vdev.c revision 12247:5bcd281629f8
1193323Sed/*
2193323Sed * CDDL HEADER START
3193323Sed *
4193323Sed * The contents of this file are subject to the terms of the
5193323Sed * Common Development and Distribution License (the "License").
6193323Sed * You may not use this file except in compliance with the License.
7193323Sed *
8193323Sed * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9193323Sed * or http://www.opensolaris.org/os/licensing.
10193323Sed * See the License for the specific language governing permissions
11193323Sed * and limitations under the License.
12193323Sed *
13205218Srdivacky * When distributing Covered Code, include this CDDL HEADER in each
14205218Srdivacky * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15205218Srdivacky * If applicable, add the following below this CDDL HEADER, with the
16193323Sed * fields enclosed by brackets "[]" replaced with your own identifying
17193323Sed * information: Portions Copyright [yyyy] [name of copyright owner]
18193323Sed *
19193323Sed * CDDL HEADER END
20226633Sdim */
21205218Srdivacky
22205218Srdivacky/*
23193323Sed * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24198090Srdivacky */
25193323Sed
26193323Sed#include <sys/zfs_context.h>
27193323Sed#include <sys/fm/fs/zfs.h>
28193323Sed#include <sys/spa.h>
29212904Sdim#include <sys/spa_impl.h>
30218893Sdim#include <sys/dmu.h>
31193323Sed#include <sys/dmu_tx.h>
32193323Sed#include <sys/vdev_impl.h>
33198090Srdivacky#include <sys/uberblock_impl.h>
34198090Srdivacky#include <sys/metaslab.h>
35198090Srdivacky#include <sys/metaslab_impl.h>
36205218Srdivacky#include <sys/space_map.h>
37205218Srdivacky#include <sys/zio.h>
38205218Srdivacky#include <sys/zap.h>
39205218Srdivacky#include <sys/fs/zfs.h>
40205218Srdivacky#include <sys/arc.h>
41205218Srdivacky#include <sys/zil.h>
42218893Sdim
43206083Srdivacky/*
44206083Srdivacky * Virtual device management.
45206083Srdivacky */
46218893Sdim
47205218Srdivackystatic vdev_ops_t *vdev_ops_table[] = {
48218893Sdim	&vdev_root_ops,
49205218Srdivacky	&vdev_raidz_ops,
50205218Srdivacky	&vdev_mirror_ops,
51205218Srdivacky	&vdev_replacing_ops,
52218893Sdim	&vdev_spare_ops,
53205218Srdivacky	&vdev_disk_ops,
54205218Srdivacky	&vdev_file_ops,
55205218Srdivacky	&vdev_missing_ops,
56205218Srdivacky	&vdev_hole_ops,
57205218Srdivacky	NULL
58205218Srdivacky};
59218893Sdim
60205218Srdivacky/* maximum scrub/resilver I/O queue per leaf vdev */
61205218Srdivackyint zfs_scrub_limit = 10;
62205218Srdivacky
63218893Sdim/*
64205218Srdivacky * Given a vdev type, return the appropriate ops vector.
65218893Sdim */
66205218Srdivackystatic vdev_ops_t *
67205218Srdivackyvdev_getops(const char *type)
68205218Srdivacky{
69205218Srdivacky	vdev_ops_t *ops, **opspp;
70205218Srdivacky
71205218Srdivacky	for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
72205218Srdivacky		if (strcmp(ops->vdev_op_type, type) == 0)
73205218Srdivacky			break;
74205218Srdivacky
75205218Srdivacky	return (ops);
76205218Srdivacky}
77218893Sdim
78205218Srdivacky/*
79205218Srdivacky * Default asize function: return the MAX of psize with the asize of
80205218Srdivacky * all children.  This is what's used by anything other than RAID-Z.
81205218Srdivacky */
82218893Sdimuint64_t
83205218Srdivackyvdev_default_asize(vdev_t *vd, uint64_t psize)
84205218Srdivacky{
85205218Srdivacky	uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
86205218Srdivacky	uint64_t csize;
87205218Srdivacky
88205218Srdivacky	for (int c = 0; c < vd->vdev_children; c++) {
89218893Sdim		csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
90205218Srdivacky		asize = MAX(asize, csize);
91205218Srdivacky	}
92205218Srdivacky
93218893Sdim	return (asize);
94205218Srdivacky}
95205218Srdivacky
96205218Srdivacky/*
97205218Srdivacky * Get the minimum allocatable size. We define the allocatable size as
98205218Srdivacky * the vdev's asize rounded to the nearest metaslab. This allows us to
99205218Srdivacky * replace or attach devices which don't have the same physical size but
100205218Srdivacky * can still satisfy the same number of allocations.
101205218Srdivacky */
102205218Srdivackyuint64_t
103205218Srdivackyvdev_get_min_asize(vdev_t *vd)
104205218Srdivacky{
105218893Sdim	vdev_t *pvd = vd->vdev_parent;
106205218Srdivacky
107205218Srdivacky	/*
108205218Srdivacky	 * The our parent is NULL (inactive spare or cache) or is the root,
109205218Srdivacky	 * just return our own asize.
110205218Srdivacky	 */
111205218Srdivacky	if (pvd == NULL)
112205218Srdivacky		return (vd->vdev_asize);
113218893Sdim
114205218Srdivacky	/*
115205218Srdivacky	 * The top-level vdev just returns the allocatable size rounded
116205218Srdivacky	 * to the nearest metaslab.
117205218Srdivacky	 */
118205218Srdivacky	if (vd == vd->vdev_top)
119205218Srdivacky		return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
120205218Srdivacky
121205218Srdivacky	/*
122205218Srdivacky	 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
123205218Srdivacky	 * so each child must provide at least 1/Nth of its asize.
124205218Srdivacky	 */
125205218Srdivacky	if (pvd->vdev_ops == &vdev_raidz_ops)
126205218Srdivacky		return (pvd->vdev_min_asize / pvd->vdev_children);
127205218Srdivacky
128205218Srdivacky	return (pvd->vdev_min_asize);
129205218Srdivacky}
130218893Sdim
131205218Srdivackyvoid
132218893Sdimvdev_set_min_asize(vdev_t *vd)
133205218Srdivacky{
134205218Srdivacky	vd->vdev_min_asize = vdev_get_min_asize(vd);
135205218Srdivacky
136205218Srdivacky	for (int c = 0; c < vd->vdev_children; c++)
137205218Srdivacky		vdev_set_min_asize(vd->vdev_child[c]);
138205218Srdivacky}
139205218Srdivacky
140205218Srdivackyvdev_t *
141205218Srdivackyvdev_lookup_top(spa_t *spa, uint64_t vdev)
142205218Srdivacky{
143205218Srdivacky	vdev_t *rvd = spa->spa_root_vdev;
144205218Srdivacky
145205218Srdivacky	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
146205218Srdivacky
147205218Srdivacky	if (vdev < rvd->vdev_children) {
148205218Srdivacky		ASSERT(rvd->vdev_child[vdev] != NULL);
149205218Srdivacky		return (rvd->vdev_child[vdev]);
150205218Srdivacky	}
151205218Srdivacky
152205218Srdivacky	return (NULL);
153218893Sdim}
154205218Srdivacky
155205218Srdivackyvdev_t *
156205218Srdivackyvdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
157205218Srdivacky{
158205218Srdivacky	vdev_t *mvd;
159205218Srdivacky
160205218Srdivacky	if (vd->vdev_guid == guid)
161205218Srdivacky		return (vd);
162205218Srdivacky
163205218Srdivacky	for (int c = 0; c < vd->vdev_children; c++)
164205218Srdivacky		if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
165205218Srdivacky		    NULL)
166205218Srdivacky			return (mvd);
167205218Srdivacky
168205218Srdivacky	return (NULL);
169205218Srdivacky}
170205218Srdivacky
171205218Srdivackyvoid
172205218Srdivackyvdev_add_child(vdev_t *pvd, vdev_t *cvd)
173205218Srdivacky{
174205218Srdivacky	size_t oldsize, newsize;
175205218Srdivacky	uint64_t id = cvd->vdev_id;
176218893Sdim	vdev_t **newchild;
177205218Srdivacky
178205218Srdivacky	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
179205218Srdivacky	ASSERT(cvd->vdev_parent == NULL);
180205218Srdivacky
181205218Srdivacky	cvd->vdev_parent = pvd;
182205218Srdivacky
183205218Srdivacky	if (pvd == NULL)
184205218Srdivacky		return;
185205218Srdivacky
186205218Srdivacky	ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
187205218Srdivacky
188218893Sdim	oldsize = pvd->vdev_children * sizeof (vdev_t *);
189205218Srdivacky	pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
190205218Srdivacky	newsize = pvd->vdev_children * sizeof (vdev_t *);
191205218Srdivacky
192205218Srdivacky	newchild = kmem_zalloc(newsize, KM_SLEEP);
193205218Srdivacky	if (pvd->vdev_child != NULL) {
194205218Srdivacky		bcopy(pvd->vdev_child, newchild, oldsize);
195205218Srdivacky		kmem_free(pvd->vdev_child, oldsize);
196218893Sdim	}
197205218Srdivacky
198205218Srdivacky	pvd->vdev_child = newchild;
199205218Srdivacky	pvd->vdev_child[id] = cvd;
200205218Srdivacky
201205218Srdivacky	cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
202205218Srdivacky	ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
203205218Srdivacky
204205218Srdivacky	/*
205205218Srdivacky	 * Walk up all ancestors to update guid sum.
206205218Srdivacky	 */
207205218Srdivacky	for (; pvd != NULL; pvd = pvd->vdev_parent)
208205218Srdivacky		pvd->vdev_guid_sum += cvd->vdev_guid_sum;
209205218Srdivacky
210205218Srdivacky	if (cvd->vdev_ops->vdev_op_leaf)
211205218Srdivacky		cvd->vdev_spa->spa_scrub_maxinflight += zfs_scrub_limit;
212206083Srdivacky}
213205218Srdivacky
214205218Srdivackyvoid
215205218Srdivackyvdev_remove_child(vdev_t *pvd, vdev_t *cvd)
216205218Srdivacky{
217205218Srdivacky	int c;
218205218Srdivacky	uint_t id = cvd->vdev_id;
219205218Srdivacky
220205218Srdivacky	ASSERT(cvd->vdev_parent == pvd);
221205218Srdivacky
222205218Srdivacky	if (pvd == NULL)
223205218Srdivacky		return;
224205218Srdivacky
225205218Srdivacky	ASSERT(id < pvd->vdev_children);
226218893Sdim	ASSERT(pvd->vdev_child[id] == cvd);
227205218Srdivacky
228205218Srdivacky	pvd->vdev_child[id] = NULL;
229205218Srdivacky	cvd->vdev_parent = NULL;
230205218Srdivacky
231205218Srdivacky	for (c = 0; c < pvd->vdev_children; c++)
232205218Srdivacky		if (pvd->vdev_child[c])
233205218Srdivacky			break;
234205218Srdivacky
235218893Sdim	if (c == pvd->vdev_children) {
236205218Srdivacky		kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
237205218Srdivacky		pvd->vdev_child = NULL;
238205218Srdivacky		pvd->vdev_children = 0;
239205218Srdivacky	}
240205218Srdivacky
241205218Srdivacky	/*
242205218Srdivacky	 * Walk up all ancestors to update guid sum.
243205218Srdivacky	 */
244205218Srdivacky	for (; pvd != NULL; pvd = pvd->vdev_parent)
245205218Srdivacky		pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
246205218Srdivacky
247205218Srdivacky	if (cvd->vdev_ops->vdev_op_leaf)
248205218Srdivacky		cvd->vdev_spa->spa_scrub_maxinflight -= zfs_scrub_limit;
249205218Srdivacky}
250205218Srdivacky
251205218Srdivacky/*
252193323Sed * Remove any holes in the child array.
253198090Srdivacky */
254218893Sdimvoid
255226633Sdimvdev_compact_children(vdev_t *pvd)
256226633Sdim{
257226633Sdim	vdev_t **newchild, *cvd;
258226633Sdim	int oldc = pvd->vdev_children;
259226633Sdim	int newc;
260226633Sdim
261218893Sdim	ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
262198090Srdivacky
263193323Sed	for (int c = newc = 0; c < oldc; c++)
264205218Srdivacky		if (pvd->vdev_child[c])
265206274Srdivacky			newc++;
266193323Sed
267198090Srdivacky	newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
268205218Srdivacky
269226633Sdim	for (int c = newc = 0; c < oldc; c++) {
270226633Sdim		if ((cvd = pvd->vdev_child[c]) != NULL) {
271205218Srdivacky			newchild[newc] = cvd;
272205218Srdivacky			cvd->vdev_id = newc++;
273205218Srdivacky		}
274205218Srdivacky	}
275205218Srdivacky
276193323Sed	kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
277198090Srdivacky	pvd->vdev_child = newchild;
278218893Sdim	pvd->vdev_children = newc;
279205218Srdivacky}
280205218Srdivacky
281205218Srdivacky/*
282205218Srdivacky * Allocate and minimally initialize a vdev_t.
283193323Sed */
284193323Sedvdev_t *
285193323Sedvdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
286193323Sed{
287193323Sed	vdev_t *vd;
288205218Srdivacky
289193323Sed	vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
290193323Sed
291193323Sed	if (spa->spa_root_vdev == NULL) {
292193323Sed		ASSERT(ops == &vdev_root_ops);
293193323Sed		spa->spa_root_vdev = vd;
294193323Sed	}
295205218Srdivacky
296205218Srdivacky	if (guid == 0 && ops != &vdev_hole_ops) {
297193323Sed		if (spa->spa_root_vdev == vd) {
298193323Sed			/*
299193323Sed			 * The root vdev's guid will also be the pool guid,
300193323Sed			 * which must be unique among all pools.
301193323Sed			 */
302193323Sed			guid = spa_generate_guid(NULL);
303193323Sed		} else {
304193323Sed			/*
305198090Srdivacky			 * Any other vdev's guid must be unique within the pool.
306193323Sed			 */
307193323Sed			guid = spa_generate_guid(spa);
308203954Srdivacky		}
309193323Sed		ASSERT(!spa_guid_exists(spa_guid(spa), guid));
310193323Sed	}
311193323Sed
312193323Sed	vd->vdev_spa = spa;
313193323Sed	vd->vdev_id = id;
314226633Sdim	vd->vdev_guid = guid;
315198090Srdivacky	vd->vdev_guid_sum = guid;
316193323Sed	vd->vdev_ops = ops;
317193323Sed	vd->vdev_state = VDEV_STATE_CLOSED;
318193323Sed	vd->vdev_ishole = (ops == &vdev_hole_ops);
319193323Sed
320207618Srdivacky	mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
321198090Srdivacky	mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
322198090Srdivacky	mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
323207618Srdivacky	for (int t = 0; t < DTL_TYPES; t++) {
324193323Sed		space_map_create(&vd->vdev_dtl[t], 0, -1ULL, 0,
325193323Sed		    &vd->vdev_dtl_lock);
326193323Sed	}
327207618Srdivacky	txg_list_create(&vd->vdev_ms_list,
328193323Sed	    offsetof(struct metaslab, ms_txg_node));
329193323Sed	txg_list_create(&vd->vdev_dtl_list,
330198090Srdivacky	    offsetof(struct vdev, vdev_dtl_node));
331207618Srdivacky	vd->vdev_stat.vs_timestamp = gethrtime();
332198090Srdivacky	vdev_queue_init(vd);
333198090Srdivacky	vdev_cache_init(vd);
334193323Sed
335193323Sed	return (vd);
336205218Srdivacky}
337193323Sed
338205218Srdivacky/*
339205218Srdivacky * Allocate a new vdev.  The 'alloctype' is used to control whether we are
340205218Srdivacky * creating a new vdev or loading an existing one - the behavior is slightly
341205218Srdivacky * different for each case.
342205218Srdivacky */
343205218Srdivackyint
344205218Srdivackyvdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
345205218Srdivacky    int alloctype)
346205218Srdivacky{
347205218Srdivacky	vdev_ops_t *ops;
348205218Srdivacky	char *type;
349205218Srdivacky	uint64_t guid = 0, islog, nparity;
350205218Srdivacky	vdev_t *vd;
351205218Srdivacky
352205218Srdivacky	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
353205218Srdivacky
354205218Srdivacky	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
355205218Srdivacky		return (EINVAL);
356205218Srdivacky
357205218Srdivacky	if ((ops = vdev_getops(type)) == NULL)
358205218Srdivacky		return (EINVAL);
359205218Srdivacky
360205218Srdivacky	/*
361205218Srdivacky	 * If this is a load, get the vdev guid from the nvlist.
362205218Srdivacky	 * Otherwise, vdev_alloc_common() will generate one for us.
363205218Srdivacky	 */
364205218Srdivacky	if (alloctype == VDEV_ALLOC_LOAD) {
365205218Srdivacky		uint64_t label_id;
366205218Srdivacky
367205218Srdivacky		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
368205218Srdivacky		    label_id != id)
369205218Srdivacky			return (EINVAL);
370205218Srdivacky
371205218Srdivacky		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
372205218Srdivacky			return (EINVAL);
373205218Srdivacky	} else if (alloctype == VDEV_ALLOC_SPARE) {
374205218Srdivacky		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
375205218Srdivacky			return (EINVAL);
376193323Sed	} else if (alloctype == VDEV_ALLOC_L2CACHE) {
377193323Sed		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
378193323Sed			return (EINVAL);
379193323Sed	} else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
380193323Sed		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
381193323Sed			return (EINVAL);
382193323Sed	}
383193323Sed
384193323Sed	/*
385193323Sed	 * The first allocated vdev must be of type 'root'.
386198090Srdivacky	 */
387193323Sed	if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
388193323Sed		return (EINVAL);
389193323Sed
390193323Sed	/*
391193323Sed	 * Determine whether we're a log vdev.
392193323Sed	 */
393193323Sed	islog = 0;
394205218Srdivacky	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
395193323Sed	if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
396193323Sed		return (ENOTSUP);
397193323Sed
398193323Sed	if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
399193323Sed		return (ENOTSUP);
400193323Sed
401193323Sed	/*
402205218Srdivacky	 * Set the nparity property for RAID-Z vdevs.
403205218Srdivacky	 */
404193323Sed	nparity = -1ULL;
405198090Srdivacky	if (ops == &vdev_raidz_ops) {
406193323Sed		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
407193323Sed		    &nparity) == 0) {
408193323Sed			if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
409193323Sed				return (EINVAL);
410193323Sed			/*
411193323Sed			 * Previous versions could only support 1 or 2 parity
412207618Srdivacky			 * device.
413193323Sed			 */
414193323Sed			if (nparity > 1 &&
415193323Sed			    spa_version(spa) < SPA_VERSION_RAIDZ2)
416193323Sed				return (ENOTSUP);
417193323Sed			if (nparity > 2 &&
418193323Sed			    spa_version(spa) < SPA_VERSION_RAIDZ3)
419198090Srdivacky				return (ENOTSUP);
420198090Srdivacky		} else {
421198090Srdivacky			/*
422198090Srdivacky			 * We require the parity to be specified for SPAs that
423198090Srdivacky			 * support multiple parity levels.
424198090Srdivacky			 */
425198090Srdivacky			if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
426193323Sed				return (EINVAL);
427193323Sed			/*
428193323Sed			 * Otherwise, we default to 1 parity device for RAID-Z.
429193323Sed			 */
430226633Sdim			nparity = 1;
431226633Sdim		}
432226633Sdim	} else {
433193323Sed		nparity = 0;
434193323Sed	}
435193323Sed	ASSERT(nparity != -1ULL);
436193323Sed
437193323Sed	vd = vdev_alloc_common(spa, id, guid, ops);
438193323Sed
439193323Sed	vd->vdev_islog = islog;
440226633Sdim	vd->vdev_nparity = nparity;
441226633Sdim
442226633Sdim	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
443193323Sed		vd->vdev_path = spa_strdup(vd->vdev_path);
444193323Sed	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
445193323Sed		vd->vdev_devid = spa_strdup(vd->vdev_devid);
446193323Sed	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
447193323Sed	    &vd->vdev_physpath) == 0)
448193323Sed		vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
449193323Sed	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
450193323Sed		vd->vdev_fru = spa_strdup(vd->vdev_fru);
451193323Sed
452193323Sed	/*
453193323Sed	 * Set the whole_disk property.  If it's not specified, leave the value
454193323Sed	 * as -1.
455193323Sed	 */
456193323Sed	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
457193323Sed	    &vd->vdev_wholedisk) != 0)
458193323Sed		vd->vdev_wholedisk = -1ULL;
459207618Srdivacky
460193323Sed	/*
461193323Sed	 * Look for the 'not present' flag.  This will only be set if the device
462207618Srdivacky	 * was not present at the time of import.
463207618Srdivacky	 */
464207618Srdivacky	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
465204961Srdivacky	    &vd->vdev_not_present);
466193323Sed
467193323Sed	/*
468193323Sed	 * Get the alignment requirement.
469193323Sed	 */
470193323Sed	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
471193323Sed
472193323Sed	/*
473193323Sed	 * Retrieve the vdev creation time.
474205218Srdivacky	 */
475205218Srdivacky	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
476205218Srdivacky	    &vd->vdev_crtxg);
477207618Srdivacky
478207618Srdivacky	/*
479207618Srdivacky	 * If we're a top-level vdev, try to load the allocation parameters.
480207618Srdivacky	 */
481218893Sdim	if (parent && !parent->vdev_parent &&
482205218Srdivacky	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
483205218Srdivacky		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
484205218Srdivacky		    &vd->vdev_ms_array);
485193323Sed		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
486193323Sed		    &vd->vdev_ms_shift);
487193323Sed		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
488193323Sed		    &vd->vdev_asize);
489193323Sed	}
490193323Sed
491193323Sed	if (parent && !parent->vdev_parent) {
492193323Sed		ASSERT(alloctype == VDEV_ALLOC_LOAD ||
493193323Sed		    alloctype == VDEV_ALLOC_ADD ||
494193323Sed		    alloctype == VDEV_ALLOC_SPLIT ||
495193323Sed		    alloctype == VDEV_ALLOC_ROOTPOOL);
496193323Sed		vd->vdev_mg = metaslab_group_create(islog ?
497193323Sed		    spa_log_class(spa) : spa_normal_class(spa), vd);
498193323Sed	}
499193323Sed
500193323Sed	/*
501193323Sed	 * If we're a leaf vdev, try to load the DTL object and other state.
502226633Sdim	 */
503226633Sdim	if (vd->vdev_ops->vdev_op_leaf &&
504226633Sdim	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
505226633Sdim	    alloctype == VDEV_ALLOC_ROOTPOOL)) {
506226633Sdim		if (alloctype == VDEV_ALLOC_LOAD) {
507226633Sdim			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
508226633Sdim			    &vd->vdev_dtl_smo.smo_object);
509226633Sdim			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
510198090Srdivacky			    &vd->vdev_unspare);
511193323Sed		}
512207618Srdivacky
513193323Sed		if (alloctype == VDEV_ALLOC_ROOTPOOL) {
514193323Sed			uint64_t spare = 0;
515193323Sed
516193323Sed			if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
517193323Sed			    &spare) == 0 && spare)
518193323Sed				spa_spare_add(vd);
519193323Sed		}
520193323Sed
521193323Sed		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
522193323Sed		    &vd->vdev_offline);
523193323Sed
524193323Sed		/*
525193323Sed		 * When importing a pool, we want to ignore the persistent fault
526193323Sed		 * state, as the diagnosis made on another system may not be
527193323Sed		 * valid in the current context.  Local vdevs will
528193323Sed		 * remain in the faulted state.
529193323Sed		 */
530193323Sed		if (spa_load_state(spa) == SPA_LOAD_OPEN) {
531193323Sed			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
532193323Sed			    &vd->vdev_faulted);
533193323Sed			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
534193323Sed			    &vd->vdev_degraded);
535193323Sed			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
536193323Sed			    &vd->vdev_removed);
537193323Sed
538193323Sed			if (vd->vdev_faulted || vd->vdev_degraded) {
539193323Sed				char *aux;
540193323Sed
541193323Sed				vd->vdev_label_aux =
542193323Sed				    VDEV_AUX_ERR_EXCEEDED;
543193323Sed				if (nvlist_lookup_string(nv,
544193323Sed				    ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
545193323Sed				    strcmp(aux, "external") == 0)
546193323Sed					vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
547193323Sed			}
548193323Sed		}
549193323Sed	}
550193323Sed
551193323Sed	/*
552207618Srdivacky	 * Add ourselves to the parent's list of children.
553193323Sed	 */
554193323Sed	vdev_add_child(parent, vd);
555193323Sed
556193323Sed	*vdp = vd;
557193323Sed
558193323Sed	return (0);
559198090Srdivacky}
560193323Sed
561193323Sedvoid
562198090Srdivackyvdev_free(vdev_t *vd)
563193323Sed{
564193323Sed	spa_t *spa = vd->vdev_spa;
565193323Sed
566193323Sed	/*
567193323Sed	 * vdev_free() implies closing the vdev first.  This is simpler than
568193323Sed	 * trying to ensure complicated semantics for all callers.
569198090Srdivacky	 */
570193323Sed	vdev_close(vd);
571193323Sed
572193323Sed	ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
573193323Sed	ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
574193323Sed
575198090Srdivacky	/*
576198090Srdivacky	 * Free all children.
577193323Sed	 */
578193323Sed	for (int c = 0; c < vd->vdev_children; c++)
579		vdev_free(vd->vdev_child[c]);
580
581	ASSERT(vd->vdev_child == NULL);
582	ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
583
584	/*
585	 * Discard allocation state.
586	 */
587	if (vd->vdev_mg != NULL) {
588		vdev_metaslab_fini(vd);
589		metaslab_group_destroy(vd->vdev_mg);
590	}
591
592	ASSERT3U(vd->vdev_stat.vs_space, ==, 0);
593	ASSERT3U(vd->vdev_stat.vs_dspace, ==, 0);
594	ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0);
595
596	/*
597	 * Remove this vdev from its parent's child list.
598	 */
599	vdev_remove_child(vd->vdev_parent, vd);
600
601	ASSERT(vd->vdev_parent == NULL);
602
603	/*
604	 * Clean up vdev structure.
605	 */
606	vdev_queue_fini(vd);
607	vdev_cache_fini(vd);
608
609	if (vd->vdev_path)
610		spa_strfree(vd->vdev_path);
611	if (vd->vdev_devid)
612		spa_strfree(vd->vdev_devid);
613	if (vd->vdev_physpath)
614		spa_strfree(vd->vdev_physpath);
615	if (vd->vdev_fru)
616		spa_strfree(vd->vdev_fru);
617
618	if (vd->vdev_isspare)
619		spa_spare_remove(vd);
620	if (vd->vdev_isl2cache)
621		spa_l2cache_remove(vd);
622
623	txg_list_destroy(&vd->vdev_ms_list);
624	txg_list_destroy(&vd->vdev_dtl_list);
625
626	mutex_enter(&vd->vdev_dtl_lock);
627	for (int t = 0; t < DTL_TYPES; t++) {
628		space_map_unload(&vd->vdev_dtl[t]);
629		space_map_destroy(&vd->vdev_dtl[t]);
630	}
631	mutex_exit(&vd->vdev_dtl_lock);
632
633	mutex_destroy(&vd->vdev_dtl_lock);
634	mutex_destroy(&vd->vdev_stat_lock);
635	mutex_destroy(&vd->vdev_probe_lock);
636
637	if (vd == spa->spa_root_vdev)
638		spa->spa_root_vdev = NULL;
639
640	kmem_free(vd, sizeof (vdev_t));
641}
642
643/*
644 * Transfer top-level vdev state from svd to tvd.
645 */
646static void
647vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
648{
649	spa_t *spa = svd->vdev_spa;
650	metaslab_t *msp;
651	vdev_t *vd;
652	int t;
653
654	ASSERT(tvd == tvd->vdev_top);
655
656	tvd->vdev_ms_array = svd->vdev_ms_array;
657	tvd->vdev_ms_shift = svd->vdev_ms_shift;
658	tvd->vdev_ms_count = svd->vdev_ms_count;
659
660	svd->vdev_ms_array = 0;
661	svd->vdev_ms_shift = 0;
662	svd->vdev_ms_count = 0;
663
664	tvd->vdev_mg = svd->vdev_mg;
665	tvd->vdev_ms = svd->vdev_ms;
666
667	svd->vdev_mg = NULL;
668	svd->vdev_ms = NULL;
669
670	if (tvd->vdev_mg != NULL)
671		tvd->vdev_mg->mg_vd = tvd;
672
673	tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
674	tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
675	tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
676
677	svd->vdev_stat.vs_alloc = 0;
678	svd->vdev_stat.vs_space = 0;
679	svd->vdev_stat.vs_dspace = 0;
680
681	for (t = 0; t < TXG_SIZE; t++) {
682		while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
683			(void) txg_list_add(&tvd->vdev_ms_list, msp, t);
684		while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
685			(void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
686		if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
687			(void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
688	}
689
690	if (list_link_active(&svd->vdev_config_dirty_node)) {
691		vdev_config_clean(svd);
692		vdev_config_dirty(tvd);
693	}
694
695	if (list_link_active(&svd->vdev_state_dirty_node)) {
696		vdev_state_clean(svd);
697		vdev_state_dirty(tvd);
698	}
699
700	tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
701	svd->vdev_deflate_ratio = 0;
702
703	tvd->vdev_islog = svd->vdev_islog;
704	svd->vdev_islog = 0;
705}
706
707static void
708vdev_top_update(vdev_t *tvd, vdev_t *vd)
709{
710	if (vd == NULL)
711		return;
712
713	vd->vdev_top = tvd;
714
715	for (int c = 0; c < vd->vdev_children; c++)
716		vdev_top_update(tvd, vd->vdev_child[c]);
717}
718
719/*
720 * Add a mirror/replacing vdev above an existing vdev.
721 */
722vdev_t *
723vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
724{
725	spa_t *spa = cvd->vdev_spa;
726	vdev_t *pvd = cvd->vdev_parent;
727	vdev_t *mvd;
728
729	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
730
731	mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
732
733	mvd->vdev_asize = cvd->vdev_asize;
734	mvd->vdev_min_asize = cvd->vdev_min_asize;
735	mvd->vdev_ashift = cvd->vdev_ashift;
736	mvd->vdev_state = cvd->vdev_state;
737	mvd->vdev_crtxg = cvd->vdev_crtxg;
738
739	vdev_remove_child(pvd, cvd);
740	vdev_add_child(pvd, mvd);
741	cvd->vdev_id = mvd->vdev_children;
742	vdev_add_child(mvd, cvd);
743	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
744
745	if (mvd == mvd->vdev_top)
746		vdev_top_transfer(cvd, mvd);
747
748	return (mvd);
749}
750
751/*
752 * Remove a 1-way mirror/replacing vdev from the tree.
753 */
754void
755vdev_remove_parent(vdev_t *cvd)
756{
757	vdev_t *mvd = cvd->vdev_parent;
758	vdev_t *pvd = mvd->vdev_parent;
759
760	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
761
762	ASSERT(mvd->vdev_children == 1);
763	ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
764	    mvd->vdev_ops == &vdev_replacing_ops ||
765	    mvd->vdev_ops == &vdev_spare_ops);
766	cvd->vdev_ashift = mvd->vdev_ashift;
767
768	vdev_remove_child(mvd, cvd);
769	vdev_remove_child(pvd, mvd);
770
771	/*
772	 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
773	 * Otherwise, we could have detached an offline device, and when we
774	 * go to import the pool we'll think we have two top-level vdevs,
775	 * instead of a different version of the same top-level vdev.
776	 */
777	if (mvd->vdev_top == mvd) {
778		uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
779		cvd->vdev_orig_guid = cvd->vdev_guid;
780		cvd->vdev_guid += guid_delta;
781		cvd->vdev_guid_sum += guid_delta;
782	}
783	cvd->vdev_id = mvd->vdev_id;
784	vdev_add_child(pvd, cvd);
785	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
786
787	if (cvd == cvd->vdev_top)
788		vdev_top_transfer(mvd, cvd);
789
790	ASSERT(mvd->vdev_children == 0);
791	vdev_free(mvd);
792}
793
794int
795vdev_metaslab_init(vdev_t *vd, uint64_t txg)
796{
797	spa_t *spa = vd->vdev_spa;
798	objset_t *mos = spa->spa_meta_objset;
799	uint64_t m;
800	uint64_t oldc = vd->vdev_ms_count;
801	uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
802	metaslab_t **mspp;
803	int error;
804
805	ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
806
807	/*
808	 * This vdev is not being allocated from yet or is a hole.
809	 */
810	if (vd->vdev_ms_shift == 0)
811		return (0);
812
813	ASSERT(!vd->vdev_ishole);
814
815	/*
816	 * Compute the raidz-deflation ratio.  Note, we hard-code
817	 * in 128k (1 << 17) because it is the current "typical" blocksize.
818	 * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change,
819	 * or we will inconsistently account for existing bp's.
820	 */
821	vd->vdev_deflate_ratio = (1 << 17) /
822	    (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
823
824	ASSERT(oldc <= newc);
825
826	mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
827
828	if (oldc != 0) {
829		bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
830		kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
831	}
832
833	vd->vdev_ms = mspp;
834	vd->vdev_ms_count = newc;
835
836	for (m = oldc; m < newc; m++) {
837		space_map_obj_t smo = { 0, 0, 0 };
838		if (txg == 0) {
839			uint64_t object = 0;
840			error = dmu_read(mos, vd->vdev_ms_array,
841			    m * sizeof (uint64_t), sizeof (uint64_t), &object,
842			    DMU_READ_PREFETCH);
843			if (error)
844				return (error);
845			if (object != 0) {
846				dmu_buf_t *db;
847				error = dmu_bonus_hold(mos, object, FTAG, &db);
848				if (error)
849					return (error);
850				ASSERT3U(db->db_size, >=, sizeof (smo));
851				bcopy(db->db_data, &smo, sizeof (smo));
852				ASSERT3U(smo.smo_object, ==, object);
853				dmu_buf_rele(db, FTAG);
854			}
855		}
856		vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo,
857		    m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg);
858	}
859
860	if (txg == 0)
861		spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
862
863	if (oldc == 0)
864		metaslab_group_activate(vd->vdev_mg);
865
866	if (txg == 0)
867		spa_config_exit(spa, SCL_ALLOC, FTAG);
868
869	return (0);
870}
871
872void
873vdev_metaslab_fini(vdev_t *vd)
874{
875	uint64_t m;
876	uint64_t count = vd->vdev_ms_count;
877
878	if (vd->vdev_ms != NULL) {
879		metaslab_group_passivate(vd->vdev_mg);
880		for (m = 0; m < count; m++)
881			if (vd->vdev_ms[m] != NULL)
882				metaslab_fini(vd->vdev_ms[m]);
883		kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
884		vd->vdev_ms = NULL;
885	}
886}
887
888typedef struct vdev_probe_stats {
889	boolean_t	vps_readable;
890	boolean_t	vps_writeable;
891	int		vps_flags;
892} vdev_probe_stats_t;
893
894static void
895vdev_probe_done(zio_t *zio)
896{
897	spa_t *spa = zio->io_spa;
898	vdev_t *vd = zio->io_vd;
899	vdev_probe_stats_t *vps = zio->io_private;
900
901	ASSERT(vd->vdev_probe_zio != NULL);
902
903	if (zio->io_type == ZIO_TYPE_READ) {
904		if (zio->io_error == 0)
905			vps->vps_readable = 1;
906		if (zio->io_error == 0 && spa_writeable(spa)) {
907			zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
908			    zio->io_offset, zio->io_size, zio->io_data,
909			    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
910			    ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
911		} else {
912			zio_buf_free(zio->io_data, zio->io_size);
913		}
914	} else if (zio->io_type == ZIO_TYPE_WRITE) {
915		if (zio->io_error == 0)
916			vps->vps_writeable = 1;
917		zio_buf_free(zio->io_data, zio->io_size);
918	} else if (zio->io_type == ZIO_TYPE_NULL) {
919		zio_t *pio;
920
921		vd->vdev_cant_read |= !vps->vps_readable;
922		vd->vdev_cant_write |= !vps->vps_writeable;
923
924		if (vdev_readable(vd) &&
925		    (vdev_writeable(vd) || !spa_writeable(spa))) {
926			zio->io_error = 0;
927		} else {
928			ASSERT(zio->io_error != 0);
929			zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
930			    spa, vd, NULL, 0, 0);
931			zio->io_error = ENXIO;
932		}
933
934		mutex_enter(&vd->vdev_probe_lock);
935		ASSERT(vd->vdev_probe_zio == zio);
936		vd->vdev_probe_zio = NULL;
937		mutex_exit(&vd->vdev_probe_lock);
938
939		while ((pio = zio_walk_parents(zio)) != NULL)
940			if (!vdev_accessible(vd, pio))
941				pio->io_error = ENXIO;
942
943		kmem_free(vps, sizeof (*vps));
944	}
945}
946
947/*
948 * Determine whether this device is accessible by reading and writing
949 * to several known locations: the pad regions of each vdev label
950 * but the first (which we leave alone in case it contains a VTOC).
951 */
952zio_t *
953vdev_probe(vdev_t *vd, zio_t *zio)
954{
955	spa_t *spa = vd->vdev_spa;
956	vdev_probe_stats_t *vps = NULL;
957	zio_t *pio;
958
959	ASSERT(vd->vdev_ops->vdev_op_leaf);
960
961	/*
962	 * Don't probe the probe.
963	 */
964	if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
965		return (NULL);
966
967	/*
968	 * To prevent 'probe storms' when a device fails, we create
969	 * just one probe i/o at a time.  All zios that want to probe
970	 * this vdev will become parents of the probe io.
971	 */
972	mutex_enter(&vd->vdev_probe_lock);
973
974	if ((pio = vd->vdev_probe_zio) == NULL) {
975		vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
976
977		vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
978		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
979		    ZIO_FLAG_TRYHARD;
980
981		if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
982			/*
983			 * vdev_cant_read and vdev_cant_write can only
984			 * transition from TRUE to FALSE when we have the
985			 * SCL_ZIO lock as writer; otherwise they can only
986			 * transition from FALSE to TRUE.  This ensures that
987			 * any zio looking at these values can assume that
988			 * failures persist for the life of the I/O.  That's
989			 * important because when a device has intermittent
990			 * connectivity problems, we want to ensure that
991			 * they're ascribed to the device (ENXIO) and not
992			 * the zio (EIO).
993			 *
994			 * Since we hold SCL_ZIO as writer here, clear both
995			 * values so the probe can reevaluate from first
996			 * principles.
997			 */
998			vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
999			vd->vdev_cant_read = B_FALSE;
1000			vd->vdev_cant_write = B_FALSE;
1001		}
1002
1003		vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1004		    vdev_probe_done, vps,
1005		    vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1006
1007		/*
1008		 * We can't change the vdev state in this context, so we
1009		 * kick off an async task to do it on our behalf.
1010		 */
1011		if (zio != NULL) {
1012			vd->vdev_probe_wanted = B_TRUE;
1013			spa_async_request(spa, SPA_ASYNC_PROBE);
1014		}
1015	}
1016
1017	if (zio != NULL)
1018		zio_add_child(zio, pio);
1019
1020	mutex_exit(&vd->vdev_probe_lock);
1021
1022	if (vps == NULL) {
1023		ASSERT(zio != NULL);
1024		return (NULL);
1025	}
1026
1027	for (int l = 1; l < VDEV_LABELS; l++) {
1028		zio_nowait(zio_read_phys(pio, vd,
1029		    vdev_label_offset(vd->vdev_psize, l,
1030		    offsetof(vdev_label_t, vl_pad2)),
1031		    VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1032		    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1033		    ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1034	}
1035
1036	if (zio == NULL)
1037		return (pio);
1038
1039	zio_nowait(pio);
1040	return (NULL);
1041}
1042
1043static void
1044vdev_open_child(void *arg)
1045{
1046	vdev_t *vd = arg;
1047
1048	vd->vdev_open_thread = curthread;
1049	vd->vdev_open_error = vdev_open(vd);
1050	vd->vdev_open_thread = NULL;
1051}
1052
1053boolean_t
1054vdev_uses_zvols(vdev_t *vd)
1055{
1056	if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1057	    strlen(ZVOL_DIR)) == 0)
1058		return (B_TRUE);
1059	for (int c = 0; c < vd->vdev_children; c++)
1060		if (vdev_uses_zvols(vd->vdev_child[c]))
1061			return (B_TRUE);
1062	return (B_FALSE);
1063}
1064
1065void
1066vdev_open_children(vdev_t *vd)
1067{
1068	taskq_t *tq;
1069	int children = vd->vdev_children;
1070
1071	/*
1072	 * in order to handle pools on top of zvols, do the opens
1073	 * in a single thread so that the same thread holds the
1074	 * spa_namespace_lock
1075	 */
1076	if (vdev_uses_zvols(vd)) {
1077		for (int c = 0; c < children; c++)
1078			vd->vdev_child[c]->vdev_open_error =
1079			    vdev_open(vd->vdev_child[c]);
1080		return;
1081	}
1082	tq = taskq_create("vdev_open", children, minclsyspri,
1083	    children, children, TASKQ_PREPOPULATE);
1084
1085	for (int c = 0; c < children; c++)
1086		VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1087		    TQ_SLEEP) != NULL);
1088
1089	taskq_destroy(tq);
1090}
1091
1092/*
1093 * Prepare a virtual device for access.
1094 */
1095int
1096vdev_open(vdev_t *vd)
1097{
1098	spa_t *spa = vd->vdev_spa;
1099	int error;
1100	uint64_t osize = 0;
1101	uint64_t asize, psize;
1102	uint64_t ashift = 0;
1103
1104	ASSERT(vd->vdev_open_thread == curthread ||
1105	    spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1106	ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1107	    vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1108	    vd->vdev_state == VDEV_STATE_OFFLINE);
1109
1110	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1111	vd->vdev_cant_read = B_FALSE;
1112	vd->vdev_cant_write = B_FALSE;
1113	vd->vdev_min_asize = vdev_get_min_asize(vd);
1114
1115	/*
1116	 * If this vdev is not removed, check its fault status.  If it's
1117	 * faulted, bail out of the open.
1118	 */
1119	if (!vd->vdev_removed && vd->vdev_faulted) {
1120		ASSERT(vd->vdev_children == 0);
1121		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1122		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1123		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1124		    vd->vdev_label_aux);
1125		return (ENXIO);
1126	} else if (vd->vdev_offline) {
1127		ASSERT(vd->vdev_children == 0);
1128		vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1129		return (ENXIO);
1130	}
1131
1132	error = vd->vdev_ops->vdev_op_open(vd, &osize, &ashift);
1133
1134	/*
1135	 * Reset the vdev_reopening flag so that we actually close
1136	 * the vdev on error.
1137	 */
1138	vd->vdev_reopening = B_FALSE;
1139	if (zio_injection_enabled && error == 0)
1140		error = zio_handle_device_injection(vd, NULL, ENXIO);
1141
1142	if (error) {
1143		if (vd->vdev_removed &&
1144		    vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1145			vd->vdev_removed = B_FALSE;
1146
1147		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1148		    vd->vdev_stat.vs_aux);
1149		return (error);
1150	}
1151
1152	vd->vdev_removed = B_FALSE;
1153
1154	/*
1155	 * Recheck the faulted flag now that we have confirmed that
1156	 * the vdev is accessible.  If we're faulted, bail.
1157	 */
1158	if (vd->vdev_faulted) {
1159		ASSERT(vd->vdev_children == 0);
1160		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1161		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1162		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1163		    vd->vdev_label_aux);
1164		return (ENXIO);
1165	}
1166
1167	if (vd->vdev_degraded) {
1168		ASSERT(vd->vdev_children == 0);
1169		vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1170		    VDEV_AUX_ERR_EXCEEDED);
1171	} else {
1172		vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1173	}
1174
1175	/*
1176	 * For hole or missing vdevs we just return success.
1177	 */
1178	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1179		return (0);
1180
1181	for (int c = 0; c < vd->vdev_children; c++) {
1182		if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1183			vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1184			    VDEV_AUX_NONE);
1185			break;
1186		}
1187	}
1188
1189	osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1190
1191	if (vd->vdev_children == 0) {
1192		if (osize < SPA_MINDEVSIZE) {
1193			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1194			    VDEV_AUX_TOO_SMALL);
1195			return (EOVERFLOW);
1196		}
1197		psize = osize;
1198		asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1199	} else {
1200		if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1201		    (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1202			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1203			    VDEV_AUX_TOO_SMALL);
1204			return (EOVERFLOW);
1205		}
1206		psize = 0;
1207		asize = osize;
1208	}
1209
1210	vd->vdev_psize = psize;
1211
1212	/*
1213	 * Make sure the allocatable size hasn't shrunk.
1214	 */
1215	if (asize < vd->vdev_min_asize) {
1216		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1217		    VDEV_AUX_BAD_LABEL);
1218		return (EINVAL);
1219	}
1220
1221	if (vd->vdev_asize == 0) {
1222		/*
1223		 * This is the first-ever open, so use the computed values.
1224		 * For testing purposes, a higher ashift can be requested.
1225		 */
1226		vd->vdev_asize = asize;
1227		vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1228	} else {
1229		/*
1230		 * Make sure the alignment requirement hasn't increased.
1231		 */
1232		if (ashift > vd->vdev_top->vdev_ashift) {
1233			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1234			    VDEV_AUX_BAD_LABEL);
1235			return (EINVAL);
1236		}
1237	}
1238
1239	/*
1240	 * If all children are healthy and the asize has increased,
1241	 * then we've experienced dynamic LUN growth.  If automatic
1242	 * expansion is enabled then use the additional space.
1243	 */
1244	if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1245	    (vd->vdev_expanding || spa->spa_autoexpand))
1246		vd->vdev_asize = asize;
1247
1248	vdev_set_min_asize(vd);
1249
1250	/*
1251	 * Ensure we can issue some IO before declaring the
1252	 * vdev open for business.
1253	 */
1254	if (vd->vdev_ops->vdev_op_leaf &&
1255	    (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1256		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1257		    VDEV_AUX_ERR_EXCEEDED);
1258		return (error);
1259	}
1260
1261	/*
1262	 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1263	 * resilver.  But don't do this if we are doing a reopen for a scrub,
1264	 * since this would just restart the scrub we are already doing.
1265	 */
1266	if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1267	    vdev_resilver_needed(vd, NULL, NULL))
1268		spa_async_request(spa, SPA_ASYNC_RESILVER);
1269
1270	return (0);
1271}
1272
1273/*
1274 * Called once the vdevs are all opened, this routine validates the label
1275 * contents.  This needs to be done before vdev_load() so that we don't
1276 * inadvertently do repair I/Os to the wrong device.
1277 *
1278 * This function will only return failure if one of the vdevs indicates that it
1279 * has since been destroyed or exported.  This is only possible if
1280 * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1281 * will be updated but the function will return 0.
1282 */
1283int
1284vdev_validate(vdev_t *vd)
1285{
1286	spa_t *spa = vd->vdev_spa;
1287	nvlist_t *label;
1288	uint64_t guid = 0, top_guid;
1289	uint64_t state;
1290
1291	for (int c = 0; c < vd->vdev_children; c++)
1292		if (vdev_validate(vd->vdev_child[c]) != 0)
1293			return (EBADF);
1294
1295	/*
1296	 * If the device has already failed, or was marked offline, don't do
1297	 * any further validation.  Otherwise, label I/O will fail and we will
1298	 * overwrite the previous state.
1299	 */
1300	if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1301		uint64_t aux_guid = 0;
1302		nvlist_t *nvl;
1303
1304		if ((label = vdev_label_read_config(vd)) == NULL) {
1305			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1306			    VDEV_AUX_BAD_LABEL);
1307			return (0);
1308		}
1309
1310		/*
1311		 * Determine if this vdev has been split off into another
1312		 * pool.  If so, then refuse to open it.
1313		 */
1314		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1315		    &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1316			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1317			    VDEV_AUX_SPLIT_POOL);
1318			nvlist_free(label);
1319			return (0);
1320		}
1321
1322		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
1323		    &guid) != 0 || guid != spa_guid(spa)) {
1324			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1325			    VDEV_AUX_CORRUPT_DATA);
1326			nvlist_free(label);
1327			return (0);
1328		}
1329
1330		if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1331		    != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1332		    &aux_guid) != 0)
1333			aux_guid = 0;
1334
1335		/*
1336		 * If this vdev just became a top-level vdev because its
1337		 * sibling was detached, it will have adopted the parent's
1338		 * vdev guid -- but the label may or may not be on disk yet.
1339		 * Fortunately, either version of the label will have the
1340		 * same top guid, so if we're a top-level vdev, we can
1341		 * safely compare to that instead.
1342		 *
1343		 * If we split this vdev off instead, then we also check the
1344		 * original pool's guid.  We don't want to consider the vdev
1345		 * corrupt if it is partway through a split operation.
1346		 */
1347		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1348		    &guid) != 0 ||
1349		    nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1350		    &top_guid) != 0 ||
1351		    ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1352		    (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1353			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1354			    VDEV_AUX_CORRUPT_DATA);
1355			nvlist_free(label);
1356			return (0);
1357		}
1358
1359		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1360		    &state) != 0) {
1361			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1362			    VDEV_AUX_CORRUPT_DATA);
1363			nvlist_free(label);
1364			return (0);
1365		}
1366
1367		nvlist_free(label);
1368
1369		/*
1370		 * If spa->spa_load_verbatim is true, no need to check the
1371		 * state of the pool.
1372		 */
1373		if (!spa->spa_load_verbatim &&
1374		    spa_load_state(spa) == SPA_LOAD_OPEN &&
1375		    state != POOL_STATE_ACTIVE)
1376			return (EBADF);
1377
1378		/*
1379		 * If we were able to open and validate a vdev that was
1380		 * previously marked permanently unavailable, clear that state
1381		 * now.
1382		 */
1383		if (vd->vdev_not_present)
1384			vd->vdev_not_present = 0;
1385	}
1386
1387	return (0);
1388}
1389
1390/*
1391 * Close a virtual device.
1392 */
1393void
1394vdev_close(vdev_t *vd)
1395{
1396	spa_t *spa = vd->vdev_spa;
1397	vdev_t *pvd = vd->vdev_parent;
1398
1399	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1400
1401	/*
1402	 * If our parent is reopening, then we are as well, unless we are
1403	 * going offline.
1404	 */
1405	if (pvd != NULL && pvd->vdev_reopening)
1406		vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1407
1408	vd->vdev_ops->vdev_op_close(vd);
1409
1410	vdev_cache_purge(vd);
1411
1412	/*
1413	 * We record the previous state before we close it, so that if we are
1414	 * doing a reopen(), we don't generate FMA ereports if we notice that
1415	 * it's still faulted.
1416	 */
1417	vd->vdev_prevstate = vd->vdev_state;
1418
1419	if (vd->vdev_offline)
1420		vd->vdev_state = VDEV_STATE_OFFLINE;
1421	else
1422		vd->vdev_state = VDEV_STATE_CLOSED;
1423	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1424}
1425
1426void
1427vdev_hold(vdev_t *vd)
1428{
1429	spa_t *spa = vd->vdev_spa;
1430
1431	ASSERT(spa_is_root(spa));
1432	if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1433		return;
1434
1435	for (int c = 0; c < vd->vdev_children; c++)
1436		vdev_hold(vd->vdev_child[c]);
1437
1438	if (vd->vdev_ops->vdev_op_leaf)
1439		vd->vdev_ops->vdev_op_hold(vd);
1440}
1441
1442void
1443vdev_rele(vdev_t *vd)
1444{
1445	spa_t *spa = vd->vdev_spa;
1446
1447	ASSERT(spa_is_root(spa));
1448	for (int c = 0; c < vd->vdev_children; c++)
1449		vdev_rele(vd->vdev_child[c]);
1450
1451	if (vd->vdev_ops->vdev_op_leaf)
1452		vd->vdev_ops->vdev_op_rele(vd);
1453}
1454
1455/*
1456 * Reopen all interior vdevs and any unopened leaves.  We don't actually
1457 * reopen leaf vdevs which had previously been opened as they might deadlock
1458 * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
1459 * If the leaf has never been opened then open it, as usual.
1460 */
1461void
1462vdev_reopen(vdev_t *vd)
1463{
1464	spa_t *spa = vd->vdev_spa;
1465
1466	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1467
1468	/* set the reopening flag unless we're taking the vdev offline */
1469	vd->vdev_reopening = !vd->vdev_offline;
1470	vdev_close(vd);
1471	(void) vdev_open(vd);
1472
1473	/*
1474	 * Call vdev_validate() here to make sure we have the same device.
1475	 * Otherwise, a device with an invalid label could be successfully
1476	 * opened in response to vdev_reopen().
1477	 */
1478	if (vd->vdev_aux) {
1479		(void) vdev_validate_aux(vd);
1480		if (vdev_readable(vd) && vdev_writeable(vd) &&
1481		    vd->vdev_aux == &spa->spa_l2cache &&
1482		    !l2arc_vdev_present(vd))
1483			l2arc_add_vdev(spa, vd);
1484	} else {
1485		(void) vdev_validate(vd);
1486	}
1487
1488	/*
1489	 * Reassess parent vdev's health.
1490	 */
1491	vdev_propagate_state(vd);
1492}
1493
1494int
1495vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1496{
1497	int error;
1498
1499	/*
1500	 * Normally, partial opens (e.g. of a mirror) are allowed.
1501	 * For a create, however, we want to fail the request if
1502	 * there are any components we can't open.
1503	 */
1504	error = vdev_open(vd);
1505
1506	if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1507		vdev_close(vd);
1508		return (error ? error : ENXIO);
1509	}
1510
1511	/*
1512	 * Recursively initialize all labels.
1513	 */
1514	if ((error = vdev_label_init(vd, txg, isreplacing ?
1515	    VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1516		vdev_close(vd);
1517		return (error);
1518	}
1519
1520	return (0);
1521}
1522
1523void
1524vdev_metaslab_set_size(vdev_t *vd)
1525{
1526	/*
1527	 * Aim for roughly 200 metaslabs per vdev.
1528	 */
1529	vd->vdev_ms_shift = highbit(vd->vdev_asize / 200);
1530	vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1531}
1532
1533void
1534vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1535{
1536	ASSERT(vd == vd->vdev_top);
1537	ASSERT(!vd->vdev_ishole);
1538	ASSERT(ISP2(flags));
1539
1540	if (flags & VDD_METASLAB)
1541		(void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1542
1543	if (flags & VDD_DTL)
1544		(void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1545
1546	(void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1547}
1548
1549/*
1550 * DTLs.
1551 *
1552 * A vdev's DTL (dirty time log) is the set of transaction groups for which
1553 * the vdev has less than perfect replication.  There are four kinds of DTL:
1554 *
1555 * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1556 *
1557 * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1558 *
1559 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1560 *	scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1561 *	txgs that was scrubbed.
1562 *
1563 * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1564 *	persistent errors or just some device being offline.
1565 *	Unlike the other three, the DTL_OUTAGE map is not generally
1566 *	maintained; it's only computed when needed, typically to
1567 *	determine whether a device can be detached.
1568 *
1569 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1570 * either has the data or it doesn't.
1571 *
1572 * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1573 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1574 * if any child is less than fully replicated, then so is its parent.
1575 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1576 * comprising only those txgs which appear in 'maxfaults' or more children;
1577 * those are the txgs we don't have enough replication to read.  For example,
1578 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1579 * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1580 * two child DTL_MISSING maps.
1581 *
1582 * It should be clear from the above that to compute the DTLs and outage maps
1583 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1584 * Therefore, that is all we keep on disk.  When loading the pool, or after
1585 * a configuration change, we generate all other DTLs from first principles.
1586 */
1587void
1588vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1589{
1590	space_map_t *sm = &vd->vdev_dtl[t];
1591
1592	ASSERT(t < DTL_TYPES);
1593	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1594
1595	mutex_enter(sm->sm_lock);
1596	if (!space_map_contains(sm, txg, size))
1597		space_map_add(sm, txg, size);
1598	mutex_exit(sm->sm_lock);
1599}
1600
1601boolean_t
1602vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1603{
1604	space_map_t *sm = &vd->vdev_dtl[t];
1605	boolean_t dirty = B_FALSE;
1606
1607	ASSERT(t < DTL_TYPES);
1608	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1609
1610	mutex_enter(sm->sm_lock);
1611	if (sm->sm_space != 0)
1612		dirty = space_map_contains(sm, txg, size);
1613	mutex_exit(sm->sm_lock);
1614
1615	return (dirty);
1616}
1617
1618boolean_t
1619vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1620{
1621	space_map_t *sm = &vd->vdev_dtl[t];
1622	boolean_t empty;
1623
1624	mutex_enter(sm->sm_lock);
1625	empty = (sm->sm_space == 0);
1626	mutex_exit(sm->sm_lock);
1627
1628	return (empty);
1629}
1630
1631/*
1632 * Reassess DTLs after a config change or scrub completion.
1633 */
1634void
1635vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1636{
1637	spa_t *spa = vd->vdev_spa;
1638	avl_tree_t reftree;
1639	int minref;
1640
1641	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1642
1643	for (int c = 0; c < vd->vdev_children; c++)
1644		vdev_dtl_reassess(vd->vdev_child[c], txg,
1645		    scrub_txg, scrub_done);
1646
1647	if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1648		return;
1649
1650	if (vd->vdev_ops->vdev_op_leaf) {
1651		mutex_enter(&vd->vdev_dtl_lock);
1652		if (scrub_txg != 0 &&
1653		    (spa->spa_scrub_started || spa->spa_scrub_errors == 0)) {
1654			/*
1655			 * We completed a scrub up to scrub_txg.  If we
1656			 * did it without rebooting, then the scrub dtl
1657			 * will be valid, so excise the old region and
1658			 * fold in the scrub dtl.  Otherwise, leave the
1659			 * dtl as-is if there was an error.
1660			 *
1661			 * There's little trick here: to excise the beginning
1662			 * of the DTL_MISSING map, we put it into a reference
1663			 * tree and then add a segment with refcnt -1 that
1664			 * covers the range [0, scrub_txg).  This means
1665			 * that each txg in that range has refcnt -1 or 0.
1666			 * We then add DTL_SCRUB with a refcnt of 2, so that
1667			 * entries in the range [0, scrub_txg) will have a
1668			 * positive refcnt -- either 1 or 2.  We then convert
1669			 * the reference tree into the new DTL_MISSING map.
1670			 */
1671			space_map_ref_create(&reftree);
1672			space_map_ref_add_map(&reftree,
1673			    &vd->vdev_dtl[DTL_MISSING], 1);
1674			space_map_ref_add_seg(&reftree, 0, scrub_txg, -1);
1675			space_map_ref_add_map(&reftree,
1676			    &vd->vdev_dtl[DTL_SCRUB], 2);
1677			space_map_ref_generate_map(&reftree,
1678			    &vd->vdev_dtl[DTL_MISSING], 1);
1679			space_map_ref_destroy(&reftree);
1680		}
1681		space_map_vacate(&vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1682		space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1683		    space_map_add, &vd->vdev_dtl[DTL_PARTIAL]);
1684		if (scrub_done)
1685			space_map_vacate(&vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1686		space_map_vacate(&vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1687		if (!vdev_readable(vd))
1688			space_map_add(&vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1689		else
1690			space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1691			    space_map_add, &vd->vdev_dtl[DTL_OUTAGE]);
1692		mutex_exit(&vd->vdev_dtl_lock);
1693
1694		if (txg != 0)
1695			vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1696		return;
1697	}
1698
1699	mutex_enter(&vd->vdev_dtl_lock);
1700	for (int t = 0; t < DTL_TYPES; t++) {
1701		/* account for child's outage in parent's missing map */
1702		int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1703		if (t == DTL_SCRUB)
1704			continue;			/* leaf vdevs only */
1705		if (t == DTL_PARTIAL)
1706			minref = 1;			/* i.e. non-zero */
1707		else if (vd->vdev_nparity != 0)
1708			minref = vd->vdev_nparity + 1;	/* RAID-Z */
1709		else
1710			minref = vd->vdev_children;	/* any kind of mirror */
1711		space_map_ref_create(&reftree);
1712		for (int c = 0; c < vd->vdev_children; c++) {
1713			vdev_t *cvd = vd->vdev_child[c];
1714			mutex_enter(&cvd->vdev_dtl_lock);
1715			space_map_ref_add_map(&reftree, &cvd->vdev_dtl[s], 1);
1716			mutex_exit(&cvd->vdev_dtl_lock);
1717		}
1718		space_map_ref_generate_map(&reftree, &vd->vdev_dtl[t], minref);
1719		space_map_ref_destroy(&reftree);
1720	}
1721	mutex_exit(&vd->vdev_dtl_lock);
1722}
1723
1724static int
1725vdev_dtl_load(vdev_t *vd)
1726{
1727	spa_t *spa = vd->vdev_spa;
1728	space_map_obj_t *smo = &vd->vdev_dtl_smo;
1729	objset_t *mos = spa->spa_meta_objset;
1730	dmu_buf_t *db;
1731	int error;
1732
1733	ASSERT(vd->vdev_children == 0);
1734
1735	if (smo->smo_object == 0)
1736		return (0);
1737
1738	ASSERT(!vd->vdev_ishole);
1739
1740	if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0)
1741		return (error);
1742
1743	ASSERT3U(db->db_size, >=, sizeof (*smo));
1744	bcopy(db->db_data, smo, sizeof (*smo));
1745	dmu_buf_rele(db, FTAG);
1746
1747	mutex_enter(&vd->vdev_dtl_lock);
1748	error = space_map_load(&vd->vdev_dtl[DTL_MISSING],
1749	    NULL, SM_ALLOC, smo, mos);
1750	mutex_exit(&vd->vdev_dtl_lock);
1751
1752	return (error);
1753}
1754
1755void
1756vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1757{
1758	spa_t *spa = vd->vdev_spa;
1759	space_map_obj_t *smo = &vd->vdev_dtl_smo;
1760	space_map_t *sm = &vd->vdev_dtl[DTL_MISSING];
1761	objset_t *mos = spa->spa_meta_objset;
1762	space_map_t smsync;
1763	kmutex_t smlock;
1764	dmu_buf_t *db;
1765	dmu_tx_t *tx;
1766
1767	ASSERT(!vd->vdev_ishole);
1768
1769	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1770
1771	if (vd->vdev_detached) {
1772		if (smo->smo_object != 0) {
1773			int err = dmu_object_free(mos, smo->smo_object, tx);
1774			ASSERT3U(err, ==, 0);
1775			smo->smo_object = 0;
1776		}
1777		dmu_tx_commit(tx);
1778		return;
1779	}
1780
1781	if (smo->smo_object == 0) {
1782		ASSERT(smo->smo_objsize == 0);
1783		ASSERT(smo->smo_alloc == 0);
1784		smo->smo_object = dmu_object_alloc(mos,
1785		    DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
1786		    DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
1787		ASSERT(smo->smo_object != 0);
1788		vdev_config_dirty(vd->vdev_top);
1789	}
1790
1791	mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL);
1792
1793	space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift,
1794	    &smlock);
1795
1796	mutex_enter(&smlock);
1797
1798	mutex_enter(&vd->vdev_dtl_lock);
1799	space_map_walk(sm, space_map_add, &smsync);
1800	mutex_exit(&vd->vdev_dtl_lock);
1801
1802	space_map_truncate(smo, mos, tx);
1803	space_map_sync(&smsync, SM_ALLOC, smo, mos, tx);
1804
1805	space_map_destroy(&smsync);
1806
1807	mutex_exit(&smlock);
1808	mutex_destroy(&smlock);
1809
1810	VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
1811	dmu_buf_will_dirty(db, tx);
1812	ASSERT3U(db->db_size, >=, sizeof (*smo));
1813	bcopy(smo, db->db_data, sizeof (*smo));
1814	dmu_buf_rele(db, FTAG);
1815
1816	dmu_tx_commit(tx);
1817}
1818
1819/*
1820 * Determine whether the specified vdev can be offlined/detached/removed
1821 * without losing data.
1822 */
1823boolean_t
1824vdev_dtl_required(vdev_t *vd)
1825{
1826	spa_t *spa = vd->vdev_spa;
1827	vdev_t *tvd = vd->vdev_top;
1828	uint8_t cant_read = vd->vdev_cant_read;
1829	boolean_t required;
1830
1831	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1832
1833	if (vd == spa->spa_root_vdev || vd == tvd)
1834		return (B_TRUE);
1835
1836	/*
1837	 * Temporarily mark the device as unreadable, and then determine
1838	 * whether this results in any DTL outages in the top-level vdev.
1839	 * If not, we can safely offline/detach/remove the device.
1840	 */
1841	vd->vdev_cant_read = B_TRUE;
1842	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1843	required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
1844	vd->vdev_cant_read = cant_read;
1845	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1846
1847	return (required);
1848}
1849
1850/*
1851 * Determine if resilver is needed, and if so the txg range.
1852 */
1853boolean_t
1854vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
1855{
1856	boolean_t needed = B_FALSE;
1857	uint64_t thismin = UINT64_MAX;
1858	uint64_t thismax = 0;
1859
1860	if (vd->vdev_children == 0) {
1861		mutex_enter(&vd->vdev_dtl_lock);
1862		if (vd->vdev_dtl[DTL_MISSING].sm_space != 0 &&
1863		    vdev_writeable(vd)) {
1864			space_seg_t *ss;
1865
1866			ss = avl_first(&vd->vdev_dtl[DTL_MISSING].sm_root);
1867			thismin = ss->ss_start - 1;
1868			ss = avl_last(&vd->vdev_dtl[DTL_MISSING].sm_root);
1869			thismax = ss->ss_end;
1870			needed = B_TRUE;
1871		}
1872		mutex_exit(&vd->vdev_dtl_lock);
1873	} else {
1874		for (int c = 0; c < vd->vdev_children; c++) {
1875			vdev_t *cvd = vd->vdev_child[c];
1876			uint64_t cmin, cmax;
1877
1878			if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
1879				thismin = MIN(thismin, cmin);
1880				thismax = MAX(thismax, cmax);
1881				needed = B_TRUE;
1882			}
1883		}
1884	}
1885
1886	if (needed && minp) {
1887		*minp = thismin;
1888		*maxp = thismax;
1889	}
1890	return (needed);
1891}
1892
1893void
1894vdev_load(vdev_t *vd)
1895{
1896	/*
1897	 * Recursively load all children.
1898	 */
1899	for (int c = 0; c < vd->vdev_children; c++)
1900		vdev_load(vd->vdev_child[c]);
1901
1902	/*
1903	 * If this is a top-level vdev, initialize its metaslabs.
1904	 */
1905	if (vd == vd->vdev_top && !vd->vdev_ishole &&
1906	    (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
1907	    vdev_metaslab_init(vd, 0) != 0))
1908		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1909		    VDEV_AUX_CORRUPT_DATA);
1910
1911	/*
1912	 * If this is a leaf vdev, load its DTL.
1913	 */
1914	if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
1915		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1916		    VDEV_AUX_CORRUPT_DATA);
1917}
1918
1919/*
1920 * The special vdev case is used for hot spares and l2cache devices.  Its
1921 * sole purpose it to set the vdev state for the associated vdev.  To do this,
1922 * we make sure that we can open the underlying device, then try to read the
1923 * label, and make sure that the label is sane and that it hasn't been
1924 * repurposed to another pool.
1925 */
1926int
1927vdev_validate_aux(vdev_t *vd)
1928{
1929	nvlist_t *label;
1930	uint64_t guid, version;
1931	uint64_t state;
1932
1933	if (!vdev_readable(vd))
1934		return (0);
1935
1936	if ((label = vdev_label_read_config(vd)) == NULL) {
1937		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1938		    VDEV_AUX_CORRUPT_DATA);
1939		return (-1);
1940	}
1941
1942	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
1943	    version > SPA_VERSION ||
1944	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
1945	    guid != vd->vdev_guid ||
1946	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
1947		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1948		    VDEV_AUX_CORRUPT_DATA);
1949		nvlist_free(label);
1950		return (-1);
1951	}
1952
1953	/*
1954	 * We don't actually check the pool state here.  If it's in fact in
1955	 * use by another pool, we update this fact on the fly when requested.
1956	 */
1957	nvlist_free(label);
1958	return (0);
1959}
1960
1961void
1962vdev_remove(vdev_t *vd, uint64_t txg)
1963{
1964	spa_t *spa = vd->vdev_spa;
1965	objset_t *mos = spa->spa_meta_objset;
1966	dmu_tx_t *tx;
1967
1968	tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
1969
1970	if (vd->vdev_dtl_smo.smo_object) {
1971		ASSERT3U(vd->vdev_dtl_smo.smo_alloc, ==, 0);
1972		(void) dmu_object_free(mos, vd->vdev_dtl_smo.smo_object, tx);
1973		vd->vdev_dtl_smo.smo_object = 0;
1974	}
1975
1976	if (vd->vdev_ms != NULL) {
1977		for (int m = 0; m < vd->vdev_ms_count; m++) {
1978			metaslab_t *msp = vd->vdev_ms[m];
1979
1980			if (msp == NULL || msp->ms_smo.smo_object == 0)
1981				continue;
1982
1983			ASSERT3U(msp->ms_smo.smo_alloc, ==, 0);
1984			(void) dmu_object_free(mos, msp->ms_smo.smo_object, tx);
1985			msp->ms_smo.smo_object = 0;
1986		}
1987	}
1988
1989	if (vd->vdev_ms_array) {
1990		(void) dmu_object_free(mos, vd->vdev_ms_array, tx);
1991		vd->vdev_ms_array = 0;
1992		vd->vdev_ms_shift = 0;
1993	}
1994	dmu_tx_commit(tx);
1995}
1996
1997void
1998vdev_sync_done(vdev_t *vd, uint64_t txg)
1999{
2000	metaslab_t *msp;
2001	boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2002
2003	ASSERT(!vd->vdev_ishole);
2004
2005	while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
2006		metaslab_sync_done(msp, txg);
2007
2008	if (reassess)
2009		metaslab_sync_reassess(vd->vdev_mg);
2010}
2011
2012void
2013vdev_sync(vdev_t *vd, uint64_t txg)
2014{
2015	spa_t *spa = vd->vdev_spa;
2016	vdev_t *lvd;
2017	metaslab_t *msp;
2018	dmu_tx_t *tx;
2019
2020	ASSERT(!vd->vdev_ishole);
2021
2022	if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2023		ASSERT(vd == vd->vdev_top);
2024		tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2025		vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2026		    DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2027		ASSERT(vd->vdev_ms_array != 0);
2028		vdev_config_dirty(vd);
2029		dmu_tx_commit(tx);
2030	}
2031
2032	if (vd->vdev_removing)
2033		vdev_remove(vd, txg);
2034
2035	while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2036		metaslab_sync(msp, txg);
2037		(void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2038	}
2039
2040	while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2041		vdev_dtl_sync(lvd, txg);
2042
2043	(void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2044}
2045
2046uint64_t
2047vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2048{
2049	return (vd->vdev_ops->vdev_op_asize(vd, psize));
2050}
2051
2052/*
2053 * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
2054 * not be opened, and no I/O is attempted.
2055 */
2056int
2057vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2058{
2059	vdev_t *vd;
2060
2061	spa_vdev_state_enter(spa, SCL_NONE);
2062
2063	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2064		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2065
2066	if (!vd->vdev_ops->vdev_op_leaf)
2067		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2068
2069	/*
2070	 * We don't directly use the aux state here, but if we do a
2071	 * vdev_reopen(), we need this value to be present to remember why we
2072	 * were faulted.
2073	 */
2074	vd->vdev_label_aux = aux;
2075
2076	/*
2077	 * Faulted state takes precedence over degraded.
2078	 */
2079	vd->vdev_delayed_close = B_FALSE;
2080	vd->vdev_faulted = 1ULL;
2081	vd->vdev_degraded = 0ULL;
2082	vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2083
2084	/*
2085	 * If this device has the only valid copy of the data, then
2086	 * back off and simply mark the vdev as degraded instead.
2087	 */
2088	if (!vd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2089		vd->vdev_degraded = 1ULL;
2090		vd->vdev_faulted = 0ULL;
2091
2092		/*
2093		 * If we reopen the device and it's not dead, only then do we
2094		 * mark it degraded.
2095		 */
2096		vdev_reopen(vd);
2097
2098		if (vdev_readable(vd))
2099			vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2100	}
2101
2102	return (spa_vdev_state_exit(spa, vd, 0));
2103}
2104
2105/*
2106 * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
2107 * user that something is wrong.  The vdev continues to operate as normal as far
2108 * as I/O is concerned.
2109 */
2110int
2111vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2112{
2113	vdev_t *vd;
2114
2115	spa_vdev_state_enter(spa, SCL_NONE);
2116
2117	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2118		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2119
2120	if (!vd->vdev_ops->vdev_op_leaf)
2121		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2122
2123	/*
2124	 * If the vdev is already faulted, then don't do anything.
2125	 */
2126	if (vd->vdev_faulted || vd->vdev_degraded)
2127		return (spa_vdev_state_exit(spa, NULL, 0));
2128
2129	vd->vdev_degraded = 1ULL;
2130	if (!vdev_is_dead(vd))
2131		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2132		    aux);
2133
2134	return (spa_vdev_state_exit(spa, vd, 0));
2135}
2136
2137/*
2138 * Online the given vdev.  If 'unspare' is set, it implies two things.  First,
2139 * any attached spare device should be detached when the device finishes
2140 * resilvering.  Second, the online should be treated like a 'test' online case,
2141 * so no FMA events are generated if the device fails to open.
2142 */
2143int
2144vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2145{
2146	vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2147
2148	spa_vdev_state_enter(spa, SCL_NONE);
2149
2150	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2151		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2152
2153	if (!vd->vdev_ops->vdev_op_leaf)
2154		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2155
2156	tvd = vd->vdev_top;
2157	vd->vdev_offline = B_FALSE;
2158	vd->vdev_tmpoffline = B_FALSE;
2159	vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2160	vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2161
2162	/* XXX - L2ARC 1.0 does not support expansion */
2163	if (!vd->vdev_aux) {
2164		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2165			pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2166	}
2167
2168	vdev_reopen(tvd);
2169	vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2170
2171	if (!vd->vdev_aux) {
2172		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2173			pvd->vdev_expanding = B_FALSE;
2174	}
2175
2176	if (newstate)
2177		*newstate = vd->vdev_state;
2178	if ((flags & ZFS_ONLINE_UNSPARE) &&
2179	    !vdev_is_dead(vd) && vd->vdev_parent &&
2180	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2181	    vd->vdev_parent->vdev_child[0] == vd)
2182		vd->vdev_unspare = B_TRUE;
2183
2184	if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2185
2186		/* XXX - L2ARC 1.0 does not support expansion */
2187		if (vd->vdev_aux)
2188			return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2189		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2190	}
2191	return (spa_vdev_state_exit(spa, vd, 0));
2192}
2193
2194static int
2195vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2196{
2197	vdev_t *vd, *tvd;
2198	int error = 0;
2199	uint64_t generation;
2200	metaslab_group_t *mg;
2201
2202top:
2203	spa_vdev_state_enter(spa, SCL_ALLOC);
2204
2205	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2206		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2207
2208	if (!vd->vdev_ops->vdev_op_leaf)
2209		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2210
2211	tvd = vd->vdev_top;
2212	mg = tvd->vdev_mg;
2213	generation = spa->spa_config_generation + 1;
2214
2215	/*
2216	 * If the device isn't already offline, try to offline it.
2217	 */
2218	if (!vd->vdev_offline) {
2219		/*
2220		 * If this device has the only valid copy of some data,
2221		 * don't allow it to be offlined. Log devices are always
2222		 * expendable.
2223		 */
2224		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2225		    vdev_dtl_required(vd))
2226			return (spa_vdev_state_exit(spa, NULL, EBUSY));
2227
2228		/*
2229		 * If the top-level is a slog and it has had allocations
2230		 * then proceed.  We check that the vdev's metaslab group
2231		 * is not NULL since it's possible that we may have just
2232		 * added this vdev but not yet initialized its metaslabs.
2233		 */
2234		if (tvd->vdev_islog && mg != NULL) {
2235			/*
2236			 * Prevent any future allocations.
2237			 */
2238			metaslab_group_passivate(mg);
2239			(void) spa_vdev_state_exit(spa, vd, 0);
2240
2241			error = spa_offline_log(spa);
2242
2243			spa_vdev_state_enter(spa, SCL_ALLOC);
2244
2245			/*
2246			 * Check to see if the config has changed.
2247			 */
2248			if (error || generation != spa->spa_config_generation) {
2249				metaslab_group_activate(mg);
2250				if (error)
2251					return (spa_vdev_state_exit(spa,
2252					    vd, error));
2253				(void) spa_vdev_state_exit(spa, vd, 0);
2254				goto top;
2255			}
2256			ASSERT3U(tvd->vdev_stat.vs_alloc, ==, 0);
2257		}
2258
2259		/*
2260		 * Offline this device and reopen its top-level vdev.
2261		 * If the top-level vdev is a log device then just offline
2262		 * it. Otherwise, if this action results in the top-level
2263		 * vdev becoming unusable, undo it and fail the request.
2264		 */
2265		vd->vdev_offline = B_TRUE;
2266		vdev_reopen(tvd);
2267
2268		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2269		    vdev_is_dead(tvd)) {
2270			vd->vdev_offline = B_FALSE;
2271			vdev_reopen(tvd);
2272			return (spa_vdev_state_exit(spa, NULL, EBUSY));
2273		}
2274
2275		/*
2276		 * Add the device back into the metaslab rotor so that
2277		 * once we online the device it's open for business.
2278		 */
2279		if (tvd->vdev_islog && mg != NULL)
2280			metaslab_group_activate(mg);
2281	}
2282
2283	vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2284
2285	return (spa_vdev_state_exit(spa, vd, 0));
2286}
2287
2288int
2289vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2290{
2291	int error;
2292
2293	mutex_enter(&spa->spa_vdev_top_lock);
2294	error = vdev_offline_locked(spa, guid, flags);
2295	mutex_exit(&spa->spa_vdev_top_lock);
2296
2297	return (error);
2298}
2299
2300/*
2301 * Clear the error counts associated with this vdev.  Unlike vdev_online() and
2302 * vdev_offline(), we assume the spa config is locked.  We also clear all
2303 * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
2304 */
2305void
2306vdev_clear(spa_t *spa, vdev_t *vd)
2307{
2308	vdev_t *rvd = spa->spa_root_vdev;
2309
2310	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2311
2312	if (vd == NULL)
2313		vd = rvd;
2314
2315	vd->vdev_stat.vs_read_errors = 0;
2316	vd->vdev_stat.vs_write_errors = 0;
2317	vd->vdev_stat.vs_checksum_errors = 0;
2318
2319	for (int c = 0; c < vd->vdev_children; c++)
2320		vdev_clear(spa, vd->vdev_child[c]);
2321
2322	/*
2323	 * If we're in the FAULTED state or have experienced failed I/O, then
2324	 * clear the persistent state and attempt to reopen the device.  We
2325	 * also mark the vdev config dirty, so that the new faulted state is
2326	 * written out to disk.
2327	 */
2328	if (vd->vdev_faulted || vd->vdev_degraded ||
2329	    !vdev_readable(vd) || !vdev_writeable(vd)) {
2330
2331		/*
2332		 * When reopening in reponse to a clear event, it may be due to
2333		 * a fmadm repair request.  In this case, if the device is
2334		 * still broken, we want to still post the ereport again.
2335		 */
2336		vd->vdev_forcefault = B_TRUE;
2337
2338		vd->vdev_faulted = vd->vdev_degraded = 0;
2339		vd->vdev_cant_read = B_FALSE;
2340		vd->vdev_cant_write = B_FALSE;
2341
2342		vdev_reopen(vd);
2343
2344		vd->vdev_forcefault = B_FALSE;
2345
2346		if (vd != rvd)
2347			vdev_state_dirty(vd->vdev_top);
2348
2349		if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2350			spa_async_request(spa, SPA_ASYNC_RESILVER);
2351
2352		spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2353	}
2354
2355	/*
2356	 * When clearing a FMA-diagnosed fault, we always want to
2357	 * unspare the device, as we assume that the original spare was
2358	 * done in response to the FMA fault.
2359	 */
2360	if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2361	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2362	    vd->vdev_parent->vdev_child[0] == vd)
2363		vd->vdev_unspare = B_TRUE;
2364}
2365
2366boolean_t
2367vdev_is_dead(vdev_t *vd)
2368{
2369	/*
2370	 * Holes and missing devices are always considered "dead".
2371	 * This simplifies the code since we don't have to check for
2372	 * these types of devices in the various code paths.
2373	 * Instead we rely on the fact that we skip over dead devices
2374	 * before issuing I/O to them.
2375	 */
2376	return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2377	    vd->vdev_ops == &vdev_missing_ops);
2378}
2379
2380boolean_t
2381vdev_readable(vdev_t *vd)
2382{
2383	return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2384}
2385
2386boolean_t
2387vdev_writeable(vdev_t *vd)
2388{
2389	return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2390}
2391
2392boolean_t
2393vdev_allocatable(vdev_t *vd)
2394{
2395	uint64_t state = vd->vdev_state;
2396
2397	/*
2398	 * We currently allow allocations from vdevs which may be in the
2399	 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2400	 * fails to reopen then we'll catch it later when we're holding
2401	 * the proper locks.  Note that we have to get the vdev state
2402	 * in a local variable because although it changes atomically,
2403	 * we're asking two separate questions about it.
2404	 */
2405	return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2406	    !vd->vdev_cant_write && !vd->vdev_ishole && !vd->vdev_removing);
2407}
2408
2409boolean_t
2410vdev_accessible(vdev_t *vd, zio_t *zio)
2411{
2412	ASSERT(zio->io_vd == vd);
2413
2414	if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2415		return (B_FALSE);
2416
2417	if (zio->io_type == ZIO_TYPE_READ)
2418		return (!vd->vdev_cant_read);
2419
2420	if (zio->io_type == ZIO_TYPE_WRITE)
2421		return (!vd->vdev_cant_write);
2422
2423	return (B_TRUE);
2424}
2425
2426/*
2427 * Get statistics for the given vdev.
2428 */
2429void
2430vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2431{
2432	vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
2433
2434	mutex_enter(&vd->vdev_stat_lock);
2435	bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2436	vs->vs_scrub_errors = vd->vdev_spa->spa_scrub_errors;
2437	vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2438	vs->vs_state = vd->vdev_state;
2439	vs->vs_rsize = vdev_get_min_asize(vd);
2440	if (vd->vdev_ops->vdev_op_leaf)
2441		vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2442	mutex_exit(&vd->vdev_stat_lock);
2443
2444	/*
2445	 * If we're getting stats on the root vdev, aggregate the I/O counts
2446	 * over all top-level vdevs (i.e. the direct children of the root).
2447	 */
2448	if (vd == rvd) {
2449		for (int c = 0; c < rvd->vdev_children; c++) {
2450			vdev_t *cvd = rvd->vdev_child[c];
2451			vdev_stat_t *cvs = &cvd->vdev_stat;
2452
2453			mutex_enter(&vd->vdev_stat_lock);
2454			for (int t = 0; t < ZIO_TYPES; t++) {
2455				vs->vs_ops[t] += cvs->vs_ops[t];
2456				vs->vs_bytes[t] += cvs->vs_bytes[t];
2457			}
2458			vs->vs_scrub_examined += cvs->vs_scrub_examined;
2459			mutex_exit(&vd->vdev_stat_lock);
2460		}
2461	}
2462}
2463
2464void
2465vdev_clear_stats(vdev_t *vd)
2466{
2467	mutex_enter(&vd->vdev_stat_lock);
2468	vd->vdev_stat.vs_space = 0;
2469	vd->vdev_stat.vs_dspace = 0;
2470	vd->vdev_stat.vs_alloc = 0;
2471	mutex_exit(&vd->vdev_stat_lock);
2472}
2473
2474void
2475vdev_stat_update(zio_t *zio, uint64_t psize)
2476{
2477	spa_t *spa = zio->io_spa;
2478	vdev_t *rvd = spa->spa_root_vdev;
2479	vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2480	vdev_t *pvd;
2481	uint64_t txg = zio->io_txg;
2482	vdev_stat_t *vs = &vd->vdev_stat;
2483	zio_type_t type = zio->io_type;
2484	int flags = zio->io_flags;
2485
2486	/*
2487	 * If this i/o is a gang leader, it didn't do any actual work.
2488	 */
2489	if (zio->io_gang_tree)
2490		return;
2491
2492	if (zio->io_error == 0) {
2493		/*
2494		 * If this is a root i/o, don't count it -- we've already
2495		 * counted the top-level vdevs, and vdev_get_stats() will
2496		 * aggregate them when asked.  This reduces contention on
2497		 * the root vdev_stat_lock and implicitly handles blocks
2498		 * that compress away to holes, for which there is no i/o.
2499		 * (Holes never create vdev children, so all the counters
2500		 * remain zero, which is what we want.)
2501		 *
2502		 * Note: this only applies to successful i/o (io_error == 0)
2503		 * because unlike i/o counts, errors are not additive.
2504		 * When reading a ditto block, for example, failure of
2505		 * one top-level vdev does not imply a root-level error.
2506		 */
2507		if (vd == rvd)
2508			return;
2509
2510		ASSERT(vd == zio->io_vd);
2511
2512		if (flags & ZIO_FLAG_IO_BYPASS)
2513			return;
2514
2515		mutex_enter(&vd->vdev_stat_lock);
2516
2517		if (flags & ZIO_FLAG_IO_REPAIR) {
2518			if (flags & ZIO_FLAG_SCRUB_THREAD)
2519				vs->vs_scrub_repaired += psize;
2520			if (flags & ZIO_FLAG_SELF_HEAL)
2521				vs->vs_self_healed += psize;
2522		}
2523
2524		vs->vs_ops[type]++;
2525		vs->vs_bytes[type] += psize;
2526
2527		mutex_exit(&vd->vdev_stat_lock);
2528		return;
2529	}
2530
2531	if (flags & ZIO_FLAG_SPECULATIVE)
2532		return;
2533
2534	/*
2535	 * If this is an I/O error that is going to be retried, then ignore the
2536	 * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
2537	 * hard errors, when in reality they can happen for any number of
2538	 * innocuous reasons (bus resets, MPxIO link failure, etc).
2539	 */
2540	if (zio->io_error == EIO &&
2541	    !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2542		return;
2543
2544	/*
2545	 * Intent logs writes won't propagate their error to the root
2546	 * I/O so don't mark these types of failures as pool-level
2547	 * errors.
2548	 */
2549	if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2550		return;
2551
2552	mutex_enter(&vd->vdev_stat_lock);
2553	if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2554		if (zio->io_error == ECKSUM)
2555			vs->vs_checksum_errors++;
2556		else
2557			vs->vs_read_errors++;
2558	}
2559	if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2560		vs->vs_write_errors++;
2561	mutex_exit(&vd->vdev_stat_lock);
2562
2563	if (type == ZIO_TYPE_WRITE && txg != 0 &&
2564	    (!(flags & ZIO_FLAG_IO_REPAIR) ||
2565	    (flags & ZIO_FLAG_SCRUB_THREAD) ||
2566	    spa->spa_claiming)) {
2567		/*
2568		 * This is either a normal write (not a repair), or it's
2569		 * a repair induced by the scrub thread, or it's a repair
2570		 * made by zil_claim() during spa_load() in the first txg.
2571		 * In the normal case, we commit the DTL change in the same
2572		 * txg as the block was born.  In the scrub-induced repair
2573		 * case, we know that scrubs run in first-pass syncing context,
2574		 * so we commit the DTL change in spa_syncing_txg(spa).
2575		 * In the zil_claim() case, we commit in spa_first_txg(spa).
2576		 *
2577		 * We currently do not make DTL entries for failed spontaneous
2578		 * self-healing writes triggered by normal (non-scrubbing)
2579		 * reads, because we have no transactional context in which to
2580		 * do so -- and it's not clear that it'd be desirable anyway.
2581		 */
2582		if (vd->vdev_ops->vdev_op_leaf) {
2583			uint64_t commit_txg = txg;
2584			if (flags & ZIO_FLAG_SCRUB_THREAD) {
2585				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2586				ASSERT(spa_sync_pass(spa) == 1);
2587				vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2588				commit_txg = spa_syncing_txg(spa);
2589			} else if (spa->spa_claiming) {
2590				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2591				commit_txg = spa_first_txg(spa);
2592			}
2593			ASSERT(commit_txg >= spa_syncing_txg(spa));
2594			if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2595				return;
2596			for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2597				vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2598			vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2599		}
2600		if (vd != rvd)
2601			vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2602	}
2603}
2604
2605void
2606vdev_scrub_stat_update(vdev_t *vd, pool_scrub_type_t type, boolean_t complete)
2607{
2608	vdev_stat_t *vs = &vd->vdev_stat;
2609
2610	for (int c = 0; c < vd->vdev_children; c++)
2611		vdev_scrub_stat_update(vd->vdev_child[c], type, complete);
2612
2613	mutex_enter(&vd->vdev_stat_lock);
2614
2615	if (type == POOL_SCRUB_NONE) {
2616		/*
2617		 * Update completion and end time.  Leave everything else alone
2618		 * so we can report what happened during the previous scrub.
2619		 */
2620		vs->vs_scrub_complete = complete;
2621		vs->vs_scrub_end = gethrestime_sec();
2622	} else {
2623		vs->vs_scrub_type = type;
2624		vs->vs_scrub_complete = 0;
2625		vs->vs_scrub_examined = 0;
2626		vs->vs_scrub_repaired = 0;
2627		vs->vs_scrub_start = gethrestime_sec();
2628		vs->vs_scrub_end = 0;
2629	}
2630
2631	mutex_exit(&vd->vdev_stat_lock);
2632}
2633
2634/*
2635 * Update the in-core space usage stats for this vdev, its metaslab class,
2636 * and the root vdev.
2637 */
2638void
2639vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2640    int64_t space_delta)
2641{
2642	int64_t dspace_delta = space_delta;
2643	spa_t *spa = vd->vdev_spa;
2644	vdev_t *rvd = spa->spa_root_vdev;
2645	metaslab_group_t *mg = vd->vdev_mg;
2646	metaslab_class_t *mc = mg ? mg->mg_class : NULL;
2647
2648	ASSERT(vd == vd->vdev_top);
2649
2650	/*
2651	 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2652	 * factor.  We must calculate this here and not at the root vdev
2653	 * because the root vdev's psize-to-asize is simply the max of its
2654	 * childrens', thus not accurate enough for us.
2655	 */
2656	ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2657	ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2658	dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2659	    vd->vdev_deflate_ratio;
2660
2661	mutex_enter(&vd->vdev_stat_lock);
2662	vd->vdev_stat.vs_alloc += alloc_delta;
2663	vd->vdev_stat.vs_space += space_delta;
2664	vd->vdev_stat.vs_dspace += dspace_delta;
2665	mutex_exit(&vd->vdev_stat_lock);
2666
2667	if (mc == spa_normal_class(spa)) {
2668		mutex_enter(&rvd->vdev_stat_lock);
2669		rvd->vdev_stat.vs_alloc += alloc_delta;
2670		rvd->vdev_stat.vs_space += space_delta;
2671		rvd->vdev_stat.vs_dspace += dspace_delta;
2672		mutex_exit(&rvd->vdev_stat_lock);
2673	}
2674
2675	if (mc != NULL) {
2676		ASSERT(rvd == vd->vdev_parent);
2677		ASSERT(vd->vdev_ms_count != 0);
2678
2679		metaslab_class_space_update(mc,
2680		    alloc_delta, defer_delta, space_delta, dspace_delta);
2681	}
2682}
2683
2684/*
2685 * Mark a top-level vdev's config as dirty, placing it on the dirty list
2686 * so that it will be written out next time the vdev configuration is synced.
2687 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2688 */
2689void
2690vdev_config_dirty(vdev_t *vd)
2691{
2692	spa_t *spa = vd->vdev_spa;
2693	vdev_t *rvd = spa->spa_root_vdev;
2694	int c;
2695
2696	/*
2697	 * If this is an aux vdev (as with l2cache and spare devices), then we
2698	 * update the vdev config manually and set the sync flag.
2699	 */
2700	if (vd->vdev_aux != NULL) {
2701		spa_aux_vdev_t *sav = vd->vdev_aux;
2702		nvlist_t **aux;
2703		uint_t naux;
2704
2705		for (c = 0; c < sav->sav_count; c++) {
2706			if (sav->sav_vdevs[c] == vd)
2707				break;
2708		}
2709
2710		if (c == sav->sav_count) {
2711			/*
2712			 * We're being removed.  There's nothing more to do.
2713			 */
2714			ASSERT(sav->sav_sync == B_TRUE);
2715			return;
2716		}
2717
2718		sav->sav_sync = B_TRUE;
2719
2720		if (nvlist_lookup_nvlist_array(sav->sav_config,
2721		    ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
2722			VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2723			    ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
2724		}
2725
2726		ASSERT(c < naux);
2727
2728		/*
2729		 * Setting the nvlist in the middle if the array is a little
2730		 * sketchy, but it will work.
2731		 */
2732		nvlist_free(aux[c]);
2733		aux[c] = vdev_config_generate(spa, vd, B_TRUE, B_FALSE, B_TRUE);
2734
2735		return;
2736	}
2737
2738	/*
2739	 * The dirty list is protected by the SCL_CONFIG lock.  The caller
2740	 * must either hold SCL_CONFIG as writer, or must be the sync thread
2741	 * (which holds SCL_CONFIG as reader).  There's only one sync thread,
2742	 * so this is sufficient to ensure mutual exclusion.
2743	 */
2744	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2745	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2746	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
2747
2748	if (vd == rvd) {
2749		for (c = 0; c < rvd->vdev_children; c++)
2750			vdev_config_dirty(rvd->vdev_child[c]);
2751	} else {
2752		ASSERT(vd == vd->vdev_top);
2753
2754		if (!list_link_active(&vd->vdev_config_dirty_node) &&
2755		    !vd->vdev_ishole)
2756			list_insert_head(&spa->spa_config_dirty_list, vd);
2757	}
2758}
2759
2760void
2761vdev_config_clean(vdev_t *vd)
2762{
2763	spa_t *spa = vd->vdev_spa;
2764
2765	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2766	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2767	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
2768
2769	ASSERT(list_link_active(&vd->vdev_config_dirty_node));
2770	list_remove(&spa->spa_config_dirty_list, vd);
2771}
2772
2773/*
2774 * Mark a top-level vdev's state as dirty, so that the next pass of
2775 * spa_sync() can convert this into vdev_config_dirty().  We distinguish
2776 * the state changes from larger config changes because they require
2777 * much less locking, and are often needed for administrative actions.
2778 */
2779void
2780vdev_state_dirty(vdev_t *vd)
2781{
2782	spa_t *spa = vd->vdev_spa;
2783
2784	ASSERT(vd == vd->vdev_top);
2785
2786	/*
2787	 * The state list is protected by the SCL_STATE lock.  The caller
2788	 * must either hold SCL_STATE as writer, or must be the sync thread
2789	 * (which holds SCL_STATE as reader).  There's only one sync thread,
2790	 * so this is sufficient to ensure mutual exclusion.
2791	 */
2792	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2793	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2794	    spa_config_held(spa, SCL_STATE, RW_READER)));
2795
2796	if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
2797		list_insert_head(&spa->spa_state_dirty_list, vd);
2798}
2799
2800void
2801vdev_state_clean(vdev_t *vd)
2802{
2803	spa_t *spa = vd->vdev_spa;
2804
2805	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2806	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2807	    spa_config_held(spa, SCL_STATE, RW_READER)));
2808
2809	ASSERT(list_link_active(&vd->vdev_state_dirty_node));
2810	list_remove(&spa->spa_state_dirty_list, vd);
2811}
2812
2813/*
2814 * Propagate vdev state up from children to parent.
2815 */
2816void
2817vdev_propagate_state(vdev_t *vd)
2818{
2819	spa_t *spa = vd->vdev_spa;
2820	vdev_t *rvd = spa->spa_root_vdev;
2821	int degraded = 0, faulted = 0;
2822	int corrupted = 0;
2823	vdev_t *child;
2824
2825	if (vd->vdev_children > 0) {
2826		for (int c = 0; c < vd->vdev_children; c++) {
2827			child = vd->vdev_child[c];
2828
2829			/*
2830			 * Don't factor holes into the decision.
2831			 */
2832			if (child->vdev_ishole)
2833				continue;
2834
2835			if (!vdev_readable(child) ||
2836			    (!vdev_writeable(child) && spa_writeable(spa))) {
2837				/*
2838				 * Root special: if there is a top-level log
2839				 * device, treat the root vdev as if it were
2840				 * degraded.
2841				 */
2842				if (child->vdev_islog && vd == rvd)
2843					degraded++;
2844				else
2845					faulted++;
2846			} else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
2847				degraded++;
2848			}
2849
2850			if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
2851				corrupted++;
2852		}
2853
2854		vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
2855
2856		/*
2857		 * Root special: if there is a top-level vdev that cannot be
2858		 * opened due to corrupted metadata, then propagate the root
2859		 * vdev's aux state as 'corrupt' rather than 'insufficient
2860		 * replicas'.
2861		 */
2862		if (corrupted && vd == rvd &&
2863		    rvd->vdev_state == VDEV_STATE_CANT_OPEN)
2864			vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
2865			    VDEV_AUX_CORRUPT_DATA);
2866	}
2867
2868	if (vd->vdev_parent)
2869		vdev_propagate_state(vd->vdev_parent);
2870}
2871
2872/*
2873 * Set a vdev's state.  If this is during an open, we don't update the parent
2874 * state, because we're in the process of opening children depth-first.
2875 * Otherwise, we propagate the change to the parent.
2876 *
2877 * If this routine places a device in a faulted state, an appropriate ereport is
2878 * generated.
2879 */
2880void
2881vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
2882{
2883	uint64_t save_state;
2884	spa_t *spa = vd->vdev_spa;
2885
2886	if (state == vd->vdev_state) {
2887		vd->vdev_stat.vs_aux = aux;
2888		return;
2889	}
2890
2891	save_state = vd->vdev_state;
2892
2893	vd->vdev_state = state;
2894	vd->vdev_stat.vs_aux = aux;
2895
2896	/*
2897	 * If we are setting the vdev state to anything but an open state, then
2898	 * always close the underlying device unless the device has requested
2899	 * a delayed close (i.e. we're about to remove or fault the device).
2900	 * Otherwise, we keep accessible but invalid devices open forever.
2901	 * We don't call vdev_close() itself, because that implies some extra
2902	 * checks (offline, etc) that we don't want here.  This is limited to
2903	 * leaf devices, because otherwise closing the device will affect other
2904	 * children.
2905	 */
2906	if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
2907	    vd->vdev_ops->vdev_op_leaf)
2908		vd->vdev_ops->vdev_op_close(vd);
2909
2910	/*
2911	 * If we have brought this vdev back into service, we need
2912	 * to notify fmd so that it can gracefully repair any outstanding
2913	 * cases due to a missing device.  We do this in all cases, even those
2914	 * that probably don't correlate to a repaired fault.  This is sure to
2915	 * catch all cases, and we let the zfs-retire agent sort it out.  If
2916	 * this is a transient state it's OK, as the retire agent will
2917	 * double-check the state of the vdev before repairing it.
2918	 */
2919	if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
2920	    vd->vdev_prevstate != state)
2921		zfs_post_state_change(spa, vd);
2922
2923	if (vd->vdev_removed &&
2924	    state == VDEV_STATE_CANT_OPEN &&
2925	    (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
2926		/*
2927		 * If the previous state is set to VDEV_STATE_REMOVED, then this
2928		 * device was previously marked removed and someone attempted to
2929		 * reopen it.  If this failed due to a nonexistent device, then
2930		 * keep the device in the REMOVED state.  We also let this be if
2931		 * it is one of our special test online cases, which is only
2932		 * attempting to online the device and shouldn't generate an FMA
2933		 * fault.
2934		 */
2935		vd->vdev_state = VDEV_STATE_REMOVED;
2936		vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2937	} else if (state == VDEV_STATE_REMOVED) {
2938		vd->vdev_removed = B_TRUE;
2939	} else if (state == VDEV_STATE_CANT_OPEN) {
2940		/*
2941		 * If we fail to open a vdev during an import, we mark it as
2942		 * "not available", which signifies that it was never there to
2943		 * begin with.  Failure to open such a device is not considered
2944		 * an error.
2945		 */
2946		if (spa_load_state(spa) == SPA_LOAD_IMPORT &&
2947		    vd->vdev_ops->vdev_op_leaf)
2948			vd->vdev_not_present = 1;
2949
2950		/*
2951		 * Post the appropriate ereport.  If the 'prevstate' field is
2952		 * set to something other than VDEV_STATE_UNKNOWN, it indicates
2953		 * that this is part of a vdev_reopen().  In this case, we don't
2954		 * want to post the ereport if the device was already in the
2955		 * CANT_OPEN state beforehand.
2956		 *
2957		 * If the 'checkremove' flag is set, then this is an attempt to
2958		 * online the device in response to an insertion event.  If we
2959		 * hit this case, then we have detected an insertion event for a
2960		 * faulted or offline device that wasn't in the removed state.
2961		 * In this scenario, we don't post an ereport because we are
2962		 * about to replace the device, or attempt an online with
2963		 * vdev_forcefault, which will generate the fault for us.
2964		 */
2965		if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
2966		    !vd->vdev_not_present && !vd->vdev_checkremove &&
2967		    vd != spa->spa_root_vdev) {
2968			const char *class;
2969
2970			switch (aux) {
2971			case VDEV_AUX_OPEN_FAILED:
2972				class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
2973				break;
2974			case VDEV_AUX_CORRUPT_DATA:
2975				class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
2976				break;
2977			case VDEV_AUX_NO_REPLICAS:
2978				class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
2979				break;
2980			case VDEV_AUX_BAD_GUID_SUM:
2981				class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
2982				break;
2983			case VDEV_AUX_TOO_SMALL:
2984				class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
2985				break;
2986			case VDEV_AUX_BAD_LABEL:
2987				class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
2988				break;
2989			default:
2990				class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
2991			}
2992
2993			zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
2994		}
2995
2996		/* Erase any notion of persistent removed state */
2997		vd->vdev_removed = B_FALSE;
2998	} else {
2999		vd->vdev_removed = B_FALSE;
3000	}
3001
3002	if (!isopen && vd->vdev_parent)
3003		vdev_propagate_state(vd->vdev_parent);
3004}
3005
3006/*
3007 * Check the vdev configuration to ensure that it's capable of supporting
3008 * a root pool. Currently, we do not support RAID-Z or partial configuration.
3009 * In addition, only a single top-level vdev is allowed and none of the leaves
3010 * can be wholedisks.
3011 */
3012boolean_t
3013vdev_is_bootable(vdev_t *vd)
3014{
3015	if (!vd->vdev_ops->vdev_op_leaf) {
3016		char *vdev_type = vd->vdev_ops->vdev_op_type;
3017
3018		if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3019		    vd->vdev_children > 1) {
3020			return (B_FALSE);
3021		} else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3022		    strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3023			return (B_FALSE);
3024		}
3025	} else if (vd->vdev_wholedisk == 1) {
3026		return (B_FALSE);
3027	}
3028
3029	for (int c = 0; c < vd->vdev_children; c++) {
3030		if (!vdev_is_bootable(vd->vdev_child[c]))
3031			return (B_FALSE);
3032	}
3033	return (B_TRUE);
3034}
3035
3036/*
3037 * Load the state from the original vdev tree (ovd) which
3038 * we've retrieved from the MOS config object. If the original
3039 * vdev was offline then we transfer that state to the device
3040 * in the current vdev tree (nvd).
3041 */
3042void
3043vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3044{
3045	spa_t *spa = nvd->vdev_spa;
3046
3047	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3048	ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3049
3050	for (int c = 0; c < nvd->vdev_children; c++)
3051		vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3052
3053	if (nvd->vdev_ops->vdev_op_leaf && ovd->vdev_offline) {
3054		/*
3055		 * It would be nice to call vdev_offline()
3056		 * directly but the pool isn't fully loaded and
3057		 * the txg threads have not been started yet.
3058		 */
3059		nvd->vdev_offline = ovd->vdev_offline;
3060		vdev_reopen(nvd->vdev_top);
3061	}
3062}
3063
3064/*
3065 * Expand a vdev if possible.
3066 */
3067void
3068vdev_expand(vdev_t *vd, uint64_t txg)
3069{
3070	ASSERT(vd->vdev_top == vd);
3071	ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3072
3073	if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3074		VERIFY(vdev_metaslab_init(vd, txg) == 0);
3075		vdev_config_dirty(vd);
3076	}
3077}
3078
3079/*
3080 * Split a vdev.
3081 */
3082void
3083vdev_split(vdev_t *vd)
3084{
3085	vdev_t *cvd, *pvd = vd->vdev_parent;
3086
3087	vdev_remove_child(pvd, vd);
3088	vdev_compact_children(pvd);
3089
3090	cvd = pvd->vdev_child[0];
3091	if (pvd->vdev_children == 1) {
3092		vdev_remove_parent(cvd);
3093		cvd->vdev_splitting = B_TRUE;
3094	}
3095	vdev_propagate_state(cvd);
3096}
3097