zap_micro.c revision 11165:68184eb5449e
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25
26#include <sys/zio.h>
27#include <sys/spa.h>
28#include <sys/dmu.h>
29#include <sys/zfs_context.h>
30#include <sys/zap.h>
31#include <sys/refcount.h>
32#include <sys/zap_impl.h>
33#include <sys/zap_leaf.h>
34#include <sys/avl.h>
35
36#ifdef _KERNEL
37#include <sys/sunddi.h>
38#endif
39
40static int mzap_upgrade(zap_t **zapp, dmu_tx_t *tx, zap_flags_t flags);
41
42uint64_t
43zap_getflags(zap_t *zap)
44{
45	if (zap->zap_ismicro)
46		return (0);
47	return (zap->zap_u.zap_fat.zap_phys->zap_flags);
48}
49
50int
51zap_hashbits(zap_t *zap)
52{
53	if (zap_getflags(zap) & ZAP_FLAG_HASH64)
54		return (48);
55	else
56		return (28);
57}
58
59uint32_t
60zap_maxcd(zap_t *zap)
61{
62	if (zap_getflags(zap) & ZAP_FLAG_HASH64)
63		return ((1<<16)-1);
64	else
65		return (-1U);
66}
67
68static uint64_t
69zap_hash(zap_name_t *zn)
70{
71	zap_t *zap = zn->zn_zap;
72	uint64_t h = 0;
73
74	if (zap_getflags(zap) & ZAP_FLAG_PRE_HASHED_KEY) {
75		ASSERT(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY);
76		h = *(uint64_t *)zn->zn_key_orig;
77	} else {
78		h = zap->zap_salt;
79		ASSERT(h != 0);
80		ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
81
82		if (zap_getflags(zap) & ZAP_FLAG_UINT64_KEY) {
83			int i;
84			const uint64_t *wp = zn->zn_key_norm;
85
86			ASSERT(zn->zn_key_intlen == 8);
87			for (i = 0; i < zn->zn_key_norm_numints; wp++, i++) {
88				int j;
89				uint64_t word = *wp;
90
91				for (j = 0; j < zn->zn_key_intlen; j++) {
92					h = (h >> 8) ^
93					    zfs_crc64_table[(h ^ word) & 0xFF];
94					word >>= NBBY;
95				}
96			}
97		} else {
98			int i, len;
99			const uint8_t *cp = zn->zn_key_norm;
100
101			/*
102			 * We previously stored the terminating null on
103			 * disk, but didn't hash it, so we need to
104			 * continue to not hash it.  (The
105			 * zn_key_*_numints includes the terminating
106			 * null for non-binary keys.)
107			 */
108			len = zn->zn_key_norm_numints - 1;
109
110			ASSERT(zn->zn_key_intlen == 1);
111			for (i = 0; i < len; cp++, i++) {
112				h = (h >> 8) ^
113				    zfs_crc64_table[(h ^ *cp) & 0xFF];
114			}
115		}
116	}
117	/*
118	 * Don't use all 64 bits, since we need some in the cookie for
119	 * the collision differentiator.  We MUST use the high bits,
120	 * since those are the ones that we first pay attention to when
121	 * chosing the bucket.
122	 */
123	h &= ~((1ULL << (64 - zap_hashbits(zap))) - 1);
124
125	return (h);
126}
127
128static int
129zap_normalize(zap_t *zap, const char *name, char *namenorm)
130{
131	size_t inlen, outlen;
132	int err;
133
134	ASSERT(!(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY));
135
136	inlen = strlen(name) + 1;
137	outlen = ZAP_MAXNAMELEN;
138
139	err = 0;
140	(void) u8_textprep_str((char *)name, &inlen, namenorm, &outlen,
141	    zap->zap_normflags | U8_TEXTPREP_IGNORE_NULL |
142	    U8_TEXTPREP_IGNORE_INVALID, U8_UNICODE_LATEST, &err);
143
144	return (err);
145}
146
147boolean_t
148zap_match(zap_name_t *zn, const char *matchname)
149{
150	ASSERT(!(zap_getflags(zn->zn_zap) & ZAP_FLAG_UINT64_KEY));
151
152	if (zn->zn_matchtype == MT_FIRST) {
153		char norm[ZAP_MAXNAMELEN];
154
155		if (zap_normalize(zn->zn_zap, matchname, norm) != 0)
156			return (B_FALSE);
157
158		return (strcmp(zn->zn_key_norm, norm) == 0);
159	} else {
160		/* MT_BEST or MT_EXACT */
161		return (strcmp(zn->zn_key_orig, matchname) == 0);
162	}
163}
164
165void
166zap_name_free(zap_name_t *zn)
167{
168	kmem_free(zn, sizeof (zap_name_t));
169}
170
171zap_name_t *
172zap_name_alloc(zap_t *zap, const char *key, matchtype_t mt)
173{
174	zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP);
175
176	zn->zn_zap = zap;
177	zn->zn_key_intlen = sizeof (*key);
178	zn->zn_key_orig = key;
179	zn->zn_key_orig_numints = strlen(zn->zn_key_orig) + 1;
180	zn->zn_matchtype = mt;
181	if (zap->zap_normflags) {
182		if (zap_normalize(zap, key, zn->zn_normbuf) != 0) {
183			zap_name_free(zn);
184			return (NULL);
185		}
186		zn->zn_key_norm = zn->zn_normbuf;
187		zn->zn_key_norm_numints = strlen(zn->zn_key_norm) + 1;
188	} else {
189		if (mt != MT_EXACT) {
190			zap_name_free(zn);
191			return (NULL);
192		}
193		zn->zn_key_norm = zn->zn_key_orig;
194		zn->zn_key_norm_numints = zn->zn_key_orig_numints;
195	}
196
197	zn->zn_hash = zap_hash(zn);
198	return (zn);
199}
200
201zap_name_t *
202zap_name_alloc_uint64(zap_t *zap, const uint64_t *key, int numints)
203{
204	zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP);
205
206	ASSERT(zap->zap_normflags == 0);
207	zn->zn_zap = zap;
208	zn->zn_key_intlen = sizeof (*key);
209	zn->zn_key_orig = zn->zn_key_norm = key;
210	zn->zn_key_orig_numints = zn->zn_key_norm_numints = numints;
211	zn->zn_matchtype = MT_EXACT;
212
213	zn->zn_hash = zap_hash(zn);
214	return (zn);
215}
216
217static void
218mzap_byteswap(mzap_phys_t *buf, size_t size)
219{
220	int i, max;
221	buf->mz_block_type = BSWAP_64(buf->mz_block_type);
222	buf->mz_salt = BSWAP_64(buf->mz_salt);
223	buf->mz_normflags = BSWAP_64(buf->mz_normflags);
224	max = (size / MZAP_ENT_LEN) - 1;
225	for (i = 0; i < max; i++) {
226		buf->mz_chunk[i].mze_value =
227		    BSWAP_64(buf->mz_chunk[i].mze_value);
228		buf->mz_chunk[i].mze_cd =
229		    BSWAP_32(buf->mz_chunk[i].mze_cd);
230	}
231}
232
233void
234zap_byteswap(void *buf, size_t size)
235{
236	uint64_t block_type;
237
238	block_type = *(uint64_t *)buf;
239
240	if (block_type == ZBT_MICRO || block_type == BSWAP_64(ZBT_MICRO)) {
241		/* ASSERT(magic == ZAP_LEAF_MAGIC); */
242		mzap_byteswap(buf, size);
243	} else {
244		fzap_byteswap(buf, size);
245	}
246}
247
248static int
249mze_compare(const void *arg1, const void *arg2)
250{
251	const mzap_ent_t *mze1 = arg1;
252	const mzap_ent_t *mze2 = arg2;
253
254	if (mze1->mze_hash > mze2->mze_hash)
255		return (+1);
256	if (mze1->mze_hash < mze2->mze_hash)
257		return (-1);
258	if (mze1->mze_phys.mze_cd > mze2->mze_phys.mze_cd)
259		return (+1);
260	if (mze1->mze_phys.mze_cd < mze2->mze_phys.mze_cd)
261		return (-1);
262	return (0);
263}
264
265static void
266mze_insert(zap_t *zap, int chunkid, uint64_t hash, mzap_ent_phys_t *mzep)
267{
268	mzap_ent_t *mze;
269
270	ASSERT(zap->zap_ismicro);
271	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
272	ASSERT(mzep->mze_cd < zap_maxcd(zap));
273
274	mze = kmem_alloc(sizeof (mzap_ent_t), KM_SLEEP);
275	mze->mze_chunkid = chunkid;
276	mze->mze_hash = hash;
277	mze->mze_phys = *mzep;
278	avl_add(&zap->zap_m.zap_avl, mze);
279}
280
281static mzap_ent_t *
282mze_find(zap_name_t *zn)
283{
284	mzap_ent_t mze_tofind;
285	mzap_ent_t *mze;
286	avl_index_t idx;
287	avl_tree_t *avl = &zn->zn_zap->zap_m.zap_avl;
288
289	ASSERT(zn->zn_zap->zap_ismicro);
290	ASSERT(RW_LOCK_HELD(&zn->zn_zap->zap_rwlock));
291
292	mze_tofind.mze_hash = zn->zn_hash;
293	mze_tofind.mze_phys.mze_cd = 0;
294
295again:
296	mze = avl_find(avl, &mze_tofind, &idx);
297	if (mze == NULL)
298		mze = avl_nearest(avl, idx, AVL_AFTER);
299	for (; mze && mze->mze_hash == zn->zn_hash; mze = AVL_NEXT(avl, mze)) {
300		if (zap_match(zn, mze->mze_phys.mze_name))
301			return (mze);
302	}
303	if (zn->zn_matchtype == MT_BEST) {
304		zn->zn_matchtype = MT_FIRST;
305		goto again;
306	}
307	return (NULL);
308}
309
310static uint32_t
311mze_find_unused_cd(zap_t *zap, uint64_t hash)
312{
313	mzap_ent_t mze_tofind;
314	mzap_ent_t *mze;
315	avl_index_t idx;
316	avl_tree_t *avl = &zap->zap_m.zap_avl;
317	uint32_t cd;
318
319	ASSERT(zap->zap_ismicro);
320	ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
321
322	mze_tofind.mze_hash = hash;
323	mze_tofind.mze_phys.mze_cd = 0;
324
325	cd = 0;
326	for (mze = avl_find(avl, &mze_tofind, &idx);
327	    mze && mze->mze_hash == hash; mze = AVL_NEXT(avl, mze)) {
328		if (mze->mze_phys.mze_cd != cd)
329			break;
330		cd++;
331	}
332
333	return (cd);
334}
335
336static void
337mze_remove(zap_t *zap, mzap_ent_t *mze)
338{
339	ASSERT(zap->zap_ismicro);
340	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
341
342	avl_remove(&zap->zap_m.zap_avl, mze);
343	kmem_free(mze, sizeof (mzap_ent_t));
344}
345
346static void
347mze_destroy(zap_t *zap)
348{
349	mzap_ent_t *mze;
350	void *avlcookie = NULL;
351
352	while (mze = avl_destroy_nodes(&zap->zap_m.zap_avl, &avlcookie))
353		kmem_free(mze, sizeof (mzap_ent_t));
354	avl_destroy(&zap->zap_m.zap_avl);
355}
356
357static zap_t *
358mzap_open(objset_t *os, uint64_t obj, dmu_buf_t *db)
359{
360	zap_t *winner;
361	zap_t *zap;
362	int i;
363
364	ASSERT3U(MZAP_ENT_LEN, ==, sizeof (mzap_ent_phys_t));
365
366	zap = kmem_zalloc(sizeof (zap_t), KM_SLEEP);
367	rw_init(&zap->zap_rwlock, 0, 0, 0);
368	rw_enter(&zap->zap_rwlock, RW_WRITER);
369	zap->zap_objset = os;
370	zap->zap_object = obj;
371	zap->zap_dbuf = db;
372
373	if (*(uint64_t *)db->db_data != ZBT_MICRO) {
374		mutex_init(&zap->zap_f.zap_num_entries_mtx, 0, 0, 0);
375		zap->zap_f.zap_block_shift = highbit(db->db_size) - 1;
376	} else {
377		zap->zap_ismicro = TRUE;
378	}
379
380	/*
381	 * Make sure that zap_ismicro is set before we let others see
382	 * it, because zap_lockdir() checks zap_ismicro without the lock
383	 * held.
384	 */
385	winner = dmu_buf_set_user(db, zap, &zap->zap_m.zap_phys, zap_evict);
386
387	if (winner != NULL) {
388		rw_exit(&zap->zap_rwlock);
389		rw_destroy(&zap->zap_rwlock);
390		if (!zap->zap_ismicro)
391			mutex_destroy(&zap->zap_f.zap_num_entries_mtx);
392		kmem_free(zap, sizeof (zap_t));
393		return (winner);
394	}
395
396	if (zap->zap_ismicro) {
397		zap->zap_salt = zap->zap_m.zap_phys->mz_salt;
398		zap->zap_normflags = zap->zap_m.zap_phys->mz_normflags;
399		zap->zap_m.zap_num_chunks = db->db_size / MZAP_ENT_LEN - 1;
400		avl_create(&zap->zap_m.zap_avl, mze_compare,
401		    sizeof (mzap_ent_t), offsetof(mzap_ent_t, mze_node));
402
403		for (i = 0; i < zap->zap_m.zap_num_chunks; i++) {
404			mzap_ent_phys_t *mze =
405			    &zap->zap_m.zap_phys->mz_chunk[i];
406			if (mze->mze_name[0]) {
407				zap_name_t *zn;
408
409				zap->zap_m.zap_num_entries++;
410				zn = zap_name_alloc(zap, mze->mze_name,
411				    MT_EXACT);
412				mze_insert(zap, i, zn->zn_hash, mze);
413				zap_name_free(zn);
414			}
415		}
416	} else {
417		zap->zap_salt = zap->zap_f.zap_phys->zap_salt;
418		zap->zap_normflags = zap->zap_f.zap_phys->zap_normflags;
419
420		ASSERT3U(sizeof (struct zap_leaf_header), ==,
421		    2*ZAP_LEAF_CHUNKSIZE);
422
423		/*
424		 * The embedded pointer table should not overlap the
425		 * other members.
426		 */
427		ASSERT3P(&ZAP_EMBEDDED_PTRTBL_ENT(zap, 0), >,
428		    &zap->zap_f.zap_phys->zap_salt);
429
430		/*
431		 * The embedded pointer table should end at the end of
432		 * the block
433		 */
434		ASSERT3U((uintptr_t)&ZAP_EMBEDDED_PTRTBL_ENT(zap,
435		    1<<ZAP_EMBEDDED_PTRTBL_SHIFT(zap)) -
436		    (uintptr_t)zap->zap_f.zap_phys, ==,
437		    zap->zap_dbuf->db_size);
438	}
439	rw_exit(&zap->zap_rwlock);
440	return (zap);
441}
442
443int
444zap_lockdir(objset_t *os, uint64_t obj, dmu_tx_t *tx,
445    krw_t lti, boolean_t fatreader, boolean_t adding, zap_t **zapp)
446{
447	zap_t *zap;
448	dmu_buf_t *db;
449	krw_t lt;
450	int err;
451
452	*zapp = NULL;
453
454	err = dmu_buf_hold(os, obj, 0, NULL, &db);
455	if (err)
456		return (err);
457
458#ifdef ZFS_DEBUG
459	{
460		dmu_object_info_t doi;
461		dmu_object_info_from_db(db, &doi);
462		ASSERT(dmu_ot[doi.doi_type].ot_byteswap == zap_byteswap);
463	}
464#endif
465
466	zap = dmu_buf_get_user(db);
467	if (zap == NULL)
468		zap = mzap_open(os, obj, db);
469
470	/*
471	 * We're checking zap_ismicro without the lock held, in order to
472	 * tell what type of lock we want.  Once we have some sort of
473	 * lock, see if it really is the right type.  In practice this
474	 * can only be different if it was upgraded from micro to fat,
475	 * and micro wanted WRITER but fat only needs READER.
476	 */
477	lt = (!zap->zap_ismicro && fatreader) ? RW_READER : lti;
478	rw_enter(&zap->zap_rwlock, lt);
479	if (lt != ((!zap->zap_ismicro && fatreader) ? RW_READER : lti)) {
480		/* it was upgraded, now we only need reader */
481		ASSERT(lt == RW_WRITER);
482		ASSERT(RW_READER ==
483		    (!zap->zap_ismicro && fatreader) ? RW_READER : lti);
484		rw_downgrade(&zap->zap_rwlock);
485		lt = RW_READER;
486	}
487
488	zap->zap_objset = os;
489
490	if (lt == RW_WRITER)
491		dmu_buf_will_dirty(db, tx);
492
493	ASSERT3P(zap->zap_dbuf, ==, db);
494
495	ASSERT(!zap->zap_ismicro ||
496	    zap->zap_m.zap_num_entries <= zap->zap_m.zap_num_chunks);
497	if (zap->zap_ismicro && tx && adding &&
498	    zap->zap_m.zap_num_entries == zap->zap_m.zap_num_chunks) {
499		uint64_t newsz = db->db_size + SPA_MINBLOCKSIZE;
500		if (newsz > MZAP_MAX_BLKSZ) {
501			dprintf("upgrading obj %llu: num_entries=%u\n",
502			    obj, zap->zap_m.zap_num_entries);
503			*zapp = zap;
504			return (mzap_upgrade(zapp, tx, 0));
505		}
506		err = dmu_object_set_blocksize(os, obj, newsz, 0, tx);
507		ASSERT3U(err, ==, 0);
508		zap->zap_m.zap_num_chunks =
509		    db->db_size / MZAP_ENT_LEN - 1;
510	}
511
512	*zapp = zap;
513	return (0);
514}
515
516void
517zap_unlockdir(zap_t *zap)
518{
519	rw_exit(&zap->zap_rwlock);
520	dmu_buf_rele(zap->zap_dbuf, NULL);
521}
522
523static int
524mzap_upgrade(zap_t **zapp, dmu_tx_t *tx, zap_flags_t flags)
525{
526	mzap_phys_t *mzp;
527	int i, sz, nchunks;
528	int err = 0;
529	zap_t *zap = *zapp;
530
531	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
532
533	sz = zap->zap_dbuf->db_size;
534	mzp = kmem_alloc(sz, KM_SLEEP);
535	bcopy(zap->zap_dbuf->db_data, mzp, sz);
536	nchunks = zap->zap_m.zap_num_chunks;
537
538	if (!flags) {
539		err = dmu_object_set_blocksize(zap->zap_objset, zap->zap_object,
540		    1ULL << fzap_default_block_shift, 0, tx);
541		if (err) {
542			kmem_free(mzp, sz);
543			return (err);
544		}
545	}
546
547	dprintf("upgrading obj=%llu with %u chunks\n",
548	    zap->zap_object, nchunks);
549	/* XXX destroy the avl later, so we can use the stored hash value */
550	mze_destroy(zap);
551
552	fzap_upgrade(zap, tx, flags);
553
554	for (i = 0; i < nchunks; i++) {
555		mzap_ent_phys_t *mze = &mzp->mz_chunk[i];
556		zap_name_t *zn;
557		if (mze->mze_name[0] == 0)
558			continue;
559		dprintf("adding %s=%llu\n",
560		    mze->mze_name, mze->mze_value);
561		zn = zap_name_alloc(zap, mze->mze_name, MT_EXACT);
562		err = fzap_add_cd(zn, 8, 1, &mze->mze_value, mze->mze_cd, tx);
563		zap = zn->zn_zap;	/* fzap_add_cd() may change zap */
564		zap_name_free(zn);
565		if (err)
566			break;
567	}
568	kmem_free(mzp, sz);
569	*zapp = zap;
570	return (err);
571}
572
573static void
574mzap_create_impl(objset_t *os, uint64_t obj, int normflags, zap_flags_t flags,
575    dmu_tx_t *tx)
576{
577	dmu_buf_t *db;
578	mzap_phys_t *zp;
579
580	VERIFY(0 == dmu_buf_hold(os, obj, 0, FTAG, &db));
581
582#ifdef ZFS_DEBUG
583	{
584		dmu_object_info_t doi;
585		dmu_object_info_from_db(db, &doi);
586		ASSERT(dmu_ot[doi.doi_type].ot_byteswap == zap_byteswap);
587	}
588#endif
589
590	dmu_buf_will_dirty(db, tx);
591	zp = db->db_data;
592	zp->mz_block_type = ZBT_MICRO;
593	zp->mz_salt = ((uintptr_t)db ^ (uintptr_t)tx ^ (obj << 1)) | 1ULL;
594	zp->mz_normflags = normflags;
595	dmu_buf_rele(db, FTAG);
596
597	if (flags != 0) {
598		zap_t *zap;
599		/* Only fat zap supports flags; upgrade immediately. */
600		VERIFY(0 == zap_lockdir(os, obj, tx, RW_WRITER,
601		    B_FALSE, B_FALSE, &zap));
602		VERIFY3U(0, ==, mzap_upgrade(&zap, tx, flags));
603		zap_unlockdir(zap);
604	}
605}
606
607int
608zap_create_claim(objset_t *os, uint64_t obj, dmu_object_type_t ot,
609    dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
610{
611	return (zap_create_claim_norm(os, obj,
612	    0, ot, bonustype, bonuslen, tx));
613}
614
615int
616zap_create_claim_norm(objset_t *os, uint64_t obj, int normflags,
617    dmu_object_type_t ot,
618    dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
619{
620	int err;
621
622	err = dmu_object_claim(os, obj, ot, 0, bonustype, bonuslen, tx);
623	if (err != 0)
624		return (err);
625	mzap_create_impl(os, obj, normflags, 0, tx);
626	return (0);
627}
628
629uint64_t
630zap_create(objset_t *os, dmu_object_type_t ot,
631    dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
632{
633	return (zap_create_norm(os, 0, ot, bonustype, bonuslen, tx));
634}
635
636uint64_t
637zap_create_norm(objset_t *os, int normflags, dmu_object_type_t ot,
638    dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
639{
640	uint64_t obj = dmu_object_alloc(os, ot, 0, bonustype, bonuslen, tx);
641
642	mzap_create_impl(os, obj, normflags, 0, tx);
643	return (obj);
644}
645
646uint64_t
647zap_create_flags(objset_t *os, int normflags, zap_flags_t flags,
648    dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift,
649    dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
650{
651	uint64_t obj = dmu_object_alloc(os, ot, 0, bonustype, bonuslen, tx);
652
653	ASSERT(leaf_blockshift >= SPA_MINBLOCKSHIFT &&
654	    leaf_blockshift <= SPA_MAXBLOCKSHIFT &&
655	    indirect_blockshift >= SPA_MINBLOCKSHIFT &&
656	    indirect_blockshift <= SPA_MAXBLOCKSHIFT);
657
658	VERIFY(dmu_object_set_blocksize(os, obj,
659	    1ULL << leaf_blockshift, indirect_blockshift, tx) == 0);
660
661	mzap_create_impl(os, obj, normflags, flags, tx);
662	return (obj);
663}
664
665int
666zap_destroy(objset_t *os, uint64_t zapobj, dmu_tx_t *tx)
667{
668	/*
669	 * dmu_object_free will free the object number and free the
670	 * data.  Freeing the data will cause our pageout function to be
671	 * called, which will destroy our data (zap_leaf_t's and zap_t).
672	 */
673
674	return (dmu_object_free(os, zapobj, tx));
675}
676
677_NOTE(ARGSUSED(0))
678void
679zap_evict(dmu_buf_t *db, void *vzap)
680{
681	zap_t *zap = vzap;
682
683	rw_destroy(&zap->zap_rwlock);
684
685	if (zap->zap_ismicro)
686		mze_destroy(zap);
687	else
688		mutex_destroy(&zap->zap_f.zap_num_entries_mtx);
689
690	kmem_free(zap, sizeof (zap_t));
691}
692
693int
694zap_count(objset_t *os, uint64_t zapobj, uint64_t *count)
695{
696	zap_t *zap;
697	int err;
698
699	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
700	if (err)
701		return (err);
702	if (!zap->zap_ismicro) {
703		err = fzap_count(zap, count);
704	} else {
705		*count = zap->zap_m.zap_num_entries;
706	}
707	zap_unlockdir(zap);
708	return (err);
709}
710
711/*
712 * zn may be NULL; if not specified, it will be computed if needed.
713 * See also the comment above zap_entry_normalization_conflict().
714 */
715static boolean_t
716mzap_normalization_conflict(zap_t *zap, zap_name_t *zn, mzap_ent_t *mze)
717{
718	mzap_ent_t *other;
719	int direction = AVL_BEFORE;
720	boolean_t allocdzn = B_FALSE;
721
722	if (zap->zap_normflags == 0)
723		return (B_FALSE);
724
725again:
726	for (other = avl_walk(&zap->zap_m.zap_avl, mze, direction);
727	    other && other->mze_hash == mze->mze_hash;
728	    other = avl_walk(&zap->zap_m.zap_avl, other, direction)) {
729
730		if (zn == NULL) {
731			zn = zap_name_alloc(zap, mze->mze_phys.mze_name,
732			    MT_FIRST);
733			allocdzn = B_TRUE;
734		}
735		if (zap_match(zn, other->mze_phys.mze_name)) {
736			if (allocdzn)
737				zap_name_free(zn);
738			return (B_TRUE);
739		}
740	}
741
742	if (direction == AVL_BEFORE) {
743		direction = AVL_AFTER;
744		goto again;
745	}
746
747	if (allocdzn)
748		zap_name_free(zn);
749	return (B_FALSE);
750}
751
752/*
753 * Routines for manipulating attributes.
754 */
755
756int
757zap_lookup(objset_t *os, uint64_t zapobj, const char *name,
758    uint64_t integer_size, uint64_t num_integers, void *buf)
759{
760	return (zap_lookup_norm(os, zapobj, name, integer_size,
761	    num_integers, buf, MT_EXACT, NULL, 0, NULL));
762}
763
764int
765zap_lookup_norm(objset_t *os, uint64_t zapobj, const char *name,
766    uint64_t integer_size, uint64_t num_integers, void *buf,
767    matchtype_t mt, char *realname, int rn_len,
768    boolean_t *ncp)
769{
770	zap_t *zap;
771	int err;
772	mzap_ent_t *mze;
773	zap_name_t *zn;
774
775	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
776	if (err)
777		return (err);
778	zn = zap_name_alloc(zap, name, mt);
779	if (zn == NULL) {
780		zap_unlockdir(zap);
781		return (ENOTSUP);
782	}
783
784	if (!zap->zap_ismicro) {
785		err = fzap_lookup(zn, integer_size, num_integers, buf,
786		    realname, rn_len, ncp);
787	} else {
788		mze = mze_find(zn);
789		if (mze == NULL) {
790			err = ENOENT;
791		} else {
792			if (num_integers < 1) {
793				err = EOVERFLOW;
794			} else if (integer_size != 8) {
795				err = EINVAL;
796			} else {
797				*(uint64_t *)buf = mze->mze_phys.mze_value;
798				(void) strlcpy(realname,
799				    mze->mze_phys.mze_name, rn_len);
800				if (ncp) {
801					*ncp = mzap_normalization_conflict(zap,
802					    zn, mze);
803				}
804			}
805		}
806	}
807	zap_name_free(zn);
808	zap_unlockdir(zap);
809	return (err);
810}
811
812int
813zap_lookup_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
814    int key_numints, uint64_t integer_size, uint64_t num_integers, void *buf)
815{
816	zap_t *zap;
817	int err;
818	zap_name_t *zn;
819
820	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
821	if (err)
822		return (err);
823	zn = zap_name_alloc_uint64(zap, key, key_numints);
824	if (zn == NULL) {
825		zap_unlockdir(zap);
826		return (ENOTSUP);
827	}
828
829	err = fzap_lookup(zn, integer_size, num_integers, buf,
830	    NULL, 0, NULL);
831	zap_name_free(zn);
832	zap_unlockdir(zap);
833	return (err);
834}
835
836int
837zap_contains(objset_t *os, uint64_t zapobj, const char *name)
838{
839	int err = (zap_lookup_norm(os, zapobj, name, 0,
840	    0, NULL, MT_EXACT, NULL, 0, NULL));
841	if (err == EOVERFLOW || err == EINVAL)
842		err = 0; /* found, but skipped reading the value */
843	return (err);
844}
845
846int
847zap_length(objset_t *os, uint64_t zapobj, const char *name,
848    uint64_t *integer_size, uint64_t *num_integers)
849{
850	zap_t *zap;
851	int err;
852	mzap_ent_t *mze;
853	zap_name_t *zn;
854
855	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
856	if (err)
857		return (err);
858	zn = zap_name_alloc(zap, name, MT_EXACT);
859	if (zn == NULL) {
860		zap_unlockdir(zap);
861		return (ENOTSUP);
862	}
863	if (!zap->zap_ismicro) {
864		err = fzap_length(zn, integer_size, num_integers);
865	} else {
866		mze = mze_find(zn);
867		if (mze == NULL) {
868			err = ENOENT;
869		} else {
870			if (integer_size)
871				*integer_size = 8;
872			if (num_integers)
873				*num_integers = 1;
874		}
875	}
876	zap_name_free(zn);
877	zap_unlockdir(zap);
878	return (err);
879}
880
881int
882zap_length_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
883    int key_numints, uint64_t *integer_size, uint64_t *num_integers)
884{
885	zap_t *zap;
886	int err;
887	zap_name_t *zn;
888
889	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
890	if (err)
891		return (err);
892	zn = zap_name_alloc_uint64(zap, key, key_numints);
893	if (zn == NULL) {
894		zap_unlockdir(zap);
895		return (ENOTSUP);
896	}
897	err = fzap_length(zn, integer_size, num_integers);
898	zap_name_free(zn);
899	zap_unlockdir(zap);
900	return (err);
901}
902
903static void
904mzap_addent(zap_name_t *zn, uint64_t value)
905{
906	int i;
907	zap_t *zap = zn->zn_zap;
908	int start = zap->zap_m.zap_alloc_next;
909	uint32_t cd;
910
911	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
912
913#ifdef ZFS_DEBUG
914	for (i = 0; i < zap->zap_m.zap_num_chunks; i++) {
915		mzap_ent_phys_t *mze = &zap->zap_m.zap_phys->mz_chunk[i];
916		ASSERT(strcmp(zn->zn_key_orig, mze->mze_name) != 0);
917	}
918#endif
919
920	cd = mze_find_unused_cd(zap, zn->zn_hash);
921	/* given the limited size of the microzap, this can't happen */
922	ASSERT(cd < zap_maxcd(zap));
923
924again:
925	for (i = start; i < zap->zap_m.zap_num_chunks; i++) {
926		mzap_ent_phys_t *mze = &zap->zap_m.zap_phys->mz_chunk[i];
927		if (mze->mze_name[0] == 0) {
928			mze->mze_value = value;
929			mze->mze_cd = cd;
930			(void) strcpy(mze->mze_name, zn->zn_key_orig);
931			zap->zap_m.zap_num_entries++;
932			zap->zap_m.zap_alloc_next = i+1;
933			if (zap->zap_m.zap_alloc_next ==
934			    zap->zap_m.zap_num_chunks)
935				zap->zap_m.zap_alloc_next = 0;
936			mze_insert(zap, i, zn->zn_hash, mze);
937			return;
938		}
939	}
940	if (start != 0) {
941		start = 0;
942		goto again;
943	}
944	ASSERT(!"out of entries!");
945}
946
947int
948zap_add(objset_t *os, uint64_t zapobj, const char *key,
949    int integer_size, uint64_t num_integers,
950    const void *val, dmu_tx_t *tx)
951{
952	zap_t *zap;
953	int err;
954	mzap_ent_t *mze;
955	const uint64_t *intval = val;
956	zap_name_t *zn;
957
958	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap);
959	if (err)
960		return (err);
961	zn = zap_name_alloc(zap, key, MT_EXACT);
962	if (zn == NULL) {
963		zap_unlockdir(zap);
964		return (ENOTSUP);
965	}
966	if (!zap->zap_ismicro) {
967		err = fzap_add(zn, integer_size, num_integers, val, tx);
968		zap = zn->zn_zap;	/* fzap_add() may change zap */
969	} else if (integer_size != 8 || num_integers != 1 ||
970	    strlen(key) >= MZAP_NAME_LEN) {
971		err = mzap_upgrade(&zn->zn_zap, tx, 0);
972		if (err == 0)
973			err = fzap_add(zn, integer_size, num_integers, val, tx);
974		zap = zn->zn_zap;	/* fzap_add() may change zap */
975	} else {
976		mze = mze_find(zn);
977		if (mze != NULL) {
978			err = EEXIST;
979		} else {
980			mzap_addent(zn, *intval);
981		}
982	}
983	ASSERT(zap == zn->zn_zap);
984	zap_name_free(zn);
985	if (zap != NULL)	/* may be NULL if fzap_add() failed */
986		zap_unlockdir(zap);
987	return (err);
988}
989
990int
991zap_add_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
992    int key_numints, int integer_size, uint64_t num_integers,
993    const void *val, dmu_tx_t *tx)
994{
995	zap_t *zap;
996	int err;
997	zap_name_t *zn;
998
999	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap);
1000	if (err)
1001		return (err);
1002	zn = zap_name_alloc_uint64(zap, key, key_numints);
1003	if (zn == NULL) {
1004		zap_unlockdir(zap);
1005		return (ENOTSUP);
1006	}
1007	err = fzap_add(zn, integer_size, num_integers, val, tx);
1008	zap = zn->zn_zap;	/* fzap_add() may change zap */
1009	zap_name_free(zn);
1010	if (zap != NULL)	/* may be NULL if fzap_add() failed */
1011		zap_unlockdir(zap);
1012	return (err);
1013}
1014
1015int
1016zap_update(objset_t *os, uint64_t zapobj, const char *name,
1017    int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx)
1018{
1019	zap_t *zap;
1020	mzap_ent_t *mze;
1021	const uint64_t *intval = val;
1022	zap_name_t *zn;
1023	int err;
1024
1025	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap);
1026	if (err)
1027		return (err);
1028	zn = zap_name_alloc(zap, name, MT_EXACT);
1029	if (zn == NULL) {
1030		zap_unlockdir(zap);
1031		return (ENOTSUP);
1032	}
1033	if (!zap->zap_ismicro) {
1034		err = fzap_update(zn, integer_size, num_integers, val, tx);
1035		zap = zn->zn_zap;	/* fzap_update() may change zap */
1036	} else if (integer_size != 8 || num_integers != 1 ||
1037	    strlen(name) >= MZAP_NAME_LEN) {
1038		dprintf("upgrading obj %llu: intsz=%u numint=%llu name=%s\n",
1039		    zapobj, integer_size, num_integers, name);
1040		err = mzap_upgrade(&zn->zn_zap, tx, 0);
1041		if (err == 0)
1042			err = fzap_update(zn, integer_size, num_integers,
1043			    val, tx);
1044		zap = zn->zn_zap;	/* fzap_update() may change zap */
1045	} else {
1046		mze = mze_find(zn);
1047		if (mze != NULL) {
1048			mze->mze_phys.mze_value = *intval;
1049			zap->zap_m.zap_phys->mz_chunk
1050			    [mze->mze_chunkid].mze_value = *intval;
1051		} else {
1052			mzap_addent(zn, *intval);
1053		}
1054	}
1055	ASSERT(zap == zn->zn_zap);
1056	zap_name_free(zn);
1057	if (zap != NULL)	/* may be NULL if fzap_upgrade() failed */
1058		zap_unlockdir(zap);
1059	return (err);
1060}
1061
1062int
1063zap_update_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1064    int key_numints,
1065    int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx)
1066{
1067	zap_t *zap;
1068	zap_name_t *zn;
1069	int err;
1070
1071	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap);
1072	if (err)
1073		return (err);
1074	zn = zap_name_alloc_uint64(zap, key, key_numints);
1075	if (zn == NULL) {
1076		zap_unlockdir(zap);
1077		return (ENOTSUP);
1078	}
1079	err = fzap_update(zn, integer_size, num_integers, val, tx);
1080	zap = zn->zn_zap;	/* fzap_update() may change zap */
1081	zap_name_free(zn);
1082	if (zap != NULL)	/* may be NULL if fzap_upgrade() failed */
1083		zap_unlockdir(zap);
1084	return (err);
1085}
1086
1087int
1088zap_remove(objset_t *os, uint64_t zapobj, const char *name, dmu_tx_t *tx)
1089{
1090	return (zap_remove_norm(os, zapobj, name, MT_EXACT, tx));
1091}
1092
1093int
1094zap_remove_norm(objset_t *os, uint64_t zapobj, const char *name,
1095    matchtype_t mt, dmu_tx_t *tx)
1096{
1097	zap_t *zap;
1098	int err;
1099	mzap_ent_t *mze;
1100	zap_name_t *zn;
1101
1102	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, &zap);
1103	if (err)
1104		return (err);
1105	zn = zap_name_alloc(zap, name, mt);
1106	if (zn == NULL) {
1107		zap_unlockdir(zap);
1108		return (ENOTSUP);
1109	}
1110	if (!zap->zap_ismicro) {
1111		err = fzap_remove(zn, tx);
1112	} else {
1113		mze = mze_find(zn);
1114		if (mze == NULL) {
1115			err = ENOENT;
1116		} else {
1117			zap->zap_m.zap_num_entries--;
1118			bzero(&zap->zap_m.zap_phys->mz_chunk[mze->mze_chunkid],
1119			    sizeof (mzap_ent_phys_t));
1120			mze_remove(zap, mze);
1121		}
1122	}
1123	zap_name_free(zn);
1124	zap_unlockdir(zap);
1125	return (err);
1126}
1127
1128int
1129zap_remove_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1130    int key_numints, dmu_tx_t *tx)
1131{
1132	zap_t *zap;
1133	int err;
1134	zap_name_t *zn;
1135
1136	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, &zap);
1137	if (err)
1138		return (err);
1139	zn = zap_name_alloc_uint64(zap, key, key_numints);
1140	if (zn == NULL) {
1141		zap_unlockdir(zap);
1142		return (ENOTSUP);
1143	}
1144	err = fzap_remove(zn, tx);
1145	zap_name_free(zn);
1146	zap_unlockdir(zap);
1147	return (err);
1148}
1149
1150/*
1151 * Routines for iterating over the attributes.
1152 */
1153
1154void
1155zap_cursor_init_serialized(zap_cursor_t *zc, objset_t *os, uint64_t zapobj,
1156    uint64_t serialized)
1157{
1158	zc->zc_objset = os;
1159	zc->zc_zap = NULL;
1160	zc->zc_leaf = NULL;
1161	zc->zc_zapobj = zapobj;
1162	zc->zc_serialized = serialized;
1163	zc->zc_hash = 0;
1164	zc->zc_cd = 0;
1165}
1166
1167void
1168zap_cursor_init(zap_cursor_t *zc, objset_t *os, uint64_t zapobj)
1169{
1170	zap_cursor_init_serialized(zc, os, zapobj, 0);
1171}
1172
1173void
1174zap_cursor_fini(zap_cursor_t *zc)
1175{
1176	if (zc->zc_zap) {
1177		rw_enter(&zc->zc_zap->zap_rwlock, RW_READER);
1178		zap_unlockdir(zc->zc_zap);
1179		zc->zc_zap = NULL;
1180	}
1181	if (zc->zc_leaf) {
1182		rw_enter(&zc->zc_leaf->l_rwlock, RW_READER);
1183		zap_put_leaf(zc->zc_leaf);
1184		zc->zc_leaf = NULL;
1185	}
1186	zc->zc_objset = NULL;
1187}
1188
1189uint64_t
1190zap_cursor_serialize(zap_cursor_t *zc)
1191{
1192	if (zc->zc_hash == -1ULL)
1193		return (-1ULL);
1194	if (zc->zc_zap == NULL)
1195		return (zc->zc_serialized);
1196	ASSERT((zc->zc_hash & zap_maxcd(zc->zc_zap)) == 0);
1197	ASSERT(zc->zc_cd < zap_maxcd(zc->zc_zap));
1198
1199	/*
1200	 * We want to keep the high 32 bits of the cursor zero if we can, so
1201	 * that 32-bit programs can access this.  So usually use a small
1202	 * (28-bit) hash value so we can fit 4 bits of cd into the low 32-bits
1203	 * of the cursor.
1204	 *
1205	 * [ collision differentiator | zap_hashbits()-bit hash value ]
1206	 */
1207	return ((zc->zc_hash >> (64 - zap_hashbits(zc->zc_zap))) |
1208	    ((uint64_t)zc->zc_cd << zap_hashbits(zc->zc_zap)));
1209}
1210
1211int
1212zap_cursor_retrieve(zap_cursor_t *zc, zap_attribute_t *za)
1213{
1214	int err;
1215	avl_index_t idx;
1216	mzap_ent_t mze_tofind;
1217	mzap_ent_t *mze;
1218
1219	if (zc->zc_hash == -1ULL)
1220		return (ENOENT);
1221
1222	if (zc->zc_zap == NULL) {
1223		int hb;
1224		err = zap_lockdir(zc->zc_objset, zc->zc_zapobj, NULL,
1225		    RW_READER, TRUE, FALSE, &zc->zc_zap);
1226		if (err)
1227			return (err);
1228
1229		/*
1230		 * To support zap_cursor_init_serialized, advance, retrieve,
1231		 * we must add to the existing zc_cd, which may already
1232		 * be 1 due to the zap_cursor_advance.
1233		 */
1234		ASSERT(zc->zc_hash == 0);
1235		hb = zap_hashbits(zc->zc_zap);
1236		zc->zc_hash = zc->zc_serialized << (64 - hb);
1237		zc->zc_cd += zc->zc_serialized >> hb;
1238		if (zc->zc_cd >= zap_maxcd(zc->zc_zap)) /* corrupt serialized */
1239			zc->zc_cd = 0;
1240	} else {
1241		rw_enter(&zc->zc_zap->zap_rwlock, RW_READER);
1242	}
1243	if (!zc->zc_zap->zap_ismicro) {
1244		err = fzap_cursor_retrieve(zc->zc_zap, zc, za);
1245	} else {
1246		err = ENOENT;
1247
1248		mze_tofind.mze_hash = zc->zc_hash;
1249		mze_tofind.mze_phys.mze_cd = zc->zc_cd;
1250
1251		mze = avl_find(&zc->zc_zap->zap_m.zap_avl, &mze_tofind, &idx);
1252		if (mze == NULL) {
1253			mze = avl_nearest(&zc->zc_zap->zap_m.zap_avl,
1254			    idx, AVL_AFTER);
1255		}
1256		if (mze) {
1257			ASSERT(0 == bcmp(&mze->mze_phys,
1258			    &zc->zc_zap->zap_m.zap_phys->mz_chunk
1259			    [mze->mze_chunkid], sizeof (mze->mze_phys)));
1260
1261			za->za_normalization_conflict =
1262			    mzap_normalization_conflict(zc->zc_zap, NULL, mze);
1263			za->za_integer_length = 8;
1264			za->za_num_integers = 1;
1265			za->za_first_integer = mze->mze_phys.mze_value;
1266			(void) strcpy(za->za_name, mze->mze_phys.mze_name);
1267			zc->zc_hash = mze->mze_hash;
1268			zc->zc_cd = mze->mze_phys.mze_cd;
1269			err = 0;
1270		} else {
1271			zc->zc_hash = -1ULL;
1272		}
1273	}
1274	rw_exit(&zc->zc_zap->zap_rwlock);
1275	return (err);
1276}
1277
1278void
1279zap_cursor_advance(zap_cursor_t *zc)
1280{
1281	if (zc->zc_hash == -1ULL)
1282		return;
1283	zc->zc_cd++;
1284}
1285
1286int
1287zap_cursor_move_to_key(zap_cursor_t *zc, const char *name, matchtype_t mt)
1288{
1289	int err = 0;
1290	mzap_ent_t *mze;
1291	zap_name_t *zn;
1292
1293	if (zc->zc_zap == NULL) {
1294		err = zap_lockdir(zc->zc_objset, zc->zc_zapobj, NULL,
1295		    RW_READER, TRUE, FALSE, &zc->zc_zap);
1296		if (err)
1297			return (err);
1298	} else {
1299		rw_enter(&zc->zc_zap->zap_rwlock, RW_READER);
1300	}
1301
1302	zn = zap_name_alloc(zc->zc_zap, name, mt);
1303	if (zn == NULL) {
1304		rw_exit(&zc->zc_zap->zap_rwlock);
1305		return (ENOTSUP);
1306	}
1307
1308	if (!zc->zc_zap->zap_ismicro) {
1309		err = fzap_cursor_move_to_key(zc, zn);
1310	} else {
1311		mze = mze_find(zn);
1312		if (mze == NULL) {
1313			err = ENOENT;
1314			goto out;
1315		}
1316		zc->zc_hash = mze->mze_hash;
1317		zc->zc_cd = mze->mze_phys.mze_cd;
1318	}
1319
1320out:
1321	zap_name_free(zn);
1322	rw_exit(&zc->zc_zap->zap_rwlock);
1323	return (err);
1324}
1325
1326int
1327zap_get_stats(objset_t *os, uint64_t zapobj, zap_stats_t *zs)
1328{
1329	int err;
1330	zap_t *zap;
1331
1332	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
1333	if (err)
1334		return (err);
1335
1336	bzero(zs, sizeof (zap_stats_t));
1337
1338	if (zap->zap_ismicro) {
1339		zs->zs_blocksize = zap->zap_dbuf->db_size;
1340		zs->zs_num_entries = zap->zap_m.zap_num_entries;
1341		zs->zs_num_blocks = 1;
1342	} else {
1343		fzap_get_stats(zap, zs);
1344	}
1345	zap_unlockdir(zap);
1346	return (0);
1347}
1348
1349int
1350zap_count_write(objset_t *os, uint64_t zapobj, const char *name, int add,
1351    uint64_t *towrite, uint64_t *tooverwrite)
1352{
1353	zap_t *zap;
1354	int err = 0;
1355
1356
1357	/*
1358	 * Since, we don't have a name, we cannot figure out which blocks will
1359	 * be affected in this operation. So, account for the worst case :
1360	 * - 3 blocks overwritten: target leaf, ptrtbl block, header block
1361	 * - 4 new blocks written if adding:
1362	 * 	- 2 blocks for possibly split leaves,
1363	 * 	- 2 grown ptrtbl blocks
1364	 *
1365	 * This also accomodates the case where an add operation to a fairly
1366	 * large microzap results in a promotion to fatzap.
1367	 */
1368	if (name == NULL) {
1369		*towrite += (3 + (add ? 4 : 0)) * SPA_MAXBLOCKSIZE;
1370		return (err);
1371	}
1372
1373	/*
1374	 * We lock the zap with adding ==  FALSE. Because, if we pass
1375	 * the actual value of add, it could trigger a mzap_upgrade().
1376	 * At present we are just evaluating the possibility of this operation
1377	 * and hence we donot want to trigger an upgrade.
1378	 */
1379	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
1380	if (err)
1381		return (err);
1382
1383	if (!zap->zap_ismicro) {
1384		zap_name_t *zn = zap_name_alloc(zap, name, MT_EXACT);
1385		if (zn) {
1386			err = fzap_count_write(zn, add, towrite,
1387			    tooverwrite);
1388			zap_name_free(zn);
1389		} else {
1390			/*
1391			 * We treat this case as similar to (name == NULL)
1392			 */
1393			*towrite += (3 + (add ? 4 : 0)) * SPA_MAXBLOCKSIZE;
1394		}
1395	} else {
1396		/*
1397		 * We are here if (name != NULL) and this is a micro-zap.
1398		 * We account for the header block depending on whether it
1399		 * is freeable.
1400		 *
1401		 * Incase of an add-operation it is hard to find out
1402		 * if this add will promote this microzap to fatzap.
1403		 * Hence, we consider the worst case and account for the
1404		 * blocks assuming this microzap would be promoted to a
1405		 * fatzap.
1406		 *
1407		 * 1 block overwritten  : header block
1408		 * 4 new blocks written : 2 new split leaf, 2 grown
1409		 *			ptrtbl blocks
1410		 */
1411		if (dmu_buf_freeable(zap->zap_dbuf))
1412			*tooverwrite += SPA_MAXBLOCKSIZE;
1413		else
1414			*towrite += SPA_MAXBLOCKSIZE;
1415
1416		if (add) {
1417			*towrite += 4 * SPA_MAXBLOCKSIZE;
1418		}
1419	}
1420
1421	zap_unlockdir(zap);
1422	return (err);
1423}
1424