1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (C) 2003-2005 Chelsio Communications.  All rights reserved.
24 */
25
26#pragma ident	"%Z%%M%	%I%	%E% SMI"	/* mc3.c */
27
28#include "common.h"
29#include "regs.h"
30#include "mc3.h"
31
32#ifdef CONFIG_CHELSIO_T1_1G
33# include "fpga_defs.h"
34#endif
35
36struct pemc3 {
37	adapter_t *adapter;
38	unsigned int size;
39	struct pemc3_intr_counts intr_cnt;
40};
41
42#define MC3_INTR_MASK (F_MC3_CORR_ERR | F_MC3_UNCORR_ERR | \
43		       V_MC3_PARITY_ERR(M_MC3_PARITY_ERR) | F_MC3_ADDR_ERR)
44#define MC3_INTR_FATAL (F_MC3_UNCORR_ERR | V_MC3_PARITY_ERR(M_MC3_PARITY_ERR) | F_MC3_ADDR_ERR)
45
46void t1_mc3_intr_enable(struct pemc3 *mc3)
47{
48	u32 en = t1_read_reg_4(mc3->adapter, A_PL_ENABLE);
49
50	if (t1_is_asic(mc3->adapter)) {
51		t1_write_reg_4(mc3->adapter, A_MC3_INT_ENABLE, MC3_INTR_MASK);
52		t1_write_reg_4(mc3->adapter, A_PL_ENABLE, en | F_PL_INTR_MC3);
53#ifdef CONFIG_CHELSIO_T1_1G
54	} else {
55		t1_write_reg_4(mc3->adapter, FPGA_MC3_REG_INTRENABLE,
56			       MC3_INTR_MASK);
57		t1_write_reg_4(mc3->adapter, A_PL_ENABLE,
58			       en | FPGA_PCIX_INTERRUPT_MC3);
59#endif
60	}
61}
62
63void t1_mc3_intr_disable(struct pemc3 *mc3)
64{
65	u32 pl_intr = t1_read_reg_4(mc3->adapter, A_PL_ENABLE);
66
67	if (t1_is_asic(mc3->adapter)) {
68		t1_write_reg_4(mc3->adapter, A_MC3_INT_ENABLE, 0);
69		t1_write_reg_4(mc3->adapter, A_PL_ENABLE,
70			       pl_intr & ~F_PL_INTR_MC3);
71#ifdef CONFIG_CHELSIO_T1_1G
72	} else {
73		t1_write_reg_4(mc3->adapter, FPGA_MC3_REG_INTRENABLE, 0);
74		t1_write_reg_4(mc3->adapter, A_PL_ENABLE,
75			       pl_intr & ~FPGA_PCIX_INTERRUPT_MC3);
76#endif
77	}
78}
79
80void t1_mc3_intr_clear(struct pemc3 *mc3)
81{
82	if (t1_is_asic(mc3->adapter)) {
83		if (t1_is_T1B(mc3->adapter)) {
84			/*
85			 * Workaround for T1B bug: we must write to enable
86			 * register to clear interrupts.
87			 */
88			u32 old_en;
89
90			old_en = t1_read_reg_4(mc3->adapter, A_MC3_INT_ENABLE);
91			t1_write_reg_4(mc3->adapter, A_MC3_INT_ENABLE,
92				       0xffffffff);
93			t1_write_reg_4(mc3->adapter, A_MC3_INT_ENABLE, old_en);
94		} else
95			t1_write_reg_4(mc3->adapter, A_MC3_INT_CAUSE,
96				       0xffffffff);
97
98		t1_write_reg_4(mc3->adapter, A_PL_CAUSE, F_PL_INTR_MC3);
99#ifdef CONFIG_CHELSIO_T1_1G
100	} else {
101		t1_write_reg_4(mc3->adapter, FPGA_MC3_REG_INTRCAUSE,
102			       0xffffffff);
103		t1_write_reg_4(mc3->adapter, A_PL_CAUSE,
104			       FPGA_PCIX_INTERRUPT_MC3);
105#endif
106	}
107}
108
109int t1_mc3_intr_handler(struct pemc3 *mc3)
110{
111	adapter_t *adapter = mc3->adapter;
112	int cause_reg = A_MC3_INT_CAUSE;
113	u32 cause;
114
115#ifdef CONFIG_CHELSIO_T1_1G
116	if (!t1_is_asic(adapter))
117		cause_reg = FPGA_MC3_REG_INTRCAUSE;
118#endif
119	cause = t1_read_reg_4(adapter, cause_reg);
120
121	if (cause & F_MC3_CORR_ERR) {
122		mc3->intr_cnt.corr_err++;
123		CH_WARN("%s: MC3 correctable error at addr 0x%x, "
124			"data 0x%x 0x%x 0x%x 0x%x 0x%x\n",
125			adapter_name(adapter),
126			G_MC3_CE_ADDR(t1_read_reg_4(adapter, A_MC3_CE_ADDR)),
127			t1_read_reg_4(adapter, A_MC3_CE_DATA0),
128			t1_read_reg_4(adapter, A_MC3_CE_DATA1),
129			t1_read_reg_4(adapter, A_MC3_CE_DATA2),
130			t1_read_reg_4(adapter, A_MC3_CE_DATA3),
131			t1_read_reg_4(adapter, A_MC3_CE_DATA4));
132	}
133
134	if (cause & F_MC3_UNCORR_ERR) {
135		mc3->intr_cnt.uncorr_err++;
136		CH_ALERT("%s: MC3 uncorrectable error at addr 0x%x, "
137			 "data 0x%x 0x%x 0x%x 0x%x 0x%x\n",
138			 adapter_name(adapter),
139			 G_MC3_UE_ADDR(t1_read_reg_4(adapter, A_MC3_UE_ADDR)),
140			 t1_read_reg_4(adapter, A_MC3_UE_DATA0),
141			 t1_read_reg_4(adapter, A_MC3_UE_DATA1),
142			 t1_read_reg_4(adapter, A_MC3_UE_DATA2),
143			 t1_read_reg_4(adapter, A_MC3_UE_DATA3),
144			 t1_read_reg_4(adapter, A_MC3_UE_DATA4));
145	}
146
147	if (G_MC3_PARITY_ERR(cause)) {
148		mc3->intr_cnt.parity_err++;
149		CH_ALERT("%s: MC3 parity error 0x%x\n", adapter_name(adapter),
150			 G_MC3_PARITY_ERR(cause));
151	}
152
153	if (cause & F_MC3_ADDR_ERR) {
154		mc3->intr_cnt.addr_err++;
155		CH_ALERT("%s: MC3 address error\n", adapter_name(adapter));
156	}
157
158	if (cause & MC3_INTR_FATAL)
159		t1_fatal_err(adapter);
160
161	if (t1_is_T1B(adapter)) {
162		/*
163		 * Workaround for T1B bug: we must write to enable register to
164		 * clear interrupts.
165		 */
166		t1_write_reg_4(adapter, A_MC3_INT_ENABLE, cause);
167		/* restore enable */
168		t1_write_reg_4(adapter, A_MC3_INT_ENABLE, MC3_INTR_MASK);
169	} else
170		t1_write_reg_4(adapter, cause_reg, cause);
171
172	return 0;
173}
174
175#define is_MC3A(adapter) (!t1_is_T1B(adapter))
176
177/*
178 * Write a value to a register and check that the write completed.  These
179 * writes normally complete in a cycle or two, so one read should suffice.
180 * The very first read exists to flush the posted write to the device.
181 */
182static int wrreg_wait(adapter_t *adapter, unsigned int addr, u32 val)
183{
184	t1_write_reg_4(adapter,	addr, val);
185	val = t1_read_reg_4(adapter, addr);                   /* flush */
186	if (!(t1_read_reg_4(adapter, addr) & F_BUSY))
187		return 0;
188	CH_ERR("%s: write to MC3 register 0x%x timed out\n",
189	       adapter_name(adapter), addr);
190	return -EIO;
191}
192
193#define MC3_DLL_DONE (F_MASTER_DLL_LOCKED | F_MASTER_DLL_MAX_TAP_COUNT)
194
195int t1_mc3_init(struct pemc3 *mc3, unsigned int mc3_clock)
196{
197	u32 val;
198	unsigned int width, fast_asic, attempts;
199	adapter_t *adapter = mc3->adapter;
200
201	/* Check to see if ASIC is running in slow mode. */
202	val = t1_read_reg_4(adapter, A_MC3_CFG);
203	width = is_MC3A(adapter) ? G_MC3_WIDTH(val) : 0;
204	fast_asic = t1_is_asic(adapter) && !(val & F_MC3_SLOW);
205
206	val &= ~(V_MC3_BANK_CYCLE(M_MC3_BANK_CYCLE) |
207		 V_REFRESH_CYCLE(M_REFRESH_CYCLE) |
208		 V_PRECHARGE_CYCLE(M_PRECHARGE_CYCLE) |
209		 F_ACTIVE_TO_READ_WRITE_DELAY |
210		 V_ACTIVE_TO_PRECHARGE_DELAY(M_ACTIVE_TO_PRECHARGE_DELAY) |
211		 V_WRITE_RECOVERY_DELAY(M_WRITE_RECOVERY_DELAY));
212
213	if (mc3_clock <= 100000000)
214		val |= V_MC3_BANK_CYCLE(7) | V_REFRESH_CYCLE(4) |
215			V_PRECHARGE_CYCLE(2) | V_ACTIVE_TO_PRECHARGE_DELAY(5) |
216			V_WRITE_RECOVERY_DELAY(2);
217	else if (mc3_clock <= 133000000)
218		val |= V_MC3_BANK_CYCLE(9) | V_REFRESH_CYCLE(5) |
219			V_PRECHARGE_CYCLE(3) | F_ACTIVE_TO_READ_WRITE_DELAY |
220			V_ACTIVE_TO_PRECHARGE_DELAY(6) |
221			V_WRITE_RECOVERY_DELAY(2);
222	else
223		val |= V_MC3_BANK_CYCLE(0xA) | V_REFRESH_CYCLE(6) |
224			V_PRECHARGE_CYCLE(3) | F_ACTIVE_TO_READ_WRITE_DELAY |
225			V_ACTIVE_TO_PRECHARGE_DELAY(7) |
226			V_WRITE_RECOVERY_DELAY(3);
227	t1_write_reg_4(adapter, A_MC3_CFG, val);
228
229	val = t1_read_reg_4(adapter, A_MC3_CFG);
230	t1_write_reg_4(adapter, A_MC3_CFG, val | F_CLK_ENABLE);
231	val = t1_read_reg_4(adapter, A_MC3_CFG);                 /* flush */
232
233	if (fast_asic) {                                     /* setup DLLs */
234		val = t1_read_reg_4(adapter, A_MC3_STROBE);
235		if (is_MC3A(adapter)) {
236			t1_write_reg_4(adapter, A_MC3_STROBE,
237				       val & ~F_SLAVE_DLL_RESET);
238
239			/* Wait for slave DLLs to lock */
240			DELAY_US(2 * 512 / (mc3_clock / 1000000) + 1);
241		} else {
242			/* Initialize the master DLL and slave delay lines. */
243			t1_write_reg_4(adapter, A_MC3_STROBE,
244				       val & ~F_MASTER_DLL_RESET);
245
246			/* Wait for the master DLL to lock. */
247			attempts = 100;
248			do {
249				DELAY_US(1);
250				val = t1_read_reg_4(adapter, A_MC3_STROBE);
251			} while (!(val & MC3_DLL_DONE) && --attempts);
252			if (!(val & MC3_DLL_DONE)) {
253				CH_ERR("%s: MC3 DLL lock failed\n",
254				       adapter_name(adapter));
255				goto out_fail;
256			}
257		}
258	}
259
260	/* Initiate a precharge and wait for the precharge to complete. */
261	if (wrreg_wait(adapter, A_MC3_PRECHARG, 0))
262		goto out_fail;
263
264	/* Set the SDRAM output drive strength and enable DLLs if needed */
265	if (wrreg_wait(adapter, A_MC3_EXT_MODE, fast_asic ? 0 : 1))
266		goto out_fail;
267
268	/* Specify the SDRAM operating parameters. */
269	if (wrreg_wait(adapter, A_MC3_MODE, fast_asic ? 0x161 : 0x21))
270		goto out_fail;
271
272	/* Initiate a precharge and wait for the precharge to complete. */
273	if (wrreg_wait(adapter, A_MC3_PRECHARG, 0))
274		goto out_fail;
275
276	/* Initiate an immediate refresh and wait for the write to complete. */
277	val = t1_read_reg_4(adapter, A_MC3_REFRESH);
278	if (wrreg_wait(adapter, A_MC3_REFRESH, val & ~F_REFRESH_ENABLE))
279		goto out_fail;
280
281	/* 2nd immediate refresh as before */
282	if (wrreg_wait(adapter, A_MC3_REFRESH, val & ~F_REFRESH_ENABLE))
283		goto out_fail;
284
285	/* Specify the SDRAM operating parameters. */
286	if (wrreg_wait(adapter, A_MC3_MODE, fast_asic ? 0x61 : 0x21))
287		goto out_fail;
288
289	/* Convert to KHz first to avoid 64-bit division. */
290	mc3_clock /=  1000;                            /* Hz->KHz */
291	mc3_clock = mc3_clock * 7812 + mc3_clock / 2;  /* ns */
292	mc3_clock /= 1000000;                          /* KHz->MHz, ns->us */
293
294	/* Enable periodic refresh. */
295	t1_write_reg_4(adapter, A_MC3_REFRESH,
296		       F_REFRESH_ENABLE | V_REFRESH_DIVISOR(mc3_clock));
297	(void) t1_read_reg_4(adapter, A_MC3_REFRESH);    /* flush */
298
299	t1_write_reg_4(adapter, A_MC3_ECC_CNTL,
300		       F_ECC_GENERATION_ENABLE | F_ECC_CHECK_ENABLE);
301
302	/* Use the BIST engine to clear MC3 memory and initialize ECC. */
303	t1_write_reg_4(adapter, A_MC3_BIST_ADDR_BEG, 0);
304	t1_write_reg_4(adapter, A_MC3_BIST_ADDR_END, (mc3->size << width) - 1);
305	t1_write_reg_4(adapter, A_MC3_BIST_DATA, 0);
306	t1_write_reg_4(adapter, A_MC3_BIST_OP, V_OP(1) | 0x1f0);
307	(void) t1_read_reg_4(adapter, A_MC3_BIST_OP);              /* flush */
308
309	attempts = 100;
310	do {
311		DELAY_MS(100);
312		val = t1_read_reg_4(adapter, A_MC3_BIST_OP);
313	} while ((val & F_BUSY) && --attempts);
314	if (val & F_BUSY) {
315		CH_ERR("%s: MC3 BIST timed out\n", adapter_name(adapter));
316		goto out_fail;
317	}
318
319	/* Enable normal memory accesses. */
320	val = t1_read_reg_4(adapter, A_MC3_CFG);
321	t1_write_reg_4(adapter, A_MC3_CFG, val | F_READY);
322	return 0;
323
324 out_fail:
325	return -1;
326}
327
328static unsigned int __devinit mc3_calc_size(const adapter_t *adapter, u32 cfg)
329{
330	unsigned int banks = !!(cfg & F_BANKS) + 1;
331	unsigned int org = !!(cfg & F_ORGANIZATION) + 1;
332	unsigned int density = G_DENSITY(cfg);
333
334	unsigned int capacity_in_MB = is_MC3A(adapter) ?
335		((256 << density) * banks) / (org << G_MC3_WIDTH(cfg)) :
336		((128 << density) * (16 / org) * banks) / 8;
337
338	return capacity_in_MB * 1024 * 1024;
339}
340
341struct pemc3 * __devinit t1_mc3_create(adapter_t *adapter)
342{
343	struct pemc3 *mc3 = t1_os_malloc_wait_zero(sizeof(*mc3));
344
345	if (mc3) {
346		mc3->adapter = adapter;
347		mc3->size = mc3_calc_size(adapter,
348					  t1_read_reg_4(adapter, A_MC3_CFG));
349	}
350	return mc3;
351}
352
353void t1_mc3_destroy(struct pemc3 *mc3)
354{
355	t1_os_free((void *)mc3, sizeof(*mc3));
356}
357
358unsigned int t1_mc3_get_size(struct pemc3 *mc3)
359{
360	return mc3->size;
361}
362
363const struct pemc3_intr_counts *t1_mc3_get_intr_counts(struct pemc3 *mc3)
364{
365	return &mc3->intr_cnt;
366}
367