1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
23 */
24
25#include <sys/zfs_context.h>
26#include <sys/dmu.h>
27#include <sys/avl.h>
28#include <sys/zap.h>
29#include <sys/refcount.h>
30#include <sys/nvpair.h>
31#ifdef _KERNEL
32#include <sys/kidmap.h>
33#include <sys/sid.h>
34#include <sys/zfs_vfsops.h>
35#include <sys/zfs_znode.h>
36#endif
37#include <sys/zfs_fuid.h>
38
39/*
40 * FUID Domain table(s).
41 *
42 * The FUID table is stored as a packed nvlist of an array
43 * of nvlists which contain an index, domain string and offset
44 *
45 * During file system initialization the nvlist(s) are read and
46 * two AVL trees are created.  One tree is keyed by the index number
47 * and the other by the domain string.  Nodes are never removed from
48 * trees, but new entries may be added.  If a new entry is added then
49 * the zfsvfs->z_fuid_dirty flag is set to true and the caller will then
50 * be responsible for calling zfs_fuid_sync() to sync the changes to disk.
51 *
52 */
53
54#define	FUID_IDX	"fuid_idx"
55#define	FUID_DOMAIN	"fuid_domain"
56#define	FUID_OFFSET	"fuid_offset"
57#define	FUID_NVP_ARRAY	"fuid_nvlist"
58
59typedef struct fuid_domain {
60	avl_node_t	f_domnode;
61	avl_node_t	f_idxnode;
62	ksiddomain_t	*f_ksid;
63	uint64_t	f_idx;
64} fuid_domain_t;
65
66static char *nulldomain = "";
67
68/*
69 * Compare two indexes.
70 */
71static int
72idx_compare(const void *arg1, const void *arg2)
73{
74	const fuid_domain_t *node1 = arg1;
75	const fuid_domain_t *node2 = arg2;
76
77	if (node1->f_idx < node2->f_idx)
78		return (-1);
79	else if (node1->f_idx > node2->f_idx)
80		return (1);
81	return (0);
82}
83
84/*
85 * Compare two domain strings.
86 */
87static int
88domain_compare(const void *arg1, const void *arg2)
89{
90	const fuid_domain_t *node1 = arg1;
91	const fuid_domain_t *node2 = arg2;
92	int val;
93
94	val = strcmp(node1->f_ksid->kd_name, node2->f_ksid->kd_name);
95	if (val == 0)
96		return (0);
97	return (val > 0 ? 1 : -1);
98}
99
100void
101zfs_fuid_avl_tree_create(avl_tree_t *idx_tree, avl_tree_t *domain_tree)
102{
103	avl_create(idx_tree, idx_compare,
104	    sizeof (fuid_domain_t), offsetof(fuid_domain_t, f_idxnode));
105	avl_create(domain_tree, domain_compare,
106	    sizeof (fuid_domain_t), offsetof(fuid_domain_t, f_domnode));
107}
108
109/*
110 * load initial fuid domain and idx trees.  This function is used by
111 * both the kernel and zdb.
112 */
113uint64_t
114zfs_fuid_table_load(objset_t *os, uint64_t fuid_obj, avl_tree_t *idx_tree,
115    avl_tree_t *domain_tree)
116{
117	dmu_buf_t *db;
118	uint64_t fuid_size;
119
120	ASSERT(fuid_obj != 0);
121	VERIFY(0 == dmu_bonus_hold(os, fuid_obj,
122	    FTAG, &db));
123	fuid_size = *(uint64_t *)db->db_data;
124	dmu_buf_rele(db, FTAG);
125
126	if (fuid_size)  {
127		nvlist_t **fuidnvp;
128		nvlist_t *nvp = NULL;
129		uint_t count;
130		char *packed;
131		int i;
132
133		packed = kmem_alloc(fuid_size, KM_SLEEP);
134		VERIFY(dmu_read(os, fuid_obj, 0,
135		    fuid_size, packed, DMU_READ_PREFETCH) == 0);
136		VERIFY(nvlist_unpack(packed, fuid_size,
137		    &nvp, 0) == 0);
138		VERIFY(nvlist_lookup_nvlist_array(nvp, FUID_NVP_ARRAY,
139		    &fuidnvp, &count) == 0);
140
141		for (i = 0; i != count; i++) {
142			fuid_domain_t *domnode;
143			char *domain;
144			uint64_t idx;
145
146			VERIFY(nvlist_lookup_string(fuidnvp[i], FUID_DOMAIN,
147			    &domain) == 0);
148			VERIFY(nvlist_lookup_uint64(fuidnvp[i], FUID_IDX,
149			    &idx) == 0);
150
151			domnode = kmem_alloc(sizeof (fuid_domain_t), KM_SLEEP);
152
153			domnode->f_idx = idx;
154			domnode->f_ksid = ksid_lookupdomain(domain);
155			avl_add(idx_tree, domnode);
156			avl_add(domain_tree, domnode);
157		}
158		nvlist_free(nvp);
159		kmem_free(packed, fuid_size);
160	}
161	return (fuid_size);
162}
163
164void
165zfs_fuid_table_destroy(avl_tree_t *idx_tree, avl_tree_t *domain_tree)
166{
167	fuid_domain_t *domnode;
168	void *cookie;
169
170	cookie = NULL;
171	while (domnode = avl_destroy_nodes(domain_tree, &cookie))
172		ksiddomain_rele(domnode->f_ksid);
173
174	avl_destroy(domain_tree);
175	cookie = NULL;
176	while (domnode = avl_destroy_nodes(idx_tree, &cookie))
177		kmem_free(domnode, sizeof (fuid_domain_t));
178	avl_destroy(idx_tree);
179}
180
181char *
182zfs_fuid_idx_domain(avl_tree_t *idx_tree, uint32_t idx)
183{
184	fuid_domain_t searchnode, *findnode;
185	avl_index_t loc;
186
187	searchnode.f_idx = idx;
188
189	findnode = avl_find(idx_tree, &searchnode, &loc);
190
191	return (findnode ? findnode->f_ksid->kd_name : nulldomain);
192}
193
194#ifdef _KERNEL
195/*
196 * Load the fuid table(s) into memory.
197 */
198static void
199zfs_fuid_init(zfsvfs_t *zfsvfs)
200{
201	rw_enter(&zfsvfs->z_fuid_lock, RW_WRITER);
202
203	if (zfsvfs->z_fuid_loaded) {
204		rw_exit(&zfsvfs->z_fuid_lock);
205		return;
206	}
207
208	zfs_fuid_avl_tree_create(&zfsvfs->z_fuid_idx, &zfsvfs->z_fuid_domain);
209
210	(void) zap_lookup(zfsvfs->z_os, MASTER_NODE_OBJ,
211	    ZFS_FUID_TABLES, 8, 1, &zfsvfs->z_fuid_obj);
212	if (zfsvfs->z_fuid_obj != 0) {
213		zfsvfs->z_fuid_size = zfs_fuid_table_load(zfsvfs->z_os,
214		    zfsvfs->z_fuid_obj, &zfsvfs->z_fuid_idx,
215		    &zfsvfs->z_fuid_domain);
216	}
217
218	zfsvfs->z_fuid_loaded = B_TRUE;
219	rw_exit(&zfsvfs->z_fuid_lock);
220}
221
222/*
223 * sync out AVL trees to persistent storage.
224 */
225void
226zfs_fuid_sync(zfsvfs_t *zfsvfs, dmu_tx_t *tx)
227{
228	nvlist_t *nvp;
229	nvlist_t **fuids;
230	size_t nvsize = 0;
231	char *packed;
232	dmu_buf_t *db;
233	fuid_domain_t *domnode;
234	int numnodes;
235	int i;
236
237	if (!zfsvfs->z_fuid_dirty) {
238		return;
239	}
240
241	rw_enter(&zfsvfs->z_fuid_lock, RW_WRITER);
242
243	/*
244	 * First see if table needs to be created?
245	 */
246	if (zfsvfs->z_fuid_obj == 0) {
247		zfsvfs->z_fuid_obj = dmu_object_alloc(zfsvfs->z_os,
248		    DMU_OT_FUID, 1 << 14, DMU_OT_FUID_SIZE,
249		    sizeof (uint64_t), tx);
250		VERIFY(zap_add(zfsvfs->z_os, MASTER_NODE_OBJ,
251		    ZFS_FUID_TABLES, sizeof (uint64_t), 1,
252		    &zfsvfs->z_fuid_obj, tx) == 0);
253	}
254
255	VERIFY(nvlist_alloc(&nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
256
257	numnodes = avl_numnodes(&zfsvfs->z_fuid_idx);
258	fuids = kmem_alloc(numnodes * sizeof (void *), KM_SLEEP);
259	for (i = 0, domnode = avl_first(&zfsvfs->z_fuid_domain); domnode; i++,
260	    domnode = AVL_NEXT(&zfsvfs->z_fuid_domain, domnode)) {
261		VERIFY(nvlist_alloc(&fuids[i], NV_UNIQUE_NAME, KM_SLEEP) == 0);
262		VERIFY(nvlist_add_uint64(fuids[i], FUID_IDX,
263		    domnode->f_idx) == 0);
264		VERIFY(nvlist_add_uint64(fuids[i], FUID_OFFSET, 0) == 0);
265		VERIFY(nvlist_add_string(fuids[i], FUID_DOMAIN,
266		    domnode->f_ksid->kd_name) == 0);
267	}
268	VERIFY(nvlist_add_nvlist_array(nvp, FUID_NVP_ARRAY,
269	    fuids, numnodes) == 0);
270	for (i = 0; i != numnodes; i++)
271		nvlist_free(fuids[i]);
272	kmem_free(fuids, numnodes * sizeof (void *));
273	VERIFY(nvlist_size(nvp, &nvsize, NV_ENCODE_XDR) == 0);
274	packed = kmem_alloc(nvsize, KM_SLEEP);
275	VERIFY(nvlist_pack(nvp, &packed, &nvsize,
276	    NV_ENCODE_XDR, KM_SLEEP) == 0);
277	nvlist_free(nvp);
278	zfsvfs->z_fuid_size = nvsize;
279	dmu_write(zfsvfs->z_os, zfsvfs->z_fuid_obj, 0,
280	    zfsvfs->z_fuid_size, packed, tx);
281	kmem_free(packed, zfsvfs->z_fuid_size);
282	VERIFY(0 == dmu_bonus_hold(zfsvfs->z_os, zfsvfs->z_fuid_obj,
283	    FTAG, &db));
284	dmu_buf_will_dirty(db, tx);
285	*(uint64_t *)db->db_data = zfsvfs->z_fuid_size;
286	dmu_buf_rele(db, FTAG);
287
288	zfsvfs->z_fuid_dirty = B_FALSE;
289	rw_exit(&zfsvfs->z_fuid_lock);
290}
291
292/*
293 * Query domain table for a given domain.
294 *
295 * If domain isn't found and addok is set, it is added to AVL trees and
296 * the zfsvfs->z_fuid_dirty flag will be set to TRUE.  It will then be
297 * necessary for the caller or another thread to detect the dirty table
298 * and sync out the changes.
299 */
300int
301zfs_fuid_find_by_domain(zfsvfs_t *zfsvfs, const char *domain,
302    char **retdomain, boolean_t addok)
303{
304	fuid_domain_t searchnode, *findnode;
305	avl_index_t loc;
306	krw_t rw = RW_READER;
307
308	/*
309	 * If the dummy "nobody" domain then return an index of 0
310	 * to cause the created FUID to be a standard POSIX id
311	 * for the user nobody.
312	 */
313	if (domain[0] == '\0') {
314		if (retdomain)
315			*retdomain = nulldomain;
316		return (0);
317	}
318
319	searchnode.f_ksid = ksid_lookupdomain(domain);
320	if (retdomain)
321		*retdomain = searchnode.f_ksid->kd_name;
322	if (!zfsvfs->z_fuid_loaded)
323		zfs_fuid_init(zfsvfs);
324
325retry:
326	rw_enter(&zfsvfs->z_fuid_lock, rw);
327	findnode = avl_find(&zfsvfs->z_fuid_domain, &searchnode, &loc);
328
329	if (findnode) {
330		rw_exit(&zfsvfs->z_fuid_lock);
331		ksiddomain_rele(searchnode.f_ksid);
332		return (findnode->f_idx);
333	} else if (addok) {
334		fuid_domain_t *domnode;
335		uint64_t retidx;
336
337		if (rw == RW_READER && !rw_tryupgrade(&zfsvfs->z_fuid_lock)) {
338			rw_exit(&zfsvfs->z_fuid_lock);
339			rw = RW_WRITER;
340			goto retry;
341		}
342
343		domnode = kmem_alloc(sizeof (fuid_domain_t), KM_SLEEP);
344		domnode->f_ksid = searchnode.f_ksid;
345
346		retidx = domnode->f_idx = avl_numnodes(&zfsvfs->z_fuid_idx) + 1;
347
348		avl_add(&zfsvfs->z_fuid_domain, domnode);
349		avl_add(&zfsvfs->z_fuid_idx, domnode);
350		zfsvfs->z_fuid_dirty = B_TRUE;
351		rw_exit(&zfsvfs->z_fuid_lock);
352		return (retidx);
353	} else {
354		rw_exit(&zfsvfs->z_fuid_lock);
355		return (-1);
356	}
357}
358
359/*
360 * Query domain table by index, returning domain string
361 *
362 * Returns a pointer from an avl node of the domain string.
363 *
364 */
365const char *
366zfs_fuid_find_by_idx(zfsvfs_t *zfsvfs, uint32_t idx)
367{
368	char *domain;
369
370	if (idx == 0 || !zfsvfs->z_use_fuids)
371		return (NULL);
372
373	if (!zfsvfs->z_fuid_loaded)
374		zfs_fuid_init(zfsvfs);
375
376	rw_enter(&zfsvfs->z_fuid_lock, RW_READER);
377
378	if (zfsvfs->z_fuid_obj || zfsvfs->z_fuid_dirty)
379		domain = zfs_fuid_idx_domain(&zfsvfs->z_fuid_idx, idx);
380	else
381		domain = nulldomain;
382	rw_exit(&zfsvfs->z_fuid_lock);
383
384	ASSERT(domain);
385	return (domain);
386}
387
388void
389zfs_fuid_map_ids(znode_t *zp, cred_t *cr, uid_t *uidp, uid_t *gidp)
390{
391	*uidp = zfs_fuid_map_id(zp->z_zfsvfs, zp->z_uid, cr, ZFS_OWNER);
392	*gidp = zfs_fuid_map_id(zp->z_zfsvfs, zp->z_gid, cr, ZFS_GROUP);
393}
394
395uid_t
396zfs_fuid_map_id(zfsvfs_t *zfsvfs, uint64_t fuid,
397    cred_t *cr, zfs_fuid_type_t type)
398{
399	uint32_t index = FUID_INDEX(fuid);
400	const char *domain;
401	uid_t id;
402
403	if (index == 0)
404		return (fuid);
405
406	domain = zfs_fuid_find_by_idx(zfsvfs, index);
407	ASSERT(domain != NULL);
408
409	if (type == ZFS_OWNER || type == ZFS_ACE_USER) {
410		(void) kidmap_getuidbysid(crgetzone(cr), domain,
411		    FUID_RID(fuid), &id);
412	} else {
413		(void) kidmap_getgidbysid(crgetzone(cr), domain,
414		    FUID_RID(fuid), &id);
415	}
416	return (id);
417}
418
419/*
420 * Add a FUID node to the list of fuid's being created for this
421 * ACL
422 *
423 * If ACL has multiple domains, then keep only one copy of each unique
424 * domain.
425 */
426void
427zfs_fuid_node_add(zfs_fuid_info_t **fuidpp, const char *domain, uint32_t rid,
428    uint64_t idx, uint64_t id, zfs_fuid_type_t type)
429{
430	zfs_fuid_t *fuid;
431	zfs_fuid_domain_t *fuid_domain;
432	zfs_fuid_info_t *fuidp;
433	uint64_t fuididx;
434	boolean_t found = B_FALSE;
435
436	if (*fuidpp == NULL)
437		*fuidpp = zfs_fuid_info_alloc();
438
439	fuidp = *fuidpp;
440	/*
441	 * First find fuid domain index in linked list
442	 *
443	 * If one isn't found then create an entry.
444	 */
445
446	for (fuididx = 1, fuid_domain = list_head(&fuidp->z_domains);
447	    fuid_domain; fuid_domain = list_next(&fuidp->z_domains,
448	    fuid_domain), fuididx++) {
449		if (idx == fuid_domain->z_domidx) {
450			found = B_TRUE;
451			break;
452		}
453	}
454
455	if (!found) {
456		fuid_domain = kmem_alloc(sizeof (zfs_fuid_domain_t), KM_SLEEP);
457		fuid_domain->z_domain = domain;
458		fuid_domain->z_domidx = idx;
459		list_insert_tail(&fuidp->z_domains, fuid_domain);
460		fuidp->z_domain_str_sz += strlen(domain) + 1;
461		fuidp->z_domain_cnt++;
462	}
463
464	if (type == ZFS_ACE_USER || type == ZFS_ACE_GROUP) {
465
466		/*
467		 * Now allocate fuid entry and add it on the end of the list
468		 */
469
470		fuid = kmem_alloc(sizeof (zfs_fuid_t), KM_SLEEP);
471		fuid->z_id = id;
472		fuid->z_domidx = idx;
473		fuid->z_logfuid = FUID_ENCODE(fuididx, rid);
474
475		list_insert_tail(&fuidp->z_fuids, fuid);
476		fuidp->z_fuid_cnt++;
477	} else {
478		if (type == ZFS_OWNER)
479			fuidp->z_fuid_owner = FUID_ENCODE(fuididx, rid);
480		else
481			fuidp->z_fuid_group = FUID_ENCODE(fuididx, rid);
482	}
483}
484
485/*
486 * Create a file system FUID, based on information in the users cred
487 *
488 * If cred contains KSID_OWNER then it should be used to determine
489 * the uid otherwise cred's uid will be used. By default cred's gid
490 * is used unless it's an ephemeral ID in which case KSID_GROUP will
491 * be used if it exists.
492 */
493uint64_t
494zfs_fuid_create_cred(zfsvfs_t *zfsvfs, zfs_fuid_type_t type,
495    cred_t *cr, zfs_fuid_info_t **fuidp)
496{
497	uint64_t	idx;
498	ksid_t		*ksid;
499	uint32_t	rid;
500	char 		*kdomain;
501	const char	*domain;
502	uid_t		id;
503
504	VERIFY(type == ZFS_OWNER || type == ZFS_GROUP);
505
506	ksid = crgetsid(cr, (type == ZFS_OWNER) ? KSID_OWNER : KSID_GROUP);
507
508	if (!zfsvfs->z_use_fuids || (ksid == NULL)) {
509		id = (type == ZFS_OWNER) ? crgetuid(cr) : crgetgid(cr);
510
511		if (IS_EPHEMERAL(id))
512			return ((type == ZFS_OWNER) ? UID_NOBODY : GID_NOBODY);
513
514		return ((uint64_t)id);
515	}
516
517	/*
518	 * ksid is present and FUID is supported
519	 */
520	id = (type == ZFS_OWNER) ? ksid_getid(ksid) : crgetgid(cr);
521
522	if (!IS_EPHEMERAL(id))
523		return ((uint64_t)id);
524
525	if (type == ZFS_GROUP)
526		id = ksid_getid(ksid);
527
528	rid = ksid_getrid(ksid);
529	domain = ksid_getdomain(ksid);
530
531	idx = zfs_fuid_find_by_domain(zfsvfs, domain, &kdomain, B_TRUE);
532
533	zfs_fuid_node_add(fuidp, kdomain, rid, idx, id, type);
534
535	return (FUID_ENCODE(idx, rid));
536}
537
538/*
539 * Create a file system FUID for an ACL ace
540 * or a chown/chgrp of the file.
541 * This is similar to zfs_fuid_create_cred, except that
542 * we can't find the domain + rid information in the
543 * cred.  Instead we have to query Winchester for the
544 * domain and rid.
545 *
546 * During replay operations the domain+rid information is
547 * found in the zfs_fuid_info_t that the replay code has
548 * attached to the zfsvfs of the file system.
549 */
550uint64_t
551zfs_fuid_create(zfsvfs_t *zfsvfs, uint64_t id, cred_t *cr,
552    zfs_fuid_type_t type, zfs_fuid_info_t **fuidpp)
553{
554	const char *domain;
555	char *kdomain;
556	uint32_t fuid_idx = FUID_INDEX(id);
557	uint32_t rid;
558	idmap_stat status;
559	uint64_t idx;
560	zfs_fuid_t *zfuid = NULL;
561	zfs_fuid_info_t *fuidp;
562
563	/*
564	 * If POSIX ID, or entry is already a FUID then
565	 * just return the id
566	 *
567	 * We may also be handed an already FUID'ized id via
568	 * chmod.
569	 */
570
571	if (!zfsvfs->z_use_fuids || !IS_EPHEMERAL(id) || fuid_idx != 0)
572		return (id);
573
574	if (zfsvfs->z_replay) {
575		fuidp = zfsvfs->z_fuid_replay;
576
577		/*
578		 * If we are passed an ephemeral id, but no
579		 * fuid_info was logged then return NOBODY.
580		 * This is most likely a result of idmap service
581		 * not being available.
582		 */
583		if (fuidp == NULL)
584			return (UID_NOBODY);
585
586		switch (type) {
587		case ZFS_ACE_USER:
588		case ZFS_ACE_GROUP:
589			zfuid = list_head(&fuidp->z_fuids);
590			rid = FUID_RID(zfuid->z_logfuid);
591			idx = FUID_INDEX(zfuid->z_logfuid);
592			break;
593		case ZFS_OWNER:
594			rid = FUID_RID(fuidp->z_fuid_owner);
595			idx = FUID_INDEX(fuidp->z_fuid_owner);
596			break;
597		case ZFS_GROUP:
598			rid = FUID_RID(fuidp->z_fuid_group);
599			idx = FUID_INDEX(fuidp->z_fuid_group);
600			break;
601		};
602		domain = fuidp->z_domain_table[idx -1];
603	} else {
604		if (type == ZFS_OWNER || type == ZFS_ACE_USER)
605			status = kidmap_getsidbyuid(crgetzone(cr), id,
606			    &domain, &rid);
607		else
608			status = kidmap_getsidbygid(crgetzone(cr), id,
609			    &domain, &rid);
610
611		if (status != 0) {
612			/*
613			 * When returning nobody we will need to
614			 * make a dummy fuid table entry for logging
615			 * purposes.
616			 */
617			rid = UID_NOBODY;
618			domain = nulldomain;
619		}
620	}
621
622	idx = zfs_fuid_find_by_domain(zfsvfs, domain, &kdomain, B_TRUE);
623
624	if (!zfsvfs->z_replay)
625		zfs_fuid_node_add(fuidpp, kdomain,
626		    rid, idx, id, type);
627	else if (zfuid != NULL) {
628		list_remove(&fuidp->z_fuids, zfuid);
629		kmem_free(zfuid, sizeof (zfs_fuid_t));
630	}
631	return (FUID_ENCODE(idx, rid));
632}
633
634void
635zfs_fuid_destroy(zfsvfs_t *zfsvfs)
636{
637	rw_enter(&zfsvfs->z_fuid_lock, RW_WRITER);
638	if (!zfsvfs->z_fuid_loaded) {
639		rw_exit(&zfsvfs->z_fuid_lock);
640		return;
641	}
642	zfs_fuid_table_destroy(&zfsvfs->z_fuid_idx, &zfsvfs->z_fuid_domain);
643	rw_exit(&zfsvfs->z_fuid_lock);
644}
645
646/*
647 * Allocate zfs_fuid_info for tracking FUIDs created during
648 * zfs_mknode, VOP_SETATTR() or VOP_SETSECATTR()
649 */
650zfs_fuid_info_t *
651zfs_fuid_info_alloc(void)
652{
653	zfs_fuid_info_t *fuidp;
654
655	fuidp = kmem_zalloc(sizeof (zfs_fuid_info_t), KM_SLEEP);
656	list_create(&fuidp->z_domains, sizeof (zfs_fuid_domain_t),
657	    offsetof(zfs_fuid_domain_t, z_next));
658	list_create(&fuidp->z_fuids, sizeof (zfs_fuid_t),
659	    offsetof(zfs_fuid_t, z_next));
660	return (fuidp);
661}
662
663/*
664 * Release all memory associated with zfs_fuid_info_t
665 */
666void
667zfs_fuid_info_free(zfs_fuid_info_t *fuidp)
668{
669	zfs_fuid_t *zfuid;
670	zfs_fuid_domain_t *zdomain;
671
672	while ((zfuid = list_head(&fuidp->z_fuids)) != NULL) {
673		list_remove(&fuidp->z_fuids, zfuid);
674		kmem_free(zfuid, sizeof (zfs_fuid_t));
675	}
676
677	if (fuidp->z_domain_table != NULL)
678		kmem_free(fuidp->z_domain_table,
679		    (sizeof (char **)) * fuidp->z_domain_cnt);
680
681	while ((zdomain = list_head(&fuidp->z_domains)) != NULL) {
682		list_remove(&fuidp->z_domains, zdomain);
683		kmem_free(zdomain, sizeof (zfs_fuid_domain_t));
684	}
685
686	kmem_free(fuidp, sizeof (zfs_fuid_info_t));
687}
688
689/*
690 * Check to see if id is a groupmember.  If cred
691 * has ksid info then sidlist is checked first
692 * and if still not found then POSIX groups are checked
693 *
694 * Will use a straight FUID compare when possible.
695 */
696boolean_t
697zfs_groupmember(zfsvfs_t *zfsvfs, uint64_t id, cred_t *cr)
698{
699	ksid_t		*ksid = crgetsid(cr, KSID_GROUP);
700	ksidlist_t	*ksidlist = crgetsidlist(cr);
701	uid_t		gid;
702
703	if (ksid && ksidlist) {
704		int 		i;
705		ksid_t		*ksid_groups;
706		uint32_t	idx = FUID_INDEX(id);
707		uint32_t	rid = FUID_RID(id);
708
709		ksid_groups = ksidlist->ksl_sids;
710
711		for (i = 0; i != ksidlist->ksl_nsid; i++) {
712			if (idx == 0) {
713				if (id != IDMAP_WK_CREATOR_GROUP_GID &&
714				    id == ksid_groups[i].ks_id) {
715					return (B_TRUE);
716				}
717			} else {
718				const char *domain;
719
720				domain = zfs_fuid_find_by_idx(zfsvfs, idx);
721				ASSERT(domain != NULL);
722
723				if (strcmp(domain,
724				    IDMAP_WK_CREATOR_SID_AUTHORITY) == 0)
725					return (B_FALSE);
726
727				if ((strcmp(domain,
728				    ksid_groups[i].ks_domain->kd_name) == 0) &&
729				    rid == ksid_groups[i].ks_rid)
730					return (B_TRUE);
731			}
732		}
733	}
734
735	/*
736	 * Not found in ksidlist, check posix groups
737	 */
738	gid = zfs_fuid_map_id(zfsvfs, id, cr, ZFS_GROUP);
739	return (groupmember(gid, cr));
740}
741
742void
743zfs_fuid_txhold(zfsvfs_t *zfsvfs, dmu_tx_t *tx)
744{
745	if (zfsvfs->z_fuid_obj == 0) {
746		dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
747		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
748		    FUID_SIZE_ESTIMATE(zfsvfs));
749		dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, FALSE, NULL);
750	} else {
751		dmu_tx_hold_bonus(tx, zfsvfs->z_fuid_obj);
752		dmu_tx_hold_write(tx, zfsvfs->z_fuid_obj, 0,
753		    FUID_SIZE_ESTIMATE(zfsvfs));
754	}
755}
756#endif
757