1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 */
24
25#include <sys/zio.h>
26#include <sys/spa.h>
27#include <sys/dmu.h>
28#include <sys/zfs_context.h>
29#include <sys/zap.h>
30#include <sys/refcount.h>
31#include <sys/zap_impl.h>
32#include <sys/zap_leaf.h>
33#include <sys/avl.h>
34#include <sys/arc.h>
35
36#ifdef _KERNEL
37#include <sys/sunddi.h>
38#endif
39
40static int mzap_upgrade(zap_t **zapp, dmu_tx_t *tx, zap_flags_t flags);
41
42uint64_t
43zap_getflags(zap_t *zap)
44{
45	if (zap->zap_ismicro)
46		return (0);
47	return (zap->zap_u.zap_fat.zap_phys->zap_flags);
48}
49
50int
51zap_hashbits(zap_t *zap)
52{
53	if (zap_getflags(zap) & ZAP_FLAG_HASH64)
54		return (48);
55	else
56		return (28);
57}
58
59uint32_t
60zap_maxcd(zap_t *zap)
61{
62	if (zap_getflags(zap) & ZAP_FLAG_HASH64)
63		return ((1<<16)-1);
64	else
65		return (-1U);
66}
67
68static uint64_t
69zap_hash(zap_name_t *zn)
70{
71	zap_t *zap = zn->zn_zap;
72	uint64_t h = 0;
73
74	if (zap_getflags(zap) & ZAP_FLAG_PRE_HASHED_KEY) {
75		ASSERT(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY);
76		h = *(uint64_t *)zn->zn_key_orig;
77	} else {
78		h = zap->zap_salt;
79		ASSERT(h != 0);
80		ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
81
82		if (zap_getflags(zap) & ZAP_FLAG_UINT64_KEY) {
83			int i;
84			const uint64_t *wp = zn->zn_key_norm;
85
86			ASSERT(zn->zn_key_intlen == 8);
87			for (i = 0; i < zn->zn_key_norm_numints; wp++, i++) {
88				int j;
89				uint64_t word = *wp;
90
91				for (j = 0; j < zn->zn_key_intlen; j++) {
92					h = (h >> 8) ^
93					    zfs_crc64_table[(h ^ word) & 0xFF];
94					word >>= NBBY;
95				}
96			}
97		} else {
98			int i, len;
99			const uint8_t *cp = zn->zn_key_norm;
100
101			/*
102			 * We previously stored the terminating null on
103			 * disk, but didn't hash it, so we need to
104			 * continue to not hash it.  (The
105			 * zn_key_*_numints includes the terminating
106			 * null for non-binary keys.)
107			 */
108			len = zn->zn_key_norm_numints - 1;
109
110			ASSERT(zn->zn_key_intlen == 1);
111			for (i = 0; i < len; cp++, i++) {
112				h = (h >> 8) ^
113				    zfs_crc64_table[(h ^ *cp) & 0xFF];
114			}
115		}
116	}
117	/*
118	 * Don't use all 64 bits, since we need some in the cookie for
119	 * the collision differentiator.  We MUST use the high bits,
120	 * since those are the ones that we first pay attention to when
121	 * chosing the bucket.
122	 */
123	h &= ~((1ULL << (64 - zap_hashbits(zap))) - 1);
124
125	return (h);
126}
127
128static int
129zap_normalize(zap_t *zap, const char *name, char *namenorm)
130{
131	size_t inlen, outlen;
132	int err;
133
134	ASSERT(!(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY));
135
136	inlen = strlen(name) + 1;
137	outlen = ZAP_MAXNAMELEN;
138
139	err = 0;
140	(void) u8_textprep_str((char *)name, &inlen, namenorm, &outlen,
141	    zap->zap_normflags | U8_TEXTPREP_IGNORE_NULL |
142	    U8_TEXTPREP_IGNORE_INVALID, U8_UNICODE_LATEST, &err);
143
144	return (err);
145}
146
147boolean_t
148zap_match(zap_name_t *zn, const char *matchname)
149{
150	ASSERT(!(zap_getflags(zn->zn_zap) & ZAP_FLAG_UINT64_KEY));
151
152	if (zn->zn_matchtype == MT_FIRST) {
153		char norm[ZAP_MAXNAMELEN];
154
155		if (zap_normalize(zn->zn_zap, matchname, norm) != 0)
156			return (B_FALSE);
157
158		return (strcmp(zn->zn_key_norm, norm) == 0);
159	} else {
160		/* MT_BEST or MT_EXACT */
161		return (strcmp(zn->zn_key_orig, matchname) == 0);
162	}
163}
164
165void
166zap_name_free(zap_name_t *zn)
167{
168	kmem_free(zn, sizeof (zap_name_t));
169}
170
171zap_name_t *
172zap_name_alloc(zap_t *zap, const char *key, matchtype_t mt)
173{
174	zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP);
175
176	zn->zn_zap = zap;
177	zn->zn_key_intlen = sizeof (*key);
178	zn->zn_key_orig = key;
179	zn->zn_key_orig_numints = strlen(zn->zn_key_orig) + 1;
180	zn->zn_matchtype = mt;
181	if (zap->zap_normflags) {
182		if (zap_normalize(zap, key, zn->zn_normbuf) != 0) {
183			zap_name_free(zn);
184			return (NULL);
185		}
186		zn->zn_key_norm = zn->zn_normbuf;
187		zn->zn_key_norm_numints = strlen(zn->zn_key_norm) + 1;
188	} else {
189		if (mt != MT_EXACT) {
190			zap_name_free(zn);
191			return (NULL);
192		}
193		zn->zn_key_norm = zn->zn_key_orig;
194		zn->zn_key_norm_numints = zn->zn_key_orig_numints;
195	}
196
197	zn->zn_hash = zap_hash(zn);
198	return (zn);
199}
200
201zap_name_t *
202zap_name_alloc_uint64(zap_t *zap, const uint64_t *key, int numints)
203{
204	zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP);
205
206	ASSERT(zap->zap_normflags == 0);
207	zn->zn_zap = zap;
208	zn->zn_key_intlen = sizeof (*key);
209	zn->zn_key_orig = zn->zn_key_norm = key;
210	zn->zn_key_orig_numints = zn->zn_key_norm_numints = numints;
211	zn->zn_matchtype = MT_EXACT;
212
213	zn->zn_hash = zap_hash(zn);
214	return (zn);
215}
216
217static void
218mzap_byteswap(mzap_phys_t *buf, size_t size)
219{
220	int i, max;
221	buf->mz_block_type = BSWAP_64(buf->mz_block_type);
222	buf->mz_salt = BSWAP_64(buf->mz_salt);
223	buf->mz_normflags = BSWAP_64(buf->mz_normflags);
224	max = (size / MZAP_ENT_LEN) - 1;
225	for (i = 0; i < max; i++) {
226		buf->mz_chunk[i].mze_value =
227		    BSWAP_64(buf->mz_chunk[i].mze_value);
228		buf->mz_chunk[i].mze_cd =
229		    BSWAP_32(buf->mz_chunk[i].mze_cd);
230	}
231}
232
233void
234zap_byteswap(void *buf, size_t size)
235{
236	uint64_t block_type;
237
238	block_type = *(uint64_t *)buf;
239
240	if (block_type == ZBT_MICRO || block_type == BSWAP_64(ZBT_MICRO)) {
241		/* ASSERT(magic == ZAP_LEAF_MAGIC); */
242		mzap_byteswap(buf, size);
243	} else {
244		fzap_byteswap(buf, size);
245	}
246}
247
248static int
249mze_compare(const void *arg1, const void *arg2)
250{
251	const mzap_ent_t *mze1 = arg1;
252	const mzap_ent_t *mze2 = arg2;
253
254	if (mze1->mze_hash > mze2->mze_hash)
255		return (+1);
256	if (mze1->mze_hash < mze2->mze_hash)
257		return (-1);
258	if (mze1->mze_cd > mze2->mze_cd)
259		return (+1);
260	if (mze1->mze_cd < mze2->mze_cd)
261		return (-1);
262	return (0);
263}
264
265static void
266mze_insert(zap_t *zap, int chunkid, uint64_t hash)
267{
268	mzap_ent_t *mze;
269
270	ASSERT(zap->zap_ismicro);
271	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
272
273	mze = kmem_alloc(sizeof (mzap_ent_t), KM_SLEEP);
274	mze->mze_chunkid = chunkid;
275	mze->mze_hash = hash;
276	mze->mze_cd = MZE_PHYS(zap, mze)->mze_cd;
277	ASSERT(MZE_PHYS(zap, mze)->mze_name[0] != 0);
278	avl_add(&zap->zap_m.zap_avl, mze);
279}
280
281static mzap_ent_t *
282mze_find(zap_name_t *zn)
283{
284	mzap_ent_t mze_tofind;
285	mzap_ent_t *mze;
286	avl_index_t idx;
287	avl_tree_t *avl = &zn->zn_zap->zap_m.zap_avl;
288
289	ASSERT(zn->zn_zap->zap_ismicro);
290	ASSERT(RW_LOCK_HELD(&zn->zn_zap->zap_rwlock));
291
292	mze_tofind.mze_hash = zn->zn_hash;
293	mze_tofind.mze_cd = 0;
294
295again:
296	mze = avl_find(avl, &mze_tofind, &idx);
297	if (mze == NULL)
298		mze = avl_nearest(avl, idx, AVL_AFTER);
299	for (; mze && mze->mze_hash == zn->zn_hash; mze = AVL_NEXT(avl, mze)) {
300		ASSERT3U(mze->mze_cd, ==, MZE_PHYS(zn->zn_zap, mze)->mze_cd);
301		if (zap_match(zn, MZE_PHYS(zn->zn_zap, mze)->mze_name))
302			return (mze);
303	}
304	if (zn->zn_matchtype == MT_BEST) {
305		zn->zn_matchtype = MT_FIRST;
306		goto again;
307	}
308	return (NULL);
309}
310
311static uint32_t
312mze_find_unused_cd(zap_t *zap, uint64_t hash)
313{
314	mzap_ent_t mze_tofind;
315	mzap_ent_t *mze;
316	avl_index_t idx;
317	avl_tree_t *avl = &zap->zap_m.zap_avl;
318	uint32_t cd;
319
320	ASSERT(zap->zap_ismicro);
321	ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
322
323	mze_tofind.mze_hash = hash;
324	mze_tofind.mze_cd = 0;
325
326	cd = 0;
327	for (mze = avl_find(avl, &mze_tofind, &idx);
328	    mze && mze->mze_hash == hash; mze = AVL_NEXT(avl, mze)) {
329		if (mze->mze_cd != cd)
330			break;
331		cd++;
332	}
333
334	return (cd);
335}
336
337static void
338mze_remove(zap_t *zap, mzap_ent_t *mze)
339{
340	ASSERT(zap->zap_ismicro);
341	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
342
343	avl_remove(&zap->zap_m.zap_avl, mze);
344	kmem_free(mze, sizeof (mzap_ent_t));
345}
346
347static void
348mze_destroy(zap_t *zap)
349{
350	mzap_ent_t *mze;
351	void *avlcookie = NULL;
352
353	while (mze = avl_destroy_nodes(&zap->zap_m.zap_avl, &avlcookie))
354		kmem_free(mze, sizeof (mzap_ent_t));
355	avl_destroy(&zap->zap_m.zap_avl);
356}
357
358static zap_t *
359mzap_open(objset_t *os, uint64_t obj, dmu_buf_t *db)
360{
361	zap_t *winner;
362	zap_t *zap;
363	int i;
364
365	ASSERT3U(MZAP_ENT_LEN, ==, sizeof (mzap_ent_phys_t));
366
367	zap = kmem_zalloc(sizeof (zap_t), KM_SLEEP);
368	rw_init(&zap->zap_rwlock, 0, 0, 0);
369	rw_enter(&zap->zap_rwlock, RW_WRITER);
370	zap->zap_objset = os;
371	zap->zap_object = obj;
372	zap->zap_dbuf = db;
373
374	if (*(uint64_t *)db->db_data != ZBT_MICRO) {
375		mutex_init(&zap->zap_f.zap_num_entries_mtx, 0, 0, 0);
376		zap->zap_f.zap_block_shift = highbit(db->db_size) - 1;
377	} else {
378		zap->zap_ismicro = TRUE;
379	}
380
381	/*
382	 * Make sure that zap_ismicro is set before we let others see
383	 * it, because zap_lockdir() checks zap_ismicro without the lock
384	 * held.
385	 */
386	winner = dmu_buf_set_user(db, zap, &zap->zap_m.zap_phys, zap_evict);
387
388	if (winner != NULL) {
389		rw_exit(&zap->zap_rwlock);
390		rw_destroy(&zap->zap_rwlock);
391		if (!zap->zap_ismicro)
392			mutex_destroy(&zap->zap_f.zap_num_entries_mtx);
393		kmem_free(zap, sizeof (zap_t));
394		return (winner);
395	}
396
397	if (zap->zap_ismicro) {
398		zap->zap_salt = zap->zap_m.zap_phys->mz_salt;
399		zap->zap_normflags = zap->zap_m.zap_phys->mz_normflags;
400		zap->zap_m.zap_num_chunks = db->db_size / MZAP_ENT_LEN - 1;
401		avl_create(&zap->zap_m.zap_avl, mze_compare,
402		    sizeof (mzap_ent_t), offsetof(mzap_ent_t, mze_node));
403
404		for (i = 0; i < zap->zap_m.zap_num_chunks; i++) {
405			mzap_ent_phys_t *mze =
406			    &zap->zap_m.zap_phys->mz_chunk[i];
407			if (mze->mze_name[0]) {
408				zap_name_t *zn;
409
410				zap->zap_m.zap_num_entries++;
411				zn = zap_name_alloc(zap, mze->mze_name,
412				    MT_EXACT);
413				mze_insert(zap, i, zn->zn_hash);
414				zap_name_free(zn);
415			}
416		}
417	} else {
418		zap->zap_salt = zap->zap_f.zap_phys->zap_salt;
419		zap->zap_normflags = zap->zap_f.zap_phys->zap_normflags;
420
421		ASSERT3U(sizeof (struct zap_leaf_header), ==,
422		    2*ZAP_LEAF_CHUNKSIZE);
423
424		/*
425		 * The embedded pointer table should not overlap the
426		 * other members.
427		 */
428		ASSERT3P(&ZAP_EMBEDDED_PTRTBL_ENT(zap, 0), >,
429		    &zap->zap_f.zap_phys->zap_salt);
430
431		/*
432		 * The embedded pointer table should end at the end of
433		 * the block
434		 */
435		ASSERT3U((uintptr_t)&ZAP_EMBEDDED_PTRTBL_ENT(zap,
436		    1<<ZAP_EMBEDDED_PTRTBL_SHIFT(zap)) -
437		    (uintptr_t)zap->zap_f.zap_phys, ==,
438		    zap->zap_dbuf->db_size);
439	}
440	rw_exit(&zap->zap_rwlock);
441	return (zap);
442}
443
444int
445zap_lockdir(objset_t *os, uint64_t obj, dmu_tx_t *tx,
446    krw_t lti, boolean_t fatreader, boolean_t adding, zap_t **zapp)
447{
448	zap_t *zap;
449	dmu_buf_t *db;
450	krw_t lt;
451	int err;
452
453	*zapp = NULL;
454
455	err = dmu_buf_hold(os, obj, 0, NULL, &db, DMU_READ_NO_PREFETCH);
456	if (err)
457		return (err);
458
459#ifdef ZFS_DEBUG
460	{
461		dmu_object_info_t doi;
462		dmu_object_info_from_db(db, &doi);
463		ASSERT(dmu_ot[doi.doi_type].ot_byteswap == zap_byteswap);
464	}
465#endif
466
467	zap = dmu_buf_get_user(db);
468	if (zap == NULL)
469		zap = mzap_open(os, obj, db);
470
471	/*
472	 * We're checking zap_ismicro without the lock held, in order to
473	 * tell what type of lock we want.  Once we have some sort of
474	 * lock, see if it really is the right type.  In practice this
475	 * can only be different if it was upgraded from micro to fat,
476	 * and micro wanted WRITER but fat only needs READER.
477	 */
478	lt = (!zap->zap_ismicro && fatreader) ? RW_READER : lti;
479	rw_enter(&zap->zap_rwlock, lt);
480	if (lt != ((!zap->zap_ismicro && fatreader) ? RW_READER : lti)) {
481		/* it was upgraded, now we only need reader */
482		ASSERT(lt == RW_WRITER);
483		ASSERT(RW_READER ==
484		    (!zap->zap_ismicro && fatreader) ? RW_READER : lti);
485		rw_downgrade(&zap->zap_rwlock);
486		lt = RW_READER;
487	}
488
489	zap->zap_objset = os;
490
491	if (lt == RW_WRITER)
492		dmu_buf_will_dirty(db, tx);
493
494	ASSERT3P(zap->zap_dbuf, ==, db);
495
496	ASSERT(!zap->zap_ismicro ||
497	    zap->zap_m.zap_num_entries <= zap->zap_m.zap_num_chunks);
498	if (zap->zap_ismicro && tx && adding &&
499	    zap->zap_m.zap_num_entries == zap->zap_m.zap_num_chunks) {
500		uint64_t newsz = db->db_size + SPA_MINBLOCKSIZE;
501		if (newsz > MZAP_MAX_BLKSZ) {
502			dprintf("upgrading obj %llu: num_entries=%u\n",
503			    obj, zap->zap_m.zap_num_entries);
504			*zapp = zap;
505			return (mzap_upgrade(zapp, tx, 0));
506		}
507		err = dmu_object_set_blocksize(os, obj, newsz, 0, tx);
508		ASSERT3U(err, ==, 0);
509		zap->zap_m.zap_num_chunks =
510		    db->db_size / MZAP_ENT_LEN - 1;
511	}
512
513	*zapp = zap;
514	return (0);
515}
516
517void
518zap_unlockdir(zap_t *zap)
519{
520	rw_exit(&zap->zap_rwlock);
521	dmu_buf_rele(zap->zap_dbuf, NULL);
522}
523
524static int
525mzap_upgrade(zap_t **zapp, dmu_tx_t *tx, zap_flags_t flags)
526{
527	mzap_phys_t *mzp;
528	int i, sz, nchunks;
529	int err = 0;
530	zap_t *zap = *zapp;
531
532	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
533
534	sz = zap->zap_dbuf->db_size;
535	mzp = kmem_alloc(sz, KM_SLEEP);
536	bcopy(zap->zap_dbuf->db_data, mzp, sz);
537	nchunks = zap->zap_m.zap_num_chunks;
538
539	if (!flags) {
540		err = dmu_object_set_blocksize(zap->zap_objset, zap->zap_object,
541		    1ULL << fzap_default_block_shift, 0, tx);
542		if (err) {
543			kmem_free(mzp, sz);
544			return (err);
545		}
546	}
547
548	dprintf("upgrading obj=%llu with %u chunks\n",
549	    zap->zap_object, nchunks);
550	/* XXX destroy the avl later, so we can use the stored hash value */
551	mze_destroy(zap);
552
553	fzap_upgrade(zap, tx, flags);
554
555	for (i = 0; i < nchunks; i++) {
556		mzap_ent_phys_t *mze = &mzp->mz_chunk[i];
557		zap_name_t *zn;
558		if (mze->mze_name[0] == 0)
559			continue;
560		dprintf("adding %s=%llu\n",
561		    mze->mze_name, mze->mze_value);
562		zn = zap_name_alloc(zap, mze->mze_name, MT_EXACT);
563		err = fzap_add_cd(zn, 8, 1, &mze->mze_value, mze->mze_cd, tx);
564		zap = zn->zn_zap;	/* fzap_add_cd() may change zap */
565		zap_name_free(zn);
566		if (err)
567			break;
568	}
569	kmem_free(mzp, sz);
570	*zapp = zap;
571	return (err);
572}
573
574static void
575mzap_create_impl(objset_t *os, uint64_t obj, int normflags, zap_flags_t flags,
576    dmu_tx_t *tx)
577{
578	dmu_buf_t *db;
579	mzap_phys_t *zp;
580
581	VERIFY(0 == dmu_buf_hold(os, obj, 0, FTAG, &db, DMU_READ_NO_PREFETCH));
582
583#ifdef ZFS_DEBUG
584	{
585		dmu_object_info_t doi;
586		dmu_object_info_from_db(db, &doi);
587		ASSERT(dmu_ot[doi.doi_type].ot_byteswap == zap_byteswap);
588	}
589#endif
590
591	dmu_buf_will_dirty(db, tx);
592	zp = db->db_data;
593	zp->mz_block_type = ZBT_MICRO;
594	zp->mz_salt = ((uintptr_t)db ^ (uintptr_t)tx ^ (obj << 1)) | 1ULL;
595	zp->mz_normflags = normflags;
596	dmu_buf_rele(db, FTAG);
597
598	if (flags != 0) {
599		zap_t *zap;
600		/* Only fat zap supports flags; upgrade immediately. */
601		VERIFY(0 == zap_lockdir(os, obj, tx, RW_WRITER,
602		    B_FALSE, B_FALSE, &zap));
603		VERIFY3U(0, ==, mzap_upgrade(&zap, tx, flags));
604		zap_unlockdir(zap);
605	}
606}
607
608int
609zap_create_claim(objset_t *os, uint64_t obj, dmu_object_type_t ot,
610    dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
611{
612	return (zap_create_claim_norm(os, obj,
613	    0, ot, bonustype, bonuslen, tx));
614}
615
616int
617zap_create_claim_norm(objset_t *os, uint64_t obj, int normflags,
618    dmu_object_type_t ot,
619    dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
620{
621	int err;
622
623	err = dmu_object_claim(os, obj, ot, 0, bonustype, bonuslen, tx);
624	if (err != 0)
625		return (err);
626	mzap_create_impl(os, obj, normflags, 0, tx);
627	return (0);
628}
629
630uint64_t
631zap_create(objset_t *os, dmu_object_type_t ot,
632    dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
633{
634	return (zap_create_norm(os, 0, ot, bonustype, bonuslen, tx));
635}
636
637uint64_t
638zap_create_norm(objset_t *os, int normflags, dmu_object_type_t ot,
639    dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
640{
641	uint64_t obj = dmu_object_alloc(os, ot, 0, bonustype, bonuslen, tx);
642
643	mzap_create_impl(os, obj, normflags, 0, tx);
644	return (obj);
645}
646
647uint64_t
648zap_create_flags(objset_t *os, int normflags, zap_flags_t flags,
649    dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift,
650    dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
651{
652	uint64_t obj = dmu_object_alloc(os, ot, 0, bonustype, bonuslen, tx);
653
654	ASSERT(leaf_blockshift >= SPA_MINBLOCKSHIFT &&
655	    leaf_blockshift <= SPA_MAXBLOCKSHIFT &&
656	    indirect_blockshift >= SPA_MINBLOCKSHIFT &&
657	    indirect_blockshift <= SPA_MAXBLOCKSHIFT);
658
659	VERIFY(dmu_object_set_blocksize(os, obj,
660	    1ULL << leaf_blockshift, indirect_blockshift, tx) == 0);
661
662	mzap_create_impl(os, obj, normflags, flags, tx);
663	return (obj);
664}
665
666int
667zap_destroy(objset_t *os, uint64_t zapobj, dmu_tx_t *tx)
668{
669	/*
670	 * dmu_object_free will free the object number and free the
671	 * data.  Freeing the data will cause our pageout function to be
672	 * called, which will destroy our data (zap_leaf_t's and zap_t).
673	 */
674
675	return (dmu_object_free(os, zapobj, tx));
676}
677
678_NOTE(ARGSUSED(0))
679void
680zap_evict(dmu_buf_t *db, void *vzap)
681{
682	zap_t *zap = vzap;
683
684	rw_destroy(&zap->zap_rwlock);
685
686	if (zap->zap_ismicro)
687		mze_destroy(zap);
688	else
689		mutex_destroy(&zap->zap_f.zap_num_entries_mtx);
690
691	kmem_free(zap, sizeof (zap_t));
692}
693
694int
695zap_count(objset_t *os, uint64_t zapobj, uint64_t *count)
696{
697	zap_t *zap;
698	int err;
699
700	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
701	if (err)
702		return (err);
703	if (!zap->zap_ismicro) {
704		err = fzap_count(zap, count);
705	} else {
706		*count = zap->zap_m.zap_num_entries;
707	}
708	zap_unlockdir(zap);
709	return (err);
710}
711
712/*
713 * zn may be NULL; if not specified, it will be computed if needed.
714 * See also the comment above zap_entry_normalization_conflict().
715 */
716static boolean_t
717mzap_normalization_conflict(zap_t *zap, zap_name_t *zn, mzap_ent_t *mze)
718{
719	mzap_ent_t *other;
720	int direction = AVL_BEFORE;
721	boolean_t allocdzn = B_FALSE;
722
723	if (zap->zap_normflags == 0)
724		return (B_FALSE);
725
726again:
727	for (other = avl_walk(&zap->zap_m.zap_avl, mze, direction);
728	    other && other->mze_hash == mze->mze_hash;
729	    other = avl_walk(&zap->zap_m.zap_avl, other, direction)) {
730
731		if (zn == NULL) {
732			zn = zap_name_alloc(zap, MZE_PHYS(zap, mze)->mze_name,
733			    MT_FIRST);
734			allocdzn = B_TRUE;
735		}
736		if (zap_match(zn, MZE_PHYS(zap, other)->mze_name)) {
737			if (allocdzn)
738				zap_name_free(zn);
739			return (B_TRUE);
740		}
741	}
742
743	if (direction == AVL_BEFORE) {
744		direction = AVL_AFTER;
745		goto again;
746	}
747
748	if (allocdzn)
749		zap_name_free(zn);
750	return (B_FALSE);
751}
752
753/*
754 * Routines for manipulating attributes.
755 */
756
757int
758zap_lookup(objset_t *os, uint64_t zapobj, const char *name,
759    uint64_t integer_size, uint64_t num_integers, void *buf)
760{
761	return (zap_lookup_norm(os, zapobj, name, integer_size,
762	    num_integers, buf, MT_EXACT, NULL, 0, NULL));
763}
764
765int
766zap_lookup_norm(objset_t *os, uint64_t zapobj, const char *name,
767    uint64_t integer_size, uint64_t num_integers, void *buf,
768    matchtype_t mt, char *realname, int rn_len,
769    boolean_t *ncp)
770{
771	zap_t *zap;
772	int err;
773	mzap_ent_t *mze;
774	zap_name_t *zn;
775
776	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
777	if (err)
778		return (err);
779	zn = zap_name_alloc(zap, name, mt);
780	if (zn == NULL) {
781		zap_unlockdir(zap);
782		return (ENOTSUP);
783	}
784
785	if (!zap->zap_ismicro) {
786		err = fzap_lookup(zn, integer_size, num_integers, buf,
787		    realname, rn_len, ncp);
788	} else {
789		mze = mze_find(zn);
790		if (mze == NULL) {
791			err = ENOENT;
792		} else {
793			if (num_integers < 1) {
794				err = EOVERFLOW;
795			} else if (integer_size != 8) {
796				err = EINVAL;
797			} else {
798				*(uint64_t *)buf =
799				    MZE_PHYS(zap, mze)->mze_value;
800				(void) strlcpy(realname,
801				    MZE_PHYS(zap, mze)->mze_name, rn_len);
802				if (ncp) {
803					*ncp = mzap_normalization_conflict(zap,
804					    zn, mze);
805				}
806			}
807		}
808	}
809	zap_name_free(zn);
810	zap_unlockdir(zap);
811	return (err);
812}
813
814int
815zap_prefetch_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
816    int key_numints)
817{
818	zap_t *zap;
819	int err;
820	zap_name_t *zn;
821
822	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
823	if (err)
824		return (err);
825	zn = zap_name_alloc_uint64(zap, key, key_numints);
826	if (zn == NULL) {
827		zap_unlockdir(zap);
828		return (ENOTSUP);
829	}
830
831	fzap_prefetch(zn);
832	zap_name_free(zn);
833	zap_unlockdir(zap);
834	return (err);
835}
836
837int
838zap_lookup_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
839    int key_numints, uint64_t integer_size, uint64_t num_integers, void *buf)
840{
841	zap_t *zap;
842	int err;
843	zap_name_t *zn;
844
845	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
846	if (err)
847		return (err);
848	zn = zap_name_alloc_uint64(zap, key, key_numints);
849	if (zn == NULL) {
850		zap_unlockdir(zap);
851		return (ENOTSUP);
852	}
853
854	err = fzap_lookup(zn, integer_size, num_integers, buf,
855	    NULL, 0, NULL);
856	zap_name_free(zn);
857	zap_unlockdir(zap);
858	return (err);
859}
860
861int
862zap_contains(objset_t *os, uint64_t zapobj, const char *name)
863{
864	int err = (zap_lookup_norm(os, zapobj, name, 0,
865	    0, NULL, MT_EXACT, NULL, 0, NULL));
866	if (err == EOVERFLOW || err == EINVAL)
867		err = 0; /* found, but skipped reading the value */
868	return (err);
869}
870
871int
872zap_length(objset_t *os, uint64_t zapobj, const char *name,
873    uint64_t *integer_size, uint64_t *num_integers)
874{
875	zap_t *zap;
876	int err;
877	mzap_ent_t *mze;
878	zap_name_t *zn;
879
880	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
881	if (err)
882		return (err);
883	zn = zap_name_alloc(zap, name, MT_EXACT);
884	if (zn == NULL) {
885		zap_unlockdir(zap);
886		return (ENOTSUP);
887	}
888	if (!zap->zap_ismicro) {
889		err = fzap_length(zn, integer_size, num_integers);
890	} else {
891		mze = mze_find(zn);
892		if (mze == NULL) {
893			err = ENOENT;
894		} else {
895			if (integer_size)
896				*integer_size = 8;
897			if (num_integers)
898				*num_integers = 1;
899		}
900	}
901	zap_name_free(zn);
902	zap_unlockdir(zap);
903	return (err);
904}
905
906int
907zap_length_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
908    int key_numints, uint64_t *integer_size, uint64_t *num_integers)
909{
910	zap_t *zap;
911	int err;
912	zap_name_t *zn;
913
914	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
915	if (err)
916		return (err);
917	zn = zap_name_alloc_uint64(zap, key, key_numints);
918	if (zn == NULL) {
919		zap_unlockdir(zap);
920		return (ENOTSUP);
921	}
922	err = fzap_length(zn, integer_size, num_integers);
923	zap_name_free(zn);
924	zap_unlockdir(zap);
925	return (err);
926}
927
928static void
929mzap_addent(zap_name_t *zn, uint64_t value)
930{
931	int i;
932	zap_t *zap = zn->zn_zap;
933	int start = zap->zap_m.zap_alloc_next;
934	uint32_t cd;
935
936	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
937
938#ifdef ZFS_DEBUG
939	for (i = 0; i < zap->zap_m.zap_num_chunks; i++) {
940		mzap_ent_phys_t *mze = &zap->zap_m.zap_phys->mz_chunk[i];
941		ASSERT(strcmp(zn->zn_key_orig, mze->mze_name) != 0);
942	}
943#endif
944
945	cd = mze_find_unused_cd(zap, zn->zn_hash);
946	/* given the limited size of the microzap, this can't happen */
947	ASSERT(cd < zap_maxcd(zap));
948
949again:
950	for (i = start; i < zap->zap_m.zap_num_chunks; i++) {
951		mzap_ent_phys_t *mze = &zap->zap_m.zap_phys->mz_chunk[i];
952		if (mze->mze_name[0] == 0) {
953			mze->mze_value = value;
954			mze->mze_cd = cd;
955			(void) strcpy(mze->mze_name, zn->zn_key_orig);
956			zap->zap_m.zap_num_entries++;
957			zap->zap_m.zap_alloc_next = i+1;
958			if (zap->zap_m.zap_alloc_next ==
959			    zap->zap_m.zap_num_chunks)
960				zap->zap_m.zap_alloc_next = 0;
961			mze_insert(zap, i, zn->zn_hash);
962			return;
963		}
964	}
965	if (start != 0) {
966		start = 0;
967		goto again;
968	}
969	ASSERT(!"out of entries!");
970}
971
972int
973zap_add(objset_t *os, uint64_t zapobj, const char *key,
974    int integer_size, uint64_t num_integers,
975    const void *val, dmu_tx_t *tx)
976{
977	zap_t *zap;
978	int err;
979	mzap_ent_t *mze;
980	const uint64_t *intval = val;
981	zap_name_t *zn;
982
983	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap);
984	if (err)
985		return (err);
986	zn = zap_name_alloc(zap, key, MT_EXACT);
987	if (zn == NULL) {
988		zap_unlockdir(zap);
989		return (ENOTSUP);
990	}
991	if (!zap->zap_ismicro) {
992		err = fzap_add(zn, integer_size, num_integers, val, tx);
993		zap = zn->zn_zap;	/* fzap_add() may change zap */
994	} else if (integer_size != 8 || num_integers != 1 ||
995	    strlen(key) >= MZAP_NAME_LEN) {
996		err = mzap_upgrade(&zn->zn_zap, tx, 0);
997		if (err == 0)
998			err = fzap_add(zn, integer_size, num_integers, val, tx);
999		zap = zn->zn_zap;	/* fzap_add() may change zap */
1000	} else {
1001		mze = mze_find(zn);
1002		if (mze != NULL) {
1003			err = EEXIST;
1004		} else {
1005			mzap_addent(zn, *intval);
1006		}
1007	}
1008	ASSERT(zap == zn->zn_zap);
1009	zap_name_free(zn);
1010	if (zap != NULL)	/* may be NULL if fzap_add() failed */
1011		zap_unlockdir(zap);
1012	return (err);
1013}
1014
1015int
1016zap_add_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1017    int key_numints, int integer_size, uint64_t num_integers,
1018    const void *val, dmu_tx_t *tx)
1019{
1020	zap_t *zap;
1021	int err;
1022	zap_name_t *zn;
1023
1024	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap);
1025	if (err)
1026		return (err);
1027	zn = zap_name_alloc_uint64(zap, key, key_numints);
1028	if (zn == NULL) {
1029		zap_unlockdir(zap);
1030		return (ENOTSUP);
1031	}
1032	err = fzap_add(zn, integer_size, num_integers, val, tx);
1033	zap = zn->zn_zap;	/* fzap_add() may change zap */
1034	zap_name_free(zn);
1035	if (zap != NULL)	/* may be NULL if fzap_add() failed */
1036		zap_unlockdir(zap);
1037	return (err);
1038}
1039
1040int
1041zap_update(objset_t *os, uint64_t zapobj, const char *name,
1042    int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx)
1043{
1044	zap_t *zap;
1045	mzap_ent_t *mze;
1046	uint64_t oldval;
1047	const uint64_t *intval = val;
1048	zap_name_t *zn;
1049	int err;
1050
1051#ifdef ZFS_DEBUG
1052	/*
1053	 * If there is an old value, it shouldn't change across the
1054	 * lockdir (eg, due to bprewrite's xlation).
1055	 */
1056	if (integer_size == 8 && num_integers == 1)
1057		(void) zap_lookup(os, zapobj, name, 8, 1, &oldval);
1058#endif
1059
1060	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap);
1061	if (err)
1062		return (err);
1063	zn = zap_name_alloc(zap, name, MT_EXACT);
1064	if (zn == NULL) {
1065		zap_unlockdir(zap);
1066		return (ENOTSUP);
1067	}
1068	if (!zap->zap_ismicro) {
1069		err = fzap_update(zn, integer_size, num_integers, val, tx);
1070		zap = zn->zn_zap;	/* fzap_update() may change zap */
1071	} else if (integer_size != 8 || num_integers != 1 ||
1072	    strlen(name) >= MZAP_NAME_LEN) {
1073		dprintf("upgrading obj %llu: intsz=%u numint=%llu name=%s\n",
1074		    zapobj, integer_size, num_integers, name);
1075		err = mzap_upgrade(&zn->zn_zap, tx, 0);
1076		if (err == 0)
1077			err = fzap_update(zn, integer_size, num_integers,
1078			    val, tx);
1079		zap = zn->zn_zap;	/* fzap_update() may change zap */
1080	} else {
1081		mze = mze_find(zn);
1082		if (mze != NULL) {
1083			ASSERT3U(MZE_PHYS(zap, mze)->mze_value, ==, oldval);
1084			MZE_PHYS(zap, mze)->mze_value = *intval;
1085		} else {
1086			mzap_addent(zn, *intval);
1087		}
1088	}
1089	ASSERT(zap == zn->zn_zap);
1090	zap_name_free(zn);
1091	if (zap != NULL)	/* may be NULL if fzap_upgrade() failed */
1092		zap_unlockdir(zap);
1093	return (err);
1094}
1095
1096int
1097zap_update_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1098    int key_numints,
1099    int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx)
1100{
1101	zap_t *zap;
1102	zap_name_t *zn;
1103	int err;
1104
1105	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap);
1106	if (err)
1107		return (err);
1108	zn = zap_name_alloc_uint64(zap, key, key_numints);
1109	if (zn == NULL) {
1110		zap_unlockdir(zap);
1111		return (ENOTSUP);
1112	}
1113	err = fzap_update(zn, integer_size, num_integers, val, tx);
1114	zap = zn->zn_zap;	/* fzap_update() may change zap */
1115	zap_name_free(zn);
1116	if (zap != NULL)	/* may be NULL if fzap_upgrade() failed */
1117		zap_unlockdir(zap);
1118	return (err);
1119}
1120
1121int
1122zap_remove(objset_t *os, uint64_t zapobj, const char *name, dmu_tx_t *tx)
1123{
1124	return (zap_remove_norm(os, zapobj, name, MT_EXACT, tx));
1125}
1126
1127int
1128zap_remove_norm(objset_t *os, uint64_t zapobj, const char *name,
1129    matchtype_t mt, dmu_tx_t *tx)
1130{
1131	zap_t *zap;
1132	int err;
1133	mzap_ent_t *mze;
1134	zap_name_t *zn;
1135
1136	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, &zap);
1137	if (err)
1138		return (err);
1139	zn = zap_name_alloc(zap, name, mt);
1140	if (zn == NULL) {
1141		zap_unlockdir(zap);
1142		return (ENOTSUP);
1143	}
1144	if (!zap->zap_ismicro) {
1145		err = fzap_remove(zn, tx);
1146	} else {
1147		mze = mze_find(zn);
1148		if (mze == NULL) {
1149			err = ENOENT;
1150		} else {
1151			zap->zap_m.zap_num_entries--;
1152			bzero(&zap->zap_m.zap_phys->mz_chunk[mze->mze_chunkid],
1153			    sizeof (mzap_ent_phys_t));
1154			mze_remove(zap, mze);
1155		}
1156	}
1157	zap_name_free(zn);
1158	zap_unlockdir(zap);
1159	return (err);
1160}
1161
1162int
1163zap_remove_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1164    int key_numints, dmu_tx_t *tx)
1165{
1166	zap_t *zap;
1167	int err;
1168	zap_name_t *zn;
1169
1170	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, &zap);
1171	if (err)
1172		return (err);
1173	zn = zap_name_alloc_uint64(zap, key, key_numints);
1174	if (zn == NULL) {
1175		zap_unlockdir(zap);
1176		return (ENOTSUP);
1177	}
1178	err = fzap_remove(zn, tx);
1179	zap_name_free(zn);
1180	zap_unlockdir(zap);
1181	return (err);
1182}
1183
1184/*
1185 * Routines for iterating over the attributes.
1186 */
1187
1188void
1189zap_cursor_init_serialized(zap_cursor_t *zc, objset_t *os, uint64_t zapobj,
1190    uint64_t serialized)
1191{
1192	zc->zc_objset = os;
1193	zc->zc_zap = NULL;
1194	zc->zc_leaf = NULL;
1195	zc->zc_zapobj = zapobj;
1196	zc->zc_serialized = serialized;
1197	zc->zc_hash = 0;
1198	zc->zc_cd = 0;
1199}
1200
1201void
1202zap_cursor_init(zap_cursor_t *zc, objset_t *os, uint64_t zapobj)
1203{
1204	zap_cursor_init_serialized(zc, os, zapobj, 0);
1205}
1206
1207void
1208zap_cursor_fini(zap_cursor_t *zc)
1209{
1210	if (zc->zc_zap) {
1211		rw_enter(&zc->zc_zap->zap_rwlock, RW_READER);
1212		zap_unlockdir(zc->zc_zap);
1213		zc->zc_zap = NULL;
1214	}
1215	if (zc->zc_leaf) {
1216		rw_enter(&zc->zc_leaf->l_rwlock, RW_READER);
1217		zap_put_leaf(zc->zc_leaf);
1218		zc->zc_leaf = NULL;
1219	}
1220	zc->zc_objset = NULL;
1221}
1222
1223uint64_t
1224zap_cursor_serialize(zap_cursor_t *zc)
1225{
1226	if (zc->zc_hash == -1ULL)
1227		return (-1ULL);
1228	if (zc->zc_zap == NULL)
1229		return (zc->zc_serialized);
1230	ASSERT((zc->zc_hash & zap_maxcd(zc->zc_zap)) == 0);
1231	ASSERT(zc->zc_cd < zap_maxcd(zc->zc_zap));
1232
1233	/*
1234	 * We want to keep the high 32 bits of the cursor zero if we can, so
1235	 * that 32-bit programs can access this.  So usually use a small
1236	 * (28-bit) hash value so we can fit 4 bits of cd into the low 32-bits
1237	 * of the cursor.
1238	 *
1239	 * [ collision differentiator | zap_hashbits()-bit hash value ]
1240	 */
1241	return ((zc->zc_hash >> (64 - zap_hashbits(zc->zc_zap))) |
1242	    ((uint64_t)zc->zc_cd << zap_hashbits(zc->zc_zap)));
1243}
1244
1245int
1246zap_cursor_retrieve(zap_cursor_t *zc, zap_attribute_t *za)
1247{
1248	int err;
1249	avl_index_t idx;
1250	mzap_ent_t mze_tofind;
1251	mzap_ent_t *mze;
1252
1253	if (zc->zc_hash == -1ULL)
1254		return (ENOENT);
1255
1256	if (zc->zc_zap == NULL) {
1257		int hb;
1258		err = zap_lockdir(zc->zc_objset, zc->zc_zapobj, NULL,
1259		    RW_READER, TRUE, FALSE, &zc->zc_zap);
1260		if (err)
1261			return (err);
1262
1263		/*
1264		 * To support zap_cursor_init_serialized, advance, retrieve,
1265		 * we must add to the existing zc_cd, which may already
1266		 * be 1 due to the zap_cursor_advance.
1267		 */
1268		ASSERT(zc->zc_hash == 0);
1269		hb = zap_hashbits(zc->zc_zap);
1270		zc->zc_hash = zc->zc_serialized << (64 - hb);
1271		zc->zc_cd += zc->zc_serialized >> hb;
1272		if (zc->zc_cd >= zap_maxcd(zc->zc_zap)) /* corrupt serialized */
1273			zc->zc_cd = 0;
1274	} else {
1275		rw_enter(&zc->zc_zap->zap_rwlock, RW_READER);
1276	}
1277	if (!zc->zc_zap->zap_ismicro) {
1278		err = fzap_cursor_retrieve(zc->zc_zap, zc, za);
1279	} else {
1280		err = ENOENT;
1281
1282		mze_tofind.mze_hash = zc->zc_hash;
1283		mze_tofind.mze_cd = zc->zc_cd;
1284
1285		mze = avl_find(&zc->zc_zap->zap_m.zap_avl, &mze_tofind, &idx);
1286		if (mze == NULL) {
1287			mze = avl_nearest(&zc->zc_zap->zap_m.zap_avl,
1288			    idx, AVL_AFTER);
1289		}
1290		if (mze) {
1291			mzap_ent_phys_t *mzep = MZE_PHYS(zc->zc_zap, mze);
1292			ASSERT3U(mze->mze_cd, ==, mzep->mze_cd);
1293			za->za_normalization_conflict =
1294			    mzap_normalization_conflict(zc->zc_zap, NULL, mze);
1295			za->za_integer_length = 8;
1296			za->za_num_integers = 1;
1297			za->za_first_integer = mzep->mze_value;
1298			(void) strcpy(za->za_name, mzep->mze_name);
1299			zc->zc_hash = mze->mze_hash;
1300			zc->zc_cd = mze->mze_cd;
1301			err = 0;
1302		} else {
1303			zc->zc_hash = -1ULL;
1304		}
1305	}
1306	rw_exit(&zc->zc_zap->zap_rwlock);
1307	return (err);
1308}
1309
1310void
1311zap_cursor_advance(zap_cursor_t *zc)
1312{
1313	if (zc->zc_hash == -1ULL)
1314		return;
1315	zc->zc_cd++;
1316}
1317
1318int
1319zap_cursor_move_to_key(zap_cursor_t *zc, const char *name, matchtype_t mt)
1320{
1321	int err = 0;
1322	mzap_ent_t *mze;
1323	zap_name_t *zn;
1324
1325	if (zc->zc_zap == NULL) {
1326		err = zap_lockdir(zc->zc_objset, zc->zc_zapobj, NULL,
1327		    RW_READER, TRUE, FALSE, &zc->zc_zap);
1328		if (err)
1329			return (err);
1330	} else {
1331		rw_enter(&zc->zc_zap->zap_rwlock, RW_READER);
1332	}
1333
1334	zn = zap_name_alloc(zc->zc_zap, name, mt);
1335	if (zn == NULL) {
1336		rw_exit(&zc->zc_zap->zap_rwlock);
1337		return (ENOTSUP);
1338	}
1339
1340	if (!zc->zc_zap->zap_ismicro) {
1341		err = fzap_cursor_move_to_key(zc, zn);
1342	} else {
1343		mze = mze_find(zn);
1344		if (mze == NULL) {
1345			err = ENOENT;
1346			goto out;
1347		}
1348		zc->zc_hash = mze->mze_hash;
1349		zc->zc_cd = mze->mze_cd;
1350	}
1351
1352out:
1353	zap_name_free(zn);
1354	rw_exit(&zc->zc_zap->zap_rwlock);
1355	return (err);
1356}
1357
1358int
1359zap_get_stats(objset_t *os, uint64_t zapobj, zap_stats_t *zs)
1360{
1361	int err;
1362	zap_t *zap;
1363
1364	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
1365	if (err)
1366		return (err);
1367
1368	bzero(zs, sizeof (zap_stats_t));
1369
1370	if (zap->zap_ismicro) {
1371		zs->zs_blocksize = zap->zap_dbuf->db_size;
1372		zs->zs_num_entries = zap->zap_m.zap_num_entries;
1373		zs->zs_num_blocks = 1;
1374	} else {
1375		fzap_get_stats(zap, zs);
1376	}
1377	zap_unlockdir(zap);
1378	return (0);
1379}
1380
1381int
1382zap_count_write(objset_t *os, uint64_t zapobj, const char *name, int add,
1383    uint64_t *towrite, uint64_t *tooverwrite)
1384{
1385	zap_t *zap;
1386	int err = 0;
1387
1388
1389	/*
1390	 * Since, we don't have a name, we cannot figure out which blocks will
1391	 * be affected in this operation. So, account for the worst case :
1392	 * - 3 blocks overwritten: target leaf, ptrtbl block, header block
1393	 * - 4 new blocks written if adding:
1394	 * 	- 2 blocks for possibly split leaves,
1395	 * 	- 2 grown ptrtbl blocks
1396	 *
1397	 * This also accomodates the case where an add operation to a fairly
1398	 * large microzap results in a promotion to fatzap.
1399	 */
1400	if (name == NULL) {
1401		*towrite += (3 + (add ? 4 : 0)) * SPA_MAXBLOCKSIZE;
1402		return (err);
1403	}
1404
1405	/*
1406	 * We lock the zap with adding ==  FALSE. Because, if we pass
1407	 * the actual value of add, it could trigger a mzap_upgrade().
1408	 * At present we are just evaluating the possibility of this operation
1409	 * and hence we donot want to trigger an upgrade.
1410	 */
1411	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
1412	if (err)
1413		return (err);
1414
1415	if (!zap->zap_ismicro) {
1416		zap_name_t *zn = zap_name_alloc(zap, name, MT_EXACT);
1417		if (zn) {
1418			err = fzap_count_write(zn, add, towrite,
1419			    tooverwrite);
1420			zap_name_free(zn);
1421		} else {
1422			/*
1423			 * We treat this case as similar to (name == NULL)
1424			 */
1425			*towrite += (3 + (add ? 4 : 0)) * SPA_MAXBLOCKSIZE;
1426		}
1427	} else {
1428		/*
1429		 * We are here if (name != NULL) and this is a micro-zap.
1430		 * We account for the header block depending on whether it
1431		 * is freeable.
1432		 *
1433		 * Incase of an add-operation it is hard to find out
1434		 * if this add will promote this microzap to fatzap.
1435		 * Hence, we consider the worst case and account for the
1436		 * blocks assuming this microzap would be promoted to a
1437		 * fatzap.
1438		 *
1439		 * 1 block overwritten  : header block
1440		 * 4 new blocks written : 2 new split leaf, 2 grown
1441		 *			ptrtbl blocks
1442		 */
1443		if (dmu_buf_freeable(zap->zap_dbuf))
1444			*tooverwrite += SPA_MAXBLOCKSIZE;
1445		else
1446			*towrite += SPA_MAXBLOCKSIZE;
1447
1448		if (add) {
1449			*towrite += 4 * SPA_MAXBLOCKSIZE;
1450		}
1451	}
1452
1453	zap_unlockdir(zap);
1454	return (err);
1455}
1456