret_val = e1000_poll_fiber_serdes_link_generic(hw);
1000	} else {
1001		DEBUGOUT("No signal detected\n");
1002	}
1003
1004out:
1005	return (ret_val);
1006}
1007
1008/*
1009 * e1000_config_collision_dist_generic - Configure collision distance
1010 * @hw: pointer to the HW structure
1011 *
1012 * Configures the collision distance to the default value and is used
1013 * during link setup. Currently no func pointer exists and all
1014 * implementations are handled in the generic version of this function.
1015 */
1016void
1017e1000_config_collision_dist_generic(struct e1000_hw *hw)
1018{
1019	u32 tctl;
1020
1021	DEBUGFUNC("e1000_config_collision_dist_generic");
1022
1023	tctl = E1000_READ_REG(hw, E1000_TCTL);
1024
1025	tctl &= ~E1000_TCTL_COLD;
1026	tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
1027
1028	E1000_WRITE_REG(hw, E1000_TCTL, tctl);
1029	E1000_WRITE_FLUSH(hw);
1030}
1031
1032/*
1033 * e1000_poll_fiber_serdes_link_generic - Poll for link up
1034 * @hw: pointer to the HW structure
1035 *
1036 * Polls for link up by reading the status register, if link fails to come
1037 * up with auto-negotiation, then the link is forced if a signal is detected.
1038 */
1039s32
1040e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw)
1041{
1042	struct e1000_mac_info *mac = &hw->mac;
1043	u32 i, status;
1044	s32 ret_val = E1000_SUCCESS;
1045
1046	DEBUGFUNC("e1000_poll_fiber_serdes_link_generic");
1047
1048	/*
1049	 * If we have a signal (the cable is plugged in, or assumed true for
1050	 * serdes media) then poll for a "Link-Up" indication in the Device
1051	 * Status Register.  Time-out if a link isn't seen in 500 milliseconds
1052	 * seconds (Auto-negotiation should complete in less than 500
1053	 * milliseconds even if the other end is doing it in SW).
1054	 */
1055	for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) {
1056		msec_delay(10);
1057		status = E1000_READ_REG(hw, E1000_STATUS);
1058		if (status & E1000_STATUS_LU)
1059			break;
1060	}
1061	if (i == FIBER_LINK_UP_LIMIT) {
1062		DEBUGOUT("Never got a valid link from auto-neg!!!\n");
1063		mac->autoneg_failed = 1;
1064		/*
1065		 * AutoNeg failed to achieve a link, so we'll call
1066		 * mac->check_for_link. This routine will force the
1067		 * link up if we detect a signal. This will allow us to
1068		 * communicate with non-autonegotiating link partners.
1069		 */
1070		ret_val = hw->mac.ops.check_for_link(hw);
1071		if (ret_val) {
1072			DEBUGOUT("Error while checking for link\n");
1073			goto out;
1074		}
1075		mac->autoneg_failed = 0;
1076	} else {
1077		mac->autoneg_failed = 0;
1078		DEBUGOUT("Valid Link Found\n");
1079	}
1080
1081out:
1082	return (ret_val);
1083}
1084
1085/*
1086 * e1000_commit_fc_settings_generic - Configure flow control
1087 * @hw: pointer to the HW structure
1088 *
1089 * Write the flow control settings to the Transmit Config Word Register (TXCW)
1090 * base on the flow control settings in e1000_mac_info.
1091 */
1092s32
1093e1000_commit_fc_settings_generic(struct e1000_hw *hw)
1094{
1095	struct e1000_mac_info *mac = &hw->mac;
1096	u32 txcw;
1097	s32 ret_val = E1000_SUCCESS;
1098
1099	DEBUGFUNC("e1000_commit_fc_settings_generic");
1100
1101	/*
1102	 * Check for a software override of the flow control settings, and
1103	 * setup the device accordingly.  If auto-negotiation is enabled, then
1104	 * software will have to set the "PAUSE" bits to the correct value in
1105	 * the Transmit Config Word Register (TXCW) and re-start auto-
1106	 * negotiation.  However, if auto-negotiation is disabled, then
1107	 * software will have to manually configure the two flow control enable
1108	 * bits in the CTRL register.
1109	 *
1110	 * The possible values of the "fc" parameter are:
1111	 *	0:  Flow control is completely disabled
1112	 *	1:  Rx flow control is enabled (we can receive pause frames,
1113	 *	    but not send pause frames).
1114	 *	2:  Tx flow control is enabled (we can send pause frames but we
1115	 *	    do not support receiving pause frames).
1116	 *	3:  Both Rx and Tx flow control (symmetric) are enabled.
1117	 */
1118	switch (hw->fc.current_mode) {
1119	case e1000_fc_none:
1120		/* Flow control completely disabled by a software over-ride. */
1121		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
1122		break;
1123	case e1000_fc_rx_pause:
1124		/*
1125		 * Rx Flow control is enabled and Tx Flow control is disabled
1126		 * by a software over-ride. Since there really isn't a way to
1127		 * advertise that we are capable of Rx Pause ONLY, we will
1128		 * advertise that we support both symmetric and asymmetric RX
1129		 * PAUSE.  Later, we will disable the adapter's ability to send
1130		 * PAUSE frames.
1131		 */
1132		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
1133		break;
1134	case e1000_fc_tx_pause:
1135		/*
1136		 * Tx Flow control is enabled, and Rx Flow control is disabled,
1137		 * by a software over-ride.
1138		 */
1139		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
1140		break;
1141	case e1000_fc_full:
1142		/*
1143		 * Flow control (both Rx and Tx) is enabled by a software
1144		 * over-ride.
1145		 */
1146		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
1147		break;
1148	default:
1149		DEBUGOUT("Flow control param set incorrectly\n");
1150		ret_val = -E1000_ERR_CONFIG;
1151		goto out;
1152	}
1153
1154	E1000_WRITE_REG(hw, E1000_TXCW, txcw);
1155	mac->txcw = txcw;
1156
1157out:
1158	return (ret_val);
1159}
1160
1161/*
1162 * e1000_set_fc_watermarks_generic - Set flow control high/low watermarks
1163 * @hw: pointer to the HW structure
1164 *
1165 * Sets the flow control high/low threshold (watermark) registers.  If
1166 * flow control XON frame transmission is enabled, then set XON frame
1167 * transmission as well.
1168 */
1169s32
1170e1000_set_fc_watermarks_generic(struct e1000_hw *hw)
1171{
1172	s32 ret_val = E1000_SUCCESS;
1173	u32 fcrtl = 0, fcrth = 0;
1174
1175	DEBUGFUNC("e1000_set_fc_watermarks_generic");
1176
1177	/*
1178	 * Set the flow control receive threshold registers.  Normally,
1179	 * these registers will be set to a default threshold that may be
1180	 * adjusted later by the driver's runtime code.  However, if the
1181	 * ability to transmit pause frames is not enabled, then these
1182	 * registers will be set to 0.
1183	 */
1184	if (hw->fc.current_mode & e1000_fc_tx_pause) {
1185		/*
1186		 * We need to set up the Receive Threshold high and low water
1187		 * marks as well as (optionally) enabling the transmission of
1188		 * XON frames.
1189		 */
1190		fcrtl = hw->fc.low_water;
1191		if (hw->fc.send_xon)
1192			fcrtl |= E1000_FCRTL_XONE;
1193
1194		fcrth = hw->fc.high_water;
1195	}
1196	E1000_WRITE_REG(hw, E1000_FCRTL, fcrtl);
1197	E1000_WRITE_REG(hw, E1000_FCRTH, fcrth);
1198
1199	return (ret_val);
1200}
1201
1202/*
1203 * e1000_set_default_fc_generic - Set flow control default values
1204 * @hw: pointer to the HW structure
1205 *
1206 * Read the EEPROM for the default values for flow control and store the
1207 * values.
1208 */
1209s32
1210e1000_set_default_fc_generic(struct e1000_hw *hw)
1211{
1212	s32 ret_val = E1000_SUCCESS;
1213	u16 nvm_data;
1214
1215	DEBUGFUNC("e1000_set_default_fc_generic");
1216
1217	/*
1218	 * Read and store word 0x0F of the EEPROM. This word contains bits
1219	 * that determine the hardware's default PAUSE (flow control) mode,
1220	 * a bit that determines whether the HW defaults to enabling or
1221	 * disabling auto-negotiation, and the direction of the
1222	 * SW defined pins. If there is no SW over-ride of the flow
1223	 * control setting, then the variable hw->fc will
1224	 * be initialized based on a value in the EEPROM.
1225	 */
1226	ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data);
1227
1228	if (ret_val) {
1229		DEBUGOUT("NVM Read Error\n");
1230		goto out;
1231	}
1232
1233	if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
1234		hw->fc.requested_mode = e1000_fc_none;
1235	else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) ==
1236	    NVM_WORD0F_ASM_DIR)
1237		hw->fc.requested_mode = e1000_fc_tx_pause;
1238	else
1239		hw->fc.requested_mode = e1000_fc_full;
1240
1241out:
1242	return (ret_val);
1243}
1244
1245/*
1246 * e1000_force_mac_fc_generic - Force the MAC's flow control settings
1247 * @hw: pointer to the HW structure
1248 *
1249 * Force the MAC's flow control settings.  Sets the TFCE and RFCE bits in the
1250 * device control register to reflect the adapter settings.  TFCE and RFCE
1251 * need to be explicitly set by software when a copper PHY is used because
1252 * autonegotiation is managed by the PHY rather than the MAC.  Software must
1253 * also configure these bits when link is forced on a fiber connection.
1254 */
1255s32
1256e1000_force_mac_fc_generic(struct e1000_hw *hw)
1257{
1258	u32 ctrl;
1259	s32 ret_val = E1000_SUCCESS;
1260
1261	DEBUGFUNC("e1000_force_mac_fc_generic");
1262
1263	ctrl = E1000_READ_REG(hw, E1000_CTRL);
1264
1265	/*
1266	 * Because we didn't get link via the internal auto-negotiation
1267	 * mechanism (we either forced link or we got link via PHY
1268	 * auto-neg), we have to manually enable/disable transmit an
1269	 * receive flow control.
1270	 *
1271	 * The "Case" statement below enables/disable flow control
1272	 * according to the "hw->fc.current_mode" parameter.
1273	 *
1274	 * The possible values of the "fc" parameter are:
1275	 *	0:  Flow control is completely disabled
1276	 *	1:  Rx flow control is enabled (we can receive pause
1277	 *	    frames but not send pause frames).
1278	 *	2:  Tx flow control is enabled (we can send pause frames
1279	 *	    frames but we do not receive pause frames).
1280	 *	3:  Both Rx and Tx flow control (symmetric) is enabled.
1281	 *  other:  No other values should be possible at this point.
1282	 */
1283	DEBUGOUT1("hw->fc.current_mode = %u\n", hw->fc.current_mode);
1284
1285	switch (hw->fc.current_mode) {
1286	case e1000_fc_none:
1287		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
1288		break;
1289	case e1000_fc_rx_pause:
1290		ctrl &= (~E1000_CTRL_TFCE);
1291		ctrl |= E1000_CTRL_RFCE;
1292		break;
1293	case e1000_fc_tx_pause:
1294		ctrl &= (~E1000_CTRL_RFCE);
1295		ctrl |= E1000_CTRL_TFCE;
1296		break;
1297	case e1000_fc_full:
1298		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
1299		break;
1300	default:
1301		DEBUGOUT("Flow control param set incorrectly\n");
1302		ret_val = -E1000_ERR_CONFIG;
1303		goto out;
1304	}
1305
1306	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1307
1308out:
1309	return (ret_val);
1310}
1311
1312/*
1313 * e1000_config_fc_after_link_up_generic - Configures flow control after link
1314 * @hw: pointer to the HW structure
1315 *
1316 * Checks the status of auto-negotiation after link up to ensure that the
1317 * speed and duplex were not forced.  If the link needed to be forced, then
1318 * flow control needs to be forced also.  If auto-negotiation is enabled
1319 * and did not fail, then we configure flow control based on our link
1320 * partner.
1321 */
1322s32
1323e1000_config_fc_after_link_up_generic(struct e1000_hw *hw)
1324{
1325	struct e1000_mac_info *mac = &hw->mac;
1326	s32 ret_val = E1000_SUCCESS;
1327	u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
1328	u16 speed, duplex;
1329
1330	DEBUGFUNC("e1000_config_fc_after_link_up_generic");
1331
1332	/*
1333	 * Check for the case where we have fiber media and auto-neg failed
1334	 * so we had to force link.  In this case, we need to force the
1335	 * configuration of the MAC to match the "fc" parameter.
1336	 */
1337	if (mac->autoneg_failed) {
1338		if (hw->phy.media_type == e1000_media_type_fiber ||
1339		    hw->phy.media_type == e1000_media_type_internal_serdes)
1340			ret_val = e1000_force_mac_fc_generic(hw);
1341	} else {
1342		if (hw->phy.media_type == e1000_media_type_copper)
1343			ret_val = e1000_force_mac_fc_generic(hw);
1344	}
1345
1346	if (ret_val) {
1347		DEBUGOUT("Error forcing flow control settings\n");
1348		goto out;
1349	}
1350
1351	/*
1352	 * Check for the case where we have copper media and auto-neg is
1353	 * enabled.  In this case, we need to check and see if Auto-Neg
1354	 * has completed, and if so, how the PHY and link partner has
1355	 * flow control configured.
1356	 */
1357	if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
1358		/*
1359		 * Read the MII Status Register and check to see if AutoNeg
1360		 * has completed.  We read this twice because this reg has
1361		 * some "sticky" (latched) bits.
1362		 */
1363		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg);
1364		if (ret_val)
1365			goto out;
1366		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg);
1367		if (ret_val)
1368			goto out;
1369
1370		if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
1371			DEBUGOUT("Copper PHY and Auto Neg "
1372			    "has not completed.\n");
1373			goto out;
1374		}
1375
1376		/*
1377		 * The AutoNeg process has completed, so we now need to
1378		 * read both the Auto Negotiation Advertisement
1379		 * Register (Address 4) and the Auto_Negotiation Base
1380		 * Page Ability Register (Address 5) to determine how
1381		 * flow control was negotiated.
1382		 */
1383		ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV,
1384		    &mii_nway_adv_reg);
1385		if (ret_val)
1386			goto out;
1387		ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY,
1388		    &mii_nway_lp_ability_reg);
1389		if (ret_val)
1390			goto out;
1391
1392		/*
1393		 * Two bits in the Auto Negotiation Advertisement Register
1394		 * (Address 4) and two bits in the Auto Negotiation Base
1395		 * Page Ability Register (Address 5) determine flow control
1396		 * for both the PHY and the link partner.  The following
1397		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1398		 * 1999, describes these PAUSE resolution bits and how flow
1399		 * control is determined based upon these settings.
1400		 * NOTE:  DC = Don't Care
1401		 *
1402		 *   LOCAL DEVICE  |   LINK PARTNER
1403		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1404		 * ------|---------|-------|---------|--------------------
1405		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
1406		 *   0   |    1    |   0   |   DC    | e1000_fc_none
1407		 *   0   |    1    |   1   |    0    | e1000_fc_none
1408		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1409		 *   1   |    0    |   0   |   DC    | e1000_fc_none
1410		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
1411		 *   1   |    1    |   0   |    0    | e1000_fc_none
1412		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1413		 *
1414		 * Are both PAUSE bits set to 1?  If so, this implies
1415		 * Symmetric Flow Control is enabled at both ends.  The
1416		 * ASM_DIR bits are irrelevant per the spec.
1417		 *
1418		 * For Symmetric Flow Control:
1419		 *
1420		 *   LOCAL DEVICE  |   LINK PARTNER
1421		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1422		 * ------|---------|-------|---------|--------------------
1423		 *   1   |   DC    |   1   |   DC    | E1000_fc_full
1424		 *
1425		 */
1426		if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1427		    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
1428			/*
1429			 * Now we need to check if the user selected Rx ONLY
1430			 * of pause frames.  In this case, we had to advertise
1431			 * FULL flow control because we could not advertise RX
1432			 * ONLY. Hence, we must now check to see if we need to
1433			 * turn OFF  the TRANSMISSION of PAUSE frames.
1434			 */
1435			if (hw->fc.requested_mode == e1000_fc_full) {
1436				hw->fc.current_mode = e1000_fc_full;
1437				DEBUGOUT("Flow Control = FULL.\r\n");
1438			} else {
1439				hw->fc.current_mode = e1000_fc_rx_pause;
1440				DEBUGOUT("Flow Control = "
1441				    "RX PAUSE frames only.\r\n");
1442			}
1443		}
1444		/*
1445		 * For receiving PAUSE frames ONLY.
1446		 *
1447		 *   LOCAL DEVICE  |   LINK PARTNER
1448		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1449		 * ------|---------|-------|---------|--------------------
1450		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1451		 */
1452		else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1453		    (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
1454		    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
1455		    (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
1456			hw->fc.current_mode = e1000_fc_tx_pause;
1457			DEBUGOUT("Flow Control = TX PAUSE frames only.\r\n");
1458		}
1459		/*
1460		 * For transmitting PAUSE frames ONLY.
1461		 *
1462		 *   LOCAL DEVICE  |   LINK PARTNER
1463		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1464		 * ------|---------|-------|---------|--------------------
1465		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1466		 */
1467		else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1468		    (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
1469		    !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
1470		    (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
1471			hw->fc.current_mode = e1000_fc_rx_pause;
1472			DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n");
1473		} else {
1474			/*
1475			 * Per the IEEE spec, at this point flow control
1476			 * should be disabled.
1477			 */
1478			hw->fc.current_mode = e1000_fc_none;
1479			DEBUGOUT("Flow Control = NONE.\r\n");
1480		}
1481
1482		/*
1483		 * Now we need to do one last check...  If we auto-
1484		 * negotiated to HALF DUPLEX, flow control should not be
1485		 * enabled per IEEE 802.3 spec.
1486		 */
1487		ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
1488		if (ret_val) {
1489			DEBUGOUT("Error getting link speed and duplex\n");
1490			goto out;
1491		}
1492
1493		if (duplex == HALF_DUPLEX)
1494			hw->fc.current_mode = e1000_fc_none;
1495
1496		/*
1497		 * Now we call a subroutine to actually force the MAC
1498		 * controller to use the correct flow control settings.
1499		 */
1500		ret_val = e1000_force_mac_fc_generic(hw);
1501		if (ret_val) {
1502			DEBUGOUT("Error forcing flow control settings\n");
1503			goto out;
1504		}
1505	}
1506
1507out:
1508	return (ret_val);
1509}
1510
1511/*
1512 * e1000_get_speed_and_duplex_copper_generic - Retrieve current speed/duplex
1513 * @hw: pointer to the HW structure
1514 * @speed: stores the current speed
1515 * @duplex: stores the current duplex
1516 *
1517 * Read the status register for the current speed/duplex and store the current
1518 * speed and duplex for copper connections.
1519 */
1520s32
1521e1000_get_speed_and_duplex_copper_generic(struct e1000_hw *hw, u16 *speed,
1522    u16 *duplex)
1523{
1524	u32 status;
1525
1526	DEBUGFUNC("e1000_get_speed_and_duplex_copper_generic");
1527
1528	status = E1000_READ_REG(hw, E1000_STATUS);
1529	if (status & E1000_STATUS_SPEED_1000) {
1530		*speed = SPEED_1000;
1531		DEBUGOUT("1000 Mbs, ");
1532	} else if (status & E1000_STATUS_SPEED_100) {
1533		*speed = SPEED_100;
1534		DEBUGOUT("100 Mbs, ");
1535	} else {
1536		*speed = SPEED_10;
1537		DEBUGOUT("10 Mbs, ");
1538	}
1539
1540	if (status & E1000_STATUS_FD) {
1541		*duplex = FULL_DUPLEX;
1542		DEBUGOUT("Full Duplex\n");
1543	} else {
1544		*duplex = HALF_DUPLEX;
1545		DEBUGOUT("Half Duplex\n");
1546	}
1547
1548	return (E1000_SUCCESS);
1549}
1550
1551/*
1552 * e1000_get_speed_and_duplex_fiber_generic - Retrieve current speed/duplex
1553 * @hw: pointer to the HW structure
1554 * @speed: stores the current speed
1555 * @duplex: stores the current duplex
1556 *
1557 * Sets the speed and duplex to gigabit full duplex (the only possible option)
1558 * for fiber/serdes links.
1559 */
1560s32
1561e1000_get_speed_and_duplex_fiber_serdes_generic(struct e1000_hw *hw,
1562    u16 *speed, u16 *duplex)
1563{
1564	DEBUGFUNC("e1000_get_speed_and_duplex_fiber_serdes_generic");
1565	UNREFERENCED_1PARAMETER(hw);
1566
1567	*speed = SPEED_1000;
1568	*duplex = FULL_DUPLEX;
1569
1570	return (E1000_SUCCESS);
1571}
1572
1573/*
1574 * e1000_get_hw_semaphore_generic - Acquire hardware semaphore
1575 * @hw: pointer to the HW structure
1576 *
1577 * Acquire the HW semaphore to access the PHY or NVM
1578 */
1579s32
1580e1000_get_hw_semaphore_generic(struct e1000_hw *hw)
1581{
1582	u32 swsm;
1583	s32 ret_val = E1000_SUCCESS;
1584	s32 timeout = hw->nvm.word_size + 1;
1585	s32 i = 0;
1586
1587	DEBUGFUNC("e1000_get_hw_semaphore_generic");
1588
1589	/* Get the SW semaphore */
1590	while (i < timeout) {
1591		swsm = E1000_READ_REG(hw, E1000_SWSM);
1592		if (!(swsm & E1000_SWSM_SMBI))
1593			break;
1594
1595		usec_delay(50);
1596		i++;
1597	}
1598
1599	if (i == timeout) {
1600		DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
1601		ret_val = -E1000_ERR_NVM;
1602		goto out;
1603	}
1604
1605	/* Get the FW semaphore. */
1606	for (i = 0; i < timeout; i++) {
1607		swsm = E1000_READ_REG(hw, E1000_SWSM);
1608		E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
1609
1610		/* Semaphore acquired if bit latched */
1611		if (E1000_READ_REG(hw, E1000_SWSM) & E1000_SWSM_SWESMBI)
1612			break;
1613
1614		usec_delay(50);
1615	}
1616
1617	if (i == timeout) {
1618		/* Release semaphores */
1619		e1000_put_hw_semaphore_generic(hw);
1620		DEBUGOUT("Driver can't access the NVM\n");
1621		ret_val = -E1000_ERR_NVM;
1622		goto out;
1623	}
1624
1625out:
1626	return (ret_val);
1627}
1628
1629/*
1630 * e1000_put_hw_semaphore_generic - Release hardware semaphore
1631 * @hw: pointer to the HW structure
1632 *
1633 * Release hardware semaphore used to access the PHY or NVM
1634 */
1635void
1636e1000_put_hw_semaphore_generic(struct e1000_hw *hw)
1637{
1638	u32 swsm;
1639
1640	DEBUGFUNC("e1000_put_hw_semaphore_generic");
1641
1642	swsm = E1000_READ_REG(hw, E1000_SWSM);
1643
1644	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1645
1646	E1000_WRITE_REG(hw, E1000_SWSM, swsm);
1647}
1648
1649/*
1650 * e1000_get_auto_rd_done_generic - Check for auto read completion
1651 * @hw: pointer to the HW structure
1652 *
1653 * Check EEPROM for Auto Read done bit.
1654 */
1655s32
1656e1000_get_auto_rd_done_generic(struct e1000_hw *hw)
1657{
1658	s32 i = 0;
1659	s32 ret_val = E1000_SUCCESS;
1660
1661	DEBUGFUNC("e1000_get_auto_rd_done_generic");
1662
1663	while (i < AUTO_READ_DONE_TIMEOUT) {
1664		if (E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_AUTO_RD)
1665			break;
1666		msec_delay(1);
1667		i++;
1668	}
1669
1670	if (i == AUTO_READ_DONE_TIMEOUT) {
1671		DEBUGOUT("Auto read by HW from NVM has not completed.\n");
1672		ret_val = -E1000_ERR_RESET;
1673		goto out;
1674	}
1675
1676out:
1677	return (ret_val);
1678}
1679
1680/*
1681 * e1000_valid_led_default_generic - Verify a valid default LED config
1682 * @hw: pointer to the HW structure
1683 * @data: pointer to the NVM (EEPROM)
1684 *
1685 * Read the EEPROM for the current default LED configuration.  If the
1686 * LED configuration is not valid, set to a valid LED configuration.
1687 */
1688s32
1689e1000_valid_led_default_generic(struct e1000_hw *hw, u16 *data)
1690{
1691	s32 ret_val;
1692
1693	DEBUGFUNC("e1000_valid_led_default_generic");
1694
1695	ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
1696	if (ret_val) {
1697		DEBUGOUT("NVM Read Error\n");
1698		goto out;
1699	}
1700
1701	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
1702		*data = ID_LED_DEFAULT;
1703
1704out:
1705	return (ret_val);
1706}
1707
1708/*
1709 * e1000_id_led_init_generic -
1710 * @hw: pointer to the HW structure
1711 *
1712 */
1713s32
1714e1000_id_led_init_generic(struct e1000_hw *hw)
1715{
1716	struct e1000_mac_info *mac = &hw->mac;
1717	s32 ret_val;
1718	const u32 ledctl_mask = 0x000000FF;
1719	const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
1720	const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
1721	u16 data, i, temp;
1722	const u16 led_mask = 0x0F;
1723
1724	DEBUGFUNC("e1000_id_led_init_generic");
1725
1726	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
1727	if (ret_val)
1728		goto out;
1729
1730	mac->ledctl_default = E1000_READ_REG(hw, E1000_LEDCTL);
1731	mac->ledctl_mode1 = mac->ledctl_default;
1732	mac->ledctl_mode2 = mac->ledctl_default;
1733
1734	for (i = 0; i < 4; i++) {
1735		temp = (data >> (i << 2)) & led_mask;
1736		switch (temp) {
1737		case ID_LED_ON1_DEF2:
1738		case ID_LED_ON1_ON2:
1739		case ID_LED_ON1_OFF2:
1740			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1741			mac->ledctl_mode1 |= ledctl_on << (i << 3);
1742			break;
1743		case ID_LED_OFF1_DEF2:
1744		case ID_LED_OFF1_ON2:
1745		case ID_LED_OFF1_OFF2:
1746			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1747			mac->ledctl_mode1 |= ledctl_off << (i << 3);
1748			break;
1749		default:
1750			/* Do nothing */
1751			break;
1752		}
1753		switch (temp) {
1754		case ID_LED_DEF1_ON2:
1755		case ID_LED_ON1_ON2:
1756		case ID_LED_OFF1_ON2:
1757			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1758			mac->ledctl_mode2 |= ledctl_on << (i << 3);
1759			break;
1760		case ID_LED_DEF1_OFF2:
1761		case ID_LED_ON1_OFF2:
1762		case ID_LED_OFF1_OFF2:
1763			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1764			mac->ledctl_mode2 |= ledctl_off << (i << 3);
1765			break;
1766		default:
1767			/* Do nothing */
1768			break;
1769		}
1770	}
1771
1772out:
1773	return (ret_val);
1774}
1775
1776/*
1777 * e1000_setup_led_generic - Configures SW controllable LED
1778 * @hw: pointer to the HW structure
1779 *
1780 * This prepares the SW controllable LED for use and saves the current state
1781 * of the LED so it can be later restored.
1782 */
1783s32
1784e1000_setup_led_generic(struct e1000_hw *hw)
1785{
1786	u32 ledctl;
1787	s32 ret_val = E1000_SUCCESS;
1788
1789	DEBUGFUNC("e1000_setup_led_generic");
1790
1791	if (hw->mac.ops.setup_led != e1000_setup_led_generic) {
1792		ret_val = -E1000_ERR_CONFIG;
1793		goto out;
1794	}
1795
1796	if (hw->phy.media_type == e1000_media_type_fiber) {
1797		ledctl = E1000_READ_REG(hw, E1000_LEDCTL);
1798		hw->mac.ledctl_default = ledctl;
1799		/* Turn off LED0 */
1800		ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
1801		    E1000_LEDCTL_LED0_BLINK |
1802		    E1000_LEDCTL_LED0_MODE_MASK);
1803		ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
1804		    E1000_LEDCTL_LED0_MODE_SHIFT);
1805		E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl);
1806	} else if (hw->phy.media_type == e1000_media_type_copper) {
1807		E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1);
1808	}
1809
1810out:
1811	return (ret_val);
1812}
1813
1814/*
1815 * e1000_cleanup_led_generic - Set LED config to default operation
1816 * @hw: pointer to the HW structure
1817 *
1818 * Remove the current LED configuration and set the LED configuration
1819 * to the default value, saved from the EEPROM.
1820 */
1821s32
1822e1000_cleanup_led_generic(struct e1000_hw *hw)
1823{
1824	s32 ret_val = E1000_SUCCESS;
1825
1826	DEBUGFUNC("e1000_cleanup_led_generic");
1827
1828	if (hw->mac.ops.cleanup_led != e1000_cleanup_led_generic) {
1829		ret_val = -E1000_ERR_CONFIG;
1830		goto out;
1831	}
1832
1833	E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_default);
1834
1835out:
1836	return (ret_val);
1837}
1838
1839/*
1840 * e1000_blink_led_generic - Blink LED
1841 * @hw: pointer to the HW structure
1842 *
1843 * Blink the LEDs which are set to be on.
1844 */
1845s32
1846e1000_blink_led_generic(struct e1000_hw *hw)
1847{
1848	u32 ledctl_blink = 0;
1849	u32 i;
1850
1851	DEBUGFUNC("e1000_blink_led_generic");
1852
1853	if (hw->phy.media_type == e1000_media_type_fiber) {
1854		/* always blink LED0 for PCI-E fiber */
1855		ledctl_blink = E1000_LEDCTL_LED0_BLINK |
1856		    (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
1857	} else {
1858		/*
1859		 * set the blink bit for each LED that's "on" (0x0E)
1860		 * in ledctl_mode2
1861		 */
1862		ledctl_blink = hw->mac.ledctl_mode2;
1863		for (i = 0; i < 4; i++)
1864			if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1865			    E1000_LEDCTL_MODE_LED_ON)
1866				ledctl_blink |= (E1000_LEDCTL_LED0_BLINK <<
1867				    (i * 8));
1868	}
1869
1870	E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl_blink);
1871
1872	return (E1000_SUCCESS);
1873}
1874
1875/*
1876 * e1000_led_on_generic - Turn LED on
1877 * @hw: pointer to the HW structure
1878 *
1879 * Turn LED on.
1880 */
1881s32
1882e1000_led_on_generic(struct e1000_hw *hw)
1883{
1884	u32 ctrl;
1885
1886	DEBUGFUNC("e1000_led_on_generic");
1887
1888	switch (hw->phy.media_type) {
1889	case e1000_media_type_fiber:
1890		ctrl = E1000_READ_REG(hw, E1000_CTRL);
1891		ctrl &= ~E1000_CTRL_SWDPIN0;
1892		ctrl |= E1000_CTRL_SWDPIO0;
1893		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1894		break;
1895	case e1000_media_type_copper:
1896		E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode2);
1897		break;
1898	default:
1899		break;
1900	}
1901
1902	return (E1000_SUCCESS);
1903}
1904
1905/*
1906 * e1000_led_off_generic - Turn LED off
1907 * @hw: pointer to the HW structure
1908 *
1909 * Turn LED off.
1910 */
1911s32
1912e1000_led_off_generic(struct e1000_hw *hw)
1913{
1914	u32 ctrl;
1915
1916	DEBUGFUNC("e1000_led_off_generic");
1917
1918	switch (hw->phy.media_type) {
1919	case e1000_media_type_fiber:
1920		ctrl = E1000_READ_REG(hw, E1000_CTRL);
1921		ctrl |= E1000_CTRL_SWDPIN0;
1922		ctrl |= E1000_CTRL_SWDPIO0;
1923		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1924		break;
1925	case e1000_media_type_copper:
1926		E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1);
1927		break;
1928	default:
1929		break;
1930	}
1931
1932	return (E1000_SUCCESS);
1933}
1934
1935/*
1936 * e1000_set_pcie_no_snoop_generic - Set PCI-express capabilities
1937 * @hw: pointer to the HW structure
1938 * @no_snoop: bitmap of snoop events
1939 *
1940 * Set the PCI-express register to snoop for events enabled in 'no_snoop'.
1941 */
1942void
1943e1000_set_pcie_no_snoop_generic(struct e1000_hw *hw, u32 no_snoop)
1944{
1945	u32 gcr;
1946
1947	DEBUGFUNC("e1000_set_pcie_no_snoop_generic");
1948
1949	if (hw->bus.type != e1000_bus_type_pci_express)
1950		return;
1951
1952	if (no_snoop) {
1953		gcr = E1000_READ_REG(hw, E1000_GCR);
1954		gcr &= ~(PCIE_NO_SNOOP_ALL);
1955		gcr |= no_snoop;
1956		E1000_WRITE_REG(hw, E1000_GCR, gcr);
1957	}
1958}
1959
1960/*
1961 * e1000_disable_pcie_master_generic - Disables PCI-express master access
1962 * @hw: pointer to the HW structure
1963 *
1964 * Returns 0 (E1000_SUCCESS) if successful, else returns -10
1965 * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
1966 * the master requests to be disabled.
1967 *
1968 * Disables PCI-Express master access and verifies there are no pending
1969 * requests.
1970 */
1971s32
1972e1000_disable_pcie_master_generic(struct e1000_hw *hw)
1973{
1974	u32 ctrl;
1975	s32 timeout = MASTER_DISABLE_TIMEOUT;
1976	s32 ret_val = E1000_SUCCESS;
1977
1978	DEBUGFUNC("e1000_disable_pcie_master_generic");
1979
1980	if (hw->bus.type != e1000_bus_type_pci_express)
1981		goto out;
1982
1983	ctrl = E1000_READ_REG(hw, E1000_CTRL);
1984	ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
1985	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1986
1987	while (timeout) {
1988		if (!(E1000_READ_REG(hw, E1000_STATUS) &
1989		    E1000_STATUS_GIO_MASTER_ENABLE))
1990			break;
1991		usec_delay(100);
1992		timeout--;
1993	}
1994
1995	if (!timeout) {
1996		DEBUGOUT("Master requests are pending.\n");
1997		ret_val = -E1000_ERR_MASTER_REQUESTS_PENDING;
1998		goto out;
1999	}
2000
2001out:
2002	return (ret_val);
2003}
2004
2005/*
2006 * e1000_reset_adaptive_generic - Reset Adaptive Interframe Spacing
2007 * @hw: pointer to the HW structure
2008 *
2009 * Reset the Adaptive Interframe Spacing throttle to default values.
2010 */
2011void
2012e1000_reset_adaptive_generic(struct e1000_hw *hw)
2013{
2014	struct e1000_mac_info *mac = &hw->mac;
2015
2016	DEBUGFUNC("e1000_reset_adaptive_generic");
2017
2018	if (!mac->adaptive_ifs) {
2019		DEBUGOUT("Not in Adaptive IFS mode!\n");
2020		return;
2021	}
2022
2023	mac->current_ifs_val = 0;
2024	mac->ifs_min_val = IFS_MIN;
2025	mac->ifs_max_val = IFS_MAX;
2026	mac->ifs_step_size = IFS_STEP;
2027	mac->ifs_ratio = IFS_RATIO;
2028
2029	mac->in_ifs_mode = false;
2030	E1000_WRITE_REG(hw, E1000_AIT, 0);
2031}
2032
2033/*
2034 * e1000_update_adaptive_generic - Update Adaptive Interframe Spacing
2035 * @hw: pointer to the HW structure
2036 *
2037 * Update the Adaptive Interframe Spacing Throttle value based on the
2038 * time between transmitted packets and time between collisions.
2039 */
2040void
2041e1000_update_adaptive_generic(struct e1000_hw *hw)
2042{
2043	struct e1000_mac_info *mac = &hw->mac;
2044
2045	DEBUGFUNC("e1000_update_adaptive_generic");
2046
2047	if (!mac->adaptive_ifs) {
2048		DEBUGOUT("Not in Adaptive IFS mode!\n");
2049		return;
2050	}
2051
2052	if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) {
2053		if (mac->tx_packet_delta > MIN_NUM_XMITS) {
2054			mac->in_ifs_mode = true;
2055			if (mac->current_ifs_val < mac->ifs_max_val) {
2056				if (!mac->current_ifs_val)
2057					mac->current_ifs_val = mac->ifs_min_val;
2058				else
2059					mac->current_ifs_val +=
2060					    mac->ifs_step_size;
2061				E1000_WRITE_REG(hw, E1000_AIT,
2062				    mac->current_ifs_val);
2063			}
2064		}
2065	} else {
2066		if (mac->in_ifs_mode &&
2067		    (mac->tx_packet_delta <= MIN_NUM_XMITS)) {
2068			mac->current_ifs_val = 0;
2069			mac->in_ifs_mode = false;
2070			E1000_WRITE_REG(hw, E1000_AIT, 0);
2071		}
2072	}
2073}
2074
2075/*
2076 * e1000_validate_mdi_setting_generic - Verify MDI/MDIx settings
2077 * @hw: pointer to the HW structure
2078 *
2079 * Verify that when not using auto-negotiation that MDI/MDIx is correctly
2080 * set, which is forced to MDI mode only.
2081 */
2082static s32
2083e1000_validate_mdi_setting_generic(struct e1000_hw *hw)
2084{
2085	s32 ret_val = E1000_SUCCESS;
2086
2087	DEBUGFUNC("e1000_validate_mdi_setting_generic");
2088
2089	if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) {
2090		DEBUGOUT("Invalid MDI setting detected\n");
2091		hw->phy.mdix = 1;
2092		ret_val = -E1000_ERR_CONFIG;
2093		goto out;
2094	}
2095
2096out:
2097	return (ret_val);
2098}
2099
2100/*
2101 * e1000_write_8bit_ctrl_reg_generic - Write a 8bit CTRL register
2102 * @hw: pointer to the HW structure
2103 * @reg: 32bit register offset such as E1000_SCTL
2104 * @offset: register offset to write to
2105 * @data: data to write at register offset
2106 *
2107 * Writes an address/data control type register.  There are several of these
2108 * and they all have the format address << 8 | data and bit 31 is polled for
2109 * completion.
2110 */
2111s32
2112e1000_write_8bit_ctrl_reg_generic(struct e1000_hw *hw, u32 reg,
2113    u32 offset, u8 data)
2114{
2115	u32 i, regvalue = 0;
2116	s32 ret_val = E1000_SUCCESS;
2117
2118	DEBUGFUNC("e1000_write_8bit_ctrl_reg_generic");
2119
2120	/* Set up the address and data */
2121	regvalue = ((u32)data) | (offset << E1000_GEN_CTL_ADDRESS_SHIFT);
2122	E1000_WRITE_REG(hw, reg, regvalue);
2123
2124	/* Poll the ready bit to see if the MDI read completed */
2125	for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) {
2126		usec_delay(5);
2127		regvalue = E1000_READ_REG(hw, reg);
2128		if (regvalue & E1000_GEN_CTL_READY)
2129			break;
2130	}
2131	if (!(regvalue & E1000_GEN_CTL_READY)) {
2132		DEBUGOUT1("Reg %08x did not indicate ready\n", reg);
2133		ret_val = -E1000_ERR_PHY;
2134		goto out;
2135	}
2136
2137out:
2138	return (ret_val);
2139}
2140