vdev.c revision 1986:628267397204
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25
26#pragma ident	"%Z%%M%	%I%	%E% SMI"
27
28#include <sys/zfs_context.h>
29#include <sys/fm/fs/zfs.h>
30#include <sys/spa.h>
31#include <sys/spa_impl.h>
32#include <sys/dmu.h>
33#include <sys/dmu_tx.h>
34#include <sys/vdev_impl.h>
35#include <sys/uberblock_impl.h>
36#include <sys/metaslab.h>
37#include <sys/metaslab_impl.h>
38#include <sys/space_map.h>
39#include <sys/zio.h>
40#include <sys/zap.h>
41#include <sys/fs/zfs.h>
42
43/*
44 * Virtual device management.
45 */
46
47static vdev_ops_t *vdev_ops_table[] = {
48	&vdev_root_ops,
49	&vdev_raidz_ops,
50	&vdev_mirror_ops,
51	&vdev_replacing_ops,
52	&vdev_disk_ops,
53	&vdev_file_ops,
54	&vdev_missing_ops,
55	NULL
56};
57
58/*
59 * Given a vdev type, return the appropriate ops vector.
60 */
61static vdev_ops_t *
62vdev_getops(const char *type)
63{
64	vdev_ops_t *ops, **opspp;
65
66	for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
67		if (strcmp(ops->vdev_op_type, type) == 0)
68			break;
69
70	return (ops);
71}
72
73/*
74 * Default asize function: return the MAX of psize with the asize of
75 * all children.  This is what's used by anything other than RAID-Z.
76 */
77uint64_t
78vdev_default_asize(vdev_t *vd, uint64_t psize)
79{
80	uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
81	uint64_t csize;
82	uint64_t c;
83
84	for (c = 0; c < vd->vdev_children; c++) {
85		csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
86		asize = MAX(asize, csize);
87	}
88
89	return (asize);
90}
91
92/*
93 * Get the replaceable or attachable device size.
94 * If the parent is a mirror or raidz, the replaceable size is the minimum
95 * psize of all its children. For the rest, just return our own psize.
96 *
97 * e.g.
98 *			psize	rsize
99 * root			-	-
100 *	mirror/raidz	-	-
101 *	    disk1	20g	20g
102 *	    disk2 	40g	20g
103 *	disk3 		80g	80g
104 */
105uint64_t
106vdev_get_rsize(vdev_t *vd)
107{
108	vdev_t *pvd, *cvd;
109	uint64_t c, rsize;
110
111	pvd = vd->vdev_parent;
112
113	/*
114	 * If our parent is NULL or the root, just return our own psize.
115	 */
116	if (pvd == NULL || pvd->vdev_parent == NULL)
117		return (vd->vdev_psize);
118
119	rsize = 0;
120
121	for (c = 0; c < pvd->vdev_children; c++) {
122		cvd = pvd->vdev_child[c];
123		rsize = MIN(rsize - 1, cvd->vdev_psize - 1) + 1;
124	}
125
126	return (rsize);
127}
128
129vdev_t *
130vdev_lookup_top(spa_t *spa, uint64_t vdev)
131{
132	vdev_t *rvd = spa->spa_root_vdev;
133
134	if (vdev < rvd->vdev_children)
135		return (rvd->vdev_child[vdev]);
136
137	return (NULL);
138}
139
140vdev_t *
141vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
142{
143	int c;
144	vdev_t *mvd;
145
146	if (vd->vdev_guid == guid)
147		return (vd);
148
149	for (c = 0; c < vd->vdev_children; c++)
150		if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
151		    NULL)
152			return (mvd);
153
154	return (NULL);
155}
156
157void
158vdev_add_child(vdev_t *pvd, vdev_t *cvd)
159{
160	size_t oldsize, newsize;
161	uint64_t id = cvd->vdev_id;
162	vdev_t **newchild;
163
164	ASSERT(spa_config_held(cvd->vdev_spa, RW_WRITER));
165	ASSERT(cvd->vdev_parent == NULL);
166
167	cvd->vdev_parent = pvd;
168
169	if (pvd == NULL)
170		return;
171
172	ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
173
174	oldsize = pvd->vdev_children * sizeof (vdev_t *);
175	pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
176	newsize = pvd->vdev_children * sizeof (vdev_t *);
177
178	newchild = kmem_zalloc(newsize, KM_SLEEP);
179	if (pvd->vdev_child != NULL) {
180		bcopy(pvd->vdev_child, newchild, oldsize);
181		kmem_free(pvd->vdev_child, oldsize);
182	}
183
184	pvd->vdev_child = newchild;
185	pvd->vdev_child[id] = cvd;
186
187	cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
188	ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
189
190	/*
191	 * Walk up all ancestors to update guid sum.
192	 */
193	for (; pvd != NULL; pvd = pvd->vdev_parent)
194		pvd->vdev_guid_sum += cvd->vdev_guid_sum;
195}
196
197void
198vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
199{
200	int c;
201	uint_t id = cvd->vdev_id;
202
203	ASSERT(cvd->vdev_parent == pvd);
204
205	if (pvd == NULL)
206		return;
207
208	ASSERT(id < pvd->vdev_children);
209	ASSERT(pvd->vdev_child[id] == cvd);
210
211	pvd->vdev_child[id] = NULL;
212	cvd->vdev_parent = NULL;
213
214	for (c = 0; c < pvd->vdev_children; c++)
215		if (pvd->vdev_child[c])
216			break;
217
218	if (c == pvd->vdev_children) {
219		kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
220		pvd->vdev_child = NULL;
221		pvd->vdev_children = 0;
222	}
223
224	/*
225	 * Walk up all ancestors to update guid sum.
226	 */
227	for (; pvd != NULL; pvd = pvd->vdev_parent)
228		pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
229}
230
231/*
232 * Remove any holes in the child array.
233 */
234void
235vdev_compact_children(vdev_t *pvd)
236{
237	vdev_t **newchild, *cvd;
238	int oldc = pvd->vdev_children;
239	int newc, c;
240
241	ASSERT(spa_config_held(pvd->vdev_spa, RW_WRITER));
242
243	for (c = newc = 0; c < oldc; c++)
244		if (pvd->vdev_child[c])
245			newc++;
246
247	newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
248
249	for (c = newc = 0; c < oldc; c++) {
250		if ((cvd = pvd->vdev_child[c]) != NULL) {
251			newchild[newc] = cvd;
252			cvd->vdev_id = newc++;
253		}
254	}
255
256	kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
257	pvd->vdev_child = newchild;
258	pvd->vdev_children = newc;
259}
260
261/*
262 * Allocate and minimally initialize a vdev_t.
263 */
264static vdev_t *
265vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
266{
267	vdev_t *vd;
268
269	vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
270
271	if (spa->spa_root_vdev == NULL) {
272		ASSERT(ops == &vdev_root_ops);
273		spa->spa_root_vdev = vd;
274	}
275
276	if (guid == 0) {
277		if (spa->spa_root_vdev == vd) {
278			/*
279			 * The root vdev's guid will also be the pool guid,
280			 * which must be unique among all pools.
281			 */
282			while (guid == 0 || spa_guid_exists(guid, 0))
283				guid = spa_get_random(-1ULL);
284		} else {
285			/*
286			 * Any other vdev's guid must be unique within the pool.
287			 */
288			while (guid == 0 ||
289			    spa_guid_exists(spa_guid(spa), guid))
290				guid = spa_get_random(-1ULL);
291		}
292		ASSERT(!spa_guid_exists(spa_guid(spa), guid));
293	}
294
295	vd->vdev_spa = spa;
296	vd->vdev_id = id;
297	vd->vdev_guid = guid;
298	vd->vdev_guid_sum = guid;
299	vd->vdev_ops = ops;
300	vd->vdev_state = VDEV_STATE_CLOSED;
301
302	mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
303	space_map_create(&vd->vdev_dtl_map, 0, -1ULL, 0, &vd->vdev_dtl_lock);
304	space_map_create(&vd->vdev_dtl_scrub, 0, -1ULL, 0, &vd->vdev_dtl_lock);
305	txg_list_create(&vd->vdev_ms_list,
306	    offsetof(struct metaslab, ms_txg_node));
307	txg_list_create(&vd->vdev_dtl_list,
308	    offsetof(struct vdev, vdev_dtl_node));
309	vd->vdev_stat.vs_timestamp = gethrtime();
310
311	return (vd);
312}
313
314/*
315 * Free a vdev_t that has been removed from service.
316 */
317static void
318vdev_free_common(vdev_t *vd)
319{
320	spa_t *spa = vd->vdev_spa;
321
322	if (vd->vdev_path)
323		spa_strfree(vd->vdev_path);
324	if (vd->vdev_devid)
325		spa_strfree(vd->vdev_devid);
326
327	txg_list_destroy(&vd->vdev_ms_list);
328	txg_list_destroy(&vd->vdev_dtl_list);
329	mutex_enter(&vd->vdev_dtl_lock);
330	space_map_unload(&vd->vdev_dtl_map);
331	space_map_destroy(&vd->vdev_dtl_map);
332	space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL);
333	space_map_destroy(&vd->vdev_dtl_scrub);
334	mutex_exit(&vd->vdev_dtl_lock);
335	mutex_destroy(&vd->vdev_dtl_lock);
336
337	if (vd == spa->spa_root_vdev)
338		spa->spa_root_vdev = NULL;
339
340	kmem_free(vd, sizeof (vdev_t));
341}
342
343/*
344 * Allocate a new vdev.  The 'alloctype' is used to control whether we are
345 * creating a new vdev or loading an existing one - the behavior is slightly
346 * different for each case.
347 */
348vdev_t *
349vdev_alloc(spa_t *spa, nvlist_t *nv, vdev_t *parent, uint_t id, int alloctype)
350{
351	vdev_ops_t *ops;
352	char *type;
353	uint64_t guid = 0;
354	vdev_t *vd;
355
356	ASSERT(spa_config_held(spa, RW_WRITER));
357
358	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
359		return (NULL);
360
361	if ((ops = vdev_getops(type)) == NULL)
362		return (NULL);
363
364	/*
365	 * If this is a load, get the vdev guid from the nvlist.
366	 * Otherwise, vdev_alloc_common() will generate one for us.
367	 */
368	if (alloctype == VDEV_ALLOC_LOAD) {
369		uint64_t label_id;
370
371		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
372		    label_id != id)
373			return (NULL);
374
375		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
376			return (NULL);
377	}
378
379	vd = vdev_alloc_common(spa, id, guid, ops);
380
381	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
382		vd->vdev_path = spa_strdup(vd->vdev_path);
383	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
384		vd->vdev_devid = spa_strdup(vd->vdev_devid);
385
386	/*
387	 * Set the whole_disk property.  If it's not specified, leave the value
388	 * as -1.
389	 */
390	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
391	    &vd->vdev_wholedisk) != 0)
392		vd->vdev_wholedisk = -1ULL;
393
394	/*
395	 * Look for the 'not present' flag.  This will only be set if the device
396	 * was not present at the time of import.
397	 */
398	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
399	    &vd->vdev_not_present);
400
401	/*
402	 * Get the alignment requirement.
403	 */
404	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
405
406	/*
407	 * If we're a top-level vdev, try to load the allocation parameters.
408	 */
409	if (parent && !parent->vdev_parent && alloctype == VDEV_ALLOC_LOAD) {
410		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
411		    &vd->vdev_ms_array);
412		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
413		    &vd->vdev_ms_shift);
414		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
415		    &vd->vdev_asize);
416	}
417
418	/*
419	 * If we're a leaf vdev, try to load the DTL object and offline state.
420	 */
421	if (vd->vdev_ops->vdev_op_leaf && alloctype == VDEV_ALLOC_LOAD) {
422		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
423		    &vd->vdev_dtl.smo_object);
424		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
425		    &vd->vdev_offline);
426	}
427
428	/*
429	 * Add ourselves to the parent's list of children.
430	 */
431	vdev_add_child(parent, vd);
432
433	return (vd);
434}
435
436void
437vdev_free(vdev_t *vd)
438{
439	int c;
440
441	/*
442	 * vdev_free() implies closing the vdev first.  This is simpler than
443	 * trying to ensure complicated semantics for all callers.
444	 */
445	vdev_close(vd);
446
447	ASSERT(!list_link_active(&vd->vdev_dirty_node));
448
449	/*
450	 * Free all children.
451	 */
452	for (c = 0; c < vd->vdev_children; c++)
453		vdev_free(vd->vdev_child[c]);
454
455	ASSERT(vd->vdev_child == NULL);
456	ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
457
458	/*
459	 * Discard allocation state.
460	 */
461	if (vd == vd->vdev_top)
462		vdev_metaslab_fini(vd);
463
464	ASSERT3U(vd->vdev_stat.vs_space, ==, 0);
465	ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0);
466
467	/*
468	 * Remove this vdev from its parent's child list.
469	 */
470	vdev_remove_child(vd->vdev_parent, vd);
471
472	ASSERT(vd->vdev_parent == NULL);
473
474	vdev_free_common(vd);
475}
476
477/*
478 * Transfer top-level vdev state from svd to tvd.
479 */
480static void
481vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
482{
483	spa_t *spa = svd->vdev_spa;
484	metaslab_t *msp;
485	vdev_t *vd;
486	int t;
487
488	ASSERT(tvd == tvd->vdev_top);
489
490	tvd->vdev_ms_array = svd->vdev_ms_array;
491	tvd->vdev_ms_shift = svd->vdev_ms_shift;
492	tvd->vdev_ms_count = svd->vdev_ms_count;
493
494	svd->vdev_ms_array = 0;
495	svd->vdev_ms_shift = 0;
496	svd->vdev_ms_count = 0;
497
498	tvd->vdev_mg = svd->vdev_mg;
499	tvd->vdev_ms = svd->vdev_ms;
500
501	svd->vdev_mg = NULL;
502	svd->vdev_ms = NULL;
503
504	if (tvd->vdev_mg != NULL)
505		tvd->vdev_mg->mg_vd = tvd;
506
507	tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
508	tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
509
510	svd->vdev_stat.vs_alloc = 0;
511	svd->vdev_stat.vs_space = 0;
512
513	for (t = 0; t < TXG_SIZE; t++) {
514		while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
515			(void) txg_list_add(&tvd->vdev_ms_list, msp, t);
516		while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
517			(void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
518		if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
519			(void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
520	}
521
522	if (list_link_active(&svd->vdev_dirty_node)) {
523		vdev_config_clean(svd);
524		vdev_config_dirty(tvd);
525	}
526
527	tvd->vdev_reopen_wanted = svd->vdev_reopen_wanted;
528	svd->vdev_reopen_wanted = 0;
529}
530
531static void
532vdev_top_update(vdev_t *tvd, vdev_t *vd)
533{
534	int c;
535
536	if (vd == NULL)
537		return;
538
539	vd->vdev_top = tvd;
540
541	for (c = 0; c < vd->vdev_children; c++)
542		vdev_top_update(tvd, vd->vdev_child[c]);
543}
544
545/*
546 * Add a mirror/replacing vdev above an existing vdev.
547 */
548vdev_t *
549vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
550{
551	spa_t *spa = cvd->vdev_spa;
552	vdev_t *pvd = cvd->vdev_parent;
553	vdev_t *mvd;
554
555	ASSERT(spa_config_held(spa, RW_WRITER));
556
557	mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
558
559	mvd->vdev_asize = cvd->vdev_asize;
560	mvd->vdev_ashift = cvd->vdev_ashift;
561	mvd->vdev_state = cvd->vdev_state;
562
563	vdev_remove_child(pvd, cvd);
564	vdev_add_child(pvd, mvd);
565	cvd->vdev_id = mvd->vdev_children;
566	vdev_add_child(mvd, cvd);
567	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
568
569	if (mvd == mvd->vdev_top)
570		vdev_top_transfer(cvd, mvd);
571
572	return (mvd);
573}
574
575/*
576 * Remove a 1-way mirror/replacing vdev from the tree.
577 */
578void
579vdev_remove_parent(vdev_t *cvd)
580{
581	vdev_t *mvd = cvd->vdev_parent;
582	vdev_t *pvd = mvd->vdev_parent;
583
584	ASSERT(spa_config_held(cvd->vdev_spa, RW_WRITER));
585
586	ASSERT(mvd->vdev_children == 1);
587	ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
588	    mvd->vdev_ops == &vdev_replacing_ops);
589	cvd->vdev_ashift = mvd->vdev_ashift;
590
591	vdev_remove_child(mvd, cvd);
592	vdev_remove_child(pvd, mvd);
593	cvd->vdev_id = mvd->vdev_id;
594	vdev_add_child(pvd, cvd);
595	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
596
597	if (cvd == cvd->vdev_top)
598		vdev_top_transfer(mvd, cvd);
599
600	ASSERT(mvd->vdev_children == 0);
601	vdev_free(mvd);
602}
603
604int
605vdev_metaslab_init(vdev_t *vd, uint64_t txg)
606{
607	spa_t *spa = vd->vdev_spa;
608	objset_t *mos = spa->spa_meta_objset;
609	metaslab_class_t *mc = spa_metaslab_class_select(spa);
610	uint64_t m;
611	uint64_t oldc = vd->vdev_ms_count;
612	uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
613	metaslab_t **mspp;
614	int error;
615
616	if (vd->vdev_ms_shift == 0)	/* not being allocated from yet */
617		return (0);
618
619	dprintf("%s oldc %llu newc %llu\n", vdev_description(vd), oldc, newc);
620
621	ASSERT(oldc <= newc);
622
623	if (vd->vdev_mg == NULL)
624		vd->vdev_mg = metaslab_group_create(mc, vd);
625
626	mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
627
628	if (oldc != 0) {
629		bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
630		kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
631	}
632
633	vd->vdev_ms = mspp;
634	vd->vdev_ms_count = newc;
635
636	for (m = oldc; m < newc; m++) {
637		space_map_obj_t smo = { 0, 0, 0 };
638		if (txg == 0) {
639			uint64_t object = 0;
640			error = dmu_read(mos, vd->vdev_ms_array,
641			    m * sizeof (uint64_t), sizeof (uint64_t), &object);
642			if (error)
643				return (error);
644			if (object != 0) {
645				dmu_buf_t *db;
646				error = dmu_bonus_hold(mos, object, FTAG, &db);
647				if (error)
648					return (error);
649				ASSERT3U(db->db_size, ==, sizeof (smo));
650				bcopy(db->db_data, &smo, db->db_size);
651				ASSERT3U(smo.smo_object, ==, object);
652				dmu_buf_rele(db, FTAG);
653			}
654		}
655		vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo,
656		    m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg);
657	}
658
659	return (0);
660}
661
662void
663vdev_metaslab_fini(vdev_t *vd)
664{
665	uint64_t m;
666	uint64_t count = vd->vdev_ms_count;
667
668	if (vd->vdev_ms != NULL) {
669		for (m = 0; m < count; m++)
670			if (vd->vdev_ms[m] != NULL)
671				metaslab_fini(vd->vdev_ms[m]);
672		kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
673		vd->vdev_ms = NULL;
674	}
675}
676
677/*
678 * Prepare a virtual device for access.
679 */
680int
681vdev_open(vdev_t *vd)
682{
683	int error;
684	vdev_knob_t *vk;
685	int c;
686	uint64_t osize = 0;
687	uint64_t asize, psize;
688	uint64_t ashift = 0;
689
690	ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
691	    vd->vdev_state == VDEV_STATE_CANT_OPEN ||
692	    vd->vdev_state == VDEV_STATE_OFFLINE);
693
694	if (vd->vdev_fault_mode == VDEV_FAULT_COUNT)
695		vd->vdev_fault_arg >>= 1;
696	else
697		vd->vdev_fault_mode = VDEV_FAULT_NONE;
698
699	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
700
701	for (vk = vdev_knob_next(NULL); vk != NULL; vk = vdev_knob_next(vk)) {
702		uint64_t *valp = (uint64_t *)((char *)vd + vk->vk_offset);
703
704		*valp = vk->vk_default;
705		*valp = MAX(*valp, vk->vk_min);
706		*valp = MIN(*valp, vk->vk_max);
707	}
708
709	if (vd->vdev_ops->vdev_op_leaf) {
710		vdev_cache_init(vd);
711		vdev_queue_init(vd);
712		vd->vdev_cache_active = B_TRUE;
713	}
714
715	if (vd->vdev_offline) {
716		ASSERT(vd->vdev_children == 0);
717		vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
718		return (ENXIO);
719	}
720
721	error = vd->vdev_ops->vdev_op_open(vd, &osize, &ashift);
722
723	if (zio_injection_enabled && error == 0)
724		error = zio_handle_device_injection(vd, ENXIO);
725
726	dprintf("%s = %d, osize %llu, state = %d\n",
727	    vdev_description(vd), error, osize, vd->vdev_state);
728
729	if (error) {
730		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
731		    vd->vdev_stat.vs_aux);
732		return (error);
733	}
734
735	vd->vdev_state = VDEV_STATE_HEALTHY;
736
737	for (c = 0; c < vd->vdev_children; c++)
738		if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
739			vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
740			    VDEV_AUX_NONE);
741			break;
742		}
743
744	osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
745
746	if (vd->vdev_children == 0) {
747		if (osize < SPA_MINDEVSIZE) {
748			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
749			    VDEV_AUX_TOO_SMALL);
750			return (EOVERFLOW);
751		}
752		psize = osize;
753		asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
754	} else {
755		if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
756		    (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
757			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
758			    VDEV_AUX_TOO_SMALL);
759			return (EOVERFLOW);
760		}
761		psize = 0;
762		asize = osize;
763	}
764
765	vd->vdev_psize = psize;
766
767	if (vd->vdev_asize == 0) {
768		/*
769		 * This is the first-ever open, so use the computed values.
770		 * For testing purposes, a higher ashift can be requested.
771		 */
772		vd->vdev_asize = asize;
773		vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
774	} else {
775		/*
776		 * Make sure the alignment requirement hasn't increased.
777		 */
778		if (ashift > vd->vdev_top->vdev_ashift) {
779			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
780			    VDEV_AUX_BAD_LABEL);
781			return (EINVAL);
782		}
783
784		/*
785		 * Make sure the device hasn't shrunk.
786		 */
787		if (asize < vd->vdev_asize) {
788			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
789			    VDEV_AUX_BAD_LABEL);
790			return (EINVAL);
791		}
792
793		/*
794		 * If all children are healthy and the asize has increased,
795		 * then we've experienced dynamic LUN growth.
796		 */
797		if (vd->vdev_state == VDEV_STATE_HEALTHY &&
798		    asize > vd->vdev_asize) {
799			vd->vdev_asize = asize;
800		}
801	}
802
803	/*
804	 * This allows the ZFS DE to close cases appropriately.  If a device
805	 * goes away and later returns, we want to close the associated case.
806	 * But it's not enough to simply post this only when a device goes from
807	 * CANT_OPEN -> HEALTHY.  If we reboot the system and the device is
808	 * back, we also need to close the case (otherwise we will try to replay
809	 * it).  So we have to post this notifier every time.  Since this only
810	 * occurs during pool open or error recovery, this should not be an
811	 * issue.
812	 */
813	zfs_post_ok(vd->vdev_spa, vd);
814
815	return (0);
816}
817
818/*
819 * Called once the vdevs are all opened, this routine validates the label
820 * contents.  This needs to be done before vdev_load() so that we don't
821 * inadvertently do repair I/Os to the wrong device, and so that vdev_reopen()
822 * won't succeed if the device has been changed underneath.
823 *
824 * This function will only return failure if one of the vdevs indicates that it
825 * has since been destroyed or exported.  This is only possible if
826 * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
827 * will be updated but the function will return 0.
828 */
829int
830vdev_validate(vdev_t *vd)
831{
832	spa_t *spa = vd->vdev_spa;
833	int c;
834	nvlist_t *label;
835	uint64_t guid;
836	uint64_t state;
837
838	for (c = 0; c < vd->vdev_children; c++)
839		if (vdev_validate(vd->vdev_child[c]) != 0)
840			return (-1);
841
842	if (vd->vdev_ops->vdev_op_leaf) {
843
844		if ((label = vdev_label_read_config(vd)) == NULL) {
845			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
846			    VDEV_AUX_BAD_LABEL);
847			return (0);
848		}
849
850		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
851		    &guid) != 0 || guid != spa_guid(spa)) {
852			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
853			    VDEV_AUX_CORRUPT_DATA);
854			nvlist_free(label);
855			return (0);
856		}
857
858		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
859		    &guid) != 0 || guid != vd->vdev_guid) {
860			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
861			    VDEV_AUX_CORRUPT_DATA);
862			nvlist_free(label);
863			return (0);
864		}
865
866		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
867		    &state) != 0) {
868			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
869			    VDEV_AUX_CORRUPT_DATA);
870			nvlist_free(label);
871			return (0);
872		}
873
874		nvlist_free(label);
875
876		if (spa->spa_load_state == SPA_LOAD_OPEN &&
877		    state != POOL_STATE_ACTIVE)
878			return (-1);
879	}
880
881	/*
882	 * If we were able to open and validate a vdev that was previously
883	 * marked permanently unavailable, clear that state now.
884	 */
885	if (vd->vdev_not_present)
886		vd->vdev_not_present = 0;
887
888	return (0);
889}
890
891/*
892 * Close a virtual device.
893 */
894void
895vdev_close(vdev_t *vd)
896{
897	vd->vdev_ops->vdev_op_close(vd);
898
899	if (vd->vdev_cache_active) {
900		vdev_cache_fini(vd);
901		vdev_queue_fini(vd);
902		vd->vdev_cache_active = B_FALSE;
903	}
904
905	/*
906	 * We record the previous state before we close it, so  that if we are
907	 * doing a reopen(), we don't generate FMA ereports if we notice that
908	 * it's still faulted.
909	 */
910	vd->vdev_prevstate = vd->vdev_state;
911
912	if (vd->vdev_offline)
913		vd->vdev_state = VDEV_STATE_OFFLINE;
914	else
915		vd->vdev_state = VDEV_STATE_CLOSED;
916	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
917}
918
919void
920vdev_reopen(vdev_t *vd)
921{
922	spa_t *spa = vd->vdev_spa;
923
924	ASSERT(spa_config_held(spa, RW_WRITER));
925
926	vdev_close(vd);
927	(void) vdev_open(vd);
928
929	/*
930	 * Reassess root vdev's health.
931	 */
932	vdev_propagate_state(spa->spa_root_vdev);
933}
934
935int
936vdev_create(vdev_t *vd, uint64_t txg)
937{
938	int error;
939
940	/*
941	 * Normally, partial opens (e.g. of a mirror) are allowed.
942	 * For a create, however, we want to fail the request if
943	 * there are any components we can't open.
944	 */
945	error = vdev_open(vd);
946
947	if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
948		vdev_close(vd);
949		return (error ? error : ENXIO);
950	}
951
952	/*
953	 * Recursively initialize all labels.
954	 */
955	if ((error = vdev_label_init(vd, txg)) != 0) {
956		vdev_close(vd);
957		return (error);
958	}
959
960	return (0);
961}
962
963/*
964 * The is the latter half of vdev_create().  It is distinct because it
965 * involves initiating transactions in order to do metaslab creation.
966 * For creation, we want to try to create all vdevs at once and then undo it
967 * if anything fails; this is much harder if we have pending transactions.
968 */
969void
970vdev_init(vdev_t *vd, uint64_t txg)
971{
972	/*
973	 * Aim for roughly 200 metaslabs per vdev.
974	 */
975	vd->vdev_ms_shift = highbit(vd->vdev_asize / 200);
976	vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
977
978	/*
979	 * Initialize the vdev's metaslabs.  This can't fail because
980	 * there's nothing to read when creating all new metaslabs.
981	 */
982	VERIFY(vdev_metaslab_init(vd, txg) == 0);
983}
984
985void
986vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
987{
988	ASSERT(vd == vd->vdev_top);
989	ASSERT(ISP2(flags));
990
991	if (flags & VDD_METASLAB)
992		(void) txg_list_add(&vd->vdev_ms_list, arg, txg);
993
994	if (flags & VDD_DTL)
995		(void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
996
997	(void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
998}
999
1000void
1001vdev_dtl_dirty(space_map_t *sm, uint64_t txg, uint64_t size)
1002{
1003	mutex_enter(sm->sm_lock);
1004	if (!space_map_contains(sm, txg, size))
1005		space_map_add(sm, txg, size);
1006	mutex_exit(sm->sm_lock);
1007}
1008
1009int
1010vdev_dtl_contains(space_map_t *sm, uint64_t txg, uint64_t size)
1011{
1012	int dirty;
1013
1014	/*
1015	 * Quick test without the lock -- covers the common case that
1016	 * there are no dirty time segments.
1017	 */
1018	if (sm->sm_space == 0)
1019		return (0);
1020
1021	mutex_enter(sm->sm_lock);
1022	dirty = space_map_contains(sm, txg, size);
1023	mutex_exit(sm->sm_lock);
1024
1025	return (dirty);
1026}
1027
1028/*
1029 * Reassess DTLs after a config change or scrub completion.
1030 */
1031void
1032vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1033{
1034	spa_t *spa = vd->vdev_spa;
1035	int c;
1036
1037	ASSERT(spa_config_held(spa, RW_WRITER));
1038
1039	if (vd->vdev_children == 0) {
1040		mutex_enter(&vd->vdev_dtl_lock);
1041		/*
1042		 * We're successfully scrubbed everything up to scrub_txg.
1043		 * Therefore, excise all old DTLs up to that point, then
1044		 * fold in the DTLs for everything we couldn't scrub.
1045		 */
1046		if (scrub_txg != 0) {
1047			space_map_excise(&vd->vdev_dtl_map, 0, scrub_txg);
1048			space_map_union(&vd->vdev_dtl_map, &vd->vdev_dtl_scrub);
1049		}
1050		if (scrub_done)
1051			space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL);
1052		mutex_exit(&vd->vdev_dtl_lock);
1053		if (txg != 0)
1054			vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1055		return;
1056	}
1057
1058	/*
1059	 * Make sure the DTLs are always correct under the scrub lock.
1060	 */
1061	if (vd == spa->spa_root_vdev)
1062		mutex_enter(&spa->spa_scrub_lock);
1063
1064	mutex_enter(&vd->vdev_dtl_lock);
1065	space_map_vacate(&vd->vdev_dtl_map, NULL, NULL);
1066	space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL);
1067	mutex_exit(&vd->vdev_dtl_lock);
1068
1069	for (c = 0; c < vd->vdev_children; c++) {
1070		vdev_t *cvd = vd->vdev_child[c];
1071		vdev_dtl_reassess(cvd, txg, scrub_txg, scrub_done);
1072		mutex_enter(&vd->vdev_dtl_lock);
1073		space_map_union(&vd->vdev_dtl_map, &cvd->vdev_dtl_map);
1074		space_map_union(&vd->vdev_dtl_scrub, &cvd->vdev_dtl_scrub);
1075		mutex_exit(&vd->vdev_dtl_lock);
1076	}
1077
1078	if (vd == spa->spa_root_vdev)
1079		mutex_exit(&spa->spa_scrub_lock);
1080}
1081
1082static int
1083vdev_dtl_load(vdev_t *vd)
1084{
1085	spa_t *spa = vd->vdev_spa;
1086	space_map_obj_t *smo = &vd->vdev_dtl;
1087	objset_t *mos = spa->spa_meta_objset;
1088	dmu_buf_t *db;
1089	int error;
1090
1091	ASSERT(vd->vdev_children == 0);
1092
1093	if (smo->smo_object == 0)
1094		return (0);
1095
1096	if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0)
1097		return (error);
1098
1099	ASSERT3U(db->db_size, ==, sizeof (*smo));
1100	bcopy(db->db_data, smo, db->db_size);
1101	dmu_buf_rele(db, FTAG);
1102
1103	mutex_enter(&vd->vdev_dtl_lock);
1104	error = space_map_load(&vd->vdev_dtl_map, NULL, SM_ALLOC, smo, mos);
1105	mutex_exit(&vd->vdev_dtl_lock);
1106
1107	return (error);
1108}
1109
1110void
1111vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1112{
1113	spa_t *spa = vd->vdev_spa;
1114	space_map_obj_t *smo = &vd->vdev_dtl;
1115	space_map_t *sm = &vd->vdev_dtl_map;
1116	objset_t *mos = spa->spa_meta_objset;
1117	space_map_t smsync;
1118	kmutex_t smlock;
1119	dmu_buf_t *db;
1120	dmu_tx_t *tx;
1121
1122	dprintf("%s in txg %llu pass %d\n",
1123	    vdev_description(vd), (u_longlong_t)txg, spa_sync_pass(spa));
1124
1125	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1126
1127	if (vd->vdev_detached) {
1128		if (smo->smo_object != 0) {
1129			int err = dmu_object_free(mos, smo->smo_object, tx);
1130			ASSERT3U(err, ==, 0);
1131			smo->smo_object = 0;
1132		}
1133		dmu_tx_commit(tx);
1134		dprintf("detach %s committed in txg %llu\n",
1135		    vdev_description(vd), txg);
1136		return;
1137	}
1138
1139	if (smo->smo_object == 0) {
1140		ASSERT(smo->smo_objsize == 0);
1141		ASSERT(smo->smo_alloc == 0);
1142		smo->smo_object = dmu_object_alloc(mos,
1143		    DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
1144		    DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
1145		ASSERT(smo->smo_object != 0);
1146		vdev_config_dirty(vd->vdev_top);
1147	}
1148
1149	mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL);
1150
1151	space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift,
1152	    &smlock);
1153
1154	mutex_enter(&smlock);
1155
1156	mutex_enter(&vd->vdev_dtl_lock);
1157	space_map_walk(sm, space_map_add, &smsync);
1158	mutex_exit(&vd->vdev_dtl_lock);
1159
1160	space_map_truncate(smo, mos, tx);
1161	space_map_sync(&smsync, SM_ALLOC, smo, mos, tx);
1162
1163	space_map_destroy(&smsync);
1164
1165	mutex_exit(&smlock);
1166	mutex_destroy(&smlock);
1167
1168	VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
1169	dmu_buf_will_dirty(db, tx);
1170	ASSERT3U(db->db_size, ==, sizeof (*smo));
1171	bcopy(smo, db->db_data, db->db_size);
1172	dmu_buf_rele(db, FTAG);
1173
1174	dmu_tx_commit(tx);
1175}
1176
1177void
1178vdev_load(vdev_t *vd)
1179{
1180	int c;
1181
1182	/*
1183	 * Recursively load all children.
1184	 */
1185	for (c = 0; c < vd->vdev_children; c++)
1186		vdev_load(vd->vdev_child[c]);
1187
1188	/*
1189	 * If this is a top-level vdev, initialize its metaslabs.
1190	 */
1191	if (vd == vd->vdev_top &&
1192	    (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
1193	    vdev_metaslab_init(vd, 0) != 0))
1194		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1195		    VDEV_AUX_CORRUPT_DATA);
1196
1197	/*
1198	 * If this is a leaf vdev, load its DTL.
1199	 */
1200	if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
1201		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1202		    VDEV_AUX_CORRUPT_DATA);
1203}
1204
1205void
1206vdev_sync_done(vdev_t *vd, uint64_t txg)
1207{
1208	metaslab_t *msp;
1209
1210	dprintf("%s txg %llu\n", vdev_description(vd), txg);
1211
1212	while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
1213		metaslab_sync_done(msp, txg);
1214}
1215
1216void
1217vdev_sync(vdev_t *vd, uint64_t txg)
1218{
1219	spa_t *spa = vd->vdev_spa;
1220	vdev_t *lvd;
1221	metaslab_t *msp;
1222	dmu_tx_t *tx;
1223
1224	dprintf("%s txg %llu pass %d\n",
1225	    vdev_description(vd), (u_longlong_t)txg, spa_sync_pass(spa));
1226
1227	if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
1228		ASSERT(vd == vd->vdev_top);
1229		tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1230		vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
1231		    DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
1232		ASSERT(vd->vdev_ms_array != 0);
1233		vdev_config_dirty(vd);
1234		dmu_tx_commit(tx);
1235	}
1236
1237	while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
1238		metaslab_sync(msp, txg);
1239		(void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
1240	}
1241
1242	while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
1243		vdev_dtl_sync(lvd, txg);
1244
1245	(void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
1246}
1247
1248uint64_t
1249vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
1250{
1251	return (vd->vdev_ops->vdev_op_asize(vd, psize));
1252}
1253
1254void
1255vdev_io_start(zio_t *zio)
1256{
1257	zio->io_vd->vdev_ops->vdev_op_io_start(zio);
1258}
1259
1260void
1261vdev_io_done(zio_t *zio)
1262{
1263	zio->io_vd->vdev_ops->vdev_op_io_done(zio);
1264}
1265
1266const char *
1267vdev_description(vdev_t *vd)
1268{
1269	if (vd == NULL || vd->vdev_ops == NULL)
1270		return ("<unknown>");
1271
1272	if (vd->vdev_path != NULL)
1273		return (vd->vdev_path);
1274
1275	if (vd->vdev_parent == NULL)
1276		return (spa_name(vd->vdev_spa));
1277
1278	return (vd->vdev_ops->vdev_op_type);
1279}
1280
1281int
1282vdev_online(spa_t *spa, uint64_t guid)
1283{
1284	vdev_t *rvd, *vd;
1285	uint64_t txg;
1286
1287	txg = spa_vdev_enter(spa);
1288
1289	rvd = spa->spa_root_vdev;
1290
1291	if ((vd = vdev_lookup_by_guid(rvd, guid)) == NULL)
1292		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
1293
1294	if (!vd->vdev_ops->vdev_op_leaf)
1295		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1296
1297	dprintf("ONLINE: %s\n", vdev_description(vd));
1298
1299	vd->vdev_offline = B_FALSE;
1300	vd->vdev_tmpoffline = B_FALSE;
1301	vdev_reopen(vd->vdev_top);
1302
1303	vdev_config_dirty(vd->vdev_top);
1304
1305	(void) spa_vdev_exit(spa, NULL, txg, 0);
1306
1307	VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
1308
1309	return (0);
1310}
1311
1312int
1313vdev_offline(spa_t *spa, uint64_t guid, int istmp)
1314{
1315	vdev_t *rvd, *vd;
1316	uint64_t txg;
1317
1318	txg = spa_vdev_enter(spa);
1319
1320	rvd = spa->spa_root_vdev;
1321
1322	if ((vd = vdev_lookup_by_guid(rvd, guid)) == NULL)
1323		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
1324
1325	if (!vd->vdev_ops->vdev_op_leaf)
1326		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1327
1328	dprintf("OFFLINE: %s\n", vdev_description(vd));
1329
1330	/*
1331	 * If the device isn't already offline, try to offline it.
1332	 */
1333	if (!vd->vdev_offline) {
1334		/*
1335		 * If this device's top-level vdev has a non-empty DTL,
1336		 * don't allow the device to be offlined.
1337		 *
1338		 * XXX -- make this more precise by allowing the offline
1339		 * as long as the remaining devices don't have any DTL holes.
1340		 */
1341		if (vd->vdev_top->vdev_dtl_map.sm_space != 0)
1342			return (spa_vdev_exit(spa, NULL, txg, EBUSY));
1343
1344		/*
1345		 * Offline this device and reopen its top-level vdev.
1346		 * If this action results in the top-level vdev becoming
1347		 * unusable, undo it and fail the request.
1348		 */
1349		vd->vdev_offline = B_TRUE;
1350		vdev_reopen(vd->vdev_top);
1351		if (vdev_is_dead(vd->vdev_top)) {
1352			vd->vdev_offline = B_FALSE;
1353			vdev_reopen(vd->vdev_top);
1354			return (spa_vdev_exit(spa, NULL, txg, EBUSY));
1355		}
1356	}
1357
1358	vd->vdev_tmpoffline = istmp;
1359
1360	vdev_config_dirty(vd->vdev_top);
1361
1362	return (spa_vdev_exit(spa, NULL, txg, 0));
1363}
1364
1365/*
1366 * Clear the error counts associated with this vdev.  Unlike vdev_online() and
1367 * vdev_offline(), we assume the spa config is locked.  We also clear all
1368 * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
1369 */
1370void
1371vdev_clear(spa_t *spa, vdev_t *vd)
1372{
1373	int c;
1374
1375	if (vd == NULL)
1376		vd = spa->spa_root_vdev;
1377
1378	vd->vdev_stat.vs_read_errors = 0;
1379	vd->vdev_stat.vs_write_errors = 0;
1380	vd->vdev_stat.vs_checksum_errors = 0;
1381
1382	for (c = 0; c < vd->vdev_children; c++)
1383		vdev_clear(spa, vd->vdev_child[c]);
1384}
1385
1386int
1387vdev_is_dead(vdev_t *vd)
1388{
1389	return (vd->vdev_state <= VDEV_STATE_CANT_OPEN);
1390}
1391
1392int
1393vdev_error_inject(vdev_t *vd, zio_t *zio)
1394{
1395	int error = 0;
1396
1397	if (vd->vdev_fault_mode == VDEV_FAULT_NONE)
1398		return (0);
1399
1400	if (((1ULL << zio->io_type) & vd->vdev_fault_mask) == 0)
1401		return (0);
1402
1403	switch (vd->vdev_fault_mode) {
1404	case VDEV_FAULT_RANDOM:
1405		if (spa_get_random(vd->vdev_fault_arg) == 0)
1406			error = EIO;
1407		break;
1408
1409	case VDEV_FAULT_COUNT:
1410		if ((int64_t)--vd->vdev_fault_arg <= 0)
1411			vd->vdev_fault_mode = VDEV_FAULT_NONE;
1412		error = EIO;
1413		break;
1414	}
1415
1416	if (error != 0) {
1417		dprintf("returning %d for type %d on %s state %d offset %llx\n",
1418		    error, zio->io_type, vdev_description(vd),
1419		    vd->vdev_state, zio->io_offset);
1420	}
1421
1422	return (error);
1423}
1424
1425/*
1426 * Get statistics for the given vdev.
1427 */
1428void
1429vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
1430{
1431	vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
1432	int c, t;
1433
1434	mutex_enter(&vd->vdev_stat_lock);
1435	bcopy(&vd->vdev_stat, vs, sizeof (*vs));
1436	vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
1437	vs->vs_state = vd->vdev_state;
1438	vs->vs_rsize = vdev_get_rsize(vd);
1439	mutex_exit(&vd->vdev_stat_lock);
1440
1441	/*
1442	 * If we're getting stats on the root vdev, aggregate the I/O counts
1443	 * over all top-level vdevs (i.e. the direct children of the root).
1444	 */
1445	if (vd == rvd) {
1446		for (c = 0; c < rvd->vdev_children; c++) {
1447			vdev_t *cvd = rvd->vdev_child[c];
1448			vdev_stat_t *cvs = &cvd->vdev_stat;
1449
1450			mutex_enter(&vd->vdev_stat_lock);
1451			for (t = 0; t < ZIO_TYPES; t++) {
1452				vs->vs_ops[t] += cvs->vs_ops[t];
1453				vs->vs_bytes[t] += cvs->vs_bytes[t];
1454			}
1455			vs->vs_read_errors += cvs->vs_read_errors;
1456			vs->vs_write_errors += cvs->vs_write_errors;
1457			vs->vs_checksum_errors += cvs->vs_checksum_errors;
1458			vs->vs_scrub_examined += cvs->vs_scrub_examined;
1459			vs->vs_scrub_errors += cvs->vs_scrub_errors;
1460			mutex_exit(&vd->vdev_stat_lock);
1461		}
1462	}
1463}
1464
1465void
1466vdev_stat_update(zio_t *zio)
1467{
1468	vdev_t *vd = zio->io_vd;
1469	vdev_t *pvd;
1470	uint64_t txg = zio->io_txg;
1471	vdev_stat_t *vs = &vd->vdev_stat;
1472	zio_type_t type = zio->io_type;
1473	int flags = zio->io_flags;
1474
1475	if (zio->io_error == 0) {
1476		if (!(flags & ZIO_FLAG_IO_BYPASS)) {
1477			mutex_enter(&vd->vdev_stat_lock);
1478			vs->vs_ops[type]++;
1479			vs->vs_bytes[type] += zio->io_size;
1480			mutex_exit(&vd->vdev_stat_lock);
1481		}
1482		if ((flags & ZIO_FLAG_IO_REPAIR) &&
1483		    zio->io_delegate_list == NULL) {
1484			mutex_enter(&vd->vdev_stat_lock);
1485			if (flags & ZIO_FLAG_SCRUB_THREAD)
1486				vs->vs_scrub_repaired += zio->io_size;
1487			else
1488				vs->vs_self_healed += zio->io_size;
1489			mutex_exit(&vd->vdev_stat_lock);
1490		}
1491		return;
1492	}
1493
1494	if (flags & ZIO_FLAG_SPECULATIVE)
1495		return;
1496
1497	if (!vdev_is_dead(vd)) {
1498		mutex_enter(&vd->vdev_stat_lock);
1499		if (type == ZIO_TYPE_READ) {
1500			if (zio->io_error == ECKSUM)
1501				vs->vs_checksum_errors++;
1502			else
1503				vs->vs_read_errors++;
1504		}
1505		if (type == ZIO_TYPE_WRITE)
1506			vs->vs_write_errors++;
1507		mutex_exit(&vd->vdev_stat_lock);
1508	}
1509
1510	if (type == ZIO_TYPE_WRITE) {
1511		if (txg == 0 || vd->vdev_children != 0)
1512			return;
1513		if (flags & ZIO_FLAG_SCRUB_THREAD) {
1514			ASSERT(flags & ZIO_FLAG_IO_REPAIR);
1515			for (pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
1516				vdev_dtl_dirty(&pvd->vdev_dtl_scrub, txg, 1);
1517		}
1518		if (!(flags & ZIO_FLAG_IO_REPAIR)) {
1519			if (vdev_dtl_contains(&vd->vdev_dtl_map, txg, 1))
1520				return;
1521			vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1522			for (pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
1523				vdev_dtl_dirty(&pvd->vdev_dtl_map, txg, 1);
1524		}
1525	}
1526}
1527
1528void
1529vdev_scrub_stat_update(vdev_t *vd, pool_scrub_type_t type, boolean_t complete)
1530{
1531	int c;
1532	vdev_stat_t *vs = &vd->vdev_stat;
1533
1534	for (c = 0; c < vd->vdev_children; c++)
1535		vdev_scrub_stat_update(vd->vdev_child[c], type, complete);
1536
1537	mutex_enter(&vd->vdev_stat_lock);
1538
1539	if (type == POOL_SCRUB_NONE) {
1540		/*
1541		 * Update completion and end time.  Leave everything else alone
1542		 * so we can report what happened during the previous scrub.
1543		 */
1544		vs->vs_scrub_complete = complete;
1545		vs->vs_scrub_end = gethrestime_sec();
1546	} else {
1547		vs->vs_scrub_type = type;
1548		vs->vs_scrub_complete = 0;
1549		vs->vs_scrub_examined = 0;
1550		vs->vs_scrub_repaired = 0;
1551		vs->vs_scrub_errors = 0;
1552		vs->vs_scrub_start = gethrestime_sec();
1553		vs->vs_scrub_end = 0;
1554	}
1555
1556	mutex_exit(&vd->vdev_stat_lock);
1557}
1558
1559/*
1560 * Update the in-core space usage stats for this vdev and the root vdev.
1561 */
1562void
1563vdev_space_update(vdev_t *vd, uint64_t space_delta, uint64_t alloc_delta)
1564{
1565	ASSERT(vd == vd->vdev_top);
1566
1567	do {
1568		mutex_enter(&vd->vdev_stat_lock);
1569		vd->vdev_stat.vs_space += space_delta;
1570		vd->vdev_stat.vs_alloc += alloc_delta;
1571		mutex_exit(&vd->vdev_stat_lock);
1572	} while ((vd = vd->vdev_parent) != NULL);
1573}
1574
1575/*
1576 * Various knobs to tune a vdev.
1577 */
1578static vdev_knob_t vdev_knob[] = {
1579	{
1580		"cache_size",
1581		"size of the read-ahead cache",
1582		0,
1583		1ULL << 30,
1584		10ULL << 20,
1585		offsetof(struct vdev, vdev_cache.vc_size)
1586	},
1587	{
1588		"cache_bshift",
1589		"log2 of cache blocksize",
1590		SPA_MINBLOCKSHIFT,
1591		SPA_MAXBLOCKSHIFT,
1592		16,
1593		offsetof(struct vdev, vdev_cache.vc_bshift)
1594	},
1595	{
1596		"cache_max",
1597		"largest block size to cache",
1598		0,
1599		SPA_MAXBLOCKSIZE,
1600		1ULL << 14,
1601		offsetof(struct vdev, vdev_cache.vc_max)
1602	},
1603	{
1604		"min_pending",
1605		"minimum pending I/Os to the disk",
1606		1,
1607		10000,
1608		2,
1609		offsetof(struct vdev, vdev_queue.vq_min_pending)
1610	},
1611	{
1612		"max_pending",
1613		"maximum pending I/Os to the disk",
1614		1,
1615		10000,
1616		35,
1617		offsetof(struct vdev, vdev_queue.vq_max_pending)
1618	},
1619	{
1620		"scrub_limit",
1621		"maximum scrub/resilver I/O queue",
1622		0,
1623		10000,
1624		70,
1625		offsetof(struct vdev, vdev_queue.vq_scrub_limit)
1626	},
1627	{
1628		"agg_limit",
1629		"maximum size of aggregated I/Os",
1630		0,
1631		SPA_MAXBLOCKSIZE,
1632		SPA_MAXBLOCKSIZE,
1633		offsetof(struct vdev, vdev_queue.vq_agg_limit)
1634	},
1635	{
1636		"time_shift",
1637		"deadline = pri + (lbolt >> time_shift)",
1638		0,
1639		63,
1640		4,
1641		offsetof(struct vdev, vdev_queue.vq_time_shift)
1642	},
1643	{
1644		"ramp_rate",
1645		"exponential I/O issue ramp-up rate",
1646		1,
1647		10000,
1648		2,
1649		offsetof(struct vdev, vdev_queue.vq_ramp_rate)
1650	},
1651};
1652
1653vdev_knob_t *
1654vdev_knob_next(vdev_knob_t *vk)
1655{
1656	if (vk == NULL)
1657		return (vdev_knob);
1658
1659	if (++vk == vdev_knob + sizeof (vdev_knob) / sizeof (vdev_knob_t))
1660		return (NULL);
1661
1662	return (vk);
1663}
1664
1665/*
1666 * Mark a top-level vdev's config as dirty, placing it on the dirty list
1667 * so that it will be written out next time the vdev configuration is synced.
1668 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
1669 */
1670void
1671vdev_config_dirty(vdev_t *vd)
1672{
1673	spa_t *spa = vd->vdev_spa;
1674	vdev_t *rvd = spa->spa_root_vdev;
1675	int c;
1676
1677	/*
1678	 * The dirty list is protected by the config lock.  The caller must
1679	 * either hold the config lock as writer, or must be the sync thread
1680	 * (which holds the lock as reader).  There's only one sync thread,
1681	 * so this is sufficient to ensure mutual exclusion.
1682	 */
1683	ASSERT(spa_config_held(spa, RW_WRITER) ||
1684	    dsl_pool_sync_context(spa_get_dsl(spa)));
1685
1686	if (vd == rvd) {
1687		for (c = 0; c < rvd->vdev_children; c++)
1688			vdev_config_dirty(rvd->vdev_child[c]);
1689	} else {
1690		ASSERT(vd == vd->vdev_top);
1691
1692		if (!list_link_active(&vd->vdev_dirty_node))
1693			list_insert_head(&spa->spa_dirty_list, vd);
1694	}
1695}
1696
1697void
1698vdev_config_clean(vdev_t *vd)
1699{
1700	spa_t *spa = vd->vdev_spa;
1701
1702	ASSERT(spa_config_held(spa, RW_WRITER) ||
1703	    dsl_pool_sync_context(spa_get_dsl(spa)));
1704
1705	ASSERT(list_link_active(&vd->vdev_dirty_node));
1706	list_remove(&spa->spa_dirty_list, vd);
1707}
1708
1709void
1710vdev_propagate_state(vdev_t *vd)
1711{
1712	vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
1713	int degraded = 0, faulted = 0;
1714	int corrupted = 0;
1715	int c;
1716	vdev_t *child;
1717
1718	for (c = 0; c < vd->vdev_children; c++) {
1719		child = vd->vdev_child[c];
1720		if (child->vdev_state <= VDEV_STATE_CANT_OPEN)
1721			faulted++;
1722		else if (child->vdev_state == VDEV_STATE_DEGRADED)
1723			degraded++;
1724
1725		if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
1726			corrupted++;
1727	}
1728
1729	vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
1730
1731	/*
1732	 * Root special: if there is a toplevel vdev that cannot be
1733	 * opened due to corrupted metadata, then propagate the root
1734	 * vdev's aux state as 'corrupt' rather than 'insufficient
1735	 * replicas'.
1736	 */
1737	if (corrupted && vd == rvd && rvd->vdev_state == VDEV_STATE_CANT_OPEN)
1738		vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
1739		    VDEV_AUX_CORRUPT_DATA);
1740}
1741
1742/*
1743 * Set a vdev's state.  If this is during an open, we don't update the parent
1744 * state, because we're in the process of opening children depth-first.
1745 * Otherwise, we propagate the change to the parent.
1746 *
1747 * If this routine places a device in a faulted state, an appropriate ereport is
1748 * generated.
1749 */
1750void
1751vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
1752{
1753	uint64_t save_state;
1754
1755	if (state == vd->vdev_state) {
1756		vd->vdev_stat.vs_aux = aux;
1757		return;
1758	}
1759
1760	save_state = vd->vdev_state;
1761
1762	vd->vdev_state = state;
1763	vd->vdev_stat.vs_aux = aux;
1764
1765	if (state == VDEV_STATE_CANT_OPEN) {
1766		/*
1767		 * If we fail to open a vdev during an import, we mark it as
1768		 * "not available", which signifies that it was never there to
1769		 * begin with.  Failure to open such a device is not considered
1770		 * an error.
1771		 */
1772		if (vd->vdev_spa->spa_load_state == SPA_LOAD_IMPORT &&
1773		    vd->vdev_ops->vdev_op_leaf)
1774			vd->vdev_not_present = 1;
1775
1776		/*
1777		 * Post the appropriate ereport.  If the 'prevstate' field is
1778		 * set to something other than VDEV_STATE_UNKNOWN, it indicates
1779		 * that this is part of a vdev_reopen().  In this case, we don't
1780		 * want to post the ereport if the device was already in the
1781		 * CANT_OPEN state beforehand.
1782		 */
1783		if (vd->vdev_prevstate != state && !vd->vdev_not_present &&
1784		    vd != vd->vdev_spa->spa_root_vdev) {
1785			const char *class;
1786
1787			switch (aux) {
1788			case VDEV_AUX_OPEN_FAILED:
1789				class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
1790				break;
1791			case VDEV_AUX_CORRUPT_DATA:
1792				class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
1793				break;
1794			case VDEV_AUX_NO_REPLICAS:
1795				class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
1796				break;
1797			case VDEV_AUX_BAD_GUID_SUM:
1798				class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
1799				break;
1800			case VDEV_AUX_TOO_SMALL:
1801				class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
1802				break;
1803			case VDEV_AUX_BAD_LABEL:
1804				class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
1805				break;
1806			default:
1807				class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
1808			}
1809
1810			zfs_ereport_post(class, vd->vdev_spa,
1811			    vd, NULL, save_state, 0);
1812		}
1813	}
1814
1815	if (isopen)
1816		return;
1817
1818	if (vd->vdev_parent != NULL)
1819		vdev_propagate_state(vd->vdev_parent);
1820}
1821