1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 */
25
26#include <sys/zfs_context.h>
27#include <sys/fm/fs/zfs.h>
28#include <sys/spa.h>
29#include <sys/spa_impl.h>
30#include <sys/dmu.h>
31#include <sys/dmu_tx.h>
32#include <sys/vdev_impl.h>
33#include <sys/uberblock_impl.h>
34#include <sys/metaslab.h>
35#include <sys/metaslab_impl.h>
36#include <sys/space_map.h>
37#include <sys/zio.h>
38#include <sys/zap.h>
39#include <sys/fs/zfs.h>
40#include <sys/arc.h>
41#include <sys/zil.h>
42#include <sys/dsl_scan.h>
43
44/*
45 * Virtual device management.
46 */
47
48static vdev_ops_t *vdev_ops_table[] = {
49	&vdev_root_ops,
50	&vdev_raidz_ops,
51	&vdev_mirror_ops,
52	&vdev_replacing_ops,
53	&vdev_spare_ops,
54	&vdev_disk_ops,
55	&vdev_file_ops,
56	&vdev_missing_ops,
57	&vdev_hole_ops,
58	NULL
59};
60
61/* maximum scrub/resilver I/O queue per leaf vdev */
62int zfs_scrub_limit = 10;
63
64/*
65 * Given a vdev type, return the appropriate ops vector.
66 */
67static vdev_ops_t *
68vdev_getops(const char *type)
69{
70	vdev_ops_t *ops, **opspp;
71
72	for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
73		if (strcmp(ops->vdev_op_type, type) == 0)
74			break;
75
76	return (ops);
77}
78
79/*
80 * Default asize function: return the MAX of psize with the asize of
81 * all children.  This is what's used by anything other than RAID-Z.
82 */
83uint64_t
84vdev_default_asize(vdev_t *vd, uint64_t psize)
85{
86	uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
87	uint64_t csize;
88
89	for (int c = 0; c < vd->vdev_children; c++) {
90		csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
91		asize = MAX(asize, csize);
92	}
93
94	return (asize);
95}
96
97/*
98 * Get the minimum allocatable size. We define the allocatable size as
99 * the vdev's asize rounded to the nearest metaslab. This allows us to
100 * replace or attach devices which don't have the same physical size but
101 * can still satisfy the same number of allocations.
102 */
103uint64_t
104vdev_get_min_asize(vdev_t *vd)
105{
106	vdev_t *pvd = vd->vdev_parent;
107
108	/*
109	 * The our parent is NULL (inactive spare or cache) or is the root,
110	 * just return our own asize.
111	 */
112	if (pvd == NULL)
113		return (vd->vdev_asize);
114
115	/*
116	 * The top-level vdev just returns the allocatable size rounded
117	 * to the nearest metaslab.
118	 */
119	if (vd == vd->vdev_top)
120		return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
121
122	/*
123	 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
124	 * so each child must provide at least 1/Nth of its asize.
125	 */
126	if (pvd->vdev_ops == &vdev_raidz_ops)
127		return (pvd->vdev_min_asize / pvd->vdev_children);
128
129	return (pvd->vdev_min_asize);
130}
131
132void
133vdev_set_min_asize(vdev_t *vd)
134{
135	vd->vdev_min_asize = vdev_get_min_asize(vd);
136
137	for (int c = 0; c < vd->vdev_children; c++)
138		vdev_set_min_asize(vd->vdev_child[c]);
139}
140
141vdev_t *
142vdev_lookup_top(spa_t *spa, uint64_t vdev)
143{
144	vdev_t *rvd = spa->spa_root_vdev;
145
146	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
147
148	if (vdev < rvd->vdev_children) {
149		ASSERT(rvd->vdev_child[vdev] != NULL);
150		return (rvd->vdev_child[vdev]);
151	}
152
153	return (NULL);
154}
155
156vdev_t *
157vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
158{
159	vdev_t *mvd;
160
161	if (vd->vdev_guid == guid)
162		return (vd);
163
164	for (int c = 0; c < vd->vdev_children; c++)
165		if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
166		    NULL)
167			return (mvd);
168
169	return (NULL);
170}
171
172void
173vdev_add_child(vdev_t *pvd, vdev_t *cvd)
174{
175	size_t oldsize, newsize;
176	uint64_t id = cvd->vdev_id;
177	vdev_t **newchild;
178
179	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
180	ASSERT(cvd->vdev_parent == NULL);
181
182	cvd->vdev_parent = pvd;
183
184	if (pvd == NULL)
185		return;
186
187	ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
188
189	oldsize = pvd->vdev_children * sizeof (vdev_t *);
190	pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
191	newsize = pvd->vdev_children * sizeof (vdev_t *);
192
193	newchild = kmem_zalloc(newsize, KM_SLEEP);
194	if (pvd->vdev_child != NULL) {
195		bcopy(pvd->vdev_child, newchild, oldsize);
196		kmem_free(pvd->vdev_child, oldsize);
197	}
198
199	pvd->vdev_child = newchild;
200	pvd->vdev_child[id] = cvd;
201
202	cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
203	ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
204
205	/*
206	 * Walk up all ancestors to update guid sum.
207	 */
208	for (; pvd != NULL; pvd = pvd->vdev_parent)
209		pvd->vdev_guid_sum += cvd->vdev_guid_sum;
210}
211
212void
213vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
214{
215	int c;
216	uint_t id = cvd->vdev_id;
217
218	ASSERT(cvd->vdev_parent == pvd);
219
220	if (pvd == NULL)
221		return;
222
223	ASSERT(id < pvd->vdev_children);
224	ASSERT(pvd->vdev_child[id] == cvd);
225
226	pvd->vdev_child[id] = NULL;
227	cvd->vdev_parent = NULL;
228
229	for (c = 0; c < pvd->vdev_children; c++)
230		if (pvd->vdev_child[c])
231			break;
232
233	if (c == pvd->vdev_children) {
234		kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
235		pvd->vdev_child = NULL;
236		pvd->vdev_children = 0;
237	}
238
239	/*
240	 * Walk up all ancestors to update guid sum.
241	 */
242	for (; pvd != NULL; pvd = pvd->vdev_parent)
243		pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
244}
245
246/*
247 * Remove any holes in the child array.
248 */
249void
250vdev_compact_children(vdev_t *pvd)
251{
252	vdev_t **newchild, *cvd;
253	int oldc = pvd->vdev_children;
254	int newc;
255
256	ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
257
258	for (int c = newc = 0; c < oldc; c++)
259		if (pvd->vdev_child[c])
260			newc++;
261
262	newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
263
264	for (int c = newc = 0; c < oldc; c++) {
265		if ((cvd = pvd->vdev_child[c]) != NULL) {
266			newchild[newc] = cvd;
267			cvd->vdev_id = newc++;
268		}
269	}
270
271	kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
272	pvd->vdev_child = newchild;
273	pvd->vdev_children = newc;
274}
275
276/*
277 * Allocate and minimally initialize a vdev_t.
278 */
279vdev_t *
280vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
281{
282	vdev_t *vd;
283
284	vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
285
286	if (spa->spa_root_vdev == NULL) {
287		ASSERT(ops == &vdev_root_ops);
288		spa->spa_root_vdev = vd;
289	}
290
291	if (guid == 0 && ops != &vdev_hole_ops) {
292		if (spa->spa_root_vdev == vd) {
293			/*
294			 * The root vdev's guid will also be the pool guid,
295			 * which must be unique among all pools.
296			 */
297			guid = spa_generate_guid(NULL);
298		} else {
299			/*
300			 * Any other vdev's guid must be unique within the pool.
301			 */
302			guid = spa_generate_guid(spa);
303		}
304		ASSERT(!spa_guid_exists(spa_guid(spa), guid));
305	}
306
307	vd->vdev_spa = spa;
308	vd->vdev_id = id;
309	vd->vdev_guid = guid;
310	vd->vdev_guid_sum = guid;
311	vd->vdev_ops = ops;
312	vd->vdev_state = VDEV_STATE_CLOSED;
313	vd->vdev_ishole = (ops == &vdev_hole_ops);
314
315	mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
316	mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
317	mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
318	for (int t = 0; t < DTL_TYPES; t++) {
319		space_map_create(&vd->vdev_dtl[t], 0, -1ULL, 0,
320		    &vd->vdev_dtl_lock);
321	}
322	txg_list_create(&vd->vdev_ms_list,
323	    offsetof(struct metaslab, ms_txg_node));
324	txg_list_create(&vd->vdev_dtl_list,
325	    offsetof(struct vdev, vdev_dtl_node));
326	vd->vdev_stat.vs_timestamp = gethrtime();
327	vdev_queue_init(vd);
328	vdev_cache_init(vd);
329
330	return (vd);
331}
332
333/*
334 * Allocate a new vdev.  The 'alloctype' is used to control whether we are
335 * creating a new vdev or loading an existing one - the behavior is slightly
336 * different for each case.
337 */
338int
339vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
340    int alloctype)
341{
342	vdev_ops_t *ops;
343	char *type;
344	uint64_t guid = 0, islog, nparity;
345	vdev_t *vd;
346
347	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
348
349	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
350		return (EINVAL);
351
352	if ((ops = vdev_getops(type)) == NULL)
353		return (EINVAL);
354
355	/*
356	 * If this is a load, get the vdev guid from the nvlist.
357	 * Otherwise, vdev_alloc_common() will generate one for us.
358	 */
359	if (alloctype == VDEV_ALLOC_LOAD) {
360		uint64_t label_id;
361
362		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
363		    label_id != id)
364			return (EINVAL);
365
366		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
367			return (EINVAL);
368	} else if (alloctype == VDEV_ALLOC_SPARE) {
369		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
370			return (EINVAL);
371	} else if (alloctype == VDEV_ALLOC_L2CACHE) {
372		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
373			return (EINVAL);
374	} else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
375		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
376			return (EINVAL);
377	}
378
379	/*
380	 * The first allocated vdev must be of type 'root'.
381	 */
382	if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
383		return (EINVAL);
384
385	/*
386	 * Determine whether we're a log vdev.
387	 */
388	islog = 0;
389	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
390	if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
391		return (ENOTSUP);
392
393	if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
394		return (ENOTSUP);
395
396	/*
397	 * Set the nparity property for RAID-Z vdevs.
398	 */
399	nparity = -1ULL;
400	if (ops == &vdev_raidz_ops) {
401		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
402		    &nparity) == 0) {
403			if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
404				return (EINVAL);
405			/*
406			 * Previous versions could only support 1 or 2 parity
407			 * device.
408			 */
409			if (nparity > 1 &&
410			    spa_version(spa) < SPA_VERSION_RAIDZ2)
411				return (ENOTSUP);
412			if (nparity > 2 &&
413			    spa_version(spa) < SPA_VERSION_RAIDZ3)
414				return (ENOTSUP);
415		} else {
416			/*
417			 * We require the parity to be specified for SPAs that
418			 * support multiple parity levels.
419			 */
420			if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
421				return (EINVAL);
422			/*
423			 * Otherwise, we default to 1 parity device for RAID-Z.
424			 */
425			nparity = 1;
426		}
427	} else {
428		nparity = 0;
429	}
430	ASSERT(nparity != -1ULL);
431
432	vd = vdev_alloc_common(spa, id, guid, ops);
433
434	vd->vdev_islog = islog;
435	vd->vdev_nparity = nparity;
436
437	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
438		vd->vdev_path = spa_strdup(vd->vdev_path);
439	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
440		vd->vdev_devid = spa_strdup(vd->vdev_devid);
441	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
442	    &vd->vdev_physpath) == 0)
443		vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
444	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
445		vd->vdev_fru = spa_strdup(vd->vdev_fru);
446
447	/*
448	 * Set the whole_disk property.  If it's not specified, leave the value
449	 * as -1.
450	 */
451	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
452	    &vd->vdev_wholedisk) != 0)
453		vd->vdev_wholedisk = -1ULL;
454
455	/*
456	 * Look for the 'not present' flag.  This will only be set if the device
457	 * was not present at the time of import.
458	 */
459	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
460	    &vd->vdev_not_present);
461
462	/*
463	 * Get the alignment requirement.
464	 */
465	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
466
467	/*
468	 * Retrieve the vdev creation time.
469	 */
470	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
471	    &vd->vdev_crtxg);
472
473	/*
474	 * If we're a top-level vdev, try to load the allocation parameters.
475	 */
476	if (parent && !parent->vdev_parent &&
477	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
478		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
479		    &vd->vdev_ms_array);
480		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
481		    &vd->vdev_ms_shift);
482		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
483		    &vd->vdev_asize);
484		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
485		    &vd->vdev_removing);
486	}
487
488	if (parent && !parent->vdev_parent) {
489		ASSERT(alloctype == VDEV_ALLOC_LOAD ||
490		    alloctype == VDEV_ALLOC_ADD ||
491		    alloctype == VDEV_ALLOC_SPLIT ||
492		    alloctype == VDEV_ALLOC_ROOTPOOL);
493		vd->vdev_mg = metaslab_group_create(islog ?
494		    spa_log_class(spa) : spa_normal_class(spa), vd);
495	}
496
497	/*
498	 * If we're a leaf vdev, try to load the DTL object and other state.
499	 */
500	if (vd->vdev_ops->vdev_op_leaf &&
501	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
502	    alloctype == VDEV_ALLOC_ROOTPOOL)) {
503		if (alloctype == VDEV_ALLOC_LOAD) {
504			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
505			    &vd->vdev_dtl_smo.smo_object);
506			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
507			    &vd->vdev_unspare);
508		}
509
510		if (alloctype == VDEV_ALLOC_ROOTPOOL) {
511			uint64_t spare = 0;
512
513			if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
514			    &spare) == 0 && spare)
515				spa_spare_add(vd);
516		}
517
518		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
519		    &vd->vdev_offline);
520
521		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVERING,
522		    &vd->vdev_resilvering);
523
524		/*
525		 * When importing a pool, we want to ignore the persistent fault
526		 * state, as the diagnosis made on another system may not be
527		 * valid in the current context.  Local vdevs will
528		 * remain in the faulted state.
529		 */
530		if (spa_load_state(spa) == SPA_LOAD_OPEN) {
531			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
532			    &vd->vdev_faulted);
533			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
534			    &vd->vdev_degraded);
535			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
536			    &vd->vdev_removed);
537
538			if (vd->vdev_faulted || vd->vdev_degraded) {
539				char *aux;
540
541				vd->vdev_label_aux =
542				    VDEV_AUX_ERR_EXCEEDED;
543				if (nvlist_lookup_string(nv,
544				    ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
545				    strcmp(aux, "external") == 0)
546					vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
547			}
548		}
549	}
550
551	/*
552	 * Add ourselves to the parent's list of children.
553	 */
554	vdev_add_child(parent, vd);
555
556	*vdp = vd;
557
558	return (0);
559}
560
561void
562vdev_free(vdev_t *vd)
563{
564	spa_t *spa = vd->vdev_spa;
565
566	/*
567	 * vdev_free() implies closing the vdev first.  This is simpler than
568	 * trying to ensure complicated semantics for all callers.
569	 */
570	vdev_close(vd);
571
572	ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
573	ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
574
575	/*
576	 * Free all children.
577	 */
578	for (int c = 0; c < vd->vdev_children; c++)
579		vdev_free(vd->vdev_child[c]);
580
581	ASSERT(vd->vdev_child == NULL);
582	ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
583
584	/*
585	 * Discard allocation state.
586	 */
587	if (vd->vdev_mg != NULL) {
588		vdev_metaslab_fini(vd);
589		metaslab_group_destroy(vd->vdev_mg);
590	}
591
592	ASSERT3U(vd->vdev_stat.vs_space, ==, 0);
593	ASSERT3U(vd->vdev_stat.vs_dspace, ==, 0);
594	ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0);
595
596	/*
597	 * Remove this vdev from its parent's child list.
598	 */
599	vdev_remove_child(vd->vdev_parent, vd);
600
601	ASSERT(vd->vdev_parent == NULL);
602
603	/*
604	 * Clean up vdev structure.
605	 */
606	vdev_queue_fini(vd);
607	vdev_cache_fini(vd);
608
609	if (vd->vdev_path)
610		spa_strfree(vd->vdev_path);
611	if (vd->vdev_devid)
612		spa_strfree(vd->vdev_devid);
613	if (vd->vdev_physpath)
614		spa_strfree(vd->vdev_physpath);
615	if (vd->vdev_fru)
616		spa_strfree(vd->vdev_fru);
617
618	if (vd->vdev_isspare)
619		spa_spare_remove(vd);
620	if (vd->vdev_isl2cache)
621		spa_l2cache_remove(vd);
622
623	txg_list_destroy(&vd->vdev_ms_list);
624	txg_list_destroy(&vd->vdev_dtl_list);
625
626	mutex_enter(&vd->vdev_dtl_lock);
627	for (int t = 0; t < DTL_TYPES; t++) {
628		space_map_unload(&vd->vdev_dtl[t]);
629		space_map_destroy(&vd->vdev_dtl[t]);
630	}
631	mutex_exit(&vd->vdev_dtl_lock);
632
633	mutex_destroy(&vd->vdev_dtl_lock);
634	mutex_destroy(&vd->vdev_stat_lock);
635	mutex_destroy(&vd->vdev_probe_lock);
636
637	if (vd == spa->spa_root_vdev)
638		spa->spa_root_vdev = NULL;
639
640	kmem_free(vd, sizeof (vdev_t));
641}
642
643/*
644 * Transfer top-level vdev state from svd to tvd.
645 */
646static void
647vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
648{
649	spa_t *spa = svd->vdev_spa;
650	metaslab_t *msp;
651	vdev_t *vd;
652	int t;
653
654	ASSERT(tvd == tvd->vdev_top);
655
656	tvd->vdev_ms_array = svd->vdev_ms_array;
657	tvd->vdev_ms_shift = svd->vdev_ms_shift;
658	tvd->vdev_ms_count = svd->vdev_ms_count;
659
660	svd->vdev_ms_array = 0;
661	svd->vdev_ms_shift = 0;
662	svd->vdev_ms_count = 0;
663
664	tvd->vdev_mg = svd->vdev_mg;
665	tvd->vdev_ms = svd->vdev_ms;
666
667	svd->vdev_mg = NULL;
668	svd->vdev_ms = NULL;
669
670	if (tvd->vdev_mg != NULL)
671		tvd->vdev_mg->mg_vd = tvd;
672
673	tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
674	tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
675	tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
676
677	svd->vdev_stat.vs_alloc = 0;
678	svd->vdev_stat.vs_space = 0;
679	svd->vdev_stat.vs_dspace = 0;
680
681	for (t = 0; t < TXG_SIZE; t++) {
682		while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
683			(void) txg_list_add(&tvd->vdev_ms_list, msp, t);
684		while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
685			(void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
686		if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
687			(void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
688	}
689
690	if (list_link_active(&svd->vdev_config_dirty_node)) {
691		vdev_config_clean(svd);
692		vdev_config_dirty(tvd);
693	}
694
695	if (list_link_active(&svd->vdev_state_dirty_node)) {
696		vdev_state_clean(svd);
697		vdev_state_dirty(tvd);
698	}
699
700	tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
701	svd->vdev_deflate_ratio = 0;
702
703	tvd->vdev_islog = svd->vdev_islog;
704	svd->vdev_islog = 0;
705}
706
707static void
708vdev_top_update(vdev_t *tvd, vdev_t *vd)
709{
710	if (vd == NULL)
711		return;
712
713	vd->vdev_top = tvd;
714
715	for (int c = 0; c < vd->vdev_children; c++)
716		vdev_top_update(tvd, vd->vdev_child[c]);
717}
718
719/*
720 * Add a mirror/replacing vdev above an existing vdev.
721 */
722vdev_t *
723vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
724{
725	spa_t *spa = cvd->vdev_spa;
726	vdev_t *pvd = cvd->vdev_parent;
727	vdev_t *mvd;
728
729	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
730
731	mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
732
733	mvd->vdev_asize = cvd->vdev_asize;
734	mvd->vdev_min_asize = cvd->vdev_min_asize;
735	mvd->vdev_ashift = cvd->vdev_ashift;
736	mvd->vdev_state = cvd->vdev_state;
737	mvd->vdev_crtxg = cvd->vdev_crtxg;
738
739	vdev_remove_child(pvd, cvd);
740	vdev_add_child(pvd, mvd);
741	cvd->vdev_id = mvd->vdev_children;
742	vdev_add_child(mvd, cvd);
743	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
744
745	if (mvd == mvd->vdev_top)
746		vdev_top_transfer(cvd, mvd);
747
748	return (mvd);
749}
750
751/*
752 * Remove a 1-way mirror/replacing vdev from the tree.
753 */
754void
755vdev_remove_parent(vdev_t *cvd)
756{
757	vdev_t *mvd = cvd->vdev_parent;
758	vdev_t *pvd = mvd->vdev_parent;
759
760	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
761
762	ASSERT(mvd->vdev_children == 1);
763	ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
764	    mvd->vdev_ops == &vdev_replacing_ops ||
765	    mvd->vdev_ops == &vdev_spare_ops);
766	cvd->vdev_ashift = mvd->vdev_ashift;
767
768	vdev_remove_child(mvd, cvd);
769	vdev_remove_child(pvd, mvd);
770
771	/*
772	 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
773	 * Otherwise, we could have detached an offline device, and when we
774	 * go to import the pool we'll think we have two top-level vdevs,
775	 * instead of a different version of the same top-level vdev.
776	 */
777	if (mvd->vdev_top == mvd) {
778		uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
779		cvd->vdev_orig_guid = cvd->vdev_guid;
780		cvd->vdev_guid += guid_delta;
781		cvd->vdev_guid_sum += guid_delta;
782	}
783	cvd->vdev_id = mvd->vdev_id;
784	vdev_add_child(pvd, cvd);
785	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
786
787	if (cvd == cvd->vdev_top)
788		vdev_top_transfer(mvd, cvd);
789
790	ASSERT(mvd->vdev_children == 0);
791	vdev_free(mvd);
792}
793
794int
795vdev_metaslab_init(vdev_t *vd, uint64_t txg)
796{
797	spa_t *spa = vd->vdev_spa;
798	objset_t *mos = spa->spa_meta_objset;
799	uint64_t m;
800	uint64_t oldc = vd->vdev_ms_count;
801	uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
802	metaslab_t **mspp;
803	int error;
804
805	ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
806
807	/*
808	 * This vdev is not being allocated from yet or is a hole.
809	 */
810	if (vd->vdev_ms_shift == 0)
811		return (0);
812
813	ASSERT(!vd->vdev_ishole);
814
815	/*
816	 * Compute the raidz-deflation ratio.  Note, we hard-code
817	 * in 128k (1 << 17) because it is the current "typical" blocksize.
818	 * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change,
819	 * or we will inconsistently account for existing bp's.
820	 */
821	vd->vdev_deflate_ratio = (1 << 17) /
822	    (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
823
824	ASSERT(oldc <= newc);
825
826	mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
827
828	if (oldc != 0) {
829		bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
830		kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
831	}
832
833	vd->vdev_ms = mspp;
834	vd->vdev_ms_count = newc;
835
836	for (m = oldc; m < newc; m++) {
837		space_map_obj_t smo = { 0, 0, 0 };
838		if (txg == 0) {
839			uint64_t object = 0;
840			error = dmu_read(mos, vd->vdev_ms_array,
841			    m * sizeof (uint64_t), sizeof (uint64_t), &object,
842			    DMU_READ_PREFETCH);
843			if (error)
844				return (error);
845			if (object != 0) {
846				dmu_buf_t *db;
847				error = dmu_bonus_hold(mos, object, FTAG, &db);
848				if (error)
849					return (error);
850				ASSERT3U(db->db_size, >=, sizeof (smo));
851				bcopy(db->db_data, &smo, sizeof (smo));
852				ASSERT3U(smo.smo_object, ==, object);
853				dmu_buf_rele(db, FTAG);
854			}
855		}
856		vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo,
857		    m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg);
858	}
859
860	if (txg == 0)
861		spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
862
863	/*
864	 * If the vdev is being removed we don't activate
865	 * the metaslabs since we want to ensure that no new
866	 * allocations are performed on this device.
867	 */
868	if (oldc == 0 && !vd->vdev_removing)
869		metaslab_group_activate(vd->vdev_mg);
870
871	if (txg == 0)
872		spa_config_exit(spa, SCL_ALLOC, FTAG);
873
874	return (0);
875}
876
877void
878vdev_metaslab_fini(vdev_t *vd)
879{
880	uint64_t m;
881	uint64_t count = vd->vdev_ms_count;
882
883	if (vd->vdev_ms != NULL) {
884		metaslab_group_passivate(vd->vdev_mg);
885		for (m = 0; m < count; m++)
886			if (vd->vdev_ms[m] != NULL)
887				metaslab_fini(vd->vdev_ms[m]);
888		kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
889		vd->vdev_ms = NULL;
890	}
891}
892
893typedef struct vdev_probe_stats {
894	boolean_t	vps_readable;
895	boolean_t	vps_writeable;
896	int		vps_flags;
897} vdev_probe_stats_t;
898
899static void
900vdev_probe_done(zio_t *zio)
901{
902	spa_t *spa = zio->io_spa;
903	vdev_t *vd = zio->io_vd;
904	vdev_probe_stats_t *vps = zio->io_private;
905
906	ASSERT(vd->vdev_probe_zio != NULL);
907
908	if (zio->io_type == ZIO_TYPE_READ) {
909		if (zio->io_error == 0)
910			vps->vps_readable = 1;
911		if (zio->io_error == 0 && spa_writeable(spa)) {
912			zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
913			    zio->io_offset, zio->io_size, zio->io_data,
914			    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
915			    ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
916		} else {
917			zio_buf_free(zio->io_data, zio->io_size);
918		}
919	} else if (zio->io_type == ZIO_TYPE_WRITE) {
920		if (zio->io_error == 0)
921			vps->vps_writeable = 1;
922		zio_buf_free(zio->io_data, zio->io_size);
923	} else if (zio->io_type == ZIO_TYPE_NULL) {
924		zio_t *pio;
925
926		vd->vdev_cant_read |= !vps->vps_readable;
927		vd->vdev_cant_write |= !vps->vps_writeable;
928
929		if (vdev_readable(vd) &&
930		    (vdev_writeable(vd) || !spa_writeable(spa))) {
931			zio->io_error = 0;
932		} else {
933			ASSERT(zio->io_error != 0);
934			zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
935			    spa, vd, NULL, 0, 0);
936			zio->io_error = ENXIO;
937		}
938
939		mutex_enter(&vd->vdev_probe_lock);
940		ASSERT(vd->vdev_probe_zio == zio);
941		vd->vdev_probe_zio = NULL;
942		mutex_exit(&vd->vdev_probe_lock);
943
944		while ((pio = zio_walk_parents(zio)) != NULL)
945			if (!vdev_accessible(vd, pio))
946				pio->io_error = ENXIO;
947
948		kmem_free(vps, sizeof (*vps));
949	}
950}
951
952/*
953 * Determine whether this device is accessible by reading and writing
954 * to several known locations: the pad regions of each vdev label
955 * but the first (which we leave alone in case it contains a VTOC).
956 */
957zio_t *
958vdev_probe(vdev_t *vd, zio_t *zio)
959{
960	spa_t *spa = vd->vdev_spa;
961	vdev_probe_stats_t *vps = NULL;
962	zio_t *pio;
963
964	ASSERT(vd->vdev_ops->vdev_op_leaf);
965
966	/*
967	 * Don't probe the probe.
968	 */
969	if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
970		return (NULL);
971
972	/*
973	 * To prevent 'probe storms' when a device fails, we create
974	 * just one probe i/o at a time.  All zios that want to probe
975	 * this vdev will become parents of the probe io.
976	 */
977	mutex_enter(&vd->vdev_probe_lock);
978
979	if ((pio = vd->vdev_probe_zio) == NULL) {
980		vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
981
982		vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
983		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
984		    ZIO_FLAG_TRYHARD;
985
986		if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
987			/*
988			 * vdev_cant_read and vdev_cant_write can only
989			 * transition from TRUE to FALSE when we have the
990			 * SCL_ZIO lock as writer; otherwise they can only
991			 * transition from FALSE to TRUE.  This ensures that
992			 * any zio looking at these values can assume that
993			 * failures persist for the life of the I/O.  That's
994			 * important because when a device has intermittent
995			 * connectivity problems, we want to ensure that
996			 * they're ascribed to the device (ENXIO) and not
997			 * the zio (EIO).
998			 *
999			 * Since we hold SCL_ZIO as writer here, clear both
1000			 * values so the probe can reevaluate from first
1001			 * principles.
1002			 */
1003			vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1004			vd->vdev_cant_read = B_FALSE;
1005			vd->vdev_cant_write = B_FALSE;
1006		}
1007
1008		vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1009		    vdev_probe_done, vps,
1010		    vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1011
1012		/*
1013		 * We can't change the vdev state in this context, so we
1014		 * kick off an async task to do it on our behalf.
1015		 */
1016		if (zio != NULL) {
1017			vd->vdev_probe_wanted = B_TRUE;
1018			spa_async_request(spa, SPA_ASYNC_PROBE);
1019		}
1020	}
1021
1022	if (zio != NULL)
1023		zio_add_child(zio, pio);
1024
1025	mutex_exit(&vd->vdev_probe_lock);
1026
1027	if (vps == NULL) {
1028		ASSERT(zio != NULL);
1029		return (NULL);
1030	}
1031
1032	for (int l = 1; l < VDEV_LABELS; l++) {
1033		zio_nowait(zio_read_phys(pio, vd,
1034		    vdev_label_offset(vd->vdev_psize, l,
1035		    offsetof(vdev_label_t, vl_pad2)),
1036		    VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1037		    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1038		    ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1039	}
1040
1041	if (zio == NULL)
1042		return (pio);
1043
1044	zio_nowait(pio);
1045	return (NULL);
1046}
1047
1048static void
1049vdev_open_child(void *arg)
1050{
1051	vdev_t *vd = arg;
1052
1053	vd->vdev_open_thread = curthread;
1054	vd->vdev_open_error = vdev_open(vd);
1055	vd->vdev_open_thread = NULL;
1056}
1057
1058boolean_t
1059vdev_uses_zvols(vdev_t *vd)
1060{
1061	if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1062	    strlen(ZVOL_DIR)) == 0)
1063		return (B_TRUE);
1064	for (int c = 0; c < vd->vdev_children; c++)
1065		if (vdev_uses_zvols(vd->vdev_child[c]))
1066			return (B_TRUE);
1067	return (B_FALSE);
1068}
1069
1070void
1071vdev_open_children(vdev_t *vd)
1072{
1073	taskq_t *tq;
1074	int children = vd->vdev_children;
1075
1076	/*
1077	 * in order to handle pools on top of zvols, do the opens
1078	 * in a single thread so that the same thread holds the
1079	 * spa_namespace_lock
1080	 */
1081	if (vdev_uses_zvols(vd)) {
1082		for (int c = 0; c < children; c++)
1083			vd->vdev_child[c]->vdev_open_error =
1084			    vdev_open(vd->vdev_child[c]);
1085		return;
1086	}
1087	tq = taskq_create("vdev_open", children, minclsyspri,
1088	    children, children, TASKQ_PREPOPULATE);
1089
1090	for (int c = 0; c < children; c++)
1091		VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1092		    TQ_SLEEP) != NULL);
1093
1094	taskq_destroy(tq);
1095}
1096
1097/*
1098 * Prepare a virtual device for access.
1099 */
1100int
1101vdev_open(vdev_t *vd)
1102{
1103	spa_t *spa = vd->vdev_spa;
1104	int error;
1105	uint64_t osize = 0;
1106	uint64_t asize, psize;
1107	uint64_t ashift = 0;
1108
1109	ASSERT(vd->vdev_open_thread == curthread ||
1110	    spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1111	ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1112	    vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1113	    vd->vdev_state == VDEV_STATE_OFFLINE);
1114
1115	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1116	vd->vdev_cant_read = B_FALSE;
1117	vd->vdev_cant_write = B_FALSE;
1118	vd->vdev_min_asize = vdev_get_min_asize(vd);
1119
1120	/*
1121	 * If this vdev is not removed, check its fault status.  If it's
1122	 * faulted, bail out of the open.
1123	 */
1124	if (!vd->vdev_removed && vd->vdev_faulted) {
1125		ASSERT(vd->vdev_children == 0);
1126		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1127		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1128		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1129		    vd->vdev_label_aux);
1130		return (ENXIO);
1131	} else if (vd->vdev_offline) {
1132		ASSERT(vd->vdev_children == 0);
1133		vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1134		return (ENXIO);
1135	}
1136
1137	error = vd->vdev_ops->vdev_op_open(vd, &osize, &ashift);
1138
1139	/*
1140	 * Reset the vdev_reopening flag so that we actually close
1141	 * the vdev on error.
1142	 */
1143	vd->vdev_reopening = B_FALSE;
1144	if (zio_injection_enabled && error == 0)
1145		error = zio_handle_device_injection(vd, NULL, ENXIO);
1146
1147	if (error) {
1148		if (vd->vdev_removed &&
1149		    vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1150			vd->vdev_removed = B_FALSE;
1151
1152		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1153		    vd->vdev_stat.vs_aux);
1154		return (error);
1155	}
1156
1157	vd->vdev_removed = B_FALSE;
1158
1159	/*
1160	 * Recheck the faulted flag now that we have confirmed that
1161	 * the vdev is accessible.  If we're faulted, bail.
1162	 */
1163	if (vd->vdev_faulted) {
1164		ASSERT(vd->vdev_children == 0);
1165		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1166		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1167		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1168		    vd->vdev_label_aux);
1169		return (ENXIO);
1170	}
1171
1172	if (vd->vdev_degraded) {
1173		ASSERT(vd->vdev_children == 0);
1174		vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1175		    VDEV_AUX_ERR_EXCEEDED);
1176	} else {
1177		vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1178	}
1179
1180	/*
1181	 * For hole or missing vdevs we just return success.
1182	 */
1183	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1184		return (0);
1185
1186	for (int c = 0; c < vd->vdev_children; c++) {
1187		if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1188			vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1189			    VDEV_AUX_NONE);
1190			break;
1191		}
1192	}
1193
1194	osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1195
1196	if (vd->vdev_children == 0) {
1197		if (osize < SPA_MINDEVSIZE) {
1198			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1199			    VDEV_AUX_TOO_SMALL);
1200			return (EOVERFLOW);
1201		}
1202		psize = osize;
1203		asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1204	} else {
1205		if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1206		    (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1207			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1208			    VDEV_AUX_TOO_SMALL);
1209			return (EOVERFLOW);
1210		}
1211		psize = 0;
1212		asize = osize;
1213	}
1214
1215	vd->vdev_psize = psize;
1216
1217	/*
1218	 * Make sure the allocatable size hasn't shrunk.
1219	 */
1220	if (asize < vd->vdev_min_asize) {
1221		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1222		    VDEV_AUX_BAD_LABEL);
1223		return (EINVAL);
1224	}
1225
1226	if (vd->vdev_asize == 0) {
1227		/*
1228		 * This is the first-ever open, so use the computed values.
1229		 * For testing purposes, a higher ashift can be requested.
1230		 */
1231		vd->vdev_asize = asize;
1232		vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1233	} else {
1234		/*
1235		 * Make sure the alignment requirement hasn't increased.
1236		 */
1237		if (ashift > vd->vdev_top->vdev_ashift) {
1238			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1239			    VDEV_AUX_BAD_LABEL);
1240			return (EINVAL);
1241		}
1242	}
1243
1244	/*
1245	 * If all children are healthy and the asize has increased,
1246	 * then we've experienced dynamic LUN growth.  If automatic
1247	 * expansion is enabled then use the additional space.
1248	 */
1249	if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1250	    (vd->vdev_expanding || spa->spa_autoexpand))
1251		vd->vdev_asize = asize;
1252
1253	vdev_set_min_asize(vd);
1254
1255	/*
1256	 * Ensure we can issue some IO before declaring the
1257	 * vdev open for business.
1258	 */
1259	if (vd->vdev_ops->vdev_op_leaf &&
1260	    (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1261		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1262		    VDEV_AUX_ERR_EXCEEDED);
1263		return (error);
1264	}
1265
1266	/*
1267	 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1268	 * resilver.  But don't do this if we are doing a reopen for a scrub,
1269	 * since this would just restart the scrub we are already doing.
1270	 */
1271	if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1272	    vdev_resilver_needed(vd, NULL, NULL))
1273		spa_async_request(spa, SPA_ASYNC_RESILVER);
1274
1275	return (0);
1276}
1277
1278/*
1279 * Called once the vdevs are all opened, this routine validates the label
1280 * contents.  This needs to be done before vdev_load() so that we don't
1281 * inadvertently do repair I/Os to the wrong device.
1282 *
1283 * This function will only return failure if one of the vdevs indicates that it
1284 * has since been destroyed or exported.  This is only possible if
1285 * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1286 * will be updated but the function will return 0.
1287 */
1288int
1289vdev_validate(vdev_t *vd)
1290{
1291	spa_t *spa = vd->vdev_spa;
1292	nvlist_t *label;
1293	uint64_t guid = 0, top_guid;
1294	uint64_t state;
1295
1296	for (int c = 0; c < vd->vdev_children; c++)
1297		if (vdev_validate(vd->vdev_child[c]) != 0)
1298			return (EBADF);
1299
1300	/*
1301	 * If the device has already failed, or was marked offline, don't do
1302	 * any further validation.  Otherwise, label I/O will fail and we will
1303	 * overwrite the previous state.
1304	 */
1305	if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1306		uint64_t aux_guid = 0;
1307		nvlist_t *nvl;
1308
1309		if ((label = vdev_label_read_config(vd)) == NULL) {
1310			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1311			    VDEV_AUX_BAD_LABEL);
1312			return (0);
1313		}
1314
1315		/*
1316		 * Determine if this vdev has been split off into another
1317		 * pool.  If so, then refuse to open it.
1318		 */
1319		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1320		    &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1321			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1322			    VDEV_AUX_SPLIT_POOL);
1323			nvlist_free(label);
1324			return (0);
1325		}
1326
1327		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
1328		    &guid) != 0 || guid != spa_guid(spa)) {
1329			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1330			    VDEV_AUX_CORRUPT_DATA);
1331			nvlist_free(label);
1332			return (0);
1333		}
1334
1335		if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1336		    != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1337		    &aux_guid) != 0)
1338			aux_guid = 0;
1339
1340		/*
1341		 * If this vdev just became a top-level vdev because its
1342		 * sibling was detached, it will have adopted the parent's
1343		 * vdev guid -- but the label may or may not be on disk yet.
1344		 * Fortunately, either version of the label will have the
1345		 * same top guid, so if we're a top-level vdev, we can
1346		 * safely compare to that instead.
1347		 *
1348		 * If we split this vdev off instead, then we also check the
1349		 * original pool's guid.  We don't want to consider the vdev
1350		 * corrupt if it is partway through a split operation.
1351		 */
1352		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1353		    &guid) != 0 ||
1354		    nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1355		    &top_guid) != 0 ||
1356		    ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1357		    (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1358			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1359			    VDEV_AUX_CORRUPT_DATA);
1360			nvlist_free(label);
1361			return (0);
1362		}
1363
1364		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1365		    &state) != 0) {
1366			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1367			    VDEV_AUX_CORRUPT_DATA);
1368			nvlist_free(label);
1369			return (0);
1370		}
1371
1372		nvlist_free(label);
1373
1374		/*
1375		 * If this is a verbatim import, no need to check the
1376		 * state of the pool.
1377		 */
1378		if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1379		    spa_load_state(spa) == SPA_LOAD_OPEN &&
1380		    state != POOL_STATE_ACTIVE)
1381			return (EBADF);
1382
1383		/*
1384		 * If we were able to open and validate a vdev that was
1385		 * previously marked permanently unavailable, clear that state
1386		 * now.
1387		 */
1388		if (vd->vdev_not_present)
1389			vd->vdev_not_present = 0;
1390	}
1391
1392	return (0);
1393}
1394
1395/*
1396 * Close a virtual device.
1397 */
1398void
1399vdev_close(vdev_t *vd)
1400{
1401	spa_t *spa = vd->vdev_spa;
1402	vdev_t *pvd = vd->vdev_parent;
1403
1404	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1405
1406	/*
1407	 * If our parent is reopening, then we are as well, unless we are
1408	 * going offline.
1409	 */
1410	if (pvd != NULL && pvd->vdev_reopening)
1411		vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1412
1413	vd->vdev_ops->vdev_op_close(vd);
1414
1415	vdev_cache_purge(vd);
1416
1417	/*
1418	 * We record the previous state before we close it, so that if we are
1419	 * doing a reopen(), we don't generate FMA ereports if we notice that
1420	 * it's still faulted.
1421	 */
1422	vd->vdev_prevstate = vd->vdev_state;
1423
1424	if (vd->vdev_offline)
1425		vd->vdev_state = VDEV_STATE_OFFLINE;
1426	else
1427		vd->vdev_state = VDEV_STATE_CLOSED;
1428	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1429}
1430
1431void
1432vdev_hold(vdev_t *vd)
1433{
1434	spa_t *spa = vd->vdev_spa;
1435
1436	ASSERT(spa_is_root(spa));
1437	if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1438		return;
1439
1440	for (int c = 0; c < vd->vdev_children; c++)
1441		vdev_hold(vd->vdev_child[c]);
1442
1443	if (vd->vdev_ops->vdev_op_leaf)
1444		vd->vdev_ops->vdev_op_hold(vd);
1445}
1446
1447void
1448vdev_rele(vdev_t *vd)
1449{
1450	spa_t *spa = vd->vdev_spa;
1451
1452	ASSERT(spa_is_root(spa));
1453	for (int c = 0; c < vd->vdev_children; c++)
1454		vdev_rele(vd->vdev_child[c]);
1455
1456	if (vd->vdev_ops->vdev_op_leaf)
1457		vd->vdev_ops->vdev_op_rele(vd);
1458}
1459
1460/*
1461 * Reopen all interior vdevs and any unopened leaves.  We don't actually
1462 * reopen leaf vdevs which had previously been opened as they might deadlock
1463 * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
1464 * If the leaf has never been opened then open it, as usual.
1465 */
1466void
1467vdev_reopen(vdev_t *vd)
1468{
1469	spa_t *spa = vd->vdev_spa;
1470
1471	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1472
1473	/* set the reopening flag unless we're taking the vdev offline */
1474	vd->vdev_reopening = !vd->vdev_offline;
1475	vdev_close(vd);
1476	(void) vdev_open(vd);
1477
1478	/*
1479	 * Call vdev_validate() here to make sure we have the same device.
1480	 * Otherwise, a device with an invalid label could be successfully
1481	 * opened in response to vdev_reopen().
1482	 */
1483	if (vd->vdev_aux) {
1484		(void) vdev_validate_aux(vd);
1485		if (vdev_readable(vd) && vdev_writeable(vd) &&
1486		    vd->vdev_aux == &spa->spa_l2cache &&
1487		    !l2arc_vdev_present(vd))
1488			l2arc_add_vdev(spa, vd);
1489	} else {
1490		(void) vdev_validate(vd);
1491	}
1492
1493	/*
1494	 * Reassess parent vdev's health.
1495	 */
1496	vdev_propagate_state(vd);
1497}
1498
1499int
1500vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1501{
1502	int error;
1503
1504	/*
1505	 * Normally, partial opens (e.g. of a mirror) are allowed.
1506	 * For a create, however, we want to fail the request if
1507	 * there are any components we can't open.
1508	 */
1509	error = vdev_open(vd);
1510
1511	if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1512		vdev_close(vd);
1513		return (error ? error : ENXIO);
1514	}
1515
1516	/*
1517	 * Recursively initialize all labels.
1518	 */
1519	if ((error = vdev_label_init(vd, txg, isreplacing ?
1520	    VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1521		vdev_close(vd);
1522		return (error);
1523	}
1524
1525	return (0);
1526}
1527
1528void
1529vdev_metaslab_set_size(vdev_t *vd)
1530{
1531	/*
1532	 * Aim for roughly 200 metaslabs per vdev.
1533	 */
1534	vd->vdev_ms_shift = highbit(vd->vdev_asize / 200);
1535	vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1536}
1537
1538void
1539vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1540{
1541	ASSERT(vd == vd->vdev_top);
1542	ASSERT(!vd->vdev_ishole);
1543	ASSERT(ISP2(flags));
1544	ASSERT(spa_writeable(vd->vdev_spa));
1545
1546	if (flags & VDD_METASLAB)
1547		(void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1548
1549	if (flags & VDD_DTL)
1550		(void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1551
1552	(void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1553}
1554
1555/*
1556 * DTLs.
1557 *
1558 * A vdev's DTL (dirty time log) is the set of transaction groups for which
1559 * the vdev has less than perfect replication.  There are four kinds of DTL:
1560 *
1561 * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1562 *
1563 * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1564 *
1565 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1566 *	scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1567 *	txgs that was scrubbed.
1568 *
1569 * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1570 *	persistent errors or just some device being offline.
1571 *	Unlike the other three, the DTL_OUTAGE map is not generally
1572 *	maintained; it's only computed when needed, typically to
1573 *	determine whether a device can be detached.
1574 *
1575 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1576 * either has the data or it doesn't.
1577 *
1578 * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1579 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1580 * if any child is less than fully replicated, then so is its parent.
1581 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1582 * comprising only those txgs which appear in 'maxfaults' or more children;
1583 * those are the txgs we don't have enough replication to read.  For example,
1584 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1585 * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1586 * two child DTL_MISSING maps.
1587 *
1588 * It should be clear from the above that to compute the DTLs and outage maps
1589 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1590 * Therefore, that is all we keep on disk.  When loading the pool, or after
1591 * a configuration change, we generate all other DTLs from first principles.
1592 */
1593void
1594vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1595{
1596	space_map_t *sm = &vd->vdev_dtl[t];
1597
1598	ASSERT(t < DTL_TYPES);
1599	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1600	ASSERT(spa_writeable(vd->vdev_spa));
1601
1602	mutex_enter(sm->sm_lock);
1603	if (!space_map_contains(sm, txg, size))
1604		space_map_add(sm, txg, size);
1605	mutex_exit(sm->sm_lock);
1606}
1607
1608boolean_t
1609vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1610{
1611	space_map_t *sm = &vd->vdev_dtl[t];
1612	boolean_t dirty = B_FALSE;
1613
1614	ASSERT(t < DTL_TYPES);
1615	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1616
1617	mutex_enter(sm->sm_lock);
1618	if (sm->sm_space != 0)
1619		dirty = space_map_contains(sm, txg, size);
1620	mutex_exit(sm->sm_lock);
1621
1622	return (dirty);
1623}
1624
1625boolean_t
1626vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1627{
1628	space_map_t *sm = &vd->vdev_dtl[t];
1629	boolean_t empty;
1630
1631	mutex_enter(sm->sm_lock);
1632	empty = (sm->sm_space == 0);
1633	mutex_exit(sm->sm_lock);
1634
1635	return (empty);
1636}
1637
1638/*
1639 * Reassess DTLs after a config change or scrub completion.
1640 */
1641void
1642vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1643{
1644	spa_t *spa = vd->vdev_spa;
1645	avl_tree_t reftree;
1646	int minref;
1647
1648	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1649
1650	for (int c = 0; c < vd->vdev_children; c++)
1651		vdev_dtl_reassess(vd->vdev_child[c], txg,
1652		    scrub_txg, scrub_done);
1653
1654	if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1655		return;
1656
1657	if (vd->vdev_ops->vdev_op_leaf) {
1658		dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1659
1660		mutex_enter(&vd->vdev_dtl_lock);
1661		if (scrub_txg != 0 &&
1662		    (spa->spa_scrub_started ||
1663		    (scn && scn->scn_phys.scn_errors == 0))) {
1664			/*
1665			 * We completed a scrub up to scrub_txg.  If we
1666			 * did it without rebooting, then the scrub dtl
1667			 * will be valid, so excise the old region and
1668			 * fold in the scrub dtl.  Otherwise, leave the
1669			 * dtl as-is if there was an error.
1670			 *
1671			 * There's little trick here: to excise the beginning
1672			 * of the DTL_MISSING map, we put it into a reference
1673			 * tree and then add a segment with refcnt -1 that
1674			 * covers the range [0, scrub_txg).  This means
1675			 * that each txg in that range has refcnt -1 or 0.
1676			 * We then add DTL_SCRUB with a refcnt of 2, so that
1677			 * entries in the range [0, scrub_txg) will have a
1678			 * positive refcnt -- either 1 or 2.  We then convert
1679			 * the reference tree into the new DTL_MISSING map.
1680			 */
1681			space_map_ref_create(&reftree);
1682			space_map_ref_add_map(&reftree,
1683			    &vd->vdev_dtl[DTL_MISSING], 1);
1684			space_map_ref_add_seg(&reftree, 0, scrub_txg, -1);
1685			space_map_ref_add_map(&reftree,
1686			    &vd->vdev_dtl[DTL_SCRUB], 2);
1687			space_map_ref_generate_map(&reftree,
1688			    &vd->vdev_dtl[DTL_MISSING], 1);
1689			space_map_ref_destroy(&reftree);
1690		}
1691		space_map_vacate(&vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1692		space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1693		    space_map_add, &vd->vdev_dtl[DTL_PARTIAL]);
1694		if (scrub_done)
1695			space_map_vacate(&vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1696		space_map_vacate(&vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1697		if (!vdev_readable(vd))
1698			space_map_add(&vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1699		else
1700			space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1701			    space_map_add, &vd->vdev_dtl[DTL_OUTAGE]);
1702		mutex_exit(&vd->vdev_dtl_lock);
1703
1704		if (txg != 0)
1705			vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1706		return;
1707	}
1708
1709	mutex_enter(&vd->vdev_dtl_lock);
1710	for (int t = 0; t < DTL_TYPES; t++) {
1711		/* account for child's outage in parent's missing map */
1712		int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1713		if (t == DTL_SCRUB)
1714			continue;			/* leaf vdevs only */
1715		if (t == DTL_PARTIAL)
1716			minref = 1;			/* i.e. non-zero */
1717		else if (vd->vdev_nparity != 0)
1718			minref = vd->vdev_nparity + 1;	/* RAID-Z */
1719		else
1720			minref = vd->vdev_children;	/* any kind of mirror */
1721		space_map_ref_create(&reftree);
1722		for (int c = 0; c < vd->vdev_children; c++) {
1723			vdev_t *cvd = vd->vdev_child[c];
1724			mutex_enter(&cvd->vdev_dtl_lock);
1725			space_map_ref_add_map(&reftree, &cvd->vdev_dtl[s], 1);
1726			mutex_exit(&cvd->vdev_dtl_lock);
1727		}
1728		space_map_ref_generate_map(&reftree, &vd->vdev_dtl[t], minref);
1729		space_map_ref_destroy(&reftree);
1730	}
1731	mutex_exit(&vd->vdev_dtl_lock);
1732}
1733
1734static int
1735vdev_dtl_load(vdev_t *vd)
1736{
1737	spa_t *spa = vd->vdev_spa;
1738	space_map_obj_t *smo = &vd->vdev_dtl_smo;
1739	objset_t *mos = spa->spa_meta_objset;
1740	dmu_buf_t *db;
1741	int error;
1742
1743	ASSERT(vd->vdev_children == 0);
1744
1745	if (smo->smo_object == 0)
1746		return (0);
1747
1748	ASSERT(!vd->vdev_ishole);
1749
1750	if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0)
1751		return (error);
1752
1753	ASSERT3U(db->db_size, >=, sizeof (*smo));
1754	bcopy(db->db_data, smo, sizeof (*smo));
1755	dmu_buf_rele(db, FTAG);
1756
1757	mutex_enter(&vd->vdev_dtl_lock);
1758	error = space_map_load(&vd->vdev_dtl[DTL_MISSING],
1759	    NULL, SM_ALLOC, smo, mos);
1760	mutex_exit(&vd->vdev_dtl_lock);
1761
1762	return (error);
1763}
1764
1765void
1766vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1767{
1768	spa_t *spa = vd->vdev_spa;
1769	space_map_obj_t *smo = &vd->vdev_dtl_smo;
1770	space_map_t *sm = &vd->vdev_dtl[DTL_MISSING];
1771	objset_t *mos = spa->spa_meta_objset;
1772	space_map_t smsync;
1773	kmutex_t smlock;
1774	dmu_buf_t *db;
1775	dmu_tx_t *tx;
1776
1777	ASSERT(!vd->vdev_ishole);
1778
1779	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1780
1781	if (vd->vdev_detached) {
1782		if (smo->smo_object != 0) {
1783			int err = dmu_object_free(mos, smo->smo_object, tx);
1784			ASSERT3U(err, ==, 0);
1785			smo->smo_object = 0;
1786		}
1787		dmu_tx_commit(tx);
1788		return;
1789	}
1790
1791	if (smo->smo_object == 0) {
1792		ASSERT(smo->smo_objsize == 0);
1793		ASSERT(smo->smo_alloc == 0);
1794		smo->smo_object = dmu_object_alloc(mos,
1795		    DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
1796		    DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
1797		ASSERT(smo->smo_object != 0);
1798		vdev_config_dirty(vd->vdev_top);
1799	}
1800
1801	mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL);
1802
1803	space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift,
1804	    &smlock);
1805
1806	mutex_enter(&smlock);
1807
1808	mutex_enter(&vd->vdev_dtl_lock);
1809	space_map_walk(sm, space_map_add, &smsync);
1810	mutex_exit(&vd->vdev_dtl_lock);
1811
1812	space_map_truncate(smo, mos, tx);
1813	space_map_sync(&smsync, SM_ALLOC, smo, mos, tx);
1814
1815	space_map_destroy(&smsync);
1816
1817	mutex_exit(&smlock);
1818	mutex_destroy(&smlock);
1819
1820	VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
1821	dmu_buf_will_dirty(db, tx);
1822	ASSERT3U(db->db_size, >=, sizeof (*smo));
1823	bcopy(smo, db->db_data, sizeof (*smo));
1824	dmu_buf_rele(db, FTAG);
1825
1826	dmu_tx_commit(tx);
1827}
1828
1829/*
1830 * Determine whether the specified vdev can be offlined/detached/removed
1831 * without losing data.
1832 */
1833boolean_t
1834vdev_dtl_required(vdev_t *vd)
1835{
1836	spa_t *spa = vd->vdev_spa;
1837	vdev_t *tvd = vd->vdev_top;
1838	uint8_t cant_read = vd->vdev_cant_read;
1839	boolean_t required;
1840
1841	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1842
1843	if (vd == spa->spa_root_vdev || vd == tvd)
1844		return (B_TRUE);
1845
1846	/*
1847	 * Temporarily mark the device as unreadable, and then determine
1848	 * whether this results in any DTL outages in the top-level vdev.
1849	 * If not, we can safely offline/detach/remove the device.
1850	 */
1851	vd->vdev_cant_read = B_TRUE;
1852	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1853	required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
1854	vd->vdev_cant_read = cant_read;
1855	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1856
1857	if (!required && zio_injection_enabled)
1858		required = !!zio_handle_device_injection(vd, NULL, ECHILD);
1859
1860	return (required);
1861}
1862
1863/*
1864 * Determine if resilver is needed, and if so the txg range.
1865 */
1866boolean_t
1867vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
1868{
1869	boolean_t needed = B_FALSE;
1870	uint64_t thismin = UINT64_MAX;
1871	uint64_t thismax = 0;
1872
1873	if (vd->vdev_children == 0) {
1874		mutex_enter(&vd->vdev_dtl_lock);
1875		if (vd->vdev_dtl[DTL_MISSING].sm_space != 0 &&
1876		    vdev_writeable(vd)) {
1877			space_seg_t *ss;
1878
1879			ss = avl_first(&vd->vdev_dtl[DTL_MISSING].sm_root);
1880			thismin = ss->ss_start - 1;
1881			ss = avl_last(&vd->vdev_dtl[DTL_MISSING].sm_root);
1882			thismax = ss->ss_end;
1883			needed = B_TRUE;
1884		}
1885		mutex_exit(&vd->vdev_dtl_lock);
1886	} else {
1887		for (int c = 0; c < vd->vdev_children; c++) {
1888			vdev_t *cvd = vd->vdev_child[c];
1889			uint64_t cmin, cmax;
1890
1891			if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
1892				thismin = MIN(thismin, cmin);
1893				thismax = MAX(thismax, cmax);
1894				needed = B_TRUE;
1895			}
1896		}
1897	}
1898
1899	if (needed && minp) {
1900		*minp = thismin;
1901		*maxp = thismax;
1902	}
1903	return (needed);
1904}
1905
1906void
1907vdev_load(vdev_t *vd)
1908{
1909	/*
1910	 * Recursively load all children.
1911	 */
1912	for (int c = 0; c < vd->vdev_children; c++)
1913		vdev_load(vd->vdev_child[c]);
1914
1915	/*
1916	 * If this is a top-level vdev, initialize its metaslabs.
1917	 */
1918	if (vd == vd->vdev_top && !vd->vdev_ishole &&
1919	    (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
1920	    vdev_metaslab_init(vd, 0) != 0))
1921		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1922		    VDEV_AUX_CORRUPT_DATA);
1923
1924	/*
1925	 * If this is a leaf vdev, load its DTL.
1926	 */
1927	if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
1928		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1929		    VDEV_AUX_CORRUPT_DATA);
1930}
1931
1932/*
1933 * The special vdev case is used for hot spares and l2cache devices.  Its
1934 * sole purpose it to set the vdev state for the associated vdev.  To do this,
1935 * we make sure that we can open the underlying device, then try to read the
1936 * label, and make sure that the label is sane and that it hasn't been
1937 * repurposed to another pool.
1938 */
1939int
1940vdev_validate_aux(vdev_t *vd)
1941{
1942	nvlist_t *label;
1943	uint64_t guid, version;
1944	uint64_t state;
1945
1946	if (!vdev_readable(vd))
1947		return (0);
1948
1949	if ((label = vdev_label_read_config(vd)) == NULL) {
1950		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1951		    VDEV_AUX_CORRUPT_DATA);
1952		return (-1);
1953	}
1954
1955	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
1956	    version > SPA_VERSION ||
1957	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
1958	    guid != vd->vdev_guid ||
1959	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
1960		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1961		    VDEV_AUX_CORRUPT_DATA);
1962		nvlist_free(label);
1963		return (-1);
1964	}
1965
1966	/*
1967	 * We don't actually check the pool state here.  If it's in fact in
1968	 * use by another pool, we update this fact on the fly when requested.
1969	 */
1970	nvlist_free(label);
1971	return (0);
1972}
1973
1974void
1975vdev_remove(vdev_t *vd, uint64_t txg)
1976{
1977	spa_t *spa = vd->vdev_spa;
1978	objset_t *mos = spa->spa_meta_objset;
1979	dmu_tx_t *tx;
1980
1981	tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
1982
1983	if (vd->vdev_dtl_smo.smo_object) {
1984		ASSERT3U(vd->vdev_dtl_smo.smo_alloc, ==, 0);
1985		(void) dmu_object_free(mos, vd->vdev_dtl_smo.smo_object, tx);
1986		vd->vdev_dtl_smo.smo_object = 0;
1987	}
1988
1989	if (vd->vdev_ms != NULL) {
1990		for (int m = 0; m < vd->vdev_ms_count; m++) {
1991			metaslab_t *msp = vd->vdev_ms[m];
1992
1993			if (msp == NULL || msp->ms_smo.smo_object == 0)
1994				continue;
1995
1996			ASSERT3U(msp->ms_smo.smo_alloc, ==, 0);
1997			(void) dmu_object_free(mos, msp->ms_smo.smo_object, tx);
1998			msp->ms_smo.smo_object = 0;
1999		}
2000	}
2001
2002	if (vd->vdev_ms_array) {
2003		(void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2004		vd->vdev_ms_array = 0;
2005		vd->vdev_ms_shift = 0;
2006	}
2007	dmu_tx_commit(tx);
2008}
2009
2010void
2011vdev_sync_done(vdev_t *vd, uint64_t txg)
2012{
2013	metaslab_t *msp;
2014	boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2015
2016	ASSERT(!vd->vdev_ishole);
2017
2018	while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
2019		metaslab_sync_done(msp, txg);
2020
2021	if (reassess)
2022		metaslab_sync_reassess(vd->vdev_mg);
2023}
2024
2025void
2026vdev_sync(vdev_t *vd, uint64_t txg)
2027{
2028	spa_t *spa = vd->vdev_spa;
2029	vdev_t *lvd;
2030	metaslab_t *msp;
2031	dmu_tx_t *tx;
2032
2033	ASSERT(!vd->vdev_ishole);
2034
2035	if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2036		ASSERT(vd == vd->vdev_top);
2037		tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2038		vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2039		    DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2040		ASSERT(vd->vdev_ms_array != 0);
2041		vdev_config_dirty(vd);
2042		dmu_tx_commit(tx);
2043	}
2044
2045	/*
2046	 * Remove the metadata associated with this vdev once it's empty.
2047	 */
2048	if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2049		vdev_remove(vd, txg);
2050
2051	while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2052		metaslab_sync(msp, txg);
2053		(void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2054	}
2055
2056	while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2057		vdev_dtl_sync(lvd, txg);
2058
2059	(void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2060}
2061
2062uint64_t
2063vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2064{
2065	return (vd->vdev_ops->vdev_op_asize(vd, psize));
2066}
2067
2068/*
2069 * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
2070 * not be opened, and no I/O is attempted.
2071 */
2072int
2073vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2074{
2075	vdev_t *vd, *tvd;
2076
2077	spa_vdev_state_enter(spa, SCL_NONE);
2078
2079	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2080		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2081
2082	if (!vd->vdev_ops->vdev_op_leaf)
2083		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2084
2085	tvd = vd->vdev_top;
2086
2087	/*
2088	 * We don't directly use the aux state here, but if we do a
2089	 * vdev_reopen(), we need this value to be present to remember why we
2090	 * were faulted.
2091	 */
2092	vd->vdev_label_aux = aux;
2093
2094	/*
2095	 * Faulted state takes precedence over degraded.
2096	 */
2097	vd->vdev_delayed_close = B_FALSE;
2098	vd->vdev_faulted = 1ULL;
2099	vd->vdev_degraded = 0ULL;
2100	vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2101
2102	/*
2103	 * If this device has the only valid copy of the data, then
2104	 * back off and simply mark the vdev as degraded instead.
2105	 */
2106	if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2107		vd->vdev_degraded = 1ULL;
2108		vd->vdev_faulted = 0ULL;
2109
2110		/*
2111		 * If we reopen the device and it's not dead, only then do we
2112		 * mark it degraded.
2113		 */
2114		vdev_reopen(tvd);
2115
2116		if (vdev_readable(vd))
2117			vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2118	}
2119
2120	return (spa_vdev_state_exit(spa, vd, 0));
2121}
2122
2123/*
2124 * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
2125 * user that something is wrong.  The vdev continues to operate as normal as far
2126 * as I/O is concerned.
2127 */
2128int
2129vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2130{
2131	vdev_t *vd;
2132
2133	spa_vdev_state_enter(spa, SCL_NONE);
2134
2135	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2136		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2137
2138	if (!vd->vdev_ops->vdev_op_leaf)
2139		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2140
2141	/*
2142	 * If the vdev is already faulted, then don't do anything.
2143	 */
2144	if (vd->vdev_faulted || vd->vdev_degraded)
2145		return (spa_vdev_state_exit(spa, NULL, 0));
2146
2147	vd->vdev_degraded = 1ULL;
2148	if (!vdev_is_dead(vd))
2149		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2150		    aux);
2151
2152	return (spa_vdev_state_exit(spa, vd, 0));
2153}
2154
2155/*
2156 * Online the given vdev.  If 'unspare' is set, it implies two things.  First,
2157 * any attached spare device should be detached when the device finishes
2158 * resilvering.  Second, the online should be treated like a 'test' online case,
2159 * so no FMA events are generated if the device fails to open.
2160 */
2161int
2162vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2163{
2164	vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2165
2166	spa_vdev_state_enter(spa, SCL_NONE);
2167
2168	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2169		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2170
2171	if (!vd->vdev_ops->vdev_op_leaf)
2172		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2173
2174	tvd = vd->vdev_top;
2175	vd->vdev_offline = B_FALSE;
2176	vd->vdev_tmpoffline = B_FALSE;
2177	vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2178	vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2179
2180	/* XXX - L2ARC 1.0 does not support expansion */
2181	if (!vd->vdev_aux) {
2182		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2183			pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2184	}
2185
2186	vdev_reopen(tvd);
2187	vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2188
2189	if (!vd->vdev_aux) {
2190		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2191			pvd->vdev_expanding = B_FALSE;
2192	}
2193
2194	if (newstate)
2195		*newstate = vd->vdev_state;
2196	if ((flags & ZFS_ONLINE_UNSPARE) &&
2197	    !vdev_is_dead(vd) && vd->vdev_parent &&
2198	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2199	    vd->vdev_parent->vdev_child[0] == vd)
2200		vd->vdev_unspare = B_TRUE;
2201
2202	if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2203
2204		/* XXX - L2ARC 1.0 does not support expansion */
2205		if (vd->vdev_aux)
2206			return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2207		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2208	}
2209	return (spa_vdev_state_exit(spa, vd, 0));
2210}
2211
2212static int
2213vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2214{
2215	vdev_t *vd, *tvd;
2216	int error = 0;
2217	uint64_t generation;
2218	metaslab_group_t *mg;
2219
2220top:
2221	spa_vdev_state_enter(spa, SCL_ALLOC);
2222
2223	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2224		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2225
2226	if (!vd->vdev_ops->vdev_op_leaf)
2227		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2228
2229	tvd = vd->vdev_top;
2230	mg = tvd->vdev_mg;
2231	generation = spa->spa_config_generation + 1;
2232
2233	/*
2234	 * If the device isn't already offline, try to offline it.
2235	 */
2236	if (!vd->vdev_offline) {
2237		/*
2238		 * If this device has the only valid copy of some data,
2239		 * don't allow it to be offlined. Log devices are always
2240		 * expendable.
2241		 */
2242		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2243		    vdev_dtl_required(vd))
2244			return (spa_vdev_state_exit(spa, NULL, EBUSY));
2245
2246		/*
2247		 * If the top-level is a slog and it has had allocations
2248		 * then proceed.  We check that the vdev's metaslab group
2249		 * is not NULL since it's possible that we may have just
2250		 * added this vdev but not yet initialized its metaslabs.
2251		 */
2252		if (tvd->vdev_islog && mg != NULL) {
2253			/*
2254			 * Prevent any future allocations.
2255			 */
2256			metaslab_group_passivate(mg);
2257			(void) spa_vdev_state_exit(spa, vd, 0);
2258
2259			error = spa_offline_log(spa);
2260
2261			spa_vdev_state_enter(spa, SCL_ALLOC);
2262
2263			/*
2264			 * Check to see if the config has changed.
2265			 */
2266			if (error || generation != spa->spa_config_generation) {
2267				metaslab_group_activate(mg);
2268				if (error)
2269					return (spa_vdev_state_exit(spa,
2270					    vd, error));
2271				(void) spa_vdev_state_exit(spa, vd, 0);
2272				goto top;
2273			}
2274			ASSERT3U(tvd->vdev_stat.vs_alloc, ==, 0);
2275		}
2276
2277		/*
2278		 * Offline this device and reopen its top-level vdev.
2279		 * If the top-level vdev is a log device then just offline
2280		 * it. Otherwise, if this action results in the top-level
2281		 * vdev becoming unusable, undo it and fail the request.
2282		 */
2283		vd->vdev_offline = B_TRUE;
2284		vdev_reopen(tvd);
2285
2286		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2287		    vdev_is_dead(tvd)) {
2288			vd->vdev_offline = B_FALSE;
2289			vdev_reopen(tvd);
2290			return (spa_vdev_state_exit(spa, NULL, EBUSY));
2291		}
2292
2293		/*
2294		 * Add the device back into the metaslab rotor so that
2295		 * once we online the device it's open for business.
2296		 */
2297		if (tvd->vdev_islog && mg != NULL)
2298			metaslab_group_activate(mg);
2299	}
2300
2301	vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2302
2303	return (spa_vdev_state_exit(spa, vd, 0));
2304}
2305
2306int
2307vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2308{
2309	int error;
2310
2311	mutex_enter(&spa->spa_vdev_top_lock);
2312	error = vdev_offline_locked(spa, guid, flags);
2313	mutex_exit(&spa->spa_vdev_top_lock);
2314
2315	return (error);
2316}
2317
2318/*
2319 * Clear the error counts associated with this vdev.  Unlike vdev_online() and
2320 * vdev_offline(), we assume the spa config is locked.  We also clear all
2321 * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
2322 */
2323void
2324vdev_clear(spa_t *spa, vdev_t *vd)
2325{
2326	vdev_t *rvd = spa->spa_root_vdev;
2327
2328	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2329
2330	if (vd == NULL)
2331		vd = rvd;
2332
2333	vd->vdev_stat.vs_read_errors = 0;
2334	vd->vdev_stat.vs_write_errors = 0;
2335	vd->vdev_stat.vs_checksum_errors = 0;
2336
2337	for (int c = 0; c < vd->vdev_children; c++)
2338		vdev_clear(spa, vd->vdev_child[c]);
2339
2340	/*
2341	 * If we're in the FAULTED state or have experienced failed I/O, then
2342	 * clear the persistent state and attempt to reopen the device.  We
2343	 * also mark the vdev config dirty, so that the new faulted state is
2344	 * written out to disk.
2345	 */
2346	if (vd->vdev_faulted || vd->vdev_degraded ||
2347	    !vdev_readable(vd) || !vdev_writeable(vd)) {
2348
2349		/*
2350		 * When reopening in reponse to a clear event, it may be due to
2351		 * a fmadm repair request.  In this case, if the device is
2352		 * still broken, we want to still post the ereport again.
2353		 */
2354		vd->vdev_forcefault = B_TRUE;
2355
2356		vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2357		vd->vdev_cant_read = B_FALSE;
2358		vd->vdev_cant_write = B_FALSE;
2359
2360		vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2361
2362		vd->vdev_forcefault = B_FALSE;
2363
2364		if (vd != rvd && vdev_writeable(vd->vdev_top))
2365			vdev_state_dirty(vd->vdev_top);
2366
2367		if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2368			spa_async_request(spa, SPA_ASYNC_RESILVER);
2369
2370		spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2371	}
2372
2373	/*
2374	 * When clearing a FMA-diagnosed fault, we always want to
2375	 * unspare the device, as we assume that the original spare was
2376	 * done in response to the FMA fault.
2377	 */
2378	if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2379	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2380	    vd->vdev_parent->vdev_child[0] == vd)
2381		vd->vdev_unspare = B_TRUE;
2382}
2383
2384boolean_t
2385vdev_is_dead(vdev_t *vd)
2386{
2387	/*
2388	 * Holes and missing devices are always considered "dead".
2389	 * This simplifies the code since we don't have to check for
2390	 * these types of devices in the various code paths.
2391	 * Instead we rely on the fact that we skip over dead devices
2392	 * before issuing I/O to them.
2393	 */
2394	return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2395	    vd->vdev_ops == &vdev_missing_ops);
2396}
2397
2398boolean_t
2399vdev_readable(vdev_t *vd)
2400{
2401	return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2402}
2403
2404boolean_t
2405vdev_writeable(vdev_t *vd)
2406{
2407	return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2408}
2409
2410boolean_t
2411vdev_allocatable(vdev_t *vd)
2412{
2413	uint64_t state = vd->vdev_state;
2414
2415	/*
2416	 * We currently allow allocations from vdevs which may be in the
2417	 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2418	 * fails to reopen then we'll catch it later when we're holding
2419	 * the proper locks.  Note that we have to get the vdev state
2420	 * in a local variable because although it changes atomically,
2421	 * we're asking two separate questions about it.
2422	 */
2423	return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2424	    !vd->vdev_cant_write && !vd->vdev_ishole);
2425}
2426
2427boolean_t
2428vdev_accessible(vdev_t *vd, zio_t *zio)
2429{
2430	ASSERT(zio->io_vd == vd);
2431
2432	if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2433		return (B_FALSE);
2434
2435	if (zio->io_type == ZIO_TYPE_READ)
2436		return (!vd->vdev_cant_read);
2437
2438	if (zio->io_type == ZIO_TYPE_WRITE)
2439		return (!vd->vdev_cant_write);
2440
2441	return (B_TRUE);
2442}
2443
2444/*
2445 * Get statistics for the given vdev.
2446 */
2447void
2448vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2449{
2450	vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
2451
2452	mutex_enter(&vd->vdev_stat_lock);
2453	bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2454	vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2455	vs->vs_state = vd->vdev_state;
2456	vs->vs_rsize = vdev_get_min_asize(vd);
2457	if (vd->vdev_ops->vdev_op_leaf)
2458		vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2459	mutex_exit(&vd->vdev_stat_lock);
2460
2461	/*
2462	 * If we're getting stats on the root vdev, aggregate the I/O counts
2463	 * over all top-level vdevs (i.e. the direct children of the root).
2464	 */
2465	if (vd == rvd) {
2466		for (int c = 0; c < rvd->vdev_children; c++) {
2467			vdev_t *cvd = rvd->vdev_child[c];
2468			vdev_stat_t *cvs = &cvd->vdev_stat;
2469
2470			mutex_enter(&vd->vdev_stat_lock);
2471			for (int t = 0; t < ZIO_TYPES; t++) {
2472				vs->vs_ops[t] += cvs->vs_ops[t];
2473				vs->vs_bytes[t] += cvs->vs_bytes[t];
2474			}
2475			cvs->vs_scan_removing = cvd->vdev_removing;
2476			mutex_exit(&vd->vdev_stat_lock);
2477		}
2478	}
2479}
2480
2481void
2482vdev_clear_stats(vdev_t *vd)
2483{
2484	mutex_enter(&vd->vdev_stat_lock);
2485	vd->vdev_stat.vs_space = 0;
2486	vd->vdev_stat.vs_dspace = 0;
2487	vd->vdev_stat.vs_alloc = 0;
2488	mutex_exit(&vd->vdev_stat_lock);
2489}
2490
2491void
2492vdev_scan_stat_init(vdev_t *vd)
2493{
2494	vdev_stat_t *vs = &vd->vdev_stat;
2495
2496	for (int c = 0; c < vd->vdev_children; c++)
2497		vdev_scan_stat_init(vd->vdev_child[c]);
2498
2499	mutex_enter(&vd->vdev_stat_lock);
2500	vs->vs_scan_processed = 0;
2501	mutex_exit(&vd->vdev_stat_lock);
2502}
2503
2504void
2505vdev_stat_update(zio_t *zio, uint64_t psize)
2506{
2507	spa_t *spa = zio->io_spa;
2508	vdev_t *rvd = spa->spa_root_vdev;
2509	vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2510	vdev_t *pvd;
2511	uint64_t txg = zio->io_txg;
2512	vdev_stat_t *vs = &vd->vdev_stat;
2513	zio_type_t type = zio->io_type;
2514	int flags = zio->io_flags;
2515
2516	/*
2517	 * If this i/o is a gang leader, it didn't do any actual work.
2518	 */
2519	if (zio->io_gang_tree)
2520		return;
2521
2522	if (zio->io_error == 0) {
2523		/*
2524		 * If this is a root i/o, don't count it -- we've already
2525		 * counted the top-level vdevs, and vdev_get_stats() will
2526		 * aggregate them when asked.  This reduces contention on
2527		 * the root vdev_stat_lock and implicitly handles blocks
2528		 * that compress away to holes, for which there is no i/o.
2529		 * (Holes never create vdev children, so all the counters
2530		 * remain zero, which is what we want.)
2531		 *
2532		 * Note: this only applies to successful i/o (io_error == 0)
2533		 * because unlike i/o counts, errors are not additive.
2534		 * When reading a ditto block, for example, failure of
2535		 * one top-level vdev does not imply a root-level error.
2536		 */
2537		if (vd == rvd)
2538			return;
2539
2540		ASSERT(vd == zio->io_vd);
2541
2542		if (flags & ZIO_FLAG_IO_BYPASS)
2543			return;
2544
2545		mutex_enter(&vd->vdev_stat_lock);
2546
2547		if (flags & ZIO_FLAG_IO_REPAIR) {
2548			if (flags & ZIO_FLAG_SCAN_THREAD) {
2549				dsl_scan_phys_t *scn_phys =
2550				    &spa->spa_dsl_pool->dp_scan->scn_phys;
2551				uint64_t *processed = &scn_phys->scn_processed;
2552
2553				/* XXX cleanup? */
2554				if (vd->vdev_ops->vdev_op_leaf)
2555					atomic_add_64(processed, psize);
2556				vs->vs_scan_processed += psize;
2557			}
2558
2559			if (flags & ZIO_FLAG_SELF_HEAL)
2560				vs->vs_self_healed += psize;
2561		}
2562
2563		vs->vs_ops[type]++;
2564		vs->vs_bytes[type] += psize;
2565
2566		mutex_exit(&vd->vdev_stat_lock);
2567		return;
2568	}
2569
2570	if (flags & ZIO_FLAG_SPECULATIVE)
2571		return;
2572
2573	/*
2574	 * If this is an I/O error that is going to be retried, then ignore the
2575	 * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
2576	 * hard errors, when in reality they can happen for any number of
2577	 * innocuous reasons (bus resets, MPxIO link failure, etc).
2578	 */
2579	if (zio->io_error == EIO &&
2580	    !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2581		return;
2582
2583	/*
2584	 * Intent logs writes won't propagate their error to the root
2585	 * I/O so don't mark these types of failures as pool-level
2586	 * errors.
2587	 */
2588	if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2589		return;
2590
2591	mutex_enter(&vd->vdev_stat_lock);
2592	if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2593		if (zio->io_error == ECKSUM)
2594			vs->vs_checksum_errors++;
2595		else
2596			vs->vs_read_errors++;
2597	}
2598	if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2599		vs->vs_write_errors++;
2600	mutex_exit(&vd->vdev_stat_lock);
2601
2602	if (type == ZIO_TYPE_WRITE && txg != 0 &&
2603	    (!(flags & ZIO_FLAG_IO_REPAIR) ||
2604	    (flags & ZIO_FLAG_SCAN_THREAD) ||
2605	    spa->spa_claiming)) {
2606		/*
2607		 * This is either a normal write (not a repair), or it's
2608		 * a repair induced by the scrub thread, or it's a repair
2609		 * made by zil_claim() during spa_load() in the first txg.
2610		 * In the normal case, we commit the DTL change in the same
2611		 * txg as the block was born.  In the scrub-induced repair
2612		 * case, we know that scrubs run in first-pass syncing context,
2613		 * so we commit the DTL change in spa_syncing_txg(spa).
2614		 * In the zil_claim() case, we commit in spa_first_txg(spa).
2615		 *
2616		 * We currently do not make DTL entries for failed spontaneous
2617		 * self-healing writes triggered by normal (non-scrubbing)
2618		 * reads, because we have no transactional context in which to
2619		 * do so -- and it's not clear that it'd be desirable anyway.
2620		 */
2621		if (vd->vdev_ops->vdev_op_leaf) {
2622			uint64_t commit_txg = txg;
2623			if (flags & ZIO_FLAG_SCAN_THREAD) {
2624				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2625				ASSERT(spa_sync_pass(spa) == 1);
2626				vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2627				commit_txg = spa_syncing_txg(spa);
2628			} else if (spa->spa_claiming) {
2629				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2630				commit_txg = spa_first_txg(spa);
2631			}
2632			ASSERT(commit_txg >= spa_syncing_txg(spa));
2633			if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2634				return;
2635			for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2636				vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2637			vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2638		}
2639		if (vd != rvd)
2640			vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2641	}
2642}
2643
2644/*
2645 * Update the in-core space usage stats for this vdev, its metaslab class,
2646 * and the root vdev.
2647 */
2648void
2649vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2650    int64_t space_delta)
2651{
2652	int64_t dspace_delta = space_delta;
2653	spa_t *spa = vd->vdev_spa;
2654	vdev_t *rvd = spa->spa_root_vdev;
2655	metaslab_group_t *mg = vd->vdev_mg;
2656	metaslab_class_t *mc = mg ? mg->mg_class : NULL;
2657
2658	ASSERT(vd == vd->vdev_top);
2659
2660	/*
2661	 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2662	 * factor.  We must calculate this here and not at the root vdev
2663	 * because the root vdev's psize-to-asize is simply the max of its
2664	 * childrens', thus not accurate enough for us.
2665	 */
2666	ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2667	ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2668	dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2669	    vd->vdev_deflate_ratio;
2670
2671	mutex_enter(&vd->vdev_stat_lock);
2672	vd->vdev_stat.vs_alloc += alloc_delta;
2673	vd->vdev_stat.vs_space += space_delta;
2674	vd->vdev_stat.vs_dspace += dspace_delta;
2675	mutex_exit(&vd->vdev_stat_lock);
2676
2677	if (mc == spa_normal_class(spa)) {
2678		mutex_enter(&rvd->vdev_stat_lock);
2679		rvd->vdev_stat.vs_alloc += alloc_delta;
2680		rvd->vdev_stat.vs_space += space_delta;
2681		rvd->vdev_stat.vs_dspace += dspace_delta;
2682		mutex_exit(&rvd->vdev_stat_lock);
2683	}
2684
2685	if (mc != NULL) {
2686		ASSERT(rvd == vd->vdev_parent);
2687		ASSERT(vd->vdev_ms_count != 0);
2688
2689		metaslab_class_space_update(mc,
2690		    alloc_delta, defer_delta, space_delta, dspace_delta);
2691	}
2692}
2693
2694/*
2695 * Mark a top-level vdev's config as dirty, placing it on the dirty list
2696 * so that it will be written out next time the vdev configuration is synced.
2697 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2698 */
2699void
2700vdev_config_dirty(vdev_t *vd)
2701{
2702	spa_t *spa = vd->vdev_spa;
2703	vdev_t *rvd = spa->spa_root_vdev;
2704	int c;
2705
2706	ASSERT(spa_writeable(spa));
2707
2708	/*
2709	 * If this is an aux vdev (as with l2cache and spare devices), then we
2710	 * update the vdev config manually and set the sync flag.
2711	 */
2712	if (vd->vdev_aux != NULL) {
2713		spa_aux_vdev_t *sav = vd->vdev_aux;
2714		nvlist_t **aux;
2715		uint_t naux;
2716
2717		for (c = 0; c < sav->sav_count; c++) {
2718			if (sav->sav_vdevs[c] == vd)
2719				break;
2720		}
2721
2722		if (c == sav->sav_count) {
2723			/*
2724			 * We're being removed.  There's nothing more to do.
2725			 */
2726			ASSERT(sav->sav_sync == B_TRUE);
2727			return;
2728		}
2729
2730		sav->sav_sync = B_TRUE;
2731
2732		if (nvlist_lookup_nvlist_array(sav->sav_config,
2733		    ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
2734			VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2735			    ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
2736		}
2737
2738		ASSERT(c < naux);
2739
2740		/*
2741		 * Setting the nvlist in the middle if the array is a little
2742		 * sketchy, but it will work.
2743		 */
2744		nvlist_free(aux[c]);
2745		aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
2746
2747		return;
2748	}
2749
2750	/*
2751	 * The dirty list is protected by the SCL_CONFIG lock.  The caller
2752	 * must either hold SCL_CONFIG as writer, or must be the sync thread
2753	 * (which holds SCL_CONFIG as reader).  There's only one sync thread,
2754	 * so this is sufficient to ensure mutual exclusion.
2755	 */
2756	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2757	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2758	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
2759
2760	if (vd == rvd) {
2761		for (c = 0; c < rvd->vdev_children; c++)
2762			vdev_config_dirty(rvd->vdev_child[c]);
2763	} else {
2764		ASSERT(vd == vd->vdev_top);
2765
2766		if (!list_link_active(&vd->vdev_config_dirty_node) &&
2767		    !vd->vdev_ishole)
2768			list_insert_head(&spa->spa_config_dirty_list, vd);
2769	}
2770}
2771
2772void
2773vdev_config_clean(vdev_t *vd)
2774{
2775	spa_t *spa = vd->vdev_spa;
2776
2777	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2778	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2779	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
2780
2781	ASSERT(list_link_active(&vd->vdev_config_dirty_node));
2782	list_remove(&spa->spa_config_dirty_list, vd);
2783}
2784
2785/*
2786 * Mark a top-level vdev's state as dirty, so that the next pass of
2787 * spa_sync() can convert this into vdev_config_dirty().  We distinguish
2788 * the state changes from larger config changes because they require
2789 * much less locking, and are often needed for administrative actions.
2790 */
2791void
2792vdev_state_dirty(vdev_t *vd)
2793{
2794	spa_t *spa = vd->vdev_spa;
2795
2796	ASSERT(spa_writeable(spa));
2797	ASSERT(vd == vd->vdev_top);
2798
2799	/*
2800	 * The state list is protected by the SCL_STATE lock.  The caller
2801	 * must either hold SCL_STATE as writer, or must be the sync thread
2802	 * (which holds SCL_STATE as reader).  There's only one sync thread,
2803	 * so this is sufficient to ensure mutual exclusion.
2804	 */
2805	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2806	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2807	    spa_config_held(spa, SCL_STATE, RW_READER)));
2808
2809	if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
2810		list_insert_head(&spa->spa_state_dirty_list, vd);
2811}
2812
2813void
2814vdev_state_clean(vdev_t *vd)
2815{
2816	spa_t *spa = vd->vdev_spa;
2817
2818	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2819	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2820	    spa_config_held(spa, SCL_STATE, RW_READER)));
2821
2822	ASSERT(list_link_active(&vd->vdev_state_dirty_node));
2823	list_remove(&spa->spa_state_dirty_list, vd);
2824}
2825
2826/*
2827 * Propagate vdev state up from children to parent.
2828 */
2829void
2830vdev_propagate_state(vdev_t *vd)
2831{
2832	spa_t *spa = vd->vdev_spa;
2833	vdev_t *rvd = spa->spa_root_vdev;
2834	int degraded = 0, faulted = 0;
2835	int corrupted = 0;
2836	vdev_t *child;
2837
2838	if (vd->vdev_children > 0) {
2839		for (int c = 0; c < vd->vdev_children; c++) {
2840			child = vd->vdev_child[c];
2841
2842			/*
2843			 * Don't factor holes into the decision.
2844			 */
2845			if (child->vdev_ishole)
2846				continue;
2847
2848			if (!vdev_readable(child) ||
2849			    (!vdev_writeable(child) && spa_writeable(spa))) {
2850				/*
2851				 * Root special: if there is a top-level log
2852				 * device, treat the root vdev as if it were
2853				 * degraded.
2854				 */
2855				if (child->vdev_islog && vd == rvd)
2856					degraded++;
2857				else
2858					faulted++;
2859			} else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
2860				degraded++;
2861			}
2862
2863			if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
2864				corrupted++;
2865		}
2866
2867		vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
2868
2869		/*
2870		 * Root special: if there is a top-level vdev that cannot be
2871		 * opened due to corrupted metadata, then propagate the root
2872		 * vdev's aux state as 'corrupt' rather than 'insufficient
2873		 * replicas'.
2874		 */
2875		if (corrupted && vd == rvd &&
2876		    rvd->vdev_state == VDEV_STATE_CANT_OPEN)
2877			vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
2878			    VDEV_AUX_CORRUPT_DATA);
2879	}
2880
2881	if (vd->vdev_parent)
2882		vdev_propagate_state(vd->vdev_parent);
2883}
2884
2885/*
2886 * Set a vdev's state.  If this is during an open, we don't update the parent
2887 * state, because we're in the process of opening children depth-first.
2888 * Otherwise, we propagate the change to the parent.
2889 *
2890 * If this routine places a device in a faulted state, an appropriate ereport is
2891 * generated.
2892 */
2893void
2894vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
2895{
2896	uint64_t save_state;
2897	spa_t *spa = vd->vdev_spa;
2898
2899	if (state == vd->vdev_state) {
2900		vd->vdev_stat.vs_aux = aux;
2901		return;
2902	}
2903
2904	save_state = vd->vdev_state;
2905
2906	vd->vdev_state = state;
2907	vd->vdev_stat.vs_aux = aux;
2908
2909	/*
2910	 * If we are setting the vdev state to anything but an open state, then
2911	 * always close the underlying device unless the device has requested
2912	 * a delayed close (i.e. we're about to remove or fault the device).
2913	 * Otherwise, we keep accessible but invalid devices open forever.
2914	 * We don't call vdev_close() itself, because that implies some extra
2915	 * checks (offline, etc) that we don't want here.  This is limited to
2916	 * leaf devices, because otherwise closing the device will affect other
2917	 * children.
2918	 */
2919	if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
2920	    vd->vdev_ops->vdev_op_leaf)
2921		vd->vdev_ops->vdev_op_close(vd);
2922
2923	/*
2924	 * If we have brought this vdev back into service, we need
2925	 * to notify fmd so that it can gracefully repair any outstanding
2926	 * cases due to a missing device.  We do this in all cases, even those
2927	 * that probably don't correlate to a repaired fault.  This is sure to
2928	 * catch all cases, and we let the zfs-retire agent sort it out.  If
2929	 * this is a transient state it's OK, as the retire agent will
2930	 * double-check the state of the vdev before repairing it.
2931	 */
2932	if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
2933	    vd->vdev_prevstate != state)
2934		zfs_post_state_change(spa, vd);
2935
2936	if (vd->vdev_removed &&
2937	    state == VDEV_STATE_CANT_OPEN &&
2938	    (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
2939		/*
2940		 * If the previous state is set to VDEV_STATE_REMOVED, then this
2941		 * device was previously marked removed and someone attempted to
2942		 * reopen it.  If this failed due to a nonexistent device, then
2943		 * keep the device in the REMOVED state.  We also let this be if
2944		 * it is one of our special test online cases, which is only
2945		 * attempting to online the device and shouldn't generate an FMA
2946		 * fault.
2947		 */
2948		vd->vdev_state = VDEV_STATE_REMOVED;
2949		vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2950	} else if (state == VDEV_STATE_REMOVED) {
2951		vd->vdev_removed = B_TRUE;
2952	} else if (state == VDEV_STATE_CANT_OPEN) {
2953		/*
2954		 * If we fail to open a vdev during an import or recovery, we
2955		 * mark it as "not available", which signifies that it was
2956		 * never there to begin with.  Failure to open such a device
2957		 * is not considered an error.
2958		 */
2959		if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
2960		    spa_load_state(spa) == SPA_LOAD_RECOVER) &&
2961		    vd->vdev_ops->vdev_op_leaf)
2962			vd->vdev_not_present = 1;
2963
2964		/*
2965		 * Post the appropriate ereport.  If the 'prevstate' field is
2966		 * set to something other than VDEV_STATE_UNKNOWN, it indicates
2967		 * that this is part of a vdev_reopen().  In this case, we don't
2968		 * want to post the ereport if the device was already in the
2969		 * CANT_OPEN state beforehand.
2970		 *
2971		 * If the 'checkremove' flag is set, then this is an attempt to
2972		 * online the device in response to an insertion event.  If we
2973		 * hit this case, then we have detected an insertion event for a
2974		 * faulted or offline device that wasn't in the removed state.
2975		 * In this scenario, we don't post an ereport because we are
2976		 * about to replace the device, or attempt an online with
2977		 * vdev_forcefault, which will generate the fault for us.
2978		 */
2979		if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
2980		    !vd->vdev_not_present && !vd->vdev_checkremove &&
2981		    vd != spa->spa_root_vdev) {
2982			const char *class;
2983
2984			switch (aux) {
2985			case VDEV_AUX_OPEN_FAILED:
2986				class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
2987				break;
2988			case VDEV_AUX_CORRUPT_DATA:
2989				class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
2990				break;
2991			case VDEV_AUX_NO_REPLICAS:
2992				class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
2993				break;
2994			case VDEV_AUX_BAD_GUID_SUM:
2995				class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
2996				break;
2997			case VDEV_AUX_TOO_SMALL:
2998				class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
2999				break;
3000			case VDEV_AUX_BAD_LABEL:
3001				class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3002				break;
3003			default:
3004				class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3005			}
3006
3007			zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3008		}
3009
3010		/* Erase any notion of persistent removed state */
3011		vd->vdev_removed = B_FALSE;
3012	} else {
3013		vd->vdev_removed = B_FALSE;
3014	}
3015
3016	if (!isopen && vd->vdev_parent)
3017		vdev_propagate_state(vd->vdev_parent);
3018}
3019
3020/*
3021 * Check the vdev configuration to ensure that it's capable of supporting
3022 * a root pool. Currently, we do not support RAID-Z or partial configuration.
3023 * In addition, only a single top-level vdev is allowed and none of the leaves
3024 * can be wholedisks.
3025 */
3026boolean_t
3027vdev_is_bootable(vdev_t *vd)
3028{
3029	if (!vd->vdev_ops->vdev_op_leaf) {
3030		char *vdev_type = vd->vdev_ops->vdev_op_type;
3031
3032		if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3033		    vd->vdev_children > 1) {
3034			return (B_FALSE);
3035		} else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3036		    strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3037			return (B_FALSE);
3038		}
3039	} else if (vd->vdev_wholedisk == 1) {
3040		return (B_FALSE);
3041	}
3042
3043	for (int c = 0; c < vd->vdev_children; c++) {
3044		if (!vdev_is_bootable(vd->vdev_child[c]))
3045			return (B_FALSE);
3046	}
3047	return (B_TRUE);
3048}
3049
3050/*
3051 * Load the state from the original vdev tree (ovd) which
3052 * we've retrieved from the MOS config object. If the original
3053 * vdev was offline or faulted then we transfer that state to the
3054 * device in the current vdev tree (nvd).
3055 */
3056void
3057vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3058{
3059	spa_t *spa = nvd->vdev_spa;
3060
3061	ASSERT(nvd->vdev_top->vdev_islog);
3062	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3063	ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3064
3065	for (int c = 0; c < nvd->vdev_children; c++)
3066		vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3067
3068	if (nvd->vdev_ops->vdev_op_leaf) {
3069		/*
3070		 * Restore the persistent vdev state
3071		 */
3072		nvd->vdev_offline = ovd->vdev_offline;
3073		nvd->vdev_faulted = ovd->vdev_faulted;
3074		nvd->vdev_degraded = ovd->vdev_degraded;
3075		nvd->vdev_removed = ovd->vdev_removed;
3076	}
3077}
3078
3079/*
3080 * Determine if a log device has valid content.  If the vdev was
3081 * removed or faulted in the MOS config then we know that
3082 * the content on the log device has already been written to the pool.
3083 */
3084boolean_t
3085vdev_log_state_valid(vdev_t *vd)
3086{
3087	if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3088	    !vd->vdev_removed)
3089		return (B_TRUE);
3090
3091	for (int c = 0; c < vd->vdev_children; c++)
3092		if (vdev_log_state_valid(vd->vdev_child[c]))
3093			return (B_TRUE);
3094
3095	return (B_FALSE);
3096}
3097
3098/*
3099 * Expand a vdev if possible.
3100 */
3101void
3102vdev_expand(vdev_t *vd, uint64_t txg)
3103{
3104	ASSERT(vd->vdev_top == vd);
3105	ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3106
3107	if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3108		VERIFY(vdev_metaslab_init(vd, txg) == 0);
3109		vdev_config_dirty(vd);
3110	}
3111}
3112
3113/*
3114 * Split a vdev.
3115 */
3116void
3117vdev_split(vdev_t *vd)
3118{
3119	vdev_t *cvd, *pvd = vd->vdev_parent;
3120
3121	vdev_remove_child(pvd, vd);
3122	vdev_compact_children(pvd);
3123
3124	cvd = pvd->vdev_child[0];
3125	if (pvd->vdev_children == 1) {
3126		vdev_remove_parent(cvd);
3127		cvd->vdev_splitting = B_TRUE;
3128	}
3129	vdev_propagate_state(cvd);
3130}
3131