1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 */
24
25/*
26 * Virtual Device Labels
27 * ---------------------
28 *
29 * The vdev label serves several distinct purposes:
30 *
31 *	1. Uniquely identify this device as part of a ZFS pool and confirm its
32 *	   identity within the pool.
33 *
34 * 	2. Verify that all the devices given in a configuration are present
35 *         within the pool.
36 *
37 * 	3. Determine the uberblock for the pool.
38 *
39 * 	4. In case of an import operation, determine the configuration of the
40 *         toplevel vdev of which it is a part.
41 *
42 * 	5. If an import operation cannot find all the devices in the pool,
43 *         provide enough information to the administrator to determine which
44 *         devices are missing.
45 *
46 * It is important to note that while the kernel is responsible for writing the
47 * label, it only consumes the information in the first three cases.  The
48 * latter information is only consumed in userland when determining the
49 * configuration to import a pool.
50 *
51 *
52 * Label Organization
53 * ------------------
54 *
55 * Before describing the contents of the label, it's important to understand how
56 * the labels are written and updated with respect to the uberblock.
57 *
58 * When the pool configuration is altered, either because it was newly created
59 * or a device was added, we want to update all the labels such that we can deal
60 * with fatal failure at any point.  To this end, each disk has two labels which
61 * are updated before and after the uberblock is synced.  Assuming we have
62 * labels and an uberblock with the following transaction groups:
63 *
64 *              L1          UB          L2
65 *           +------+    +------+    +------+
66 *           |      |    |      |    |      |
67 *           | t10  |    | t10  |    | t10  |
68 *           |      |    |      |    |      |
69 *           +------+    +------+    +------+
70 *
71 * In this stable state, the labels and the uberblock were all updated within
72 * the same transaction group (10).  Each label is mirrored and checksummed, so
73 * that we can detect when we fail partway through writing the label.
74 *
75 * In order to identify which labels are valid, the labels are written in the
76 * following manner:
77 *
78 * 	1. For each vdev, update 'L1' to the new label
79 * 	2. Update the uberblock
80 * 	3. For each vdev, update 'L2' to the new label
81 *
82 * Given arbitrary failure, we can determine the correct label to use based on
83 * the transaction group.  If we fail after updating L1 but before updating the
84 * UB, we will notice that L1's transaction group is greater than the uberblock,
85 * so L2 must be valid.  If we fail after writing the uberblock but before
86 * writing L2, we will notice that L2's transaction group is less than L1, and
87 * therefore L1 is valid.
88 *
89 * Another added complexity is that not every label is updated when the config
90 * is synced.  If we add a single device, we do not want to have to re-write
91 * every label for every device in the pool.  This means that both L1 and L2 may
92 * be older than the pool uberblock, because the necessary information is stored
93 * on another vdev.
94 *
95 *
96 * On-disk Format
97 * --------------
98 *
99 * The vdev label consists of two distinct parts, and is wrapped within the
100 * vdev_label_t structure.  The label includes 8k of padding to permit legacy
101 * VTOC disk labels, but is otherwise ignored.
102 *
103 * The first half of the label is a packed nvlist which contains pool wide
104 * properties, per-vdev properties, and configuration information.  It is
105 * described in more detail below.
106 *
107 * The latter half of the label consists of a redundant array of uberblocks.
108 * These uberblocks are updated whenever a transaction group is committed,
109 * or when the configuration is updated.  When a pool is loaded, we scan each
110 * vdev for the 'best' uberblock.
111 *
112 *
113 * Configuration Information
114 * -------------------------
115 *
116 * The nvlist describing the pool and vdev contains the following elements:
117 *
118 * 	version		ZFS on-disk version
119 * 	name		Pool name
120 * 	state		Pool state
121 * 	txg		Transaction group in which this label was written
122 * 	pool_guid	Unique identifier for this pool
123 * 	vdev_tree	An nvlist describing vdev tree.
124 *
125 * Each leaf device label also contains the following:
126 *
127 * 	top_guid	Unique ID for top-level vdev in which this is contained
128 * 	guid		Unique ID for the leaf vdev
129 *
130 * The 'vs' configuration follows the format described in 'spa_config.c'.
131 */
132
133#include <sys/zfs_context.h>
134#include <sys/spa.h>
135#include <sys/spa_impl.h>
136#include <sys/dmu.h>
137#include <sys/zap.h>
138#include <sys/vdev.h>
139#include <sys/vdev_impl.h>
140#include <sys/uberblock_impl.h>
141#include <sys/metaslab.h>
142#include <sys/zio.h>
143#include <sys/dsl_scan.h>
144#include <sys/fs/zfs.h>
145
146/*
147 * Basic routines to read and write from a vdev label.
148 * Used throughout the rest of this file.
149 */
150uint64_t
151vdev_label_offset(uint64_t psize, int l, uint64_t offset)
152{
153	ASSERT(offset < sizeof (vdev_label_t));
154	ASSERT(P2PHASE_TYPED(psize, sizeof (vdev_label_t), uint64_t) == 0);
155
156	return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
157	    0 : psize - VDEV_LABELS * sizeof (vdev_label_t)));
158}
159
160/*
161 * Returns back the vdev label associated with the passed in offset.
162 */
163int
164vdev_label_number(uint64_t psize, uint64_t offset)
165{
166	int l;
167
168	if (offset >= psize - VDEV_LABEL_END_SIZE) {
169		offset -= psize - VDEV_LABEL_END_SIZE;
170		offset += (VDEV_LABELS / 2) * sizeof (vdev_label_t);
171	}
172	l = offset / sizeof (vdev_label_t);
173	return (l < VDEV_LABELS ? l : -1);
174}
175
176static void
177vdev_label_read(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset,
178	uint64_t size, zio_done_func_t *done, void *private, int flags)
179{
180	ASSERT(spa_config_held(zio->io_spa, SCL_STATE_ALL, RW_WRITER) ==
181	    SCL_STATE_ALL);
182	ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
183
184	zio_nowait(zio_read_phys(zio, vd,
185	    vdev_label_offset(vd->vdev_psize, l, offset),
186	    size, buf, ZIO_CHECKSUM_LABEL, done, private,
187	    ZIO_PRIORITY_SYNC_READ, flags, B_TRUE));
188}
189
190static void
191vdev_label_write(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset,
192	uint64_t size, zio_done_func_t *done, void *private, int flags)
193{
194	ASSERT(spa_config_held(zio->io_spa, SCL_ALL, RW_WRITER) == SCL_ALL ||
195	    (spa_config_held(zio->io_spa, SCL_CONFIG | SCL_STATE, RW_READER) ==
196	    (SCL_CONFIG | SCL_STATE) &&
197	    dsl_pool_sync_context(spa_get_dsl(zio->io_spa))));
198	ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
199
200	zio_nowait(zio_write_phys(zio, vd,
201	    vdev_label_offset(vd->vdev_psize, l, offset),
202	    size, buf, ZIO_CHECKSUM_LABEL, done, private,
203	    ZIO_PRIORITY_SYNC_WRITE, flags, B_TRUE));
204}
205
206/*
207 * Generate the nvlist representing this vdev's config.
208 */
209nvlist_t *
210vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats,
211    vdev_config_flag_t flags)
212{
213	nvlist_t *nv = NULL;
214
215	VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
216
217	VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_TYPE,
218	    vd->vdev_ops->vdev_op_type) == 0);
219	if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)))
220		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id)
221		    == 0);
222	VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid) == 0);
223
224	if (vd->vdev_path != NULL)
225		VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_PATH,
226		    vd->vdev_path) == 0);
227
228	if (vd->vdev_devid != NULL)
229		VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_DEVID,
230		    vd->vdev_devid) == 0);
231
232	if (vd->vdev_physpath != NULL)
233		VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH,
234		    vd->vdev_physpath) == 0);
235
236	if (vd->vdev_fru != NULL)
237		VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_FRU,
238		    vd->vdev_fru) == 0);
239
240	if (vd->vdev_nparity != 0) {
241		ASSERT(strcmp(vd->vdev_ops->vdev_op_type,
242		    VDEV_TYPE_RAIDZ) == 0);
243
244		/*
245		 * Make sure someone hasn't managed to sneak a fancy new vdev
246		 * into a crufty old storage pool.
247		 */
248		ASSERT(vd->vdev_nparity == 1 ||
249		    (vd->vdev_nparity <= 2 &&
250		    spa_version(spa) >= SPA_VERSION_RAIDZ2) ||
251		    (vd->vdev_nparity <= 3 &&
252		    spa_version(spa) >= SPA_VERSION_RAIDZ3));
253
254		/*
255		 * Note that we'll add the nparity tag even on storage pools
256		 * that only support a single parity device -- older software
257		 * will just ignore it.
258		 */
259		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY,
260		    vd->vdev_nparity) == 0);
261	}
262
263	if (vd->vdev_wholedisk != -1ULL)
264		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
265		    vd->vdev_wholedisk) == 0);
266
267	if (vd->vdev_not_present)
268		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1) == 0);
269
270	if (vd->vdev_isspare)
271		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1) == 0);
272
273	if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)) &&
274	    vd == vd->vdev_top) {
275		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
276		    vd->vdev_ms_array) == 0);
277		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
278		    vd->vdev_ms_shift) == 0);
279		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT,
280		    vd->vdev_ashift) == 0);
281		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE,
282		    vd->vdev_asize) == 0);
283		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG,
284		    vd->vdev_islog) == 0);
285		if (vd->vdev_removing)
286			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVING,
287			    vd->vdev_removing) == 0);
288	}
289
290	if (vd->vdev_dtl_smo.smo_object != 0)
291		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_DTL,
292		    vd->vdev_dtl_smo.smo_object) == 0);
293
294	if (vd->vdev_crtxg)
295		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
296		    vd->vdev_crtxg) == 0);
297
298	if (getstats) {
299		vdev_stat_t vs;
300		pool_scan_stat_t ps;
301
302		vdev_get_stats(vd, &vs);
303		VERIFY(nvlist_add_uint64_array(nv, ZPOOL_CONFIG_VDEV_STATS,
304		    (uint64_t *)&vs, sizeof (vs) / sizeof (uint64_t)) == 0);
305
306		/* provide either current or previous scan information */
307		if (spa_scan_get_stats(spa, &ps) == 0) {
308			VERIFY(nvlist_add_uint64_array(nv,
309			    ZPOOL_CONFIG_SCAN_STATS, (uint64_t *)&ps,
310			    sizeof (pool_scan_stat_t) / sizeof (uint64_t))
311			    == 0);
312		}
313	}
314
315	if (!vd->vdev_ops->vdev_op_leaf) {
316		nvlist_t **child;
317		int c, idx;
318
319		ASSERT(!vd->vdev_ishole);
320
321		child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *),
322		    KM_SLEEP);
323
324		for (c = 0, idx = 0; c < vd->vdev_children; c++) {
325			vdev_t *cvd = vd->vdev_child[c];
326
327			/*
328			 * If we're generating an nvlist of removing
329			 * vdevs then skip over any device which is
330			 * not being removed.
331			 */
332			if ((flags & VDEV_CONFIG_REMOVING) &&
333			    !cvd->vdev_removing)
334				continue;
335
336			child[idx++] = vdev_config_generate(spa, cvd,
337			    getstats, flags);
338		}
339
340		if (idx) {
341			VERIFY(nvlist_add_nvlist_array(nv,
342			    ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
343		}
344
345		for (c = 0; c < idx; c++)
346			nvlist_free(child[c]);
347
348		kmem_free(child, vd->vdev_children * sizeof (nvlist_t *));
349
350	} else {
351		const char *aux = NULL;
352
353		if (vd->vdev_offline && !vd->vdev_tmpoffline)
354			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE,
355			    B_TRUE) == 0);
356		if (vd->vdev_resilvering)
357			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_RESILVERING,
358			    B_TRUE) == 0);
359		if (vd->vdev_faulted)
360			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_FAULTED,
361			    B_TRUE) == 0);
362		if (vd->vdev_degraded)
363			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_DEGRADED,
364			    B_TRUE) == 0);
365		if (vd->vdev_removed)
366			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVED,
367			    B_TRUE) == 0);
368		if (vd->vdev_unspare)
369			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_UNSPARE,
370			    B_TRUE) == 0);
371		if (vd->vdev_ishole)
372			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_IS_HOLE,
373			    B_TRUE) == 0);
374
375		switch (vd->vdev_stat.vs_aux) {
376		case VDEV_AUX_ERR_EXCEEDED:
377			aux = "err_exceeded";
378			break;
379
380		case VDEV_AUX_EXTERNAL:
381			aux = "external";
382			break;
383		}
384
385		if (aux != NULL)
386			VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_AUX_STATE,
387			    aux) == 0);
388
389		if (vd->vdev_splitting && vd->vdev_orig_guid != 0LL) {
390			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ORIG_GUID,
391			    vd->vdev_orig_guid) == 0);
392		}
393	}
394
395	return (nv);
396}
397
398/*
399 * Generate a view of the top-level vdevs.  If we currently have holes
400 * in the namespace, then generate an array which contains a list of holey
401 * vdevs.  Additionally, add the number of top-level children that currently
402 * exist.
403 */
404void
405vdev_top_config_generate(spa_t *spa, nvlist_t *config)
406{
407	vdev_t *rvd = spa->spa_root_vdev;
408	uint64_t *array;
409	uint_t c, idx;
410
411	array = kmem_alloc(rvd->vdev_children * sizeof (uint64_t), KM_SLEEP);
412
413	for (c = 0, idx = 0; c < rvd->vdev_children; c++) {
414		vdev_t *tvd = rvd->vdev_child[c];
415
416		if (tvd->vdev_ishole)
417			array[idx++] = c;
418	}
419
420	if (idx) {
421		VERIFY(nvlist_add_uint64_array(config, ZPOOL_CONFIG_HOLE_ARRAY,
422		    array, idx) == 0);
423	}
424
425	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
426	    rvd->vdev_children) == 0);
427
428	kmem_free(array, rvd->vdev_children * sizeof (uint64_t));
429}
430
431nvlist_t *
432vdev_label_read_config(vdev_t *vd)
433{
434	spa_t *spa = vd->vdev_spa;
435	nvlist_t *config = NULL;
436	vdev_phys_t *vp;
437	zio_t *zio;
438	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
439	    ZIO_FLAG_SPECULATIVE;
440
441	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
442
443	if (!vdev_readable(vd))
444		return (NULL);
445
446	vp = zio_buf_alloc(sizeof (vdev_phys_t));
447
448retry:
449	for (int l = 0; l < VDEV_LABELS; l++) {
450
451		zio = zio_root(spa, NULL, NULL, flags);
452
453		vdev_label_read(zio, vd, l, vp,
454		    offsetof(vdev_label_t, vl_vdev_phys),
455		    sizeof (vdev_phys_t), NULL, NULL, flags);
456
457		if (zio_wait(zio) == 0 &&
458		    nvlist_unpack(vp->vp_nvlist, sizeof (vp->vp_nvlist),
459		    &config, 0) == 0)
460			break;
461
462		if (config != NULL) {
463			nvlist_free(config);
464			config = NULL;
465		}
466	}
467
468	if (config == NULL && !(flags & ZIO_FLAG_TRYHARD)) {
469		flags |= ZIO_FLAG_TRYHARD;
470		goto retry;
471	}
472
473	zio_buf_free(vp, sizeof (vdev_phys_t));
474
475	return (config);
476}
477
478/*
479 * Determine if a device is in use.  The 'spare_guid' parameter will be filled
480 * in with the device guid if this spare is active elsewhere on the system.
481 */
482static boolean_t
483vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason,
484    uint64_t *spare_guid, uint64_t *l2cache_guid)
485{
486	spa_t *spa = vd->vdev_spa;
487	uint64_t state, pool_guid, device_guid, txg, spare_pool;
488	uint64_t vdtxg = 0;
489	nvlist_t *label;
490
491	if (spare_guid)
492		*spare_guid = 0ULL;
493	if (l2cache_guid)
494		*l2cache_guid = 0ULL;
495
496	/*
497	 * Read the label, if any, and perform some basic sanity checks.
498	 */
499	if ((label = vdev_label_read_config(vd)) == NULL)
500		return (B_FALSE);
501
502	(void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
503	    &vdtxg);
504
505	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
506	    &state) != 0 ||
507	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
508	    &device_guid) != 0) {
509		nvlist_free(label);
510		return (B_FALSE);
511	}
512
513	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
514	    (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
515	    &pool_guid) != 0 ||
516	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
517	    &txg) != 0)) {
518		nvlist_free(label);
519		return (B_FALSE);
520	}
521
522	nvlist_free(label);
523
524	/*
525	 * Check to see if this device indeed belongs to the pool it claims to
526	 * be a part of.  The only way this is allowed is if the device is a hot
527	 * spare (which we check for later on).
528	 */
529	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
530	    !spa_guid_exists(pool_guid, device_guid) &&
531	    !spa_spare_exists(device_guid, NULL, NULL) &&
532	    !spa_l2cache_exists(device_guid, NULL))
533		return (B_FALSE);
534
535	/*
536	 * If the transaction group is zero, then this an initialized (but
537	 * unused) label.  This is only an error if the create transaction
538	 * on-disk is the same as the one we're using now, in which case the
539	 * user has attempted to add the same vdev multiple times in the same
540	 * transaction.
541	 */
542	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
543	    txg == 0 && vdtxg == crtxg)
544		return (B_TRUE);
545
546	/*
547	 * Check to see if this is a spare device.  We do an explicit check for
548	 * spa_has_spare() here because it may be on our pending list of spares
549	 * to add.  We also check if it is an l2cache device.
550	 */
551	if (spa_spare_exists(device_guid, &spare_pool, NULL) ||
552	    spa_has_spare(spa, device_guid)) {
553		if (spare_guid)
554			*spare_guid = device_guid;
555
556		switch (reason) {
557		case VDEV_LABEL_CREATE:
558		case VDEV_LABEL_L2CACHE:
559			return (B_TRUE);
560
561		case VDEV_LABEL_REPLACE:
562			return (!spa_has_spare(spa, device_guid) ||
563			    spare_pool != 0ULL);
564
565		case VDEV_LABEL_SPARE:
566			return (spa_has_spare(spa, device_guid));
567		}
568	}
569
570	/*
571	 * Check to see if this is an l2cache device.
572	 */
573	if (spa_l2cache_exists(device_guid, NULL))
574		return (B_TRUE);
575
576	/*
577	 * We can't rely on a pool's state if it's been imported
578	 * read-only.  Instead we look to see if the pools is marked
579	 * read-only in the namespace and set the state to active.
580	 */
581	if ((spa = spa_by_guid(pool_guid, device_guid)) != NULL &&
582	    spa_mode(spa) == FREAD)
583		state = POOL_STATE_ACTIVE;
584
585	/*
586	 * If the device is marked ACTIVE, then this device is in use by another
587	 * pool on the system.
588	 */
589	return (state == POOL_STATE_ACTIVE);
590}
591
592/*
593 * Initialize a vdev label.  We check to make sure each leaf device is not in
594 * use, and writable.  We put down an initial label which we will later
595 * overwrite with a complete label.  Note that it's important to do this
596 * sequentially, not in parallel, so that we catch cases of multiple use of the
597 * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with
598 * itself.
599 */
600int
601vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason)
602{
603	spa_t *spa = vd->vdev_spa;
604	nvlist_t *label;
605	vdev_phys_t *vp;
606	char *pad2;
607	uberblock_t *ub;
608	zio_t *zio;
609	char *buf;
610	size_t buflen;
611	int error;
612	uint64_t spare_guid, l2cache_guid;
613	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
614
615	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
616
617	for (int c = 0; c < vd->vdev_children; c++)
618		if ((error = vdev_label_init(vd->vdev_child[c],
619		    crtxg, reason)) != 0)
620			return (error);
621
622	/* Track the creation time for this vdev */
623	vd->vdev_crtxg = crtxg;
624
625	if (!vd->vdev_ops->vdev_op_leaf)
626		return (0);
627
628	/*
629	 * Dead vdevs cannot be initialized.
630	 */
631	if (vdev_is_dead(vd))
632		return (EIO);
633
634	/*
635	 * Determine if the vdev is in use.
636	 */
637	if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPLIT &&
638	    vdev_inuse(vd, crtxg, reason, &spare_guid, &l2cache_guid))
639		return (EBUSY);
640
641	/*
642	 * If this is a request to add or replace a spare or l2cache device
643	 * that is in use elsewhere on the system, then we must update the
644	 * guid (which was initialized to a random value) to reflect the
645	 * actual GUID (which is shared between multiple pools).
646	 */
647	if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_L2CACHE &&
648	    spare_guid != 0ULL) {
649		uint64_t guid_delta = spare_guid - vd->vdev_guid;
650
651		vd->vdev_guid += guid_delta;
652
653		for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
654			pvd->vdev_guid_sum += guid_delta;
655
656		/*
657		 * If this is a replacement, then we want to fallthrough to the
658		 * rest of the code.  If we're adding a spare, then it's already
659		 * labeled appropriately and we can just return.
660		 */
661		if (reason == VDEV_LABEL_SPARE)
662			return (0);
663		ASSERT(reason == VDEV_LABEL_REPLACE ||
664		    reason == VDEV_LABEL_SPLIT);
665	}
666
667	if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPARE &&
668	    l2cache_guid != 0ULL) {
669		uint64_t guid_delta = l2cache_guid - vd->vdev_guid;
670
671		vd->vdev_guid += guid_delta;
672
673		for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
674			pvd->vdev_guid_sum += guid_delta;
675
676		/*
677		 * If this is a replacement, then we want to fallthrough to the
678		 * rest of the code.  If we're adding an l2cache, then it's
679		 * already labeled appropriately and we can just return.
680		 */
681		if (reason == VDEV_LABEL_L2CACHE)
682			return (0);
683		ASSERT(reason == VDEV_LABEL_REPLACE);
684	}
685
686	/*
687	 * Initialize its label.
688	 */
689	vp = zio_buf_alloc(sizeof (vdev_phys_t));
690	bzero(vp, sizeof (vdev_phys_t));
691
692	/*
693	 * Generate a label describing the pool and our top-level vdev.
694	 * We mark it as being from txg 0 to indicate that it's not
695	 * really part of an active pool just yet.  The labels will
696	 * be written again with a meaningful txg by spa_sync().
697	 */
698	if (reason == VDEV_LABEL_SPARE ||
699	    (reason == VDEV_LABEL_REMOVE && vd->vdev_isspare)) {
700		/*
701		 * For inactive hot spares, we generate a special label that
702		 * identifies as a mutually shared hot spare.  We write the
703		 * label if we are adding a hot spare, or if we are removing an
704		 * active hot spare (in which case we want to revert the
705		 * labels).
706		 */
707		VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
708
709		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
710		    spa_version(spa)) == 0);
711		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
712		    POOL_STATE_SPARE) == 0);
713		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
714		    vd->vdev_guid) == 0);
715	} else if (reason == VDEV_LABEL_L2CACHE ||
716	    (reason == VDEV_LABEL_REMOVE && vd->vdev_isl2cache)) {
717		/*
718		 * For level 2 ARC devices, add a special label.
719		 */
720		VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
721
722		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
723		    spa_version(spa)) == 0);
724		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
725		    POOL_STATE_L2CACHE) == 0);
726		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
727		    vd->vdev_guid) == 0);
728	} else {
729		uint64_t txg = 0ULL;
730
731		if (reason == VDEV_LABEL_SPLIT)
732			txg = spa->spa_uberblock.ub_txg;
733		label = spa_config_generate(spa, vd, txg, B_FALSE);
734
735		/*
736		 * Add our creation time.  This allows us to detect multiple
737		 * vdev uses as described above, and automatically expires if we
738		 * fail.
739		 */
740		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
741		    crtxg) == 0);
742	}
743
744	buf = vp->vp_nvlist;
745	buflen = sizeof (vp->vp_nvlist);
746
747	error = nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP);
748	if (error != 0) {
749		nvlist_free(label);
750		zio_buf_free(vp, sizeof (vdev_phys_t));
751		/* EFAULT means nvlist_pack ran out of room */
752		return (error == EFAULT ? ENAMETOOLONG : EINVAL);
753	}
754
755	/*
756	 * Initialize uberblock template.
757	 */
758	ub = zio_buf_alloc(VDEV_UBERBLOCK_RING);
759	bzero(ub, VDEV_UBERBLOCK_RING);
760	*ub = spa->spa_uberblock;
761	ub->ub_txg = 0;
762
763	/* Initialize the 2nd padding area. */
764	pad2 = zio_buf_alloc(VDEV_PAD_SIZE);
765	bzero(pad2, VDEV_PAD_SIZE);
766
767	/*
768	 * Write everything in parallel.
769	 */
770retry:
771	zio = zio_root(spa, NULL, NULL, flags);
772
773	for (int l = 0; l < VDEV_LABELS; l++) {
774
775		vdev_label_write(zio, vd, l, vp,
776		    offsetof(vdev_label_t, vl_vdev_phys),
777		    sizeof (vdev_phys_t), NULL, NULL, flags);
778
779		/*
780		 * Skip the 1st padding area.
781		 * Zero out the 2nd padding area where it might have
782		 * left over data from previous filesystem format.
783		 */
784		vdev_label_write(zio, vd, l, pad2,
785		    offsetof(vdev_label_t, vl_pad2),
786		    VDEV_PAD_SIZE, NULL, NULL, flags);
787
788		vdev_label_write(zio, vd, l, ub,
789		    offsetof(vdev_label_t, vl_uberblock),
790		    VDEV_UBERBLOCK_RING, NULL, NULL, flags);
791	}
792
793	error = zio_wait(zio);
794
795	if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) {
796		flags |= ZIO_FLAG_TRYHARD;
797		goto retry;
798	}
799
800	nvlist_free(label);
801	zio_buf_free(pad2, VDEV_PAD_SIZE);
802	zio_buf_free(ub, VDEV_UBERBLOCK_RING);
803	zio_buf_free(vp, sizeof (vdev_phys_t));
804
805	/*
806	 * If this vdev hasn't been previously identified as a spare, then we
807	 * mark it as such only if a) we are labeling it as a spare, or b) it
808	 * exists as a spare elsewhere in the system.  Do the same for
809	 * level 2 ARC devices.
810	 */
811	if (error == 0 && !vd->vdev_isspare &&
812	    (reason == VDEV_LABEL_SPARE ||
813	    spa_spare_exists(vd->vdev_guid, NULL, NULL)))
814		spa_spare_add(vd);
815
816	if (error == 0 && !vd->vdev_isl2cache &&
817	    (reason == VDEV_LABEL_L2CACHE ||
818	    spa_l2cache_exists(vd->vdev_guid, NULL)))
819		spa_l2cache_add(vd);
820
821	return (error);
822}
823
824/*
825 * ==========================================================================
826 * uberblock load/sync
827 * ==========================================================================
828 */
829
830/*
831 * Consider the following situation: txg is safely synced to disk.  We've
832 * written the first uberblock for txg + 1, and then we lose power.  When we
833 * come back up, we fail to see the uberblock for txg + 1 because, say,
834 * it was on a mirrored device and the replica to which we wrote txg + 1
835 * is now offline.  If we then make some changes and sync txg + 1, and then
836 * the missing replica comes back, then for a new seconds we'll have two
837 * conflicting uberblocks on disk with the same txg.  The solution is simple:
838 * among uberblocks with equal txg, choose the one with the latest timestamp.
839 */
840static int
841vdev_uberblock_compare(uberblock_t *ub1, uberblock_t *ub2)
842{
843	if (ub1->ub_txg < ub2->ub_txg)
844		return (-1);
845	if (ub1->ub_txg > ub2->ub_txg)
846		return (1);
847
848	if (ub1->ub_timestamp < ub2->ub_timestamp)
849		return (-1);
850	if (ub1->ub_timestamp > ub2->ub_timestamp)
851		return (1);
852
853	return (0);
854}
855
856static void
857vdev_uberblock_load_done(zio_t *zio)
858{
859	spa_t *spa = zio->io_spa;
860	zio_t *rio = zio->io_private;
861	uberblock_t *ub = zio->io_data;
862	uberblock_t *ubbest = rio->io_private;
863
864	ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(zio->io_vd));
865
866	if (zio->io_error == 0 && uberblock_verify(ub) == 0) {
867		mutex_enter(&rio->io_lock);
868		if (ub->ub_txg <= spa->spa_load_max_txg &&
869		    vdev_uberblock_compare(ub, ubbest) > 0)
870			*ubbest = *ub;
871		mutex_exit(&rio->io_lock);
872	}
873
874	zio_buf_free(zio->io_data, zio->io_size);
875}
876
877void
878vdev_uberblock_load(zio_t *zio, vdev_t *vd, uberblock_t *ubbest)
879{
880	spa_t *spa = vd->vdev_spa;
881	vdev_t *rvd = spa->spa_root_vdev;
882	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
883	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD;
884
885	if (vd == rvd) {
886		ASSERT(zio == NULL);
887		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
888		zio = zio_root(spa, NULL, ubbest, flags);
889		bzero(ubbest, sizeof (uberblock_t));
890	}
891
892	ASSERT(zio != NULL);
893
894	for (int c = 0; c < vd->vdev_children; c++)
895		vdev_uberblock_load(zio, vd->vdev_child[c], ubbest);
896
897	if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
898		for (int l = 0; l < VDEV_LABELS; l++) {
899			for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
900				vdev_label_read(zio, vd, l,
901				    zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd)),
902				    VDEV_UBERBLOCK_OFFSET(vd, n),
903				    VDEV_UBERBLOCK_SIZE(vd),
904				    vdev_uberblock_load_done, zio, flags);
905			}
906		}
907	}
908
909	if (vd == rvd) {
910		(void) zio_wait(zio);
911		spa_config_exit(spa, SCL_ALL, FTAG);
912	}
913}
914
915/*
916 * On success, increment root zio's count of good writes.
917 * We only get credit for writes to known-visible vdevs; see spa_vdev_add().
918 */
919static void
920vdev_uberblock_sync_done(zio_t *zio)
921{
922	uint64_t *good_writes = zio->io_private;
923
924	if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0)
925		atomic_add_64(good_writes, 1);
926}
927
928/*
929 * Write the uberblock to all labels of all leaves of the specified vdev.
930 */
931static void
932vdev_uberblock_sync(zio_t *zio, uberblock_t *ub, vdev_t *vd, int flags)
933{
934	uberblock_t *ubbuf;
935	int n;
936
937	for (int c = 0; c < vd->vdev_children; c++)
938		vdev_uberblock_sync(zio, ub, vd->vdev_child[c], flags);
939
940	if (!vd->vdev_ops->vdev_op_leaf)
941		return;
942
943	if (!vdev_writeable(vd))
944		return;
945
946	n = ub->ub_txg & (VDEV_UBERBLOCK_COUNT(vd) - 1);
947
948	ubbuf = zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd));
949	bzero(ubbuf, VDEV_UBERBLOCK_SIZE(vd));
950	*ubbuf = *ub;
951
952	for (int l = 0; l < VDEV_LABELS; l++)
953		vdev_label_write(zio, vd, l, ubbuf,
954		    VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd),
955		    vdev_uberblock_sync_done, zio->io_private,
956		    flags | ZIO_FLAG_DONT_PROPAGATE);
957
958	zio_buf_free(ubbuf, VDEV_UBERBLOCK_SIZE(vd));
959}
960
961int
962vdev_uberblock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags)
963{
964	spa_t *spa = svd[0]->vdev_spa;
965	zio_t *zio;
966	uint64_t good_writes = 0;
967
968	zio = zio_root(spa, NULL, &good_writes, flags);
969
970	for (int v = 0; v < svdcount; v++)
971		vdev_uberblock_sync(zio, ub, svd[v], flags);
972
973	(void) zio_wait(zio);
974
975	/*
976	 * Flush the uberblocks to disk.  This ensures that the odd labels
977	 * are no longer needed (because the new uberblocks and the even
978	 * labels are safely on disk), so it is safe to overwrite them.
979	 */
980	zio = zio_root(spa, NULL, NULL, flags);
981
982	for (int v = 0; v < svdcount; v++)
983		zio_flush(zio, svd[v]);
984
985	(void) zio_wait(zio);
986
987	return (good_writes >= 1 ? 0 : EIO);
988}
989
990/*
991 * On success, increment the count of good writes for our top-level vdev.
992 */
993static void
994vdev_label_sync_done(zio_t *zio)
995{
996	uint64_t *good_writes = zio->io_private;
997
998	if (zio->io_error == 0)
999		atomic_add_64(good_writes, 1);
1000}
1001
1002/*
1003 * If there weren't enough good writes, indicate failure to the parent.
1004 */
1005static void
1006vdev_label_sync_top_done(zio_t *zio)
1007{
1008	uint64_t *good_writes = zio->io_private;
1009
1010	if (*good_writes == 0)
1011		zio->io_error = EIO;
1012
1013	kmem_free(good_writes, sizeof (uint64_t));
1014}
1015
1016/*
1017 * We ignore errors for log and cache devices, simply free the private data.
1018 */
1019static void
1020vdev_label_sync_ignore_done(zio_t *zio)
1021{
1022	kmem_free(zio->io_private, sizeof (uint64_t));
1023}
1024
1025/*
1026 * Write all even or odd labels to all leaves of the specified vdev.
1027 */
1028static void
1029vdev_label_sync(zio_t *zio, vdev_t *vd, int l, uint64_t txg, int flags)
1030{
1031	nvlist_t *label;
1032	vdev_phys_t *vp;
1033	char *buf;
1034	size_t buflen;
1035
1036	for (int c = 0; c < vd->vdev_children; c++)
1037		vdev_label_sync(zio, vd->vdev_child[c], l, txg, flags);
1038
1039	if (!vd->vdev_ops->vdev_op_leaf)
1040		return;
1041
1042	if (!vdev_writeable(vd))
1043		return;
1044
1045	/*
1046	 * Generate a label describing the top-level config to which we belong.
1047	 */
1048	label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE);
1049
1050	vp = zio_buf_alloc(sizeof (vdev_phys_t));
1051	bzero(vp, sizeof (vdev_phys_t));
1052
1053	buf = vp->vp_nvlist;
1054	buflen = sizeof (vp->vp_nvlist);
1055
1056	if (nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP) == 0) {
1057		for (; l < VDEV_LABELS; l += 2) {
1058			vdev_label_write(zio, vd, l, vp,
1059			    offsetof(vdev_label_t, vl_vdev_phys),
1060			    sizeof (vdev_phys_t),
1061			    vdev_label_sync_done, zio->io_private,
1062			    flags | ZIO_FLAG_DONT_PROPAGATE);
1063		}
1064	}
1065
1066	zio_buf_free(vp, sizeof (vdev_phys_t));
1067	nvlist_free(label);
1068}
1069
1070int
1071vdev_label_sync_list(spa_t *spa, int l, uint64_t txg, int flags)
1072{
1073	list_t *dl = &spa->spa_config_dirty_list;
1074	vdev_t *vd;
1075	zio_t *zio;
1076	int error;
1077
1078	/*
1079	 * Write the new labels to disk.
1080	 */
1081	zio = zio_root(spa, NULL, NULL, flags);
1082
1083	for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) {
1084		uint64_t *good_writes = kmem_zalloc(sizeof (uint64_t),
1085		    KM_SLEEP);
1086
1087		ASSERT(!vd->vdev_ishole);
1088
1089		zio_t *vio = zio_null(zio, spa, NULL,
1090		    (vd->vdev_islog || vd->vdev_aux != NULL) ?
1091		    vdev_label_sync_ignore_done : vdev_label_sync_top_done,
1092		    good_writes, flags);
1093		vdev_label_sync(vio, vd, l, txg, flags);
1094		zio_nowait(vio);
1095	}
1096
1097	error = zio_wait(zio);
1098
1099	/*
1100	 * Flush the new labels to disk.
1101	 */
1102	zio = zio_root(spa, NULL, NULL, flags);
1103
1104	for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd))
1105		zio_flush(zio, vd);
1106
1107	(void) zio_wait(zio);
1108
1109	return (error);
1110}
1111
1112/*
1113 * Sync the uberblock and any changes to the vdev configuration.
1114 *
1115 * The order of operations is carefully crafted to ensure that
1116 * if the system panics or loses power at any time, the state on disk
1117 * is still transactionally consistent.  The in-line comments below
1118 * describe the failure semantics at each stage.
1119 *
1120 * Moreover, vdev_config_sync() is designed to be idempotent: if it fails
1121 * at any time, you can just call it again, and it will resume its work.
1122 */
1123int
1124vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg, boolean_t tryhard)
1125{
1126	spa_t *spa = svd[0]->vdev_spa;
1127	uberblock_t *ub = &spa->spa_uberblock;
1128	vdev_t *vd;
1129	zio_t *zio;
1130	int error;
1131	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
1132
1133	/*
1134	 * Normally, we don't want to try too hard to write every label and
1135	 * uberblock.  If there is a flaky disk, we don't want the rest of the
1136	 * sync process to block while we retry.  But if we can't write a
1137	 * single label out, we should retry with ZIO_FLAG_TRYHARD before
1138	 * bailing out and declaring the pool faulted.
1139	 */
1140	if (tryhard)
1141		flags |= ZIO_FLAG_TRYHARD;
1142
1143	ASSERT(ub->ub_txg <= txg);
1144
1145	/*
1146	 * If this isn't a resync due to I/O errors,
1147	 * and nothing changed in this transaction group,
1148	 * and the vdev configuration hasn't changed,
1149	 * then there's nothing to do.
1150	 */
1151	if (ub->ub_txg < txg &&
1152	    uberblock_update(ub, spa->spa_root_vdev, txg) == B_FALSE &&
1153	    list_is_empty(&spa->spa_config_dirty_list))
1154		return (0);
1155
1156	if (txg > spa_freeze_txg(spa))
1157		return (0);
1158
1159	ASSERT(txg <= spa->spa_final_txg);
1160
1161	/*
1162	 * Flush the write cache of every disk that's been written to
1163	 * in this transaction group.  This ensures that all blocks
1164	 * written in this txg will be committed to stable storage
1165	 * before any uberblock that references them.
1166	 */
1167	zio = zio_root(spa, NULL, NULL, flags);
1168
1169	for (vd = txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd;
1170	    vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)))
1171		zio_flush(zio, vd);
1172
1173	(void) zio_wait(zio);
1174
1175	/*
1176	 * Sync out the even labels (L0, L2) for every dirty vdev.  If the
1177	 * system dies in the middle of this process, that's OK: all of the
1178	 * even labels that made it to disk will be newer than any uberblock,
1179	 * and will therefore be considered invalid.  The odd labels (L1, L3),
1180	 * which have not yet been touched, will still be valid.  We flush
1181	 * the new labels to disk to ensure that all even-label updates
1182	 * are committed to stable storage before the uberblock update.
1183	 */
1184	if ((error = vdev_label_sync_list(spa, 0, txg, flags)) != 0)
1185		return (error);
1186
1187	/*
1188	 * Sync the uberblocks to all vdevs in svd[].
1189	 * If the system dies in the middle of this step, there are two cases
1190	 * to consider, and the on-disk state is consistent either way:
1191	 *
1192	 * (1)	If none of the new uberblocks made it to disk, then the
1193	 *	previous uberblock will be the newest, and the odd labels
1194	 *	(which had not yet been touched) will be valid with respect
1195	 *	to that uberblock.
1196	 *
1197	 * (2)	If one or more new uberblocks made it to disk, then they
1198	 *	will be the newest, and the even labels (which had all
1199	 *	been successfully committed) will be valid with respect
1200	 *	to the new uberblocks.
1201	 */
1202	if ((error = vdev_uberblock_sync_list(svd, svdcount, ub, flags)) != 0)
1203		return (error);
1204
1205	/*
1206	 * Sync out odd labels for every dirty vdev.  If the system dies
1207	 * in the middle of this process, the even labels and the new
1208	 * uberblocks will suffice to open the pool.  The next time
1209	 * the pool is opened, the first thing we'll do -- before any
1210	 * user data is modified -- is mark every vdev dirty so that
1211	 * all labels will be brought up to date.  We flush the new labels
1212	 * to disk to ensure that all odd-label updates are committed to
1213	 * stable storage before the next transaction group begins.
1214	 */
1215	return (vdev_label_sync_list(spa, 1, txg, flags));
1216}
1217