1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25
26/*
27 * This file contains the code to implement file range locking in
28 * ZFS, although there isn't much specific to ZFS (all that comes to mind
29 * support for growing the blocksize).
30 *
31 * Interface
32 * ---------
33 * Defined in zfs_rlock.h but essentially:
34 *	rl = zfs_range_lock(zp, off, len, lock_type);
35 *	zfs_range_unlock(rl);
36 *	zfs_range_reduce(rl, off, len);
37 *
38 * AVL tree
39 * --------
40 * An AVL tree is used to maintain the state of the existing ranges
41 * that are locked for exclusive (writer) or shared (reader) use.
42 * The starting range offset is used for searching and sorting the tree.
43 *
44 * Common case
45 * -----------
46 * The (hopefully) usual case is of no overlaps or contention for
47 * locks. On entry to zfs_lock_range() a rl_t is allocated; the tree
48 * searched that finds no overlap, and *this* rl_t is placed in the tree.
49 *
50 * Overlaps/Reference counting/Proxy locks
51 * ---------------------------------------
52 * The avl code only allows one node at a particular offset. Also it's very
53 * inefficient to search through all previous entries looking for overlaps
54 * (because the very 1st in the ordered list might be at offset 0 but
55 * cover the whole file).
56 * So this implementation uses reference counts and proxy range locks.
57 * Firstly, only reader locks use reference counts and proxy locks,
58 * because writer locks are exclusive.
59 * When a reader lock overlaps with another then a proxy lock is created
60 * for that range and replaces the original lock. If the overlap
61 * is exact then the reference count of the proxy is simply incremented.
62 * Otherwise, the proxy lock is split into smaller lock ranges and
63 * new proxy locks created for non overlapping ranges.
64 * The reference counts are adjusted accordingly.
65 * Meanwhile, the orginal lock is kept around (this is the callers handle)
66 * and its offset and length are used when releasing the lock.
67 *
68 * Thread coordination
69 * -------------------
70 * In order to make wakeups efficient and to ensure multiple continuous
71 * readers on a range don't starve a writer for the same range lock,
72 * two condition variables are allocated in each rl_t.
73 * If a writer (or reader) can't get a range it initialises the writer
74 * (or reader) cv; sets a flag saying there's a writer (or reader) waiting;
75 * and waits on that cv. When a thread unlocks that range it wakes up all
76 * writers then all readers before destroying the lock.
77 *
78 * Append mode writes
79 * ------------------
80 * Append mode writes need to lock a range at the end of a file.
81 * The offset of the end of the file is determined under the
82 * range locking mutex, and the lock type converted from RL_APPEND to
83 * RL_WRITER and the range locked.
84 *
85 * Grow block handling
86 * -------------------
87 * ZFS supports multiple block sizes currently upto 128K. The smallest
88 * block size is used for the file which is grown as needed. During this
89 * growth all other writers and readers must be excluded.
90 * So if the block size needs to be grown then the whole file is
91 * exclusively locked, then later the caller will reduce the lock
92 * range to just the range to be written using zfs_reduce_range.
93 */
94
95#include <sys/zfs_rlock.h>
96
97/*
98 * Check if a write lock can be grabbed, or wait and recheck until available.
99 */
100static void
101zfs_range_lock_writer(znode_t *zp, rl_t *new)
102{
103	avl_tree_t *tree = &zp->z_range_avl;
104	rl_t *rl;
105	avl_index_t where;
106	uint64_t end_size;
107	uint64_t off = new->r_off;
108	uint64_t len = new->r_len;
109
110	for (;;) {
111		/*
112		 * Range locking is also used by zvol and uses a
113		 * dummied up znode. However, for zvol, we don't need to
114		 * append or grow blocksize, and besides we don't have
115		 * a "sa" data or z_zfsvfs - so skip that processing.
116		 *
117		 * Yes, this is ugly, and would be solved by not handling
118		 * grow or append in range lock code. If that was done then
119		 * we could make the range locking code generically available
120		 * to other non-zfs consumers.
121		 */
122		if (zp->z_vnode) { /* caller is ZPL */
123			/*
124			 * If in append mode pick up the current end of file.
125			 * This is done under z_range_lock to avoid races.
126			 */
127			if (new->r_type == RL_APPEND)
128				new->r_off = zp->z_size;
129
130			/*
131			 * If we need to grow the block size then grab the whole
132			 * file range. This is also done under z_range_lock to
133			 * avoid races.
134			 */
135			end_size = MAX(zp->z_size, new->r_off + len);
136			if (end_size > zp->z_blksz && (!ISP2(zp->z_blksz) ||
137			    zp->z_blksz < zp->z_zfsvfs->z_max_blksz)) {
138				new->r_off = 0;
139				new->r_len = UINT64_MAX;
140			}
141		}
142
143		/*
144		 * First check for the usual case of no locks
145		 */
146		if (avl_numnodes(tree) == 0) {
147			new->r_type = RL_WRITER; /* convert to writer */
148			avl_add(tree, new);
149			return;
150		}
151
152		/*
153		 * Look for any locks in the range.
154		 */
155		rl = avl_find(tree, new, &where);
156		if (rl)
157			goto wait; /* already locked at same offset */
158
159		rl = (rl_t *)avl_nearest(tree, where, AVL_AFTER);
160		if (rl && (rl->r_off < new->r_off + new->r_len))
161			goto wait;
162
163		rl = (rl_t *)avl_nearest(tree, where, AVL_BEFORE);
164		if (rl && rl->r_off + rl->r_len > new->r_off)
165			goto wait;
166
167		new->r_type = RL_WRITER; /* convert possible RL_APPEND */
168		avl_insert(tree, new, where);
169		return;
170wait:
171		if (!rl->r_write_wanted) {
172			cv_init(&rl->r_wr_cv, NULL, CV_DEFAULT, NULL);
173			rl->r_write_wanted = B_TRUE;
174		}
175		cv_wait(&rl->r_wr_cv, &zp->z_range_lock);
176
177		/* reset to original */
178		new->r_off = off;
179		new->r_len = len;
180	}
181}
182
183/*
184 * If this is an original (non-proxy) lock then replace it by
185 * a proxy and return the proxy.
186 */
187static rl_t *
188zfs_range_proxify(avl_tree_t *tree, rl_t *rl)
189{
190	rl_t *proxy;
191
192	if (rl->r_proxy)
193		return (rl); /* already a proxy */
194
195	ASSERT3U(rl->r_cnt, ==, 1);
196	ASSERT(rl->r_write_wanted == B_FALSE);
197	ASSERT(rl->r_read_wanted == B_FALSE);
198	avl_remove(tree, rl);
199	rl->r_cnt = 0;
200
201	/* create a proxy range lock */
202	proxy = kmem_alloc(sizeof (rl_t), KM_SLEEP);
203	proxy->r_off = rl->r_off;
204	proxy->r_len = rl->r_len;
205	proxy->r_cnt = 1;
206	proxy->r_type = RL_READER;
207	proxy->r_proxy = B_TRUE;
208	proxy->r_write_wanted = B_FALSE;
209	proxy->r_read_wanted = B_FALSE;
210	avl_add(tree, proxy);
211
212	return (proxy);
213}
214
215/*
216 * Split the range lock at the supplied offset
217 * returning the *front* proxy.
218 */
219static rl_t *
220zfs_range_split(avl_tree_t *tree, rl_t *rl, uint64_t off)
221{
222	rl_t *front, *rear;
223
224	ASSERT3U(rl->r_len, >, 1);
225	ASSERT3U(off, >, rl->r_off);
226	ASSERT3U(off, <, rl->r_off + rl->r_len);
227	ASSERT(rl->r_write_wanted == B_FALSE);
228	ASSERT(rl->r_read_wanted == B_FALSE);
229
230	/* create the rear proxy range lock */
231	rear = kmem_alloc(sizeof (rl_t), KM_SLEEP);
232	rear->r_off = off;
233	rear->r_len = rl->r_off + rl->r_len - off;
234	rear->r_cnt = rl->r_cnt;
235	rear->r_type = RL_READER;
236	rear->r_proxy = B_TRUE;
237	rear->r_write_wanted = B_FALSE;
238	rear->r_read_wanted = B_FALSE;
239
240	front = zfs_range_proxify(tree, rl);
241	front->r_len = off - rl->r_off;
242
243	avl_insert_here(tree, rear, front, AVL_AFTER);
244	return (front);
245}
246
247/*
248 * Create and add a new proxy range lock for the supplied range.
249 */
250static void
251zfs_range_new_proxy(avl_tree_t *tree, uint64_t off, uint64_t len)
252{
253	rl_t *rl;
254
255	ASSERT(len);
256	rl = kmem_alloc(sizeof (rl_t), KM_SLEEP);
257	rl->r_off = off;
258	rl->r_len = len;
259	rl->r_cnt = 1;
260	rl->r_type = RL_READER;
261	rl->r_proxy = B_TRUE;
262	rl->r_write_wanted = B_FALSE;
263	rl->r_read_wanted = B_FALSE;
264	avl_add(tree, rl);
265}
266
267static void
268zfs_range_add_reader(avl_tree_t *tree, rl_t *new, rl_t *prev, avl_index_t where)
269{
270	rl_t *next;
271	uint64_t off = new->r_off;
272	uint64_t len = new->r_len;
273
274	/*
275	 * prev arrives either:
276	 * - pointing to an entry at the same offset
277	 * - pointing to the entry with the closest previous offset whose
278	 *   range may overlap with the new range
279	 * - null, if there were no ranges starting before the new one
280	 */
281	if (prev) {
282		if (prev->r_off + prev->r_len <= off) {
283			prev = NULL;
284		} else if (prev->r_off != off) {
285			/*
286			 * convert to proxy if needed then
287			 * split this entry and bump ref count
288			 */
289			prev = zfs_range_split(tree, prev, off);
290			prev = AVL_NEXT(tree, prev); /* move to rear range */
291		}
292	}
293	ASSERT((prev == NULL) || (prev->r_off == off));
294
295	if (prev)
296		next = prev;
297	else
298		next = (rl_t *)avl_nearest(tree, where, AVL_AFTER);
299
300	if (next == NULL || off + len <= next->r_off) {
301		/* no overlaps, use the original new rl_t in the tree */
302		avl_insert(tree, new, where);
303		return;
304	}
305
306	if (off < next->r_off) {
307		/* Add a proxy for initial range before the overlap */
308		zfs_range_new_proxy(tree, off, next->r_off - off);
309	}
310
311	new->r_cnt = 0; /* will use proxies in tree */
312	/*
313	 * We now search forward through the ranges, until we go past the end
314	 * of the new range. For each entry we make it a proxy if it
315	 * isn't already, then bump its reference count. If there's any
316	 * gaps between the ranges then we create a new proxy range.
317	 */
318	for (prev = NULL; next; prev = next, next = AVL_NEXT(tree, next)) {
319		if (off + len <= next->r_off)
320			break;
321		if (prev && prev->r_off + prev->r_len < next->r_off) {
322			/* there's a gap */
323			ASSERT3U(next->r_off, >, prev->r_off + prev->r_len);
324			zfs_range_new_proxy(tree, prev->r_off + prev->r_len,
325			    next->r_off - (prev->r_off + prev->r_len));
326		}
327		if (off + len == next->r_off + next->r_len) {
328			/* exact overlap with end */
329			next = zfs_range_proxify(tree, next);
330			next->r_cnt++;
331			return;
332		}
333		if (off + len < next->r_off + next->r_len) {
334			/* new range ends in the middle of this block */
335			next = zfs_range_split(tree, next, off + len);
336			next->r_cnt++;
337			return;
338		}
339		ASSERT3U(off + len, >, next->r_off + next->r_len);
340		next = zfs_range_proxify(tree, next);
341		next->r_cnt++;
342	}
343
344	/* Add the remaining end range. */
345	zfs_range_new_proxy(tree, prev->r_off + prev->r_len,
346	    (off + len) - (prev->r_off + prev->r_len));
347}
348
349/*
350 * Check if a reader lock can be grabbed, or wait and recheck until available.
351 */
352static void
353zfs_range_lock_reader(znode_t *zp, rl_t *new)
354{
355	avl_tree_t *tree = &zp->z_range_avl;
356	rl_t *prev, *next;
357	avl_index_t where;
358	uint64_t off = new->r_off;
359	uint64_t len = new->r_len;
360
361	/*
362	 * Look for any writer locks in the range.
363	 */
364retry:
365	prev = avl_find(tree, new, &where);
366	if (prev == NULL)
367		prev = (rl_t *)avl_nearest(tree, where, AVL_BEFORE);
368
369	/*
370	 * Check the previous range for a writer lock overlap.
371	 */
372	if (prev && (off < prev->r_off + prev->r_len)) {
373		if ((prev->r_type == RL_WRITER) || (prev->r_write_wanted)) {
374			if (!prev->r_read_wanted) {
375				cv_init(&prev->r_rd_cv, NULL, CV_DEFAULT, NULL);
376				prev->r_read_wanted = B_TRUE;
377			}
378			cv_wait(&prev->r_rd_cv, &zp->z_range_lock);
379			goto retry;
380		}
381		if (off + len < prev->r_off + prev->r_len)
382			goto got_lock;
383	}
384
385	/*
386	 * Search through the following ranges to see if there's
387	 * write lock any overlap.
388	 */
389	if (prev)
390		next = AVL_NEXT(tree, prev);
391	else
392		next = (rl_t *)avl_nearest(tree, where, AVL_AFTER);
393	for (; next; next = AVL_NEXT(tree, next)) {
394		if (off + len <= next->r_off)
395			goto got_lock;
396		if ((next->r_type == RL_WRITER) || (next->r_write_wanted)) {
397			if (!next->r_read_wanted) {
398				cv_init(&next->r_rd_cv, NULL, CV_DEFAULT, NULL);
399				next->r_read_wanted = B_TRUE;
400			}
401			cv_wait(&next->r_rd_cv, &zp->z_range_lock);
402			goto retry;
403		}
404		if (off + len <= next->r_off + next->r_len)
405			goto got_lock;
406	}
407
408got_lock:
409	/*
410	 * Add the read lock, which may involve splitting existing
411	 * locks and bumping ref counts (r_cnt).
412	 */
413	zfs_range_add_reader(tree, new, prev, where);
414}
415
416/*
417 * Lock a range (offset, length) as either shared (RL_READER)
418 * or exclusive (RL_WRITER). Returns the range lock structure
419 * for later unlocking or reduce range (if entire file
420 * previously locked as RL_WRITER).
421 */
422rl_t *
423zfs_range_lock(znode_t *zp, uint64_t off, uint64_t len, rl_type_t type)
424{
425	rl_t *new;
426
427	ASSERT(type == RL_READER || type == RL_WRITER || type == RL_APPEND);
428
429	new = kmem_alloc(sizeof (rl_t), KM_SLEEP);
430	new->r_zp = zp;
431	new->r_off = off;
432	if (len + off < off)	/* overflow */
433		len = UINT64_MAX - off;
434	new->r_len = len;
435	new->r_cnt = 1; /* assume it's going to be in the tree */
436	new->r_type = type;
437	new->r_proxy = B_FALSE;
438	new->r_write_wanted = B_FALSE;
439	new->r_read_wanted = B_FALSE;
440
441	mutex_enter(&zp->z_range_lock);
442	if (type == RL_READER) {
443		/*
444		 * First check for the usual case of no locks
445		 */
446		if (avl_numnodes(&zp->z_range_avl) == 0)
447			avl_add(&zp->z_range_avl, new);
448		else
449			zfs_range_lock_reader(zp, new);
450	} else
451		zfs_range_lock_writer(zp, new); /* RL_WRITER or RL_APPEND */
452	mutex_exit(&zp->z_range_lock);
453	return (new);
454}
455
456/*
457 * Unlock a reader lock
458 */
459static void
460zfs_range_unlock_reader(znode_t *zp, rl_t *remove)
461{
462	avl_tree_t *tree = &zp->z_range_avl;
463	rl_t *rl, *next;
464	uint64_t len;
465
466	/*
467	 * The common case is when the remove entry is in the tree
468	 * (cnt == 1) meaning there's been no other reader locks overlapping
469	 * with this one. Otherwise the remove entry will have been
470	 * removed from the tree and replaced by proxies (one or
471	 * more ranges mapping to the entire range).
472	 */
473	if (remove->r_cnt == 1) {
474		avl_remove(tree, remove);
475		if (remove->r_write_wanted) {
476			cv_broadcast(&remove->r_wr_cv);
477			cv_destroy(&remove->r_wr_cv);
478		}
479		if (remove->r_read_wanted) {
480			cv_broadcast(&remove->r_rd_cv);
481			cv_destroy(&remove->r_rd_cv);
482		}
483	} else {
484		ASSERT3U(remove->r_cnt, ==, 0);
485		ASSERT3U(remove->r_write_wanted, ==, 0);
486		ASSERT3U(remove->r_read_wanted, ==, 0);
487		/*
488		 * Find start proxy representing this reader lock,
489		 * then decrement ref count on all proxies
490		 * that make up this range, freeing them as needed.
491		 */
492		rl = avl_find(tree, remove, NULL);
493		ASSERT(rl);
494		ASSERT(rl->r_cnt);
495		ASSERT(rl->r_type == RL_READER);
496		for (len = remove->r_len; len != 0; rl = next) {
497			len -= rl->r_len;
498			if (len) {
499				next = AVL_NEXT(tree, rl);
500				ASSERT(next);
501				ASSERT(rl->r_off + rl->r_len == next->r_off);
502				ASSERT(next->r_cnt);
503				ASSERT(next->r_type == RL_READER);
504			}
505			rl->r_cnt--;
506			if (rl->r_cnt == 0) {
507				avl_remove(tree, rl);
508				if (rl->r_write_wanted) {
509					cv_broadcast(&rl->r_wr_cv);
510					cv_destroy(&rl->r_wr_cv);
511				}
512				if (rl->r_read_wanted) {
513					cv_broadcast(&rl->r_rd_cv);
514					cv_destroy(&rl->r_rd_cv);
515				}
516				kmem_free(rl, sizeof (rl_t));
517			}
518		}
519	}
520	kmem_free(remove, sizeof (rl_t));
521}
522
523/*
524 * Unlock range and destroy range lock structure.
525 */
526void
527zfs_range_unlock(rl_t *rl)
528{
529	znode_t *zp = rl->r_zp;
530
531	ASSERT(rl->r_type == RL_WRITER || rl->r_type == RL_READER);
532	ASSERT(rl->r_cnt == 1 || rl->r_cnt == 0);
533	ASSERT(!rl->r_proxy);
534
535	mutex_enter(&zp->z_range_lock);
536	if (rl->r_type == RL_WRITER) {
537		/* writer locks can't be shared or split */
538		avl_remove(&zp->z_range_avl, rl);
539		mutex_exit(&zp->z_range_lock);
540		if (rl->r_write_wanted) {
541			cv_broadcast(&rl->r_wr_cv);
542			cv_destroy(&rl->r_wr_cv);
543		}
544		if (rl->r_read_wanted) {
545			cv_broadcast(&rl->r_rd_cv);
546			cv_destroy(&rl->r_rd_cv);
547		}
548		kmem_free(rl, sizeof (rl_t));
549	} else {
550		/*
551		 * lock may be shared, let zfs_range_unlock_reader()
552		 * release the lock and free the rl_t
553		 */
554		zfs_range_unlock_reader(zp, rl);
555		mutex_exit(&zp->z_range_lock);
556	}
557}
558
559/*
560 * Reduce range locked as RL_WRITER from whole file to specified range.
561 * Asserts the whole file is exclusivly locked and so there's only one
562 * entry in the tree.
563 */
564void
565zfs_range_reduce(rl_t *rl, uint64_t off, uint64_t len)
566{
567	znode_t *zp = rl->r_zp;
568
569	/* Ensure there are no other locks */
570	ASSERT(avl_numnodes(&zp->z_range_avl) == 1);
571	ASSERT(rl->r_off == 0);
572	ASSERT(rl->r_type == RL_WRITER);
573	ASSERT(!rl->r_proxy);
574	ASSERT3U(rl->r_len, ==, UINT64_MAX);
575	ASSERT3U(rl->r_cnt, ==, 1);
576
577	mutex_enter(&zp->z_range_lock);
578	rl->r_off = off;
579	rl->r_len = len;
580	mutex_exit(&zp->z_range_lock);
581	if (rl->r_write_wanted)
582		cv_broadcast(&rl->r_wr_cv);
583	if (rl->r_read_wanted)
584		cv_broadcast(&rl->r_rd_cv);
585}
586
587/*
588 * AVL comparison function used to order range locks
589 * Locks are ordered on the start offset of the range.
590 */
591int
592zfs_range_compare(const void *arg1, const void *arg2)
593{
594	const rl_t *rl1 = arg1;
595	const rl_t *rl2 = arg2;
596
597	if (rl1->r_off > rl2->r_off)
598		return (1);
599	if (rl1->r_off < rl2->r_off)
600		return (-1);
601	return (0);
602}
603